
Resource-Oriented Partitioned Scheduling in Multiprocessor
Systems: How to Partition and How to Share?

Wen-Hung Huang1, Maolin Yang2, and Jian-Jia Chen1

1Department of Computer Science, Technical University of Dortmund, Germany
2University of Electronic Science and Technology of China, China

ABSTRACT
When concurrent real-time tasks have to access shared
resources, to prevent race conditions, the synchronization
and resource access must ensure mutual exclusion, e.g., by
using semaphores. That is, no two concurrent accesses
to one shared resource are in their critical sections at the
same time. For uniprocessor systems, the priority ceiling
protocol (PCP) has been widely accepted and supported
in real-time operating systems. However, it is still arguable
whether there exists a preferable approach for resource shar-
ing in multiprocessor systems. In this paper, we show that
the proposed resource-oriented partitioned scheduling using
PCP combined with a reasonable allocation algorithm can
achieve a non-trivial speedup factor guarantee. Specifically,
we prove that our task mapping and resource allocation
algorithm has a speedup factor 11−6/(m+1) on a platform
comprising m processors, where a task may request at most
one shared resource and the number of requests on any
resource by any single job is at most one. Our empirical
investigations show that the proposed algorithm is highly
effective in terms of task sets deemed schedulable.

1. INTRODUCTION
Real-time systems are designed for applications in which

the response time is critical. In a real-time system with
multi-tasking, a mechanism for tasks to communicate with
each other or to ensure their synchronization must be fur-
nished. In uniprocessor systems, locking protocols based
on priority inheritance, such as the priority ceiling protocol
(PCP) [28], the priority inheritance protocol (PIP) [28],
and the stack resource policy (SRP) [3], have been shown
reasonably good at managing synchronization and mutual
exclusions.

To schedule real-time tasks on multiprocessor platforms,
there have been three widely adopted paradigms: parti-
tioned, global, and semi-partitioned scheduling. The par-
titioned scheduling approach partitions the tasks statically
among the available processors. That is, each task is
statically assigned to a processor to execute all its jobs on
the processor. The global scheduling approach allows a job
to be migrated from one processor to another. The semi-
partitioned scheduling approach decides whether a task is
divided into subtasks statically and each task/subtask is
then assigned to a processor statically. A comprehensive
survey of multiprocessor scheduling in real-time systems can
be found in [18].

In addition to the above task scheduling paradigms, re-
source sharing and synchronization should also be consid-
ered for multiprocessor systems. Therefore, concerns among
real-time system designs on multiprocessor platforms are
not only resource sharing between the real-time tasks but

Work supported by DFG, as part of the Collaborative Research
Center SFB876 (http://sfb876.tu-dortmund.de/).

also task-to-processor mapping. If there is no need for task
synchronization, partitioned scheduling has low run-time
overhead, although the performance (in terms of schedu-
lability) can be worse than global scheduling. However, in
need of synchronization, (i) is partitioned scheduling still
a good option? And, (ii) how should we derive good task
partitions?

The first question has been partially answered by a few
researches in the literature. For example, Rajkumar [28]
proposed Multiprocessor Priority Ceiling Protocol (MPCP)
(based on suspension locks) and Burns and Wellings [14]
proposed Multiprocessor resource sharing Protocol (MrsP)
(with spin locks). However, it is known that the number
of priority-inversion blockings (pi-blockings) can be lower
bounded by the number of processors of the multiprocessor
system in the worst case, for specific task partitions, as
shown in [13]. That is, the elegance of partitioned scheduling
to run a task all the time on one processor suffers from the
synchronization between the real-time tasks if the tasks are
not partitioned well.

Essentially, the performance of resource sharing protocols
highly depends on how the tasks are partitioned. Therefore,
the second question has been explored in [23, 25, 27, 33].
However, these results are heuristic algorithms, and there
has been no algorithmic analysis provided in the literature
to necessitate these approaches from the perspective of re-
source augmentation (or speedup) factors. Moreover, there
is no clear evidence showing whether the above synchro-
nization strategies and task partitioning approaches should
be strictly designed to follow the traditional partitioned
scheduling paradigm.

Resource-oriented partitioned scheduling: Alterna-
tively, we can consider a new partitioned scheduling policy
for the tasks that need synchronizations. The literature of
real-time systems has been very bias towards the computing
tasks. However, since the resources are the bottlenecks, it
is sensible to change our view angle to focus on the shared
resources. To this end, we can define the following resource-
oriented partitioned scheduling policy used in this paper:
• Each shared resource should be assigned on one pro-

cessor, and the critical sections guarded by this shared
resource are executed on the designated processor.
• The non-critical sections of a task are executed on its

designated processor (that can be different from the
processors executing the critical sections of the task).

The spirit of resource-oriented partitioned scheduling is to
position the resource accesses as the first-class citizens in the
system when we consider task and resource partitioning so
as to keep the response time of critical sections as short
as possible. Note that, in general, we still follow the
partitioned scheduling policy for the non-critical sections,
but the critical sections are proposed to be executed on the
designated synchronization processors. A similar concept to
execute the critical sections guarded by one shared resource

on a designated processor can also be found in Distributed
Priority Ceiling Protocols (DPCP) developed by Rajkumar
et al. [29]. But, there has been no further elaboration in the
literature to provide evidence on how to assign tasks and
resources among multiple processors.

The additional overheads in resource-oriented partitioned
scheduling are just identical to semi-partitioned scheduling
(which is less than global scheduling) due to the critical-
section migration, since we only specifically migrate critical
sections. The migration can be managed directly from the
operating systems, in which a request to lock a shared
resource can be handled directly (by the resource manager
residing) on the designated processor. We will discuss this
further in Section 3.2. The resource-oriented partitioned
scheduling has more overhead than the original partitioned
scheduling since the critical sections have to be executed on
the remote processors. Even though this may seem to be a
drawback, we should also keep in mind the implementations
of MPCP and MrsP also require an arbiter to decide which
critical section is granted to be executed, which is also not
free.

In this paper, we provide fundamental explorations of the
resource-oriented partitioned scheduling for fixed-priority
scheduling, in which each task has a unique priority level.
We show that the resource-oriented partitioned scheduling
policy has good potential to maintain the low-overhead
of partitioned scheduling (if there are only a few critical
sections per task) and good acceptance ratios of schedula-
bility. To the best of our knowledge, this is the first work
studying this seemingly insurmountable problem involving
task partitioning and the design of synchronization protocols
at the same time.
Our technical contributions: Our contributions are:
• In Section 4, we first provide a schedulability test for a

given resource-oriented task partition. Combined with
the proposed schedulability test, we propose an algo-
rithm for deriving resource-oriented task partitioning
in Section 5.
• In Section 6, we show that our algorithm using PCP

(after resource and task partitioning) can achieve a
speedup factor 11 − 6/(m + 1) if a task may request
at most one shared resource and each job of a task
may request the resource at most once during its
execution, where m ≥ 2 is the number of processors.
To the best of our knowledge, this is the best result
studying the problem of resource sharing on multipro-
cessors in terms of non-optimality when partitioned
scheduling schemes are considered. Earlier results by
Andersson and Easwaran [1] achieved a speedup factor
12(1 + 3r/4m) by using G-EDF and virtualization
under the same resource access model, where r is
the number of shared resources. We note that the
above speedup factor may not be small enough to have
very practical implications, but the understanding of
this constant speedup factor with simple scheduling
algorithms implies the potential of resource-oriented
partitioned algorithms.
• The effectiveness of our proposed algorithm is highly

supported by the evaluation results in Section 8. Em-
pirical results show that our algorithm along with
either PCP or Non-preemptive protocol (NPP) for
task sets with utilization below 50% is nearly optimal
in the sense that task sets not deemed schedulable
by our algorithm are also not schedulable using any
scheduling policy.
• Further, we observe that while the additional overhead

is incurred by the implementation of PCP in each
single processor, the improvement over the simple non-

preemptive scheduling by using PCP is very little:
the long blocking incurred by the non-preemptive
scheduling can be painlessly removed by finding a
good task partitioning. Therefore, this enables us to
use the simple non-preemptive scheduling for resource
sharing on multiprocessor systems while keeping high
schedulability.

