
Bachelor thesis

Resource-aware optimization by trading

locality, redundancy, and parallelism

Benjamin Gläser

April 2017

Supervisors:

Prof. Dr. Jian-Jia Chen

Dipl.-Inf. Ingo Korb

Technische Universität Dortmund

Fakultät für Informatik

Lehrstuhl Informatik 12 (Eingebettete Systeme)

http://ls12-www.cs.tu-dortmund.de

http://ls12-www.cs.tu-dortmund.de

Contents

1. Introduction 1

1.1. Goal of the thesis . 2

1.2. Structure of the thesis . 3

2. Fundamentals of resource-aware programming in Halide 5

2.1. The Halide language . 5

2.2. Locality . 7

2.2.1. Temporal Locality . 7

2.2.2. Spatial Locality . 7

2.2.3. Application of locality in Halide schedules 8

2.3. Redundancy . 11

2.3.1. Favouring redundant computations over memory accesses 11

2.3.2. Preventing redundant computations 12

2.4. Parallelism . 14

2.4.1. Pitfalls of increasing parallelism . 14

3. The Halide auto-scheduler and its limitations 17

3.1. Development of the auto-scheduler . 17

3.2. Parameters of the configurations . 18

3.3. Capabilities and limitations of the auto-scheduler 18

4. Benchmarking the auto-scheduler 21

4.1. Tested platforms . 22

4.2. Implementation of the benchmark . 23

4.2.1. Configuration-Switcher . 23

4.2.2. Pipelines to be inspected . 25

5. Evaluation of the benchmark 29

5.1. Set up of the benchmark result generation 29

5.2. Auto-scheduler performance on ARM-based devices 30

5.3. Benchmark results . 31

5.3.1. Effects of the parallelism threshold 31

5.3.2. Performance differences for computationally bounded pipelines . 33

5.3.3. Performance differences for memory bounded pipelines 36

6. Conclusion and outlook 39

6.1. Summary . 39

6.2. Outlook . 40

Appendix 41

A. Full benchmark results . 41

B. Reviewed schedules . 42

C. Extremely large execution time for first runs 45

List of �gures and tables 47

List of code samples and algorithms 49

Bibliography 51

Eidesstattliche Versicherung 53

Abstract

This thesis analyses the possibility and shortcomings of automated resource-aware op-

timization by making use of locality, redundancy and parallelism. It is to be expected

that different platforms and hardware will see benefits and drawbacks depending on the

strategy used.

To study these effects further, a field of application is required, where the three aforemen-

tioned approaches can be utilized. Due to its nature and scalability, image processing

represents an ideal candidate for this. The choice of image processing is the focus of this

work, as it is also a domain that has been extensively researched and gaining importance

in recent years.

Whilst most research on image processing acceleration mainly focuses on the ease of im-

plementation and optimization for a specific platform, the thesis at hand aims to inves-

tigate the newest development in automatic resource-aware optimization. This requires

the identification of patterns and subsets within the possible hardware configurations

and image processing pipelines that exhibit similar behaviour, when faced with the chal-

lenge of trading locality, redundancy and parallelism. Using these characteristics as a

basis, this thesis aims to study their effect on automatically generated schedules.

1. Introduction

Ever since the dawn of readily available computational processing power, a key observa-

tion by Gordon E. Moore has held true up until the recent years.

The complexity for minimum component costs has increased at a rate of roughly

a factor of two per year. Certainly over the short term this rate can be expected

to continue, if not to increase. [9, p. 2]

This exponential growth of chip complexity has been extensively studied and put through

the test time. It has shown that this prediction is largely accurate throughout recent com-

puting history. When also accounting for ever increasing clock speeds, as David L. House

(director at Intel) did, the overall performance gain can be measured as a twofold incre-

ase every 18 months [Cf. 3]. But it was without question that the aforementioned gains

in clock speed would eventually come to a hold. The results obtained by the American
National Research Council in “The Future of Computing Performance” [11, p. 9] mark 2004

to be that year, as growing limitations (like heat dissipation) severely hinder further in-

creases in that regard. These induced a shift in computing advances, “[..] as Intel, AMD,

and most other vendors turned away from emphasizing clock-based scaling, in favour of

adding more CPU cores and improving single-threaded CPU performance [6].”

1985 1990 1995 2000 2005 2010
1

10

100

1000

10000

Processing power throughout recent years

Num. cores per chip Clock speed (MHz) Relative performance

Figure 1.1.: Rise of parallel computing. Remodelled after [11, p. 55].

2 1. Introduction

As the report from the American National Research Council lines out, parallel computing is

one of the major contributors towards computational improvements. This technique has

largely re-established the steady growth of relative performance as pictured by David L.

House, albeit at a slower rate.

Yet, this advancement requires the actual usage of the available processing power through

multiple cores - this is the main limiting factor, as software which makes use of paralle-

lism is inherently more difficult to write.

Additionally, programmers have to factor in the advantage of using localized computa-

tions, as memory controllers have largely adopted advanced mechanisms which benefit

from accesses to the same region in memory. This usually comes at the cost of redundant

calculations or loss of parallelism. Therefore, adjustments favouring one technique over

another have to be made cautiously, with strong consideration of the execution platform.

Observing these effects requires an application domain where all of the three strategies

(locality, redundancy and parallelism) can be effectively utilized and studied. The prime

candidate for this is image processing, for two major reasons: Firstly, this field is one of

the many at the forefront of newest computational progression. It is amongst the pioneers

which are able to make use of newly available processing power and techniques. Some of

the recent developments by early adopters are for example self-driving vehicles or medi-

cal image processors. Secondly, image processing is a domain that has been extensively

studied, even in regards to possible applications of resource-optimizing techniques. It

has therefore spawned many frameworks that simplify the task of implementing these

features in your specific image processing pipeline.

One of the most popular and exhaustive frameworks is Halide [14] which allows de-

coupling of the image processing pipelines algorithm and scheduler. The developer is

thus granted the ability to adjust and optimize the source-code suiting his hardware-

configurations needs, by simply changing the Halide scheduling instructions.

Consequently, Halide is an excellent basis for further research on the topic of resource-

aware optimization in the context of this thesis.

1.1. Goal of the thesis

Since Halide has been established as the foundation to implement resource-aware optimi-

zation techniques, it is only logical to pursue ways of automatically finding and utilizing

the ones that are best applicable. Fortunately, this is one of the major areas of research

by the Halide developer team, as they are developing an open-source auto-scheduler for

Halide. The publication of this project in the later half of 2016 even includes extensive

benchmark results for an Intel Xeon E5-2620 v3 which dictate the goals of this thesis. The

objective will be the investigation of limitations imposed onto the auto-scheduler by the

1.2. Structure of the thesis 3

characteristics of various pipelines. Additionally, particular attention is paid to the re-

production of the original results and benchmarked schedules, which will be performed

on devices featuring an ARM-architecture to see how these compare to the x86/x64-based

machine.

1.2. Structure of the thesis

The remainder of this work is organized into the following chapters:

Chapter 2 introduces the Halide programming language, its purpose and the pertaining

problems it is meant to solve. Furthermore, it covers essential knowledge about the con-

cepts of locality, redundancy and parallelism, as well as the interaction and trade-off

between them.

Chapter 3 describes the auto-scheduler which will form the main point of analysis for the

thesis at hand. This requires a closer inspection of its parameters and potential before

assessing its effectiveness and possible drawbacks.

Chapter 4 details how the benchmark was constructed in order to test the capabilities of

the auto-scheduler. It will also explain the image processing pipelines to be benchmarked

and relevant traits they possess.

Chapter 5 is devoted to analysing the generated data of the benchmark and further in-

specting special cases found.

Finally, Chapter 6 concludes this paper with a summary of the most important results,

whilst also offering avenues of further research.

2. Fundamentals of resource-aware

programming in Halide

This chapter aims to introduce the essential knowledge required to properly discuss

scheduling improvements made possible through Halide. But to do so, the first section

(Section 2.1) starts with a general overview of the Halide programming language. Later

on, the Halide auto-scheduler will be used to enhance specific image processing pipelines

depending on their traits. This requires concepts that these adjustments are based on

need to be well understood. Consequently, the next three sections cover the basics about

locality (Section 2.2), redundancy (Section 2.3) and parallelism (Section 2.4).