2. SYSTEM MODEL

2.1 System and Task Model
We assume in this paper that we have a multiprocessor

platform comprised of m ≥ 2 identical multiprocessors ℘ =
{℘1,℘2, ..,℘m}. A real-time system with shared resources is
specified using r shared resources RS = (R1,R2, ...,Rr) and
n sporadic task τ = {τ1, τ2, ..., τn}.
Task model. Each sporadic task is characterized as τi =
(Ci,Ai,Ti,Di), where Ci the upper bound on the amount of
non-critical-section execution time; Ai the upper bound on
the amount of critical-section execution time; Ti denotes the
minimum inter-arrival time; and Di the relative deadline.
We note that the total worst-case execution time (WCET) of
task τi, including critical-sections and non-critical-sections,
is equal to WCETi = Ci + Ai. Each job of task τi
requires WCETi units of processing capacity within Di time
units from its release, and this processing capacity must be
supplied sequentially, i.e., the job cannot be scheduled on
more than one processor at any given time instant. Further,
any two successive jobs of this task must be released at least
Ti time units apart.
Shared resources. A shared resource can be in-memory
data, such as a set of variables, and external objects, such
as files, database connections, and network connections. To
prevent race conditions, resources shared between sets of
tasks must be accessed under mutual exclusion: no two
concurrent accesses to one shared resource are in their
critical sections at the same time. We note that in this
work we focus ourselves on logical shared resources: a piece
of code to be executed on processors. Hence, no shared
resources are processor-specific.

The jobs of any task can issue requests for exclusive
access to shared resources R1,R2, ...,Rr. A job of task
τi could request resource Rq on multiple occasions during
its execution, and we denote as Ni,q ≤ N the maximum
number of such requests by any single job of τi where N
is an integer. Associated with these requests is the worst-
case duration of time for which a job uses resource Rq.
We do not put any assumption on the access patterns of
resource requests, dependent on different execution paths
with different execution times. Resource requests cannot
be nested. We denote by Vi,q the maximum (worst-case)
resource usage time among all requests for resource Rq by
jobs of τi. We denote by Ai,q an upper bound on the total
resource usage time for resource Rq by any single job of τi
(sum of resource usage times over all requests for resource
Rq). Clearly, Ai,q/Ni,q ≤ Vi,q. Further, we denote by
RSi ⊆ {R1,R2, ...,Rr} the set of all resources accessed by
jobs of τi, and the cardinality of this set is at most Q, i.e.
|RSi| ≤ Q ≤ r.

We denote the total resource usage time of task τi as Ai =∑
Rq∈RSi Ai,q. We assume that Ci + Ai ≤ Di for any task

τi ∈ τ . The utilization of resource Rq from task τi is denoted

by U
Rq
i = Ai,q/Ti. The total resource utilization of task τi

is denoted by UAi = Ai/Ti. We denote the utilization of task
τi as Ui = (Ci+Ai)/Ti. The utilization of task τi with non-
resource execution is defined as UCi = Ci/Ti. We further
assume that UΣ =

∑n
i=1 Ui ≤ m. Otherwise, it cannot

be feasibly scheduled. The total utilization of resource Rq

is denoted by URq =
∑
τi∈τ U

Rq
i . The total utilization of

non-critical-section is denoted by UC =
∑
τi∈τ U

C
i ; and the

total utilization of shared resources is denoted by URS =∑
Rq∈RS U

Rq .

Task system τ is said to be an implicit-deadline system if
Di = Ti holds for each τi ∈ τ , and a constrained-deadline
system if Di ≤ Ti holds for each τi ∈ τ ; otherwise, an
arbitrary-deadline system.

In this paper, we focus on preemptive fixed-priority
scheduling, in which each task τi is associated with a unique
priority level, called base priority π(τi). In this paper,
π(τi) > π(τj) if task τi has a higher base priority than
task τj . We restrict our attention to implicit-deadline task
systems. A system τ is said to be feasible if there exists a
scheduling algorithm that can schedule the system without
any deadlines being missed. A schedulability test of a
scheduling algorithm is to verify whether the task system
is feasible under the given algorithm.

2.2 Resource-Oriented Partitioned Schedul-
ing

As already defined in Section 1, we will adopt the resource-
oriented partitioned scheduling in this paper: The resource-
oriented task partitioned scheduling has the following char-
acteristics:
• All the critical sections associated with the same re-

source must be bound to the same processor, called
synchronization processor. It implies that access to
shared resources must execute on the designated syn-
chronization processor.
• Tasks are statically allocated onto processors for ex-

ecuting their non-critical sections. All non-critical-
section codes generated by a task only execute on
the processor on which the task is assigned, called
application processor. Each time a job enters a crit-
ical section, unlike spin locks, it suspends itself on
its application processor, yielding this processor to
other tasks, and executes critical section codes on the
synchronization processor on which the corresponding
shared resource(s) is bound.
• A processor may still execute both critical and non-

critical sections, depending on our resource and task
partitioning algorithm, to be explained in Section 5.

Specifically, in this paper, we will explore
• how many processors should be designed as synchro-

nization processors,
• how to partition the shared resources onto synchroniza-

tion processors under the resource-oriented partitioned
scheduling,
• how to partition the sporadic real-time tasks for their

non-critical sections in application processors, and
• how to assign the base priorities of the sporadic tasks.

To this end, in Section 3 we will discuss how to handle
the competition of shared resource access, and provide
schedulability analyses in Section 4 and Section 7 to ensure
the schedulability of the tasks under given resource-oriented
partitioned scheduling and base priority assignments. Then,
we will develop our resource-oriented partitioned scheduling
algorithm in Section 5, whose non-optimality will be quan-
tified in Section 6.

For the simplicity of presentation, we will assume that
each task may request at most one shared resource, and
further each job of that task may request the resource at
most once during its execution, that is, Q = 1 and N = 1
(through Section 4 to Section 6). In Section 7, we will
relax this assumption to include multiple resource accesses

during a job’s execution and multiple occasions on one
resource request. To the best of our knowledge, even under
this restrictive assumption, the problem of scheduling tasks
with resource sharing on multiprocessors under partitioned
scheduling is still an open question - no preferable scheme is
known.

2.3 Speedup Factors
Ideally, an exact test associated with an optimal schedul-

ing algorithm is preferred. However, it is often the case
that an optimal scheduling is unavailable and/or the suf-
ficient test associated with some scheduling algorithm is
computationally intractable. The speedup factor is one
metric that may be used to quantify the quality of sufficient
schedulability tests. It can be formally defined as follows:

Definition 1 (Processor speedup factor). A
schedulability test has a processor speedup factor x, x ≥ 1,
if it is guaranteed that any task system that is feasible upon
a specified platform is deemed to be schedulable by the test
upon a platform in which each processor is at least x times
as fast.

The concept of demand bound function (DBF) has been
widely used in real-time schedulability analysis. The de-
mand bound function (DBF) dbfi(t) bounds the maximum
cumulative execution requirement by jobs of a sporadic task
τi that both arrive in and have absolute deadlines within
any interval of length t [4]. The demand bound function of
task τi with an interval of length t is

dbfi(t) = max

(
0, (

⌊
t−Di
Ti

⌋
+ 1)× (Ai + Ci)

)
(1)

Specifically, the demand bound functions of task τi for non-
critical-section execution and for accesses to resource Rq,
with an interval of length t are

dbfCi (t) = max

(
0, (

⌊
t−Di
Ti

⌋
+ 1)× Ci

)
(2)

and

dbf
Rq
i (t) = max

(
0, (

⌊
t−Di
Ti

⌋
+ 1)×Ai,q

)
(3)

3. RESOURCE SHARING PROTOCOLS

3.1 Single Processor Systems
To achieve mutual exclusion, the shared resources subject

to mutual exclusion constraints must be serially executed.
This inevitably causes some delays, namely priority inver-
sion: a task is prevented from executing due to another
lower-base-priority task with a current higher effective pri-
ority (e.g., when holding a resource).
NPP vs PCP. The non-preemptive protocol (NPP) is
characterized by the fact that once a critical section has
started to execute, it cannot be preempted until it finishes
the section. This has several advantages:
• The implementation of a non-preemptive scheduling is

simpler because the scheduler is inactive during the
execution of a non-preemptiable section.
• A set of tasks may need to share resources that must be

accessed under mutual exclusion. It implies that once
a job enters a critical section, it cannot be preempted
by any access to this critical section until it finishes
the critical section. This condition is automatically
satisfied under non-preemptive scheduling.

Let π(τi) denote the base priority of task τi. It is shown
in [15] that under NPP a task may incur blocking due to

any lower-priority task that accesses resources. Under the
NPP, the blocking for a task τk being analyzed is

Bk = max
i,q
{Vi,q|π(τi) < π(τk)} (4)

Despite some advantages, NPP falls short of avoid-
ing some unnecessary blocking incurred by lower-priority
tasks [15]. The priority ceiling protocol (PCP) has thus
been introduced by Sha, et. al [30] to remove the unnecessary
blocking while preventing deadlocks and chained blocking.
The idea underlying PCP is that the system maintains a sys-
tem ceiling and disallows any other jobs with lower priorities
than the system ceiling to access any shared resources. The
blocking has been shown in [30] to be:

Bk = max
i,q
{Vi,q|π(τi) < π(τk), C(Rq)> ≥ π(τk)} (5)

where C(Rq) is the ceiling priority of shared resource Rq
under PCP.