2.1. The Halide language

Halide is a functional programming language which is embedded in C++. It has formerly

been developed by members of the MIT CSAIL1, Adobe, Stanford University and other

contributors. Nowadays it is still being developed as an open source initiative, with sup-

port for many modern computing architectures. These currently include x86/SSE, ARM

v7/NEON, CUDA, Native Client, OpenCL and OpenGL on OS X, Linux, and Windows

[4].

The conceptual design behind Halide allows for easy specification of image processing

pipelines. Therefore, it aims to tackle the previously mentioned problem of code that

is increasingly difficult to write which has plagued developers trying to fully utilize the

given platform resources. Especially when multi-platform compatibility is desired, code

readability or performance had to be sacrificed without the use of Halide.

On the contrary, Halides purpose is to deliver simple, readable “high-performance code

by separating the intrinsic algorithm from the decisions about how to run efficiently on

a particular machine [13, p. 2]”. In practice, this enables the programmer to only have

one static image processing pipeline, whilst still maintaining the ability to adjust its exe-

cution depending on the platform. The former pipeline can accommodate for complex

algorithms, “such as a camera raw pipeline, the bilateral grid, fast local Laplacian filte-

ring, and image segmentation [13, p. 1]”.

1Massachusetts Institute of Technology - Computer Science and Artificial Intelligence Laboratory

6 2. Resource-aware programming in Halide

1 // Hal ide d e c l a r a t i o n s

2 Halide : :Func input (x , y , c) = cos (x + y + c) ;

3 Halide : :Func blurX , blurY ;

4 Halide : :Var x , y , c ;

5
6 // Actual b l u r p i p e l i n e

7 blurX (x , y , c) =(input (x−1, y , c)+ input (x , y , c)+ input (x+1, y , c)) / 3 ;

8 blurY (x , y , c) =(blurX (x , y−1, c)+ blurX (x , y , c)+ blurX (x , y+1, c)) / 3 ;

Algorithm 2.1: Sample implementation of 3x3 Blur Pipeline in Halide

As seen in Algorithm 2.1, a fast 3x3 blur code example in Halide, the processing pipeline

contains no information about intermediate data storage, parallelism or execution order

(yet). These instructions, referred to as the “schedule”, have to be adapted manually to

best fit the execution platform. In basic C++, this would require the manual inspection

of multi-threading and vectorization possibilities, as well as the usage of advanced pro-

gramming techniques, including unrolling, tiling, nesting, fusion and fission. Even expe-

rienced developers may struggle with this task and the resulting code will most likely be

longer and less intuitive than the Halide equivalent. Additionally, changing the manually

optimized C++ code to suit a different hardware requires changes on a scope way larger

than simply adjusting a Halide schedule. How exactly these speed-up strategies are im-

plemented in Halide, on top of the relation between them and the computing concepts of

locality, redundancy and parallelism, will be covered in the following three sections.

2.2. Locality 7

2.2. Locality

The general strategy behind locality, in the context of this thesis, represents the utiliza-

tion of speed-up techniques modern computing platforms offer in regards to memory

accesses latencies. To take a more in-depth look at these, one has to start with a general

approach to the principle in question. As Peter J. Denning observed,“the locality principle

is useful wherever there is an advantage in reducing the apparent distance from a process

to the objects it can access [2, p. 24]”. It is widely accepted that the aforementioned “prox-

imity between object-accesses” can be differentiated into two subgroups, temporal and

spatial locality. In the following two sections, these concepts will be further discussed,

together with the resulting applications for them in computer architectures.

2.2.1. Temporal Locality

Access 1 Access 2 Access 3 ...

Figure 2.1.: Accesses with temporal locality

The concept behind temporal locality des-

cribes multiple accesses to the same space

in memory within a short time frame, as

illustrated by Fig. 2.1. Modern compu-

ting platforms are optimized for this sce-

nario by implementing a cache hierarchy:

A small, fast cache closest to the CPU and one or more levels of cache beneath it, each

larger in size and slower in access speed. This allows for the optimization of memory

access times by keeping more frequently used values at the fastest level of cache.

2.2.2. Spatial Locality

Access 1 Access 2 Access 3 ...

Figure 2.2.: Accesses with spatial locality

In contrast to temporal locality, where

multiple accesses are only separated by

time, spatial locality is the embodiment

of multiple accesses within the same me-

mory region. For example, as depicted in

Fig. 2.2, an access pattern could load from

or write to memory addresses in consecutive order. Optimizing for such patterns is es-

pecially important for the application domain in this thesis, image processing, since the

image data is usually stored as two (or more) dimensional matrices in consecutive me-

mory space. The most prominent technique used to hide cache latencies occurring during

this access behaviour is called (cache) pre-fetching, aside from regular benefits achieved

through cache line loading. “Cache pre-fetching is a mechanism to speculatively move

data to higher levels in the cache hierarchy in anticipation of instructions that require this

data [1, p. 2].” This can be realized on a software or a hardware level. Whereas the former

8 2. Resource-aware programming in Halide

is mostly based on compile-time analysis of the source-code to identify memory accesses

that can be pre-fetched, the latter uses heuristic algorithms that try to predict cache lines

to load, based on recent accesses.

2.2.3. Application of locality in Halide schedules

By taking these modern cache features into account, developers can benefit from a sig-

nificant performance gain, most notably in the domain of image processing. Specifically,

Halide supports numerous programming techniques that can be applied to the image pro-

cessing pipelines schedule in order to increase locality. The most effective strategies to

accomplish this include- but are not limited to- loop reordering, tiling (sometimes refer-

red to as “Loop blocking”) [Cf. 8, pp. 219], as well as code inlining.2

Loop reordering is the simplest concept to improve locality. Depending on the archi-

tecture of the programming language used, the matrix containing the image data may

be saved as row or column major (row first vs column first) in memory. If an algorithm

performs a lot of accesses in the same column, a column-major data storage may be pre-

ferred to stay within the same cache line. According to this, the traversal order of the

loop should also be changed, as shown in the following figure.

y-dimension
(row major)

x-dimension

y-dimension

x-dimension
(column major)

reorder

Figure 2.3.: Effects of reordering on loop traversal

Switching of the traversal order can also be accomplished in Halide, as shown in Code

Sample 2.2.

2Since Code inlining majorly impacts the amount of re-computations, it is covered in Section 2.3.

2.2. Locality 9

1 [. . .] // Blur p i p e l i n e from Algorithm 2.1

2 blurY . reorder (y , x) ; // New schedu l i n g c a l l to reorder

3 blurY . realize (16 , 16) ; // Execute the reordered p i p e l i n e 3

Code Sample 2.1: Reordering traversal order in Halide

(Loop) tiling, in the context of image processing, describes the practice of splitting in-

put data into smaller chunks that occupy neighbouring addresses in memory. Optimally,

these tiles are small enough to fit into the smaller, faster levels of cache in the hierarchy.

This allows pipelines, which use pixel data in close proximity to calculate a single output

pixel, to quickly access the required data. We are hereby using the inherent temporal

locality to our advantage. A typical example application of this is a blurring pipeline,

as seen in 2.1. Consider Figure 2.4, which depicts a regular row major traversal by the

algorithm. It is clear that the frequent swapping of the input data available in the fast

(L1) cache negatively impacts loading times, due to the blur algorithm re-accessing pre-

viously used data which could be no longer present in it (cache-miss).

Small, fast
(L1) Cache

y-dimension
(major)

x-dimension

frequent
swapping

Figure 2.4.: Traversal without tiling

Small, fast
(L1) Cache

y-dimension
(major)

x-dimension

keep tiles
in use

Figure 2.5.: Traversal with tiling

To counteract this, a tiled traversal approach is preferable. By splitting the input data

into tiles where all accessed data points fit into one cache level, the amount of quickly

accessible data increases (more cache-hits). This is illustrated in Figure 2.5, although it

needs to be said that it is not always optimal to fit the tile size to the first level of cache.

Depending on the pipeline it may be preferable to adjust for L1, L2 or any other number

of cache level which is one of the adjustments this work aims to investigate more closely.

3The pipeline produces a 16 by 16 pixels large output image, hence the parameters “16,16”

10 2. Resource-aware programming in Halide

Halide allows testing of these different schedules, as shown in the following Code Sam-

ple 2.2.