In the following theorem, we show that PCP associated
with the RTA test

:::::::::::
response-time

:::::::
analysis

:::::
(RTA)

:
by [2] under

RM scheduling offers non-trivial quantitative guarantees:

Theorem 1. The speedup factor of the priority ceiling
protocol (PCP) associated with the RTA by [2] under RM
scheduling in uniprocessor systems is 2.

Proof. The proof is in Appendix.

3.2 Multiprocessor Systems
It is known that Ω(m) pi-blocking is unavoidable on

multiprocessor systems, provided that any task partition
is given, as shown in [13]. Therefore, as can be seen in
the literature [14,25,28] in which task partitioning is given,
a higher-priority job under MPCP or MrsP may suffer
from the so-called chained blocking : a higher-priority job
can be blocked for the duration of either m, for MrsP, or
n, for MPCP, critical sections. The chained blocking has
significant influence on the schedulability analyses.

A clear advantage of resource-oriented scheduling by
bounding all accesses to each shared resource to the same
processor is that it avoids chained blocking : each access to a
shared resource of a task can be only blocked by those low-
priority accesses that are assigned on the same processor.
Therefore, higher schedulability is expected. This is also
empirically confirmed in our experiments (see Section 8).
As mentioned in Section 1, a similar concept can also be
found in Distributed Priority Ceiling Protocols (DPCP) [29].
But, there has been no further elaboration in the literature
to provide evidence on how to assign tasks and resources
among multiple processors.

In addition, based on resource-oriented partitioned
scheduling, we actually break down the problem of
scheduling tasks with shared resources on multiprocessors
into smaller uniprocessor sub-problems, on which standard
consolidated techniques can still be applied (on each syn-
chronization processor), e.g., NPP and PCP in uniprocessor
systems, denoted by R-NPP and the R-PCP for the rest
of this paper, respectively. Moreover, unlike uniprocessor
systems, the unnecessary blocking incurred by the NPP
(compared to PCP) could be removed by partitioning
tasks properly on multiprocessor systems. This might in
turns enable us to use the R-NPP due to its simplicity
of implementations, where maintaining a list of currently
locked semaphores and priority ceiling orders during runtime
are not needed.

Compared to traditional partitioned scheduling, resource-
oriented partitioned scheduling has additional overheads.
In our approach, the execution of a task in the resource-
oriented scheduling is split into more than one processor,

similar to semi-partitioned scheduling. From the imple-
mentation’s point of view, the resource-oriented partitioned
scheduling can benefit from the pre-planned nature of push-
migrations: the jobs to be scheduled on the next processor
are statically determined (more details can be found in [5]).
This gives us several advantages :
• As which critical-section executions will migrate

and also among which processors are known before-
hand, cache-related preemption and migration delay
(CPMD) accounting is task-specific and hence less
pessimistic.
• Furthermore, since push-migrations can be imple-

mented with mostly-local state, migrations of the
resource-oriented scheduling entail less overhead and
are easier to implement.

However, for example, MrsP requires a lock holder to
progress within the critical section of a task waiting for
a resource already locked by a preempted task executing
on a different processor. Therefore, the migration of jobs
across partitions must be furnished, and the next processor
is dynamically determined at runtime, the so-called pull-
migrations. Such migrations imply much higher overheads
than push-migrations at runtime.

Inspired by these, in this work we aim at obtaining a
better understanding of this seemingly promising scheduling
along with task and resource partitioning.

4. SCHEDULABILITY ANALYSIS
In this section, we present the response time analysis and

the schedulability test for a specific task τk. We assume
that the priority assignment for fixed-priority preemptive
scheduling is already specified and the tasks are already
mapped onto the processors. Note that as mentioned in Sec-
tion 3, we will focus on the case that N = 1 and Q = 1 in this
section. In Section 4.1, we begin with a simpler case in which
the synchronization processors are used only for executing
critical sections and application processors are used only for
executing non-critical sections. We will consider running
non-critical sections on some synchronization processors in
Section 4.2.

We implicitly assume that the higher-priority tasks al-
ready meet their deadlines while analyzing task τk. Since
we use partitioned scheduling for the non-critical sections,
we define hpl(k) as the set of the higher-priority tasks that
are assigned on the same processor where task τk is assigned
to run its non-critical sections. Suppose that a job of task
τk arrives at time t0 and has an absolute deadline at time
t0 + Dk. To analyze whether we can finish the job in
time, we need to analyze the interference from the higher-
priority tasks hpl(k) on the local application processor and
that due to resource accesses on the remote synchronization
processors in the time interval [t0, t0 +Dk). Without loss of
generality, we can set t0 to 0.

4.1 Response Time Analysis
Here, in this subsection, suppose that the synchroniza-

tion processors are used only for executing critical sec-
tions and application processors are used only for executing
non-critical sections. Under resource-oriented partitioned
scheduling, every time a task requests a shared resource
mapped onto a remote processor, the task suspends itself
on the local processor until the request is complete. With
the suspension-based scheduling, no critical instant theorem,
at which the worst-case behavior in analyzing a task is
concretely captured, has been yet established. To cover
the worst-case behavior for the non-existence of critical
instant, accounting for the so-called carry-in jobs, that may

℘3(R1)

℘2 (τ2)

℘1 (τ1)

t1 t2 t3 t4 t5 t6

local execution access by τ1 access by τ2

execution

suspension

Figure 1: An example of accessing a shared resource R1 by
two tasks on a three-processor platform, on which τ1, τ2 are
allocated on processor ℘1 and ℘2, respectively, and accesses to
R1 are bound to processor ℘3.

be carried into the interval of our interest, i.e., [t0, t0 +
t), is commonly used in schedulability analysis, as shown
in [7, 17, 24, 26]. Moreover, the interference due to such
jobs can be more precisely quantified as jitter. Importantly,
such jitter has to be carefully incorporated. Several mis-
conceptions with incorrect quantifications of jitter for self-
suspending task systems were reported in a recent survey
paper by Chen et al. [16]. Nevertheless, it has been reported
in [7,17] that using RTi−Ci as the jitter is safe, where RTi is
the worst-case response time of task τi, like global scheduling
in multiprocessor systems [6].

Lemma 1. The cumulative non-critical-section execution
time of a task τi in hpl(k) in the time interval [t0, t0 + t) is
upper bounded by:

Wi(t) =

⌈
t+RTi − Ci

Ti

⌉
Ci (6)

Lemma 2. The cumulative execution time of a task τi for
accesses to resource Rq in the time interval [t0, t0 + t) is
upper bounded by:

Ei,q(t) =

⌈
t+RTi −Ai,q

Ti

⌉
Ai,q (7)

where RTi (in the above two lemmas) is the worst-case
response time of task τi and RTi ≤ Ti.

Proof. The proofs are omitted since they are identical
to the proofs in the literature. See [7, 17] for details.

Under multiprocessor partitioned scheduling for sporadic
tasks without resource sharing, all the jobs generated by a
task are constrained to execute only upon the processor to
which the task is assigned. It thus follows that only those
tasks that are executed on the same processor have to be
taken into consideration when we analyze the schedulability
of a task. However, in the presence of resource sharing, the
time a task waits for executing itself is determined by not
only the interference caused by local tasks but also resource
accesses to the processors on which the task may request for
shared resources.

Let S(t) be the upper bound on the total time that task τk
executes or waits in the waiting queue to be granted to enter
the critical section in time interval [t0, t0 + t). Let X(t) be
the upper bound on the total time that task τk executes or
waits in the waiting queue to execute its non-critical-section
in time interval [t0, t0 + t). At any time t0 + t, if the job
of task τk released at time t0 has not finished yet, it can
only either (i) execute or wait on the local processor at time
t0 + t or (ii) execute or wait on its remote synchronization
processor(s).

For example, consider the simplest case in which two
tasks τ1 and τ2 are assigned on processor ℘1 and processor
℘2, respectively. That is, there is no multitasking on each
processor. We assume that τ1 has higher priority than τ2,
and we are now analyzing task τ2 in the following example.
The schedule of accessing a shared resource by these two
tasks is indicated in Figure 1:
• At time t1, tasks τ1 and τ2 start their computation.
• At time t2, tasks τ1 and τ2 both attempt to access the

shared resource. The request from task τ1 is granted,
while task τ2 suspends itself on ℘2.
• At time t3, task τ1 finishes its access to the shared

resource and resumes its local computation. At the
same time, task τ2 starts to access the shared resource.
• At time t4, task τ1 again attempts to access the shared

resource. To maintain mutual exclusion, this request
from task τ1 is blocked by task τ2.
• At time t5, after leaving the critical section, task
τ2 unlocks the shared resource and resumes its local
computation. At the same time, task τ1 starts to
access the shared resource.
• At time t6. At the same time, task τ2 finishes its

execution.
As can be seen, Task τ2 executes its computation on the
application processor, in time intervals [t1, t2) and [t5, t6),
and suspends itself to access shared resource R1 in time
intervals [t2, t5). Therefore, if a task may request at most
one resource, this task is awaiting either on the application
(local) processor or on the remote synchronization processor
before its completion. Suppose that S(t) and X(t) are safe.
Then, if the job of task τk released at time t0 cannot finish its
execution at time t0+t, it must be the case that S(t)+X(t) >
t. Equivalently, the negation of this condition is sufficient to
upper bound the response time of a task. As a result, the
classic response-time analysis (RTA)

:::
RTA

:
can be extended

as follows:

Theorem 2. Suppose that S(t) and X(t) are both safe
upper bounds. The smallest t satisfying the following

S(t) +X(t) ≤ t (8)

is a safe upper bound on the response time of task τk if t ≤
Tk.