1 [. . .] // Blur p i p e l i n e from Algorithm 2.1

2 Var xOuter , yOuter , xInner , yInner ; // New v a r i a b l e s f o r t i l e indeces

3 // S p l i t t r a n s v e r s a l i n t o 8x8 t i l e s

4 blurY . tile (x , y , xOuter , yOuter , xInner , yInner , 8 , 8) ;

5 blurY . realize (16 , 16) ; // Execute the t i l e d p i p e l i n e

Code Sample 2.2: Tiled traversal in Halide

Even though the tiling may yield a reduction in memory latency on its own, it is usually

just a pre-requirement for utilizing vectorization and parallelization. The former des-

cribes the usage of SIMD (Single Instruction, Multiple Data) capability, offered by many

modern computing architectures. The latter, parallelism through multi-threading, will

be discussed more closely in the later Section 2.4.

2.3. Redundancy 11

2.3. Redundancy

Another resource-aware approach to optimize for the specific hardware configuration

is to increase or decrease the amount of redundant calculations performed. This has to

be done cautiously, as it is nigh impossible to make accurate predictions for when a re-

computation should occur over a memory access. Whilst a re-computation is usually

many times faster than a load from cache (especially at the larger, slower levels) or even

main memory, it still depends on several other parameters, like CPU frequency, access la-

tencies, cache hits/misses and the specific instruction to compare against. Additionally,

possible pipelining of instructions increases this discrepancy in speed, whilst also contri-

buting to the unpredictability. That is why, for the purposes of this thesis (and the soon to

be discussed Halide auto-scheduler), this behaviour is parametrized as an average time

of re-computation vs access latency at the last cache level (later referred to as cost balance).

Sensible values will usually range from a factor of 5 up to about 60, as a consequence of

the latency incurred due to cache misses.

2.3.1. Favouring redundant computations over memory accesses

In a lot of cases it may be preferable to simply recalculate a value instead of loading it

from cache or main memory. This holds especially true for short image processing pipeli-

nes with high amounts of temporal locality and few dependencies - for example, the blur

pipeline depicted in 2.1.

Code inlining is a technique to replace a function call with its actual definition. If full

inlining is desired, this is also done recursively for the calls within. Halide favours this

behaviour by default and tries to apply it wherever possible. It is therefore enough to

simply call pipeline.realize(width,height), without any other redundancy affecting adjust-

ments, to fully inline all feasible functions. This adjusts the code of the 3x3 blur pipeline

during compilation in the following manner, by replacing all:

1. calls to blurY(x,y,c) with the corresponding blurX

2. blurX with the three input functions

3. input function calls with the resulting operation, in this case cosine

By compiling the pipeline down into simple calculation instructions, it naturally prevents

having to wait on data calculated by other stages (or threads) and therefore increases lo-

cality to a maximum. This avoids the latency penalty of accesses to the cache hierarchy

and eliminates possible cache misses. After compilation with Halide, the result is the fol-

lowing, fully inlined code for blurY (conceptually):

12 2. Resource-aware programming in Halide

1 blurY (x , y , c) =

2 ((cos ((x−1)+ (y−1)+ c) + cos (x+ (y−1)+ c) + cos ((x+1)+ (y−1)+ c)) / 3) +

3 (cos ((x−1)+ y + c) + cos (x+ y + c) + cos ((x+1)+ y + c)) / 3) +

4 (cos ((x−1)+ (y+1)+ c) + cos (x+ (y+1)+ c) + cos ((x+1)+ (y+1)+ c)) / 3))

/ 3 ;

Code Sample 2.3: Fully inlined blurY calculation

2.3.2. Preventing redundant computations

Contrary to the previous approach of raising the amount of redundant calculations per-

formed, it is sometimes favourable to minimize these. By doing so, the given locality will

inevitably be lowered, too, which may be desirable. This can be accomplished by calcu-

lating each stage of the pipeline in full before proceeding to the next one. Consequently,

pipelines with high spatial locality are always able to reuse previously calculated data, if

available.

input blurX

2. Stage1. Stage

blurY (output)

3. Stage

Figure 2.6.: Minimizing redundancy through stage-wise computation

Figure 2.6 illustrates this behaviour in an exemplary way for the 3x3 blur pipeline. From

this figure it can be seen that two single (vertically) neighbouring data points already

share one third of the data from previous stages of the pipeline, since either blurY calcu-

lation refers to one blurX data point that is being reused (of the three data points required

for the output). This number further increases when taking all neighbouring points into

account, especially since the same behaviour also appears with horizontal adjacency. We

can force this style of computation (without any redundancy) in Halide by scheduling it

as given in the following Code Sample 2.4.

2.3. Redundancy 13

1 [. . .] // Blur p i p e l i n e from Algorithm 2.1

2 blurX . compute_root () ; // Compute blurX be f o r e blurY

3 blurY . realize (16 , 16) ; // Execute the s tage−wise p i p e l i n e

Code Sample 2.4: Forcing full stage-wise schedule in Halide

Even though this may seem mostly beneficial at first, one has to factor in the downsi-

des of this strategy. Foremost, memory accesses are generally many times slower than a

re-computation, as mentioned in the previous section. It therefore requires a very high

amount of data re-usage to break even with the redundancy saved. Additionally, it is ne-

cessary to keep the previous stage of the pipeline in memory, therefore increasing the like-

lihood of cache-misses, especially when the computation is not tiled as shown in Section

2.2.3. Another downside is the limit on possible parallelism this technique forces on the

pipelines schedule, due to the fact that for each stage to be calculated in full, all threads

have to wait for the slowest one to be finished. This will be further discussed in the next

section, 2.4 Parallelism.

For these reasons it is usually optimal to find a middle ground for the amount of re-

dundant calculations performed. Nevertheless, a solution that yields the best overall

performance, which is still affected by the other two factors (locality and parallelism),

usually always features some redundant calculations.

14 2. Resource-aware programming in Halide

2.4. Parallelism

To follow the trend of ever-increasing core counts in CPUs, it is essential to use multi-

threading in any application to optimize for the available resources. It is crucial in the

domain of image processing, as the task is highly parallelizable and easily scalable. Ad-

ditionally, image processing pipelines usually process little to no interdependency bet-

ween possible threads (in the same stage).

Nevertheless, it is still difficult to implement in plain C(++) based fashion and it requires

sufficient experience to take full advantage of all possible parallelism options. Again, Ha-

lide is an exceptional option to effortlessly implement these multi-threading possibilities,

since it provides an easy wrapper for pipeline parallelism.

1 [. . .] // Blur p i p e l i n e from Algorithm 2.1

2 Var xOuter , yOuter , xInner , yInner ; // New v a r i a b l e s f o r t i l e indeces

3 // S p l i t t r a n s v e r s a l i n t o 8x8 t i l e s

4 blurY . tile (x , y , xOuter , yOuter , xInner , yInner , 8 , 8) ;

5 // Fuse the outer , t i l e−t r a v e r s a l loop

6 blurY . fuse (xOuter , yOuter , t i l e I n d e x) ;

7 blurY . parallel (t i l e I n d e x) ; // P a r a l l e l i z e t r a v e r s a l over t i l e s

8 blurY . realize (16 , 16) ; // Execute the t i l e d p i p e l i n e

Code Sample 2.5: Parallel, tiled traversal in Halide

There is one small caveat observable in Code Sample 2.5, the Halide implementation of

a tiled, parallelized schedule for the 3x3 Blur pipeline: To iterate over the tiled chunks

(outer loop) one would normally use two loops, but to allow them to be parallelized by

Halide they need to be fused together into a single one.

2.4.1. Pitfalls of increasing parallelism

Whilst image processing is inherently a highly parallelizable field of application, there

is a common misconception associated with multi-threading an application: Increasing

the amount of threads available for the CPU to process will only ever yield a gain in

performance or at least stay on the same level. But this is only sensible up to a certain

point, as illustrated in the following Figure 2.7.

2.4. Parallelism 15

2 4 6 8 10 12
Num. threads available

1

2

3

4
Re

la
tiv

e
th

ro
ug

hp
ut

Expected performance Actual performance

Figure 2.7.: Example throughput for increasing thread counts

As shown in the graph above, there is a significant increase in throughput up until the

amount of threads matches the number of cores on the device, which is to be expected.

Afterwards, this trend still continues albeit at a decreased rate. This behaviour can be ex-

plained by dependencies inside a thread. If one thread has to wait for a value of another

task or a blocking memory access, the CPU could switch to the execution of another avai-

lable thread to effectively use the waiting time. This justifies the continued performance,

even after exceeding the number of available cores. Furthermore, the graph suggests that

after a certain amount of threads there is no benefit from adding even more. This pheno-

menon is often overlooked and caused by the following two reasons:

Context switching, which occurs whenever the CPU switches to another available thread.

It comes with a CPU cycles overhead, as the old thread data has to be stored and the data

(of the thread being switched to) loaded. Increasing the amount of threads will therefore

incur ever growing penalties to actual time spent on processing image data. The resulting

effect is commonly called (CPU) thrashing.

Overlapping, redundant computations caused by the tiling of the input data into regions

to be processed by each thread. It is foreseeable that the amount of these grows exponen-

tially with the tiling factor and the number of neighbouring datapoints used. Figure 2.8

represents a visual illustration of the growth for the 3x3 Blur pipeline.

16 2. Resource-aware programming in Halide

Figure 2.8.: Reuse of data with varying levels of parallelism

Each of the overlapping pixels exacerbates the decision already lined out in Section 2.3

on the programmer: Recompute the overlapping data needed through inlining, there-

fore wasting a lot of CPU cycles quickly, or wait until the data is available in memory.

Either choice would result in slowdowns, as the latter would create a lot of dependencies

between the threads, which induces stalling. It is clear that this dilemma can only be

solved by limiting the amount of threads available for parallelization upfront. In conclu-

sion, fine-tuning the parallelism to stay within an optimal range of speed-up is of utmost

importance for image processing, which will be discussed later regarding the Parallelism-
threshold.

Having explored various means of resource-aware optimizations in this chapter, it is

now obvious that maximizing the performance on a given hardware platform depends

on the utilization of all three strategies (locality, redundancy and parallelism). However,

this requires in-depth expertise on the subject and their implementation in Halide, which

is a daunting task for any programmer. This naturally brings up the question of possible

means to automate these scheduling adjustments which will be discussed in the next

chapter.

3. The Halide auto-scheduler and its

limitations

The remainder of the thesis specifically aims to take a closer look at one of Halides ne-

west developments, the recently proposed Halide auto-scheduler. More specifically, this

chapter delivers the required background knowledge to further investigate it. First of all,

the goal is to establish an overview on its development (Section 3.1) and how to confi-

gure the auto-scheduler (Section 3.2). Afterwards, its capabilities and shortcomings will

be further inspected in Section 3.3. These establish the basis for the upcoming benchmark

in the following chapter.

3.1. Development of the auto-scheduler

Ravi Teja Mullapudi et al. developed a novel algorithm [Cf. 10, p. 1] to tackle the previ-

ously mentioned problem that writing a performant image processing schedule requires

in-depth expertise of resource-dependant optimization strategies, such as the ones de-

picted throughout Chapter 2. This is especially challenging on modern computing ar-

chitectures, even when already using Halide itself to simplify this task. The algorithm,

referred to as the auto-scheduler, aims to solve this task by automatically adjusting a

given pipelines schedule for the best balance between the three core principles (locality,

redundancy and parallelism).

It is one of the newest achievements by the Halide developer team, having its accom-

panying paper only just published in July 2016. Moreover, at the time of writing, the

(open-source) repository is still bustling with activity, with updates on a near daily basis.

It is therefore important to point out that the data gathered in Chapter 4 is merely a snaps-

hot of performance during the time frame this thesis was conducted (early 2017). More

specifically, the remaining parts of the thesis and benchmark are based on the revision

from the 3rd of March 2017.1

1[Commit 2968a1c2b6f58a1bfc67c3abcbcd6f249a3fc8fb] available from https://github.com/halide/

Halide/commit/2968a1c2b6f58a1bfc67c3abcbcd6f249a3fc8fb

https://github.com/halide/Halide/commit/2968a1c2b6f58a1bfc67c3abcbcd6f249a3fc8fb
https://github.com/halide/Halide/commit/2968a1c2b6f58a1bfc67c3abcbcd6f249a3fc8fb

18 3. The Halide auto-scheduler and its limitations

3.2. Parameters of the con�gurations

The auto-scheduler creates a model to base the schedule on, through the usage of a ma-
chine parameter configuration. It is based on the following three variables:

• Parallelism threshold: The minimum amount of tiles, and therefore threads, to be

created when splitting input data. According to Mullapudi et al., this value is best

chosen as a small multiple of the available core count on the execution platform [10,

p. 8 & 10].

• (Last level) cache size: As the name implies, this is utilized to create a model of the

cache hierarchy. It is also used as a hard limit for the maximum tile size during

loop tiling, to ensure that each tile fits into the cache. By varying this, it is therefore

possible to adjust tiles to fit entirely into L1, L2 and higher levels of caches.

• Cost balance: An average factor of how many more times expensive a typical main

memory access is, opposed to a re-computation on the platform

The auto-scheduler does not require a custom configuration, adjusted to the hardware

platform, to be specified. If none is given, a default configuration is used. It utilizes a

parallelism threshold of 16, cache size of 16 MB, and a cost balance of 40, which resembles

a generic CPU architecture.

3.3. Capabilities and limitations of the auto-scheduler

By itself, the usage of the default configuration already grants a massive speed-up over

a non-optimized schedule. Moreover, using a configuration that matches the execution

platform, such as the one featured in the original publication, yields even better results.

This has been shown in the original publication by comparing the performance against

their auto-tuner schedule, which is generated by exploring the entire proposed search

space in a brute-force approach. It spans values of 6 to 24 for the parallelism-threshold,

16 to 512 MB in cache size and 5 to 80 as the factor for cost balance. Thus a range of

sensible options for higher-end machines are covered. In their benchmarks, the afore-

mentioned schedules were pitted against one without any resource-aware optimizations

and another created by an experienced Halide developer.

Their results show that the auto-scheduler is a promising technique to achieve the best

possible overall performance on the platform, especially with the configuration tuned to

the hardware parameters. In this case, “the auto-scheduler’s generated code always re-

mains within a factor of two for all benchmarks, and is within 25% of the best auto-tuned

schedule in nine of 14 [10, p. 8]”.

But most importantly, these efficient schedules were generated without the in-depth ex-

pertise usually required. The author believes that this is the biggest accomplishment,

3.3. Capabilities and limitations of the auto-scheduler 19

since it allows programmers, even those new to Halide, to quickly write high perfor-

mance image processing pipelines.

However, the paper published by the Halide developer team also shows that performance

can heavily depend on the configuration in some benchmarks.

Blur Unsharp Harris
0.0

0.5

1.0

Re
la

tiv
e

Th
ro

ug
hp

ut

Baseline Manual Auto-Scheduler Auto-Tuned(Best)

Figure 3.1.: Throughput of Halide schedules for the Blur, Unsharp and Harris pipeline.
Remodelled after [10, Figure 6].

This thesis aims to more closely investigate those cases, where the throughput of the

hardware-like configuration significantly diverges from the best possible one. The two

worst offenders for this are the Harris corner detection and Unsharp mask benchmark, as

shown in Figure 3.1. This naturally brings up the question of similarities and discrepan-

cies between the Harris and Unsharp pipeline. To analyse these, another reference point

is required, where the default configuration yields performance close to the best possible

one. That is why a 3x3 Blur pipeline is also included in the following benchmark. During

the implementation of the pipelines in Section 4.2, it is therefore important to discuss re-

levant characteristics, such as given locality and dependencies in the pipeline.

Furthermore, the goal is to possibly determine how the auto-scheduler incorporates these

traits into the resulting schedules. Since those will form the main point of analysis,

the author hopes to gain further insight into certain aspects of those schedules, like the

preferred strategy between locality, redundancy and parallelism, depending on the har-

dware configuration.

To further examine this behaviour, an auto-tuner like algorithm is required, which allows

the exploration of the search space desired for the best configuration by measuring the

execution times. The construction of this and the pipelines to be inspected, will be cove-

red in the following chapter.

4. Benchmarking the auto-scheduler

To further inspect the capabilities of the auto-scheduler created by the Halide developer

team, a benchmark is required. Firstly, it should allow us to see if the auto-scheduler

performs on other devices as promised by the research paper [Cf. 10]. Secondly, as men-

tioned earlier, it should give us the ability to run our own analysis of the pipelines for the

Unsharp and Harris benchmark, where the performance of the default configuration is

substantially worse than the best one. In overall, the goal should therefore be to gain an

overview of feasible configurations for the auto-scheduler and possibly determine trends

within those. This naturally leads to the following course of action:

1. Implementing pipelines in Halide for the Harris Corner Detection and Unsharp

Mask. Additionally, a simple 3x3 blur pipeline to replicate results with good per-

formance is also desirable.