Proof. From the above argument, task τk is await-
ing/executing either on the local processor or on one of
its remote synchronization processor before its completion.
If the job of task τk released at time t0 cannot finish its
execution at time t0 + t and by the definition of S(t) and
X(t), it must be the case that S(t)+X(t) > t. Equivalently,
the negation of this condition is sufficient to upper bound
the response time of a task. Hence, we here conclude this
theorem.

We now explain how to compute X(t) and S(t).
Computing X(t). The waiting time on the local processor
is only dependent on the execution of non-critical-section
codes of tasks bound to the same processor, which can be
elaborated as follows:

X(t) = InRes(t) + Ck (9)

where the terms are as described below:
• Ck denotes an upper bound on the amount of non-

critical-section execution from task τk itself.
• InRes(t) denotes an upper bound on the amount of

interferences from higher-priority non-critical-section
execution with an interval of length t on the same
processor.

From Lemma 1, it is safe to set

InRes(t) =
∑

τi∈hpl(k)

Wi(t) (10)

where hpl(k) is the set of the tasks with priority higher
than τk on the local application processor where τk runs its
non-critical sections.
Computing S(t). The waiting time on the synchronization
processor that runs the critical section of task τk can be
elaborated as follows:

S(t) = Ak +Bk + IrResk (t) (11)

where the terms are as described below:
• Ak denotes an upper bound on the amount of critical-

section execution from task τk itself.
• Bk denotes an upper bound on the amount of blocking

from lower-priority critical-section accesses bound on
the same synchronization processor.
• IrResk (t) denotes an upper bound on the amount of

interferences from higher-priority synchronization ex-
ecution with an interval of length t.

Under the resource-oriented scheduling, the total time
that task τk executes or waits in the waiting queue to
be granted to enter the critical sections in time interval
[t0, t0 + t) is contributed by all the resources that are bound
to the same synchronization processor. Let Θr be the set
of shared resources that are bound to the synchronization
processor ℘r on which task τk executes its critical section.

The Bk parameter is similar to the one in uniprocessor
systems, but dependent on only those low-priority accesses
to the same synchronization processor: under the R-NPP

Bk = max
i,q
{Vi,q|π(τi) < π(τk),Rq ∈ Θr} (12)

and under the R-PCP

Bk = max
i,q
{Vi,q|π(τi) < π(τk), C(Rq)> ≥ π(k),Rq ∈ Θr}

(13)
From Lemma 2, it follows that

IrResk (t) =
∑

Rq∈Θr

∑
τi∈hp(k)

Ei,q(t) (14)

4.2 Non-Critical Sections on Synchronization
Processors

A synchronization processor can also execute non-critical
sections. In our design, if there are non-critical sections
assigned to be executed on a synchronization processor, the
execution of the non-critical-sections has the priority lower
than any of the critical-sections. Suppose that task τk is
assigned to a synchronization processor. In this case, when
calculating X(t), we also need to consider the interference
from critical-section executions running at higher priority:

X(t) = InRes(t) + IlRes(t) + Fk (15)

where IlResk (t) denotes an upper bound on the amount of
interferences from local critical-section executions of tasks
with their base priority higher than τk with an interval of
length t, i.e. π(τi) > π(τk); and Fk denotes an upper
bound on the amount of interferences from local critical-
section executions of tasks, denoted by a set lp(k), with
their base priority lower than τk, i.e. π(τi) < π(τk), i.e.,
lp(k) = {τi | π(τi) < π(τk)}.

Let Θl be the set of shared resources that are bound to
the processor ℘l on which task τk executes its non-critical-

Algorithm 1: Linear Search

input : A set of n tasks τ , m processors ℘, and r resources RS
output: Resources allocations Θ, task allocations Γ and the

feasibility of system τ
for mR = 1, ...,min(m, r) do

if WFD (Q,mR) returns “feasible allocation” then

Θ←WFD (Q,mR);

else
continue;

if FFRM(τ ,Θ) returns “feasible allocation”;
then

return “feasible system”;

return “infeasible system”;

section codes. We have

IlRes(t) =
∑
Rq∈Θl

∑
τi∈hp(k)

Ei,q(t) (16)

To calculate Fk, we can again use Lemma 2 directly if we are
aware of the worst-case response time of the lower-priority
task under the assumption that RTi ≤ Ti for each τi ∈ lp(k).
Later in Section 5, we will not be able to know RTi of a
lower-priority task τi in lp(k) when testing the schedulability
of task τk. However, it can be safely assumed that RTi ≤ Ti
and this predicate RTi ≤ Ti for τi ∈ lp(k) will be verified
later when we test the schedulability of task τi. Therefore,
we have

Fk =
∑
Rq∈Θl

∑
τi∈lp(k)

⌈
t+ Ti −Ai,q

Ti

⌉
Ai,q (17)

As S(t) and X(t) have been computed, we present our
schedulability in the following theorem:

Theorem 3. For each task τk in τ , if there exists 0 ≤
t ≤ Dk s.t. Eq. (8) holds, then task τk with resource sharing
is schedulable in fixed-priority partitioned scheduling under
a given task partitioning.

5. TASK AND RESOURCE ALLOCATIONS
In this section we present our algorithm that deter-

mines a set of synchronization processors and that allocates
both shared resources and tasks onto processors. The
intuition underlying the proposed algorithm is that under
the resource-oriented scheduling, once shared resources are
mapped onto the synchronization processors, the blocking
time incurred by lower-priority tasks can be determined,
irrespective of their task allocations. Hence, by initially
sorting the tasks in an order of decreasing priorities (non-
decreasing order of relative deadlines), any task being as-
signed will not jeopardize the schedulability of the tasks that
have been successfully assigned onto processors:

1. First, we iteratively determine a configuration of ini-
tializing a set of processors to be used as synchroniza-
tion processors. From a schedulability point of view,
the reduction in the number of the synchronization
processors is a tradeoff between
• an increase on the time spent on the execution

of critical sections on the synchronization proces-
sors, and
• a reduction on the time spent on the execution

of non-critical sections on the application proces-
sors.

As each resource is bound to one processor, at most
min(m, r) configurations of processors need to be
checked until either a feasible system is found or does
not exist. In each configuration of processors, re-
sources and tasks are respectively allocated by Worst-

Algorithm 2: Worst-Fit Decreasing (WFD)

input : A set resource RS and mR identical processors for
synchronization

output: Resources allocations Θ
Θj ← ∅, ∀j = 1, 2, . . . ,m;

sort the r shared resources RS with non-increasing URq ;
for Rq ∈ RS do

// put these processors furthest

for h = m−mR + 1, . . . ,m do

calculating the load
∑
Rj∈Θh

URj ;

// least utilization first

assign Rq to the mR processor ℘h with the minimum load;

if URq +
∑
Rj∈Θh

URj > 1 then

return “infeasible allocation”;

else
Θh ← Θh ∪ {Rq};

return “feasible allocation”,Θ;

Fit Decreasing (WFD) algorithm and First-Fit Rate-
Monotonic (FFRM) algorithm, presented later.

2. The resources are ordered in a list in a non-increasing
order of their utilization. The algorithm attempts
to allocate each resource onto the synchronization
processor with the least load, called WFD. We note
that this is a well-known strategy for the bin-packing
problem. The intuition underlying the WFD is that
by distributing resources evenly, it is sensible to reduce
the time spent by tasks waiting for resource accesses
remotely. These synchronization processors are prefer-
ably put as far as possible from the processors on which
tasks will be allocated later.

3. Tasks are prioritized and sorted in the order of non-
decreasing relative deadlines, i.e., D1 ≤ D2 ≤ ... ≤
Dn. That is, for implicit-deadline task systems, we
use the well-known rate-monotonic (RM) policy for
assigning the base priorities of the tasks. Then, the
algorithm considers to assign (the non-critical sections
of) the tasks to processors from the highest base
priority to the lowest base priority. Our algorithm
here, called First-Fit Rate-Monotonic (FFRM), places
the task in the first processor that can accommodate
the task according to Theorem 3. In addition, the
algorithm heuristically places the task in the proces-
sors to which no shared resources are bound. If no
such processors can accommodate this task, then the
algorithm will also check the feasibility of putting it
in those processors initialized to be synchronization
processors.

We denote our algorithm as Algorithm ROP-PCP when
PCP is used and Algorithm ROP-NPP when NPP is
adopted.
Runtime complexity. In attempting to find a configu-
ration for synchronization processors, we need at most m
rounds. We note that the overall sorting time of Algo-
rithm 2 and Algorithm 3 in all rounds can be amortized to
O(r log r+n logn) by using appropriate data structures. In
each round, Algorithm 2 runs in time complexity O(r logm)
by maintaining the processor utilization with a heap data
structure, and Algorithm 3 requires O(mnDn) for checking
whether a task can fit into one processor according to
Theorem 3, where Dn is the longest relative deadline among
tasks. Overall, our algorithm runs in O(r log r + n logn +
m(r logm + mnDn)), which is in pseudo-polynomial time
complexity.

6. SPEEDUP FACTOR UNDER RM

Algorithm 3: First-Fit Rate-Monotonic (FFRM)

input : A set τ of tasks, mC identical processors for
non-synchronization, resources allocation Θ

output: Task allocations Γj and the feasibility of system τ
sort the given n tasks in τ s.t. D1 ≤ D2 ≤ · · · ≤ Dn;
Γj ← ∅, ∀j = 1, 2, . . . ,m;
for k = 1, 2, . . . ,n do

for p = 1, ..., . . . ,m do
if task τk is schedulable according to Theorem 3 then

Γp ← Γp ∪ {τk}; // assign τk to processor p
break ;

if τk cannot fit any processor in the above loop then
return “infeasible allocation”;

return “feasible allocation”;

In this section, we obtain a speedup factor for Algorithm
ROP-PCP under rate-monotonic (RM) scheduling, in which
Di = Ti for every task τi ∈ τ . The approach is as follow. We
identify the smallest value of x ≥ 1 for which we can prove
that any task set that is feasible upon a platform comprising
m unispeed processors is deemed to be schedulable by the
RMFF upon a platform in which each processor is at least x
times as fast. Consequently, we can conclude that the value
x is a processor speedup bound.

In the following lemma, we first provide necessary con-
ditions for any optimal scheduling, which are based upon
the concept of demand bound functions (dbf) as defined in
Section 2.3.

Lemma 3. Any implicit-deadline task system τ that is
feasible upon a platform comprised of m processors must
satisfy

UC + URS ≤ m and ∀τi ∈ τ , Ui ≤ 1 (18)

and ∀τk ∈ τ , ∀Rq ∈ RSk

maxτi:Di>Dk Vi,q +
∑
τi:Di≤Dk

dbfR
q

i (Dk)

Dk
≤ 1 (19)

Proof. The proof is in Appendix.

We will derive a speedup factor for the RMFF. Before
that, we first need the following two lemmas:

Lemma 4. For t ≥ Di,

3dbfCi (t) ≥Wi(t) (20)

and

3dbfR
q

i (t) ≥ Ei,q(t) (21)

Proof. The proof is in Appendix.

Lemma 5. Suppose that Ui ≤ 1 for every task τi ∈
τ . Given mR synchronization processors, the utilization of
shared resources on each processor under WFD is at most

1 +
URS − 1

mR
(22)

Proof. The proof is similar to the scheduling algorithms
of the makespan problem. Let L∗ be the maximum utiliza-
tion among the mR processors to schedule shared resources
under WFD. Let u` be the utilization of the last resource
mapped onto L∗. The WFD algorithm assigns each resource
onto the processor with the least load. It follows that

L∗ − u` ≤
URS − u`

mR
⇒ L∗ ≤ URS − u`

mR
+ u` ≤

URS − 1

mR
+ 1

(23)

where the last inequality is due to the condition u` ≤ 1.

In the following theorem, we show that the speedup factor
of our algorithm is 11− 6/(m+ 1) when N = 1 and Q = 1,
irrespective of how many shared resources, r, are present.

Theorem 4. The speedup factor of the proposed resource-
oriented partitioned scheduling algorithm ROP-PCP is 11−

6
m+1

when m ≥ 2, N = 1, and Q = 1 under the resource-
oriented scheduling using PCP in Section 3.2.

Proof. We prove this theorem by showing that any task
set that is feasible upon a platform comprising m unispeed
processors is deemed to be schedulable by Algorithm ROP-
PCP upon a platform in which each processor is at least
11− 6/(m+ 1) times as fast.

Suppose that Algorithm ROP-PCP fails to obtain an
allocation for τ : there exists task τk which cannot be
mapped on to any processor by Algorithm FFRM. Note that
due to the sorting of the tasks in Algorithm ROP-PCP, all
the tasks before task τk mapped onto processor have been
ensured RTi ≤ Di = Ti for i = 1, 2, . . . , k − 1. Since τk fails
the test of Theorem 3, it must be the case that for every
processor

S(Dk) +X(Dk) > Dk (24)

The failure of Algorithm ROP-PCP implies that τk also
fails the test of Theorem 3 on each of the mC = m − mR

application processors.
Summing over all mC such processors and after reformu-

lation, we obtain

Ck +Ak
Dk

+
Bk
Dk

+
IrResk (Dk)

Dk
+

∑
τi∈hp(k) Wi(Dk)

mCDk
> 1

(25)

Let Bk 6= 0 be the longest critical section of accessing
resource Rb of tasks having relative deadline larger than
Dk that blocks task τk’s critical-section execution on the
designated processor. We now consider two separate cases:
• τk may request on Rb. From Lemma 3, it is necessary

for task τk that
(
Bk +

∑
τi:Di≤Dk

dbf
Rb
i (Dk)

)
/Dk ≤

1. Clearly, it follows that Bk ≤ Dk.
• τk doesn’t request on Rb. Recall that under PCP

a task can only be blocked by lower-priory tasks’
critical sections that are accessed by a task with
an equal or higher priority than τk. Thus, under
RM scheduling there must exist a task τa with a
relative deadline Da ≤ Dk that may request on
Rb. As Da ≤ Dk, the execution time from tasks
having relative deadlines larger than Da that has to
be serialized must be at least Bk. From Lemma 3,
it is necessary for task τa being schedulable that(
Bk +

∑
τi:Di≤Da dbf

Rb
i (Da)

)
/Da ≤ 1. It then fol-

lows that Bk ≤ Da ≤ Dk.
In either case, we can see that Bk ≤ Dk.

If each processor is at least x times as fast, and by
Lemma 3 and the above discussions, we know (Ck +
Ak)/Dk ≤ 1/x, Bk/Dk ≤ 1/x, and

UC ≤ m− URS

x
(26)

By Lemma 5, if each processor is at least x times as fast,
it must be the case that∑

Rq∈Θh

∑
τi∈hp(k) dbf

Aq
i (Dk)

Dk

Eq. (22)

≤
1 + URS−1

mR

x
(27)

Putting the pieces together, at processors with speed x we

have

IrResk (Dk)

Dk
=

∑
τi∈hp(k)

∑
Rq∈Θh

Xi,q(Dk)

Dk

Eq. (21)

≤
3
∑
τi∈hp(k)

∑
Rq∈Θh

dbf
Aq
i (Dk)

Dk

Eq. (27)

≤
3(1 + URS−1

mR
)

x
(28)

and ∑
τi∈hp(k) Wi(Dk)

mCDk

Eq. (20)

≤
3
∑
τi∈τ

dbfCi (Dk)

Dk

mC
≤ 3UC

mC

Eq. (26)

≤ 3(m− URS)

x(m−mR)
(29)

Summing over the corresponding terms and to contradict to
Eq. (25), we need to set

x ≥ 5 +
3(URS − 1)

mR
+

3(m− URS)

m−mR
(30)

Let f(m,URS) = 5+ 3(URS−1)

mR
+ 3(m−URS)

m−mR . In the following

proof, we show that f(m,URS) is upper bounded by 11 −
6/(m+ 1). We consider two separate cases:
• m is even. Let mR be m

2
. Thus, we have

f(m,URS) = 5 +
3(URS − 1)

m/2
+

3(m− URS)

m/2

= 5 + 6
m− 1

m
= 11− 6

m
(31)

• m is odd. Due to our assumption, m ≥ 3; therefore,
(m − 1)/2 ≥ 1. In this case, we further consider two
subcases:

– URS ≥ m+1
2

. Let mR be m+1
2

.

f(m,URS) = 5 +
3(URS − 1)

(m+ 1)/2
+

3(m− URS)

(m− 1)/2

= 5 + 6

(
(m2 − 1) + 2− 2URS

m2 − 1

)
≤1 11− 6

m+ 1
(32)

where ≤1 is due to the assumption that URS ≥
m+1

2
.

– URS < m+1
2

. Let mR be m−1
2

.

f(m,URS) = 5 +
3(URS − 1)

(m− 1)/2
+

3(m− URS)

(m+ 1)/2

= 5 + 6

(
(m2 − 1)− 2m+ 2URS

m2 − 1

)
≤1 11− 6

m+ 1
(33)

where ≤1 is due to the assumption that URS <
m+1

2
.