2. Creating a benchmark wrapper that tests all permutations of possible configurati-

ons and feeds these to each pipelines auto-scheduler

3. Mapping each of the benchmarks and their results into graphs

4. Reviewing the differences in schedules between the best, worst and default confi-

guration, as well as other notable outliers and unexpected cases.

Since step 4 requires the closer inspection of the formerly generated results, a second

functionality is required for the benchmark: The inspection of previously generated sche-

dules for a specific configuration. Only then it is possible to gain further insight into the

differences between locality, redundancy and parallelism of the schedule.

22 4. Benchmarking the auto-scheduler

4.1. Tested platforms

The publication released with the auto-scheduler already contains several benchmark re-

sults pertaining the throughput on a 6-core Intel Xeon CPU (Intel Xeon E5-2620 v3) [Cf.

10]. However, in-depth results for other supported platforms are rather limited. This is

the primary reason why the focus for this benchmark is to study a different architecture,

namely ARM-based devices. It should therefore be possible to confirm or disprove their

claim that “the benefits of auto-tuning schedules for ARM follows similar trends as those

reported for [the] Xeon [10, p. 10]”.

The benchmark was conducted on the following hardware platforms available to the

author, which utilize an ARM architecture: A Raspberry Pi 2 B, featuring a 4-core ARMv7

CPU, and an ODROID-XU4, with a heterogeneous 8-core ARMv7 CPU. The exact speci-

fications of the devices can be found in the following table.

Device Raspberry Pi 2 B ODROID-XU4

CPU Broadcom BCM2836 Samsung Exynos 5422

ARMv7

4x Cortex-A7@900MHz

(heterogeneous) ARMv7

4x Cortex-A15@2.1GHz

4x Cortex-A7 @1.3GHz

Cache
8x 32 KB L1i-cache

8x 32 KB L1d-cache

512 KB L2-cache(shared)

8x 32 KB L1i-cache

8x 32 KB L1d-cache

2 MB L2-cache (shared)

512 KB L2-cache (shared)

Memory
1GB LPDDR2 SDRAM

(shared with GPU)

2GB LPDDR3 RAM

(shared with GPU)

Table 4.1.: Specification of the tested devices1

1SoC manufacturers usually do not release specifications, these were measured by third parties. Confer to
[15], [16] for more details.

4.2. Implementation of the benchmark 23

4.2. Implementation of the benchmark

The benchmark itself contains two major components: An algorithm to loop through all

possible configurations to test the auto-scheduler with (configuration-switcher), and the pi-

pelines to be examined, implemented in Halide. These will be covered in their respective,

following sections.

Aside from these, a wrapper program has been created which allows setting of various

options for the benchmark, e.g. whether the input image is a pre-existing image or should

be randomly generated, accompanied by the pertaining parameters height and width.

Additionally, the specification of a seed number for the random image generator, setting

explicit starting configuration parameters and the possibility to choose between different

pipelines to test allow for repeatability of single test runs. This enables the user to inspect

noteworthy schedules in more detail.

4.2.1. Con�guration-Switcher

In order to be able to inspect all possible auto-scheduler configurations, the ability to loop

through all parameter permutations is required (Parallelism-threshold, (Last) Cache size,

Cost balance). The following pseudo-code, Algorithm 4.1, depicts such an implementa-

tion with C++ specific techniques omitted in favour of better readability.2

The configuration-switcher itself requires the range of the parameters to be given (lines

1-7), which are mainly based on the auto-tuner search space used by the original develo-

pers. For the purposes of this paper, the spectrum was extended and concentrated on the

lower end of the possible configurations. This is due to the ARM-base devices posses-

sing fewer cores and a smaller cache hierarchy than their counterpart used in the original

publication3. The remaining functionality of the configuration-switcher is divided into

two main functions, grabConfig() and calculateNextConfig(). The former (lines 9-15), as

the name implies, returns the current configuration as machine parameters to be passed

to the auto-scheduler. The latter, calculateNextConfig (lines 17-29), moves the current

configuration to the next one. This is done in a fashion that first varies the parallelism-

threshold, then cache size, and last the cost balance.

2Full source-code, along with the results, obtainable in Appendix A
3See previous Section 4.1 for more information on the hardware specifications.

24 4. Benchmarking the auto-scheduler

1: ParallelismThresholds← [1, 2, 3, 4, 8, 16]

2: CacheSizes← [8, 16, 32, ..., 1024 ∗ 1024]

3: CostBalances← [5, 10, 15, 20, 30, 40, 60, 80, 120]

4:

5: StartingIndices← [1, 1, 1] // Allow specific starting

// configurations for later review

6: CurrentIndices← StartingIndices // Copy by value

7: ParamVariations = [ParallelismThresholds.length, CacheSizes.length, CostBalances.length]
8:

9: function grabConfig

10: con f ig← new MachineParameters
11: con f ig.parallelism← ParallelismThresholds[CurrentIndices[1]]
12: con f ig.cache_size← CacheSizes[CurrentIndices[2]]
13: con f ig.balance← CostBalance[CurrentIndices[3]]
14: return con f ig
15: end function

16:

17: function calculateNextConfig

18: CurrentIndices[1] + +

19: for IndexIterator ← 1, CurrentIndices.length do

20: if CurrentIndices[IndexIterator] > ParamVariations[IndexIterator] then
21: CurrentIndices[IndexIterator]← 1

22: if IndexIterator + 1 ≤ CurrentIndices.length : then

23: CurrentIndices[IndexIterator + 1] + +

24: else

25: CurrentIndices← StartingIndices // Copy by value

26: end if

27: end if

28: end for

29: end function

Algorithm 4.1: Pseudo-Code of Configuration-Switcher

4.2. Implementation of the benchmark 25

4.2.2. Pipelines to be inspected

In this section we move on to the implementation of the pipelines to be inspected. As

argued in Section 3.3, we focus on the Blur, Unsharp Mask and Harris Corner detection

algorithms. Whilst the Halide sourcecode of the various pipelines will be shown, it is not

the focus of this paper to analyse the specific implementation in detail. In the context of

this thesis it is more important to gain an overview of characteristics and differences be-

tween the pipelines, in light of possibly determining how these impact the results which

will be evaluated in the next Chapter.

3x3 Blur

The first image processing pipeline to investigate is a simple 3x3 Blur algorithm. Of the

three, Blur, Unsharp and Harris, it is the most straightforward one.

1 // Repeating boundar ies f o r f u l l e v a l ua t i on o f edge da tapo in t s needed

2 Func inBounded = BoundaryConditions : : repeat_edge (inputImage) ;

3
4 // Var iab l e and Func d e c l a r a t i o n s omit ted f o r b e t t e r r e a d a b i l i t y

5 blurX (x , y , c) = (inBounded (x−1, y , c) + inBounded (x , y , c) +

inBounded (x+1, y , c)) /3 ;

6 blurY (x , y , c) = (blurX (x , y−1, c) + blurX (x , y , c) +

blurX (x , y+1, c)) / 3 ;

Algorithm 4.2: 3x3 Blur pipeline implementation with repeated boundaries

In the previous, and all subsequent algorithms, the input data is first put through a

repeating-edge boundary condition (line 2). This repeats the edge data points further

outwards, so that accesses by the pipeline outside of the given region are still computa-

ble which ultimately prevents shrinking the output image that would otherwise occur.

InputImage

blurY

blurX

Figure 4.1.: DAG4Visualization
of the Blur Pipeline5

As seen in Algorithm 4.2 and its corresponding Figure

4.1, the blur pipeline depicted only features two stages. As

there are no dependencies beyond the previous stage, it

would therefore be possible to fully inline blurX into blurY.

Another notable characteristic of the algorithm is the fair

amount of locality, as each stage uses 8 neighbouring data

points to compute a single output pixel.

3Directed acyclic graph
5The input and output stages have been highlighted to differentiate these from the rest of the pipeline.

26 4. Benchmarking the auto-scheduler

Unsharp Mask

The next, more complex, pipeline for the benchmark is composed of the Unsharp Mask

algorithm. It is used for computation of an artificially sharpened image by weighting

each pixel with the difference between a grayscale version of the input and its resulting

blurred variant.

1 // Var iab l e and Func d e c l a r a t i o n s omit ted f o r b e t t e r r e a d a b i l i t y

2 // The g ray s ca l e we i gh t ing stems from the f a c t

3 // t ha t humans do not p e r c e i v e a l l c o l o r s e q u a l l y 6

4 gray (x , y) = 0 .3 f ∗ inputBounded (x , y , 0) + 0 .59 f ∗ inputBounded (x , y , 1) +

0 .11 f ∗ inputBounded (x , y , 2) ;

5 blurX (x , y) = (gray (x− 1 , y) + gray (x , y) + gray (x+ 1 , y)) / 3 .0 f ;

6 blurY (x , y) = (blurX (x , y− 1) + blurX (x , y) + blurX (x , y+ 1)) / 3 .0 f ;

7 sharpen (x , y) = 2 .0 f ∗gray (x , y) − blurX (x , y) ;

8 r a t i o (x , y) = sharpen (x , y) / gray (x , y) ;

9 unsharp (x , y , c)= r a t i o (x , y) ∗ inputImage (x , y , c) ;

Algorithm 4.3: Unsharp pipeline implementation with repeated boundaries

InputImage

unsharp

gray

blurX

blurY

sharpen

ratio

Figure 4.2.: DAG Visualization of
the Unsharp Pipeline

This implies that, at its core, the Unsharp Mask pipeline de-

picted in Algorithm 4.3 reuses the method of the previous 3x3

Blur on the grey-scale version of the input image. Therefore it

is to be expected that access patterns for the Unsharp Mask fe-

ature an similar amount of spatial locality as the previous pi-

peline.

Moreover, the algorithm introduces a set of dependencies as

illustrated by Figure 4.2: The gray computation (and the inpu-

tImage to a lesser extent) is re-accessed at later stages by the

pipeline, specifically during sharpen and ratio (as well as the fi-

nal stage, unsharp, for the inputImage). Whilst this does grant a

degree of temporal locality, it also requires the previous stages

to be kept in memory and severely hinders the feasibility of re-

computations. In return, this puts a damper on parallelizability,

due to the fact that reused data points (as explained in Section

2.4) can not simply be recomputed.

6Further Information available in [7].

4.2. Implementation of the benchmark 27

Harris Corner Detection

The last algorithm to be benchmarked, under utilization of the Halide auto-scheduler, is

the commonly abbreviated Harris Corner Detection. It is named after Chris Harris, one of

the original inventors, and is actually intended as “a combined corner and edge detector

[5, p. 1]”.

The following Algorithm 4.4 shows an implementation of Harris in Halide, based on the

original paper by Chris Harris and Mike Stephens.

1 // Var iab l e and Func d e c l a r a t i o n s omit ted f o r b e t t e r r e a d a b i l i t y

2 gray (x , y) = 0 .3 f ∗ inputBounded (x , y , 0) + 0 .59 f ∗ inputBounded (x , y ,

1) +

3 0 .11 f ∗ inputBounded (x , y , 2) ;

4 i n t ens i tyX (x , y)= gray (x−1, y−1)∗ (−1.0 f /12)+ gray (x+1, y−1)∗ (1 . 0 f /12) +

5 gray (x−1, y) ∗ (−2.0 f /12)+ gray (x+1, y) ∗ (2 . 0 f /12) +

6 gray (x−1, y+1)∗ (−1.0 f /12)+ gray (x+1, y+1)∗ (1 . 0 f /12) ;

7
8 i n t ens i tyY (x , y)= gray (x−1, y−1)∗ (−1.0 f /12)+ gray (x−1, y+1)∗ (1 . 0 f /12) +

9 gray (x , y−1) ∗ (−2.0 f /12)+ gray (x , y+1) ∗ (2 . 0 f /12) +

10 gray (x+1, y−1)∗ (−1.0 f /12)+ gray (x+1, y+1)∗ (1 . 0 f /12) ;

11
12 intensityXX (x , y) = intens i tyX (x , y) ∗ i n t ens i tyX (x , y) ;

13 intensityXY (x , y) = intens i tyX (x , y) ∗ i n t ens i tyY (x , y) ;

14 intensityYY (x , y) = intens i tyY (x , y) ∗ i n t ens i tyY (x , y) ;

15
16 sumXX(x , y)=intensityXX (x−1,y−1)+intensityXX (x−1,y)+intensityXX (x−1,y+1)+

17 intensityXX (x , y−1) +intensityXX (x , y) +intensityXX (x , y+1) +

18 intensityXX (x+1,y−1)+intensityXX (x+1,y)+intensityXX (x+1,y+1) ;

19 sumXY(x , y)=intensityXY (x−1, y−1) + [. . .] + intensityXY (x+1, y+1) ;

20 sumYY(x , y)=intensityYY (x−1, y−1) + [. . .] + intensityYY (x+1, y+1)

21
22 determinate (x , y)= sumXX(x , y) ∗ sumYY(x , y) − sumXY(x , y) ∗ sumXY(x , y) ;

23 t r a c e (x , y) = sumXX(x , y) + sumYY(x , y) ;

24 //k has to be determinated per run , t y p i c a l k va lue here (k = 0.09)

25 ha r r i s (x , y) = determinate (x , y) − 0 .09 f ∗ t r a c e (x , y) ∗ t r a c e (x , y) ;

Algorithm 4.4: Harris pipeline implementation with repeated boundaries

28 4. Benchmarking the auto-scheduler

From the source code it is inferable that this algorithm would be the most computatio-

nally expensive of three, due to the high amount of calculations in each stage. Whilst it

will be shown to hold true later, there are factors to consider which positively affect the

generated schedule’s performance and thus brings the throughput on a level close to the

previous pipeline.

InputImage

harris

gray

intensityX

intensityXY

intensityY

intensityYYintensityXX

sumXY sumYYsumXX

determinate

trace

Figure 4.3.: DAG Visualization of the Harris Pipeline

Foremost, Harris Corner detection

does not include over-arching depen-

dencies, like the previous Unsharp

Mask algorithm. In comparison, Fi-

gure 4.3 shows that only the deter-
minate stage has computation results

that get used beyond the following

stage. This should allow for a great

deal of code-inlining and thus paral-

lelizability, since the remaining sta-

ges follow a strictly sequential or-

der. The only requirement is the full

computation of intensityX and inten-
sityY, since it is a prerequisite for in-
tensityXY (and subsequently determi-
nate).

Furthermore, the various stages

which require accesses to neighbou-

ring data points (gray, intensityX/Y,
sumXX/XY/YY) all use the same eight

surrounding pixels. This behavi-

our in spatial locality allows keeping

the tiling (and parallelism) options

through-out the stages the same.

5. Evaluation of the benchmark

Having previously covered the pipelines’ implementation and their characteristics, as

well as the benchmark, this chapter aims to put these to the test. The first section of

this chapter covers the benchmark parameters which were used to generate the results.

Using those, the following section aims to evaluate the results by inspecting schedules

that show significance.

5.1. Set up of the benchmark result generation

To produce the results evaluated in this chapter, a randomly generated image sized 4096

by 4096 pixels (8192 wide for the ODROID-XU4) was supplied as the input for each pi-

peline tested. The auto-scheduler was then utilized to generate a schedule with varying

parameters. As previously explained in Section 4.2, the configuration switcher is used to

permutate through all sensible options for the auto-scheduler, which in return creates the

schedules for the three pipelines tested. For every pipeline and each configuration, the

algorithm resulting from the auto-scheduler was then executed 25 times. In overall, run-

ning the entire benchmark set on the Raspberry Pi 2 and ODROID-XU4 (with the larger

input image) took several days each, due to more than 700 possible permutations in the

configuration search space.

The resulting data of the benchmark was then converted into comprehensible dia-

grams. To do so, the top and bottom outliers in each execution time dataset were removed

first, to account for unintended inaccuracies1. Afterwards it was observable that the va-

riation in execution time for each configuration is minuscule (< 1% difference between

best and worse). Therefore, opting to represent each configuration through its average

execution time in the diagrams is a viable option. This allows for additional, condensed

views of the data. The full benchmark results and all diagrams generated in this fashion

can be obtained from Appendix A.

1Earliest version of the benchmark had a fault where the first execution took much longer than the remai-
ning runs. This was solved, as explained in Appendix C.