In either case, we can see that f(m,URS) is upper bounded
by 11− 6/(m+ 1).

Note that our analysis in this proof greedily sets mR

instead of searching mR sequentially as in Algorithm 1. It is
possible that mR in our greedy setting is larger than r, the
number of shared resources. However, this does not create
any problem for the above analysis of the speedup factor.
In this case, mR − r processors are completely unused and
wasted in the above proof since they are not used under

WFD in Algorithm 2. Therefore, the above analysis is more
pessimistic, and we here conclude this theorem.

7. MULTIPLE RESOURCE ACCESSES
In this section, we extend the schedulability analyses

presented in Section 4 to include multiple resource accesses
during a job’s execution and multiple occasions on one
resource request, i.e., N ≥ 2 or Q ≥ 2.

7.1 Multiple Occasions on Each Resource
Eq. (5) is based on the assumption that once a job

begins execution, it does not suspend itself until completion.
However, the execution on the synchronization processor
under the resource-oriented scheduling may suspend itself
for executing the non-critical-section codes on the appli-
cation processor; each access may suffer from the longest
duration of one critical section of lower priority jobs. Hence,
the number of blocking of a task having multiple occasions
on one resource request can be up to the total number of
accesses to critical sections:

Bk = γk ×Bk (34)

where Bk is defined as in Eq. (5) and

γk =
∑

Rq∈RSk

Nk,q (35)

7.2 Multiple Resource Accesses
The resource-oriented scheduling assumes partitioned

fixed-priority scheduling; the computation has to be exe-
cuted locally in accordance with the designated processors.
With multiple resource accesses, there may be more than one
processor on which task τk may execute remotely, dependent
of resource allocations. Similar to Section 4.1, at any
time, a task being busy must execute/wait on one of the
processors that the task may execute. Hence, the S(t) on
synchronization processors can be generalized as follows: Let
Φk be the set of processors on which task τk may execute
remotely.

S(t) =
∑

℘h∈Φk

Sh(t) (36)

Elaborating the time spent on each processor gives us:

Sh(t) = Ak,h +Bk,h + IrResk,h (t) (37)

where the terms are as described below:
• Ak,h denotes an upper bound on the amount of critical

section execution from task τk itself on processor ℘h.
• Bk,h denotes an upper bound on the amount of block-

ing from lower-priority tasks on processor ℘h.
• IrResk,h (t) denotes an upper bound on the amount of

interferences from higher-priority synchronization ex-
ecution on processor ℘h with an interval of length t.

With the above definition of S(t) in Eq. (36) and Bk in
Eq. (34), we can again apply Theorem 2 and Theorem 3 for
schedulability test.

8. EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments using

synthesized task sets. Due to space limitations, only a subset
of the results is presented. We evaluate these tests on m-
processor platforms. We generate 100 task sets for each
utilization level, from 0.05m to m, in steps of 0.05m. The
metric to compare the results is to measure the acceptance
ratio. The acceptance ratio of a level is said to be the number
of task sets that are deemed schedulable by the test divided
by the number of task sets for this level, i.e., 100.

The cardinality of the task set is 10 times the number
of processors, e.g. 40 tasks on 4 processors. We use the
approach suggested by Emberson et al. [20] to generate the
task periods according to the exponential distribution. The
distribution of periods is within two orders of magnitude,
i.e., 10ms-1000ms. Task relative deadlines are implicit, i.e.,
Di = Ti.

We vary the ratio of non-critical-sections to critical-
sections α ∈ {20, 5} to evaluate the effect of resource
sharing: the smaller the α, the more the critical-sections.
For example, if α = 5 and the utilization level UΣ = 120%,
we have URS = 120% × 1

5+1
= 20% and UC = 120% ×

5
5+1

= 100% in the system. In each utilization step, the

Randfixedsum method [20] is adopted twice to generate two
sets of utilization values with the given goals of critical-
sections and non-critical-sections. We ensure that for every
task τi, U

A
i + UCi ≤ 1. The worst-case execution time of a

task for its non-critical-sections and critical-sections is set
accordingly, i.e., Ci = TiU

C
i and Ai = TiU

A
i .

We assume there are 5, 8, and 16 shared resources in
multiprocessor systems comprised of 4, 8, and 16 processors,
respectively. We vary the number of shared resources that a
task requests N ∈ {1, 3}. For each task, we then again use
the Randfixedsum method to generate a set of vectors which
are evenly distributed in the Q resource accesses and the
total access utilization sums to its critical-section utilization.
The critical section of accessing resource Rq of task τi is
set accordingly, i.e. Ai,q = Ui,qTi. We set the number
of requests on each resource during execution N to either
1 or 3. The maximum total resource usage time Vi,q for
resource Rq by any single job of τi is drawn uniformly from
[Ai,q/N ,Ai,q].

The global/partitioned RM scheduling is applied by de-
fault in the system, unless otherwise stated. The evaluated
tests are listed as follows:
• PIP: the Priority Inheritance Protocol (PIP) [19],

which is a fixed-priority global scheduling algorithm.
• MPCP: the Multiprocessor Priority Ceiling Protocol

(MPCP) [28] along with the Synchronization-Aware
Partitioning Algorithm (SPA) [25]. Informally speak-
ing, contrary to the proposed approach, the MPCP can
be thought of as the conservative approach wherein
task bodies are not split.
• MrsP: the Multiprocessor resource sharing Protocol

(MrsP) [14] along with the SPA.
• R-NPP: the proposed resource-oriented partitioned

scheduling using ROP-NPP by Algorithm 1 where
Theorem 3 uses the blocking time Eq. (12).
• R-PCP: the proposed resource-oriented partitioned

scheduling using ROP-PCP by Algorithm 1 where
Theorem 3 uses the blocking time Eq. (13).
• NCDBF: the theoretical upper bound using necessary

conditions stated in Lemma 3.
To make a fair comparison, all the implemented tests

have pseudo-polynomial time complexity. We note that the
accuracy of the sufficient schedulability tests listed above
can be improved by formalizing the problem of finding a
response-time bound as a linear optimization problem [35].
However, tests using the LP solver may suffer from their high
time complexity, especially, in conjunction with partitioning
resources and tasks. Besides, we here focus on showing the
effectiveness of protocols themselves, and similar results can
be seen under LP formalizations.
Results. Figure 2 shows the evaluation of the performance
by the above scheduling algorithms in terms of task sets
deemed schedulable. In the first two figures (Figures 2a
and 2b), we vary the number of processors m ∈ {4, 8},

0.0 0.2 0.4 0.6 0.8 1.0
UΣ/m (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
(a) m=4, α=20, r=5, Q=1, N=1

PIP MPCP MrsP R-NPP R-PCP NCDBF

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
(b) m=8, α=20, r=8, Q=1, N=1

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
(c) m=8, α=5, r=8, Q=1, N=1

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
(d) m=8, α=20, r=8, Q=3, N=1

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
(e) m=8, α=20, r=8, Q=1, N=3

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
(f) m=16, α=20, r=16, Q=1, N=1

Figure 2: Effectiveness by different algorithms, varying m, α, r, Q, and N

assuming α = 20, Q = 1, and N = 1. We first notice that
both the R-NPP and the R-PCP dominate all the existing
approaches, including the PIP, the MPCP, and the MrsP.
The later three are neither better than another.

Although the PIP bounds the priority inversion and is
shown to be relatively effective [35], the execution for a
job still suffers from the chained blocking. MPCP and
MrsP using the SPA attempt to assign each of the so-called
macrotasks (defined in [25]) onto a processor. However, it
is often the case that a macrotask is too heavy to fit into
one processor and hence is forced to be split into several
processors. After that, any task belonging to the split
marcotask

:::::::::
macrotask

:
suffers from the excessive blocking

time incurred by lower-priority tasks on other processors.
On the other hand, even though the total utilization of
a macrotask can fit into one processor, sometimes it is
better to shift some non-critical-section execution to other
processor as the utilization of a macrotask may become quite
heavy. Hence, not surprisingly, PIP, MrsP, and MPCP
perform worse than R-PCP and R-NPP, both minimizing
the number of blocking with Q = 1 and N = 1.

It is remarkable that both R-PCP and R-NPP can still
keep pace with the theoretical upper bound, the NCDBF,
until utilizations are over 70%. A similar result can also
be seen from Figure 2f where a 16-processor platform is
assumed.

In Figures 2b and 2c, we vary α in [20, 5] on a 8-processor
platform with 8 shared resources where a task requests one
resource out of the five, assigned randomly, and each job of a
task requests the resource once during its execution. We first
notice that NCDBF drops off as α decreases from 20 to 5.
R-PCP and R-NPP can still keep pace with the theoretical
upper bound, NCDBF, until utilizations are over 50%

In Figures 2d and 2e, we evaluate the effect of accessing
multiple resource and requesting multiple times on one
resource. Here we can see that despite that R-PCP and
R-NPP are still superior to the others, there exists a large
gap between the theoretical upper bound and the best
available algorithm, dropping down from 40% with multiple
resource accesses and from 25% with multiple requests on
one resource. We also notice that in Figure 2d both MPCP
and MrsP drop quickly from 15%. This is due to that

the SPA algorithm only considers utilizations to allocate
tasks onto processors. With multiple resource accesses, it
is often the case that a marcotask

::::::::
macrotask, within which

tasks directly or indirectly share resources are bundled,
becomes extremely heavy. The algorithm allocates the tasks
within the marcotask

:::::::::
macrotask onto one processor as far

as possible, so as to reduce the processors used (also remote
blocking). As a result, some tasks on this processor can be
punished by such excessive interferences: the effectiveness of
partitioned protocols is highly dependent on task partition-
ing. Hence, both designing synchronization protocols and
finding task mapping are needed to be considered.

From the scheduling’s point of view, using PCP in each
individual processor is as good as using the non-preemptive
scheduling. Surprisingly, R-PCP and R-NPP have almost
the same performance in our evaluations (although invisible,
there still have some tasks not deemed schedulable by R-
NPP but schedulable by R-PCP). This is because the long
blocking incurred by the NPP might be painlessly removed
by finding a good task and resource partitioning.

Maintaining a list of currently locked semaphores and
priority ceiling orders during runtime may incur a noticeable
computational overhead. In practice, one would expect R-
NPP to be default, and R-PCP to be used only when the
unnecessary blocking from the non-preemptive scheduling
can be surely removed. Last but not least, the research
result reported in this paper suggests that finding a good
task mapping and resource allocation is as important as
designing a good resource sharing protocol while ignoring
task partitioning.

9. RELATED WORK
To handle the synchronization problem when tasks share

resources in real-time systems, a wide variety of real-time
locking protocols have been developed. Briefly, a real-time
locking protocol is used to limit priority inversions [13, 30],
such that higher-priority tasks incur priority inversions only
if lower-priority tasks execute in critical sections. Recent
analysis and comparisons of semaphore protocols may be
found in [10] for partitioned scheduling (e.g., the DPCP [29]
and the MPCP [28], etc.) and in [35] for global scheduling

(e.g., the global PIP, etc.). To support nested critical
sections, Ward and Anderson [31, 32] recently introduced
the Real-time Nested Locking Protocol (RNLP) [31], which
adds supports for fine-grained nested locking on top of non-
nested protocols.

Further, to ensure mutual exclusive access to shared
resources, tasks either self-suspend (under semaphore proto-
cols such as the DPCP [29] and the MPCP [28]) or busy wait
(under spin-based protocols such as the MSRP [21]) when
blocked on shared resources. Busy waiting has been shown
to be efficient when critical sections are short [9,22], but the
resulting loss of processor service must be accounted for.
More recently, Burns and Wellings [14] proposed a variant
of the MSRP, the Multiprocessor resource sharing Protocol
(MrsP) [14], to exploit the spinning cycles of one task to help
other tasks make progress. Wieder and Brandenburg [34]
presented a fine-grained analysis for several types of spin
locks. In contrast, self-suspensions are more efficient for
long critical sections [9, 25]. Moreover, in some distributed-
configured scheduling systems, such as the designated [29] or
dedicated [23] synchronization frameworks, jobs self-suspend
on host processors, waiting for resource service on remote
processors, is a natural fit for the scheduling strategy. In
this work, we adopt the suspension-based methodology for
resource sharing.

With regard to task partitioning, Lakshmanan et al. [25]
presented a synchronization-aware partitioned heuristic tai-
lored to the MPCP [28], which organizes tasks sharing com-
mon resources into groups and attempts to assign each group
of tasks to the same processor. Following the same principle,
Nemati et al. [27] presented a blocking-aware partitioning
method that uses advanced cost heuristic to split task group
when an entire group fails to be assigned on one processor.
In subsequent work, Hsiu et al. [23] proposed a dedicated-
core framework to separate the execution of critical sections
and normal sections, and employed an priority-based RPC-
like mechanism for resource sharing, such that each higher-
priority request can be blocked by at most one lower-priority
request. More recently, Wieder and Brandenburg [33] use
integer linear programming to solve the partitioning problem
in the presence of spin locks.

From an algorithmic optimality point of view, Branden-
burg and Anderson [13] are first to study the multiprocessor
real-time locking problem. It is shown that FIFO-based
locking protocols, such as the Flexible Multiprocessor Lock-
ing Protocol (FMLP) [8], the Generalized FIFO Multipro-
cessor Locking Protocol (FMLP+) [12], and the Distributed
FIFO Locking Protocol (DFLP) [11], are asymptotically
optimal in terms of maximum priority-inversion blocking.
Andersson and Easwaran [1] presented an virtualization-
based G-EDF scheduling with shared resources, which guar-
antees a 12(1 + 3r/(4m)) competitive ratio on a platform
comprising m identical processors, where each task uses at
most one of the r shared resources and each job may request
the resource at most once, whereas the presented algorithm
in this work achieves a constant speedup factor 8

::
11, without

using any virtualization.

10. CONCLUSIONS
In this paper, we show that the resource-oriented schedul-

ing using PCP combined with a reasonable allocation al-
gorithm can achieve a non-trivial speedup factor guaran-
tee. Our empirical investigations show that the proposed
algorithm is highly effective in terms of task sets deemed
schedulable. Specifically, empirical results show that the
proposed algorithm is very close to the optimal scheduling
for task sets with utilization below 50% in the sense that task

sets not deemed schedulable by our algorithm are also not
schedulable using any scheduling policy. More importantly,
empirical results suggest that by partitioning tasks properly,
a simple non-preemptive protocol can be directly applied
in each processor under the proposed resource-oriented
scheduling, without punishing tasks having short relative
deadlines by long critical-sections.

Nevertheless, our results also indicate that the existing
algorithms, including the algorithm in this paper, do not
scale very well in the presence of multiple resource accesses
and multiple requests on one resource. In future work, we
aim at bridging this gap. Further, it is also interesting in
providing quality-guaranteed algorithms for resource sharing
with nested requests.

11. REFERENCES
[1] B. Andersson and A. Easwaran. Provably good multiprocessor

scheduling with resource sharing. Real-Time Systems,
46(2):153–159, 2010.

[2] N. C. Audsley, A. Burns, M. M. Richardson, K. Tindell, and
A. J. Wellings. Applying new scheduling theory to static
priority pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

[3] T. P. Baker. Stack-based scheduling of realtime processes.
Real-Time Systems, 3(1):67–99, 1991.

[4] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In
IEEE Real-Time Systems Symposium, pages 182–190, 1990.

[5] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Is
semi-partitioned scheduling practical? In Euromicro
Conference on Real-Time Systems (ECRTS), pages 125–135,
2011.

[6] M. Bertogna and M. Cirinei. Response-time analysis for
globally scheduled symmetric multiprocessor platforms. In
Real-Time Systems Symposium (RTSS), pages 149–160, 2007.

[7] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and
G. Nelissen. Errata for three papers (2004-05) on fixed-priority
scheduling with self-suspensions. Technical Report
CISTER-TR-150713, CISTER, July 2015.

[8] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson.
A flexible real-time locking protocol for multiprocessors. In
RTCSA, pages 47–56, 2007.

[9] B. Brandenburg. Scheduling and Locking in Multiprocessor
Real-Time Operating Systems. PhD thesis, The University of
North Carolina at Chapel Hill, 2011.

[10] B. B. Brandenburg. Improved analysis and evaluation of
real-time semaphore protocols for P-FP scheduling. In
Real-Time and Embedded Technology and Applications
Symposium, RTAS, pages 141–152, 2013.

[11] B. B. Brandenburg. Blocking optimality in distributed
real-time locking protocols. LITES, 1(2):01:1–01:22, 2014.

[12] B. B. Brandenburg. The FMLP+: an asymptotically optimal
real-time locking protocol for suspension-aware analysis. In
Euromicro Conference on Real-Time Systems (ECRTS),
pages 61–71, 2014.

[13] B. B. Brandenburg and J. H. Anderson. Optimality results for
multiprocessor real-time locking. In Real-Time Systems
Symposium (RTSS), pages 49–60, 2010.

[14] A. Burns and A. J. Wellings. A schedulability compatible
multiprocessor resource sharing protocol - MrsP. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 282–291,
2013.

[15] G. C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications, Third
Edition, volume 24 of Real-Time Systems Series. Springer,
2011.

[16] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang,
B. Brandenburg, K. Bletsas, C. Liu, P. Richard, F. Ridouard,
Neil, Audsley, R. Rajkumar, and D. de Niz. Many suspensions,
many problems: A review of self-suspending tasks in real-time
systems. Technical Report 854, Faculty of Informatik, TU
Dortmund, 2016. http://ls12-www.cs.tu-
dortmund.de/daes/media/documents/publications/downloads/2016-
chen-techreport-854.pdf.