30 5. Evaluation of the benchmark

5.2. Auto-scheduler performance on ARM-based devices

The first comparison to be made is between the general behaviour of the auto-scheduler

on ARM devices, as opposed to the results of the Intel Xeon E5-2620 v3 depicted in Section

3.3. To do this, each device had three datasets extracted for all of the benchmarks. These

datasets corresponded to the three most notable configurations:

• Default: Running the auto-scheduler without any customized parameters

(Parallelism threshold:16, cache size:16 MB, cost balance:40)

• Real: A configuration as close as possible to the hardware specification needs

(Compares to Auto-Scheduler in Figure 3.1)

(Raspberry Pi 2: Parallelism threshold 8, cache size 512 KB, cost balance 10;
ODROID-XU4: Parallelism threshold 16, cache size 512 KB, cost balance 10)

• Best: The configuration parameters which delivered the best performance, determi-

ned by the full exploration of the search space through the benchmark in this thesis.

(Compares to Auto-Tuned(best) in Figure 3.1)

To determine the values of the parallelism threshold and cost balance for the “real” con-

figuration, the recommendation by Ravi Teja Mullapudi et al. was followed. They advise

a choice of “a small multiple of the core count” (in this case 2 times) for the former, and a

value of 10 for the latter in their short, ARM-based benchmark [Cf. 10, p. 10]. The cache

size parameter reflects the actual L2 cache capacity.

The Figure 5.1 shows the resulting plot for each of three datasets per configuration and

Blur Unsharp Harris
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Th
ro

ug
hp

ut

Blur Unsharp Harris
0.0

0.5

1.0
Raspberry Pi 2 B

Blur Unsharp Harris
0.0

0.5

1.0
ODROID-XU4

Default Config. Real Config. Best Config.

Figure 5.1.: Throughput of the auto-scheduler on ARM-based devices

device. The figure indicates that it is always beneficial to use a configuration that more

closely resembles the hardware specification instead of the default, which was to be ex-

pected.

5.3. Benchmark results 31

But, when comparing these graphs to Figure 3.1, our data paints a different picture for

the discrepancy between the Hardware-adjusted (real) configuration and the best possi-

ble one. The correlation between these two cases is actually inverted on ARM-devices,

compared to the x86/64 machine in the original benchmark. Performance results for

the hardware-specific configuration during blur are significantly worse than the original

data would suggest. On the opposite end, Unsharp and Harris show a much smaller

gap between the real and best configuration. This discovery is another interesting point

of observation, which will be explained by investigating the underlying schedules in the

next sections.

5.3. Benchmark results

After carefully reviewing the previously generated results from the benchmark, the aut-

hor believes that the following order of evaluation for the schedules is the most sensible

one: Firstly, discussing the behaviour of the auto-scheduler in regards to the parallelism-
threshold and how this affects the further examination of the data. Secondly, inspecting

the differences between pipelines and how the parameter choices affect the execution ti-

mes. This requires the categorization of the algorithms into computationally and memory

bounded pipelines, as well as the review of schedules in specific case studies.

5.3.1. E�ects of the parallelism threshold

The most striking behaviour for the auto-scheduler concerns the first parameter, the

parallelism-threshold. There are two observations to be made:

First of all, the poor performance when choosing the value for this parameter smaller

than the core count. This is not in line with the explanation given for the purpose of the

parallelism threshold in the original paper by Ravi Teja Mullapudi et al:

In their pseudo-code, the input tiling for each Halide function is adjusted to minimize the

amount of accesses required for the computation [Cf. 10, p. 6 - Listing 1, lines 17–19]. This

is supposedly done by checking through all possible tiling sizes and dismissing the ones

that do not result in a sufficient amount of parallelism (the parallelism threshold describes

this minimum). Unsurprisingly, this would result in one huge tile (and no parallelism)

given parallelism-threshold=1, since it has the minimal amount of redundant loads. But,

the secondary condition of a viable tiling size should prevent this: The tile is required to

use less memory than the parameter cache size allows. The example in Figure 5.2 shows

that even with a choice of just 32 KB for this parameter, the unfavourable tiling with

little to no parallelism still gets picked. This behaviour is replicable on all devices and

benchmarks with any choice of cache size, which indicates faults or differences within the

actual implementation compared to the pseudo-code given in the original paper. Due to

32 5. Evaluation of the benchmark

time constraints, it was not possible to further investigate this. Nevertheless, choosing a

threshold smaller than the core count should therefore be avoided at all costs.

2 4 6 8 10 12 14 16
Parallelism Threshold

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ex
ec

ut
io

n
tim

e
(s

)

(Last) Cache Size: 32 KB

Cost Balance: 5 Cost Balance: 10, 15, 20, 30, 40, 60, 80, 120

 Blur - Raspberry Pi 2 B - 4096*4096px

Figure 5.2.: Effects on the auto-scheduler by low levels of parallelism threshold2

Furthermore, if the parallelism threshold is at least equal or greater than the core count of

the device, then it does not have any effect on the schedule generated (they are identical,

as seen from Algorithm B.1 and Algorithm B.2). This suggests that the mechanism des-

cribed earlier does manage to always find the same, feasible tiling solution, as long as the

parallelism threshold value is not too low.

In retrospect, this indicates that the search space for the parallelism threshold would

have been better chosen in a higher range, possibly with maximum values so large that

CPU thrashing can be shown. Quick, single configuration tests show that these effects

start to appear at 64 and more threads. This amount of multi-threading can be forced by

the use of the minimum parallelism threshold. For now this invariance in sensible ranges

means it is sufficient to investigate cases with thresholds of 8 or 16.

2In this and all following diagrams, datasets which barely show any difference (for example, cost balance:
10,15...,120) have been grouped together for visual clarity.

5.3. Benchmark results 33

5.3.2. Performance di�erences for computationally bounded pipelines

As pointed out in Section 4.2.2, the various pipelines show characteristics which are ul-

timately reflected in the resulting benchmarks. The most interesting connection can be

made in regard to the cache size parameter: Pipelines that possess few dependencies, such

as Blur and Harris corner detection, benefit from code inlining and parallelism the most,

which is why these are computationally bounded. Due to this, most values are com-

puted as needed and little time is spent waiting on cache accesses. Small benefits are

noticeable though, when the cache size is geared towards the L2 cache capacity. Figure 5.3

illustrates this for Harris, on the faster ODROID-XU4.

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

4M
B

16
M

B

64
M

B

25
6M

B

1G
B

(Last) Cache size [KB]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ex
ec

ut
io

n
tim

e
(s

)

Data points are connected to better visualize trends

Parallelism Threshold 16

Cost Balance: 5, 10, 15 Cost Balance: 20, 30, 40, 60 Cost Balance: 80, 120

 Harris - ODROID-XU4 - 8192*4096px

Figure 5.3.: Harris benchmark on the ODROID-X04 for varying cache sizes

As soon as the cache size parameter exceeds actual available cache capacity, performance

takes a massive hit, since main memory loads start to weight into the execution time. This

very same behaviour can be observed in the other computationally bounded benchmark

(blur), even on the less performant Raspberry Pi 2 B. This is demonstrated in Figure 5.4

Here, the gap between cache size choices that fit into the L2 and those that do not, is not

nearly as large as the previous diagram would suggest. This can be explained by the

inherently slower hardware specification of the platform.3 As a result, the computati-

ons take up a larger part of the execution time, whilst the memory access latencies stay

roughly the same.

Therefore the additional main memory access penalty does not affect the overall execu-

tion time as much, when the cache size is larger than the actual capacity available.

3Confer to Section 4.1 for further details.

34 5. Evaluation of the benchmark

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

4M
B

16
M

B

64
M

B

25
6M

B

1G
B

(Last) Cache size [KB]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ex
ec

ut
io

n
tim

e
(s

)

Data points are connected to better visualize trends

Parallelism Threshold 16

Cost Balance: 5, 10, 15
Cost Balance: 10

Cost Balance: 20, 30, 40, 60 Cost Balance: 80, 120

 Blur - Raspberry Pi 2 B - 4096*4096px

Figure 5.4.: Blur benchmark on the Raspberry Pi 2 B for varying cache sizes

When trying to maximize the throughput, the choice of fitting the cache size parameter

to the L2 capacity delivers the best performance. Here the unusually poor results of the

“real” configuration (parallelism threshold 8/16, cache size 512 KB, cost balance 10) in Figure

5.1 can also be explained. When comparing the schedule with a cost balance of 10 (Sche-

dule B.4) against the ones with the surrounding values, 5 (Schedule B.3) and 15 (Schedule

B.5), one key difference is observable: These feature an additional layer of parallelism for

the first stage of computation.4 It is therefore safe to say that this result is an outlier, since

the behaviour for low cache sizes seems to be rather inconsistent for this benchmark.