[17] J.-J. Chen, G. Nelissen, and W.-H. K. Huang. A unifying
response time analysis framework for dynamic self-suspending
tasks. In Euromicro Conference on Real-Time Systems
(ECRTS), 2016.

[18] R. I. Davis and A. Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Comput. Surv., 43(4):35,
2011.

[19] A. Easwaran and B. Andersson. Resource sharing in global
fixed-priority preemptive multiprocessor scheduling. In
Real-Time Systems Symposium (RTSS), pages 377–386, 2009.

[20] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the
synthesis of multiprocessor tasksets. In International

Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS 2010), pages 6–11, 2010.

[21] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip. In Real-Time Systems Symposium (RTSS),
pages 73–83, 2001.

[22] G. Han, H. Zeng, M. D. Natale, X. Liu, and W. Dou.
Experimental evaluation and selection of data consistency
mechanisms for hard real-time applications on multicore
platforms. IEEE Trans. Industrial Informatics, 10(2):903–918,
2014.

[23] P. Hsiu, D. Lee, and T. Kuo. Task synchronization and
allocation for many-core real-time systems. In International
Conference on Embedded Software, (EMSOFT), pages 79–88,
2011.

[24] W.-H. Hung, J.-J. Chen, H. Zhou, and C. Liu. PASS: Priority
assignment of real-time tasks with dynamic suspending
behavior under fixed-priority scheduling. In DAC, 2015.

[25] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated
task scheduling, allocation and synchronization on
multiprocessors. In Real-Time Systems Symposium, (RTSS),
pages 469–478, 2009.

[26] C. Liu and J. Chen. Bursty-interference analysis techniques for
analyzing complex real-time task models. In RTSS, pages
173–183, 2014.

[27] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time
systems on multiprocessors with shared resources. In Principles
of Distributed Systems - International Conference, OPODIS,
pages 253–269, 2010.

[28] R. Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. In 10th International Conference on
Distributed Computing Systems (ICDCS), pages 116–123,
1990.

[29] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time
synchronization protocols for multiprocessors. In Real-Time
Systems Symposium (RTSS), pages 259–269, 1988.

[30] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Computers, 39(9):1175–1185, 1990.

[31] B. C. Ward and J. H. Anderson. Supporting nested locking in
multiprocessor real-time systems. In Euromicro Conference on
Real-Time Systems ECRTS, pages 223–232, 2012.

[32] B. C. Ward and J. H. Anderson. Fine-grained multiprocessor
real-time locking with improved blocking. In International
Conference on Real-Time Networks and Systems, RTNS,
pages 67–76, 2013.

[33] A. Wieder and B. B. Brandenburg. Efficient partitioning of
sporadic real-time tasks with shared resources and spin locks.
In International Symposium on Industrial Embedded Systems,
(SIES), pages 49–58, 2013.

[34] A. Wieder and B. B. Brandenburg. On spin locks in
AUTOSAR: blocking analysis of fifo, unordered, and
priority-ordered spin locks. In Real-Time Systems Symposium,
pages 45–56, 2013.

[35] M. Yang, A. Wieder, and B. B. Brandenburg. Global real-time
semaphore protocols: A survey, unified analysis, and
comparison. In Real-Time Systems Symposium (RTSS), pages
1–12, 2015.

APPENDIX
Proof of Theorem 1. We prove this theorem by showing
that a task set deemed schedulable by the priority ceiling
protocol (PCP) using

:::
the RTA by [2] under RM scheduling

is also not schedulable by any scheduling polices on a speed-
1/2 uniprocessor.

Suppose task τk is the task that misses its relative dead-
line. Let Bk 6= 0 be the longest critical section of accessing
resource Rb of lower-priority tasks τlp that blocks task τk.
Note that if B = 0, we can conclude the utilization is
at least 69% by the Liu and Layland bound, which by
taking its multiplicative inverse implies a speedup factor
1.44. Recall that under the PCP a task can only be blocked
by lower-priory

::::::::::
lower-priority

:
tasks’ critical sections that are

accessed by a task with an equal or higher priority than τk.
Thus, under RM scheduling there must exist a task τa with
a relative deadline Da < Dk :::::::

Da ≤ Dk:
that may request on

Rb.
We now release task τlp :::::

alone,
:

at time −ε, right before
time 0, starting to execute the critical section Bk of accessing
Rb. We then release all the other tasks at time 0 and let
the following jobs execute in their worst case and release
as soon as possible. To complete τa’s execution under

mutual exclusion, it is necessary to finish
::
for

::::
the

::::
task

:::
set

::::
being

::::::::::
schedulable

:::::
that Bk together with all the necessary

demands before
::
are

:::::::
finished

::
at
:
τa’s relative deadline Da :

:::
and

::::::::::
afterwards.

::::
This

::::::
means

::::
that

::
by

::::
Eq. (1),

::
it

::::
must

:::
be

:

∀t ≥ Da, Bk +
∑

τi∈τ\τlpτi∈τ\{τlp}
:::::::

dbfi(t) ≤ t (38)

The failure of RTA by [2] implies that

∀0 < t ≤ Dk, Bk+Ck +Ak+
∑

τi∈hp(k)τi∈hep(k)
::::::

⌈
t

Ti

⌉
(Ci+Ai) > t.

(39)

:::::
where

::::::
hep(k)

:
is
:::
the

:::
set

::
of

::::
task

::
τk:::::::

together
:::::
with

::::
tasks

::::::
having

::::::::::::
higher-priority

::::
than

:::
τk. Let us instantiate this inequality for

t← Dk:

Bk + Ck +Ak +
∑

τi∈hp(k)τi∈hep(k)
::::::

⌈
Dk
Ti

⌉
(Ci +Ai) > Dk

{Thanks to RM scheduling, hep(k) = {τi|Di ≤ Dk}}
::

⇒Bk +
∑

τi:Di≤Dk
::::::

⌈
Dk
Ti

⌉
(Ci +Ai) > Dk

::::::::::

{∀τi: Di ≤ Dk, 2dbfi(D
::::::::::::::::::

k) ≥
⌈
Dk
Ti

⌉
(Ci
::

+Ai)}
::

⇒
:
B
: k

+ 2
∑

τi∈hp(k)τi:Di≤Dk
::::::

dbfi(Dk) > Dk

⇒2(Bk +
∑

τi∈τ\τlpτi∈τ\{τlp}
:::::::

dbfi(Dk)) > Dk

which implies that by Eq. (38)
:::
and

::::::::
Dk ≥ Da:this task set

is not schedulable by any scheduling polices
::::::
policies

:
on

a speed-1/2 uniprocessor. Hence, we here conclude this
theorem.
Proof of Lemma 3. If τi generates jobs with execution
time exactly Ci + Ai, it is necessary for meeting all the
deadlines of task τi that (Ci + Ai)/Di ≤ 1. Moreover, in
order for the task system to be schedulable by any algorithm
upon a platform comprised of m processors, it is necessary
that

UC + URS ≤ m (40)

Suppose that task τlp is the task having a relative deadline
larger than Dk with the longest critical section of accessing
Rq. Let task τlp be released at time −ε, right before
time 0, starting to execute this longest critical section of
accessing Rq. Suppose that all the tasks having relative
deadlines Di ≤ Dk that may request on Rq along with
τk are released at time 0, and each task τi generates jobs
only requesting on Rq and as soon as possible. Recall
these executions are subject to exclusion constraints, and
therefore must be serialized. To complete τk’s execution
under mutual exclusion feasibly, it is necessary to finish τlp’s
critical section together with all the necessary demands at
relative deadline Dk:

max
τi:Di>Dk

Vi,q +
∑

τi:Di≤Dk

dbfR
q

i (Dk) ≤ Dk (41)

Hence, we here conclude this lemma.

Proof of Lemma 4. The proofs for both cases are
essentially identical; hence, we only detail either of them.
Let Ŵi(t) be (d(t−Di)/Tie + 2) × Ci. By definition of
constrained-deadline tasks (Di ≤ Ti), we have

Ŵi(t) ≥
⌈
t+Di
Ti

⌉
Ci ≥

⌈
t+Di − Ci

Ti

⌉
Ci ≥Wi(t) (42)

Due to the fact that ∀b ∈ N, bbc + 1 ≥ dbe and noting⌈
t−Di
Ti

⌉
≥ 1, ∀t ≥ Di, we obtain ∀t ≥ Di

3dbfCi (t) = 3Ci(

⌊
t−Di
Ti

⌋
+ 1) ≥ 3Ci

⌈
t−Di
Ti

⌉
(43)

≥ Ci
⌈
t−Di
Ti

⌉
+ 2Ci = Ŵi(t) (44)

Observing the above inequalities, we can conclude the
proof.