Another noteworthy point of investigation deals with the impact of the cost balance on

these computationally bounded schedules when using large cache size parameters. It is

very striking that the cost balance datasets were assignable to distinct groups and their

resulting tiers of performance. Upon further exploration of the schedules generated by

the auto-scheduler, it turns out that cost balances within the same groups actually have

identical schedules.

Additionally, it can be seen that these tiers of cost balance directly correlate to the chosen

cache size in performance. The larger the cost balance value is, the stronger the incentive to

4Schedule B.5 also uses smaller tiles, which makes this schedule slightly more performant than Schedule
B.3. The majority of speed-up is gained through the parallelism though.

5.3. Benchmark results 35

avoid the use of main memory - even if the cache size parameter was chosen to be larger

than the capacity available.

36 5. Evaluation of the benchmark

5.3.3. Performance di�erences for memory bounded pipelines

On the flip side, memory bounded pipelines are rich in dependencies and offer little

room for full code inlining. The Unsharp Mask algorithm matches these criteria, as dis-

cussed in Section 4.2.2.

It is plain to see that these pipelines spend most of their time waiting for memory lo-

ads, since the dependencies arching over multiple stages do not allow this data to be

kept in cache.5 Therefore it is not surprising, that on a sufficiently fast machine, like the

ODROID-XU4, the performance is largely unaffected by the choice of cache size and cost
balance.

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

4M
B

16
M

B

64
M

B

25
6M

B

1G
B

(Last) Cache size [KB]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ex
ec

ut
io

n
tim

e
(s

)

Data points are connected to better visualize trends

Parallelism Threshold 16

Cost Balance: 5, 10, 15 Cost Balance: 20, 30, 40, 60 Cost Balance: 80, 120

 Unsharp - ODROID-XU4 - 8192*4096px

Figure 5.5.: Unsharp benchmark on the ODROID-XU4 for varying cache sizes

There is a small trend observable in Figure 5.5 though, that in contrast to the compu-

tationally bounded pipelines, the best results are yielded by adjusting the cache size to

the L1 cache capacity. Moving onto the less performant platform, this trend is confirmed

to hold true to an even greater extent. As the following diagram shows, performance is

always guaranteed at small levels of cache size (for this memory bounded pipeline) no

matter the choice of cost balance.

5Assuming the input image is larger than any typical cache sizes - which is to be expected when applying
resource-aware techniques to image processing pipelines

5.3. Benchmark results 37

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

4M
B

16
M

B

64
M

B

25
6M

B

1G
B

(Last) Cache size [KB]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ex

ec
ut

io
n

tim
e

(s
)

Data points are connected to better visualize trends

Parallelism Threshold 16

Cost Balance: 5
Cost Balance: 10, 15

Cost Balance: 20, 30
Cost Balance: 40, 60, 80

Cost Balance: 120

 Unsharp - Raspberry Pi 2 B - 4096*4096px

Figure 5.6.: Unsharp benchmark on the Raspberry Pi 2 B for varying cache sizes

The latter is not without overall impact though. Just like all the previous diagrams, es-

pecially Algorithm 5.3, showed, the cost balance mostly acts as an offset for memory load

execution time increases. The larger the parameter value is chosen, the bigger the range

of maximum cache size possible, before memory access related penalties start to appear.

Even though the cost balance behaves in predictable patterns for the memory bounded

pipelines in this section, the same could not be said for computationally bounded ones.

Especially in combination with a small cache size parameter, the behaviour was very erra-

tic, as seen in Figure 5.4. It is therefore problematic to make conclusive statements about

this particular parameter, whilst it was possible to do so for the other ones. These results

will be summarized in the next, final chapter.

6. Conclusion and outlook

The goal of this bachelor thesis was to analyse the trade-off between locality, redundancy

and parallelism, which has been applied to the field of image processing. This offered

a basis of investigation, as various image processing pipelines exhibit different characte-

ristics which impact the resource-aware optimization techniques possible. By further in-

vestigating into the Halide auto-scheduler, a recent development for automatic resource-

aware optimization, the aim was to study the effects and relations between pipeline traits

as well as parameters given. From the outcome of the conducted research it is possible to

conclude that such correlations exist, which will be discussed in Section 6.1 Concluding,

the final section intents to provide some avenues of further research offered by this thesis.

6.1. Summary

Based on the results, it can be concluded that the research into automatic resource-aware

optimization by the Halide developer team has been largely successful. It has even been

possible to confirm their claim that ARM-based devices show similar performance gains

as their test platform did. Furthermore, the gap between the best possible configura-

tion and the one simply using the hardware-platform specification has been significantly

closed. This indicates that since the release of the auto-scheduler several improvements

have been made to the schedule generation process.

Yet, the findings in this thesis reveal that some manual adjustments of the input parame-

ters must still be performed to achieve the maximum performance possible depending

on the pipelines’ characteristics. Namely, memory bounded algorithms (such as Unsharp

Mask), which feature dependencies and few calculations per stage, suffer from the ina-

bility to recalculate as needed. Therefore, the amount of possible parallelism is limited.

Memory access penalties thus make up the bulk of the execution times, which can be op-

timized by reducing the cache size parameter for the auto-scheduler to the smallest level

of cache capacity available. Pipelines that do not possess these traits are in return better

off choosing the maximum cache size available per core.

Unfortunately, such statements can not be made in regards to the cost balance parame-

ter, as there seems to be no discernible pattern in combination with realistic cache size

choices, especially on non-memory bounded pipelines (Figure 5.3 and Figure 5.4 show-

case this well). To find the maximum performance, currently there seems to be no way

40 6. Conclusion and outlook

around sampling a small subset of possible cost balance choices (for example: 5, 10, 20)

by running the generated schedule. If a small loss of performance is acceptable, then

the gathered data suggests that choosing an unrealistically large value for this parameter

(e.g. 120 in our tests) still yields acceptable results in all cases. On top of not requiring

sample executions, this additionally allows for a wider space of performant cache size pa-

rameter choices, leaving the programmer with a wide margin for possible errors - after

all, the auto-scheduler’s purpose is to automate the resource-aware optimization process,

not complicate it.

6.2. Outlook

There are some points of discussion and further possible research which appeared during

the course of this thesis.

Most prominently, the unexpected behaviour for low parallelism threshold parameter va-

lues, as explained in Section 5.3.1. Further investigation into this area could determine

why the results differ from what the pseudo-code in the original auto-scheduler paper

would suggest.

Another interesting avenue of analysis could be the - at this moment - unpredictable be-

haviour for several cost balance choices combined with small cache size parameters. This

is mainly observable on non-memory bounded pipelines. A deep examination of the un-

derlying auto-scheduler source code would be required to determine why substantially

different, sub-optimal schedules are generated for some values of the cost balance para-

meter.

Appendix

A. Full benchmark results

The sourcecode of the benchmark, execution times and their resulting diagrams are avai-

lable to download from:

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/

downloads/2017-glaeser-thesis-figures.zip

Considering the amount of possible permutations between all configurations and ways

of displaying them, the author opted to digitally publish these. The results include box-

plot diagrams for each configuration per benchmark, as well as combined views with

one parameter variation. Since the execution times have very little variance between

their repetitions, they were averaged out and grouped together for presentation in this

paper. Some of these plots have already been featured and the remaining ones can be

obtained from the previous download.

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-glaeser-thesis-figures.zip
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-glaeser-thesis-figures.zip

42 Appendix

B. Reviewed schedules

The following schedules were specifically reviewed during the evaluation of the bench-

mark results. Whilst a full inspection of all loop boundaries and calculation steps is also

possible, a more condensed version is presented here.

The most important aspects about these schedules, in regards to characteristics discus-

sed in Section 4.2, are the consumer-producer relationships. These are directly caused by

dependencies in the original pipeline, as they indicate necessary pre-requirements for a

following computation.

Furthermore, loop tiling which is directly affected by cache size can be observed here (for

example in line 13), as well as utilized parallelization (e.g. line 3) and vectorization (e.g.

line 10 & 15).

1 // Para l l e l i sm t h r e s h o l d : 4 Cache s i z e : 32KB Cost ba lance : 10

2 produce blur_y :

3 parallel v7 . v7_o :

4 for v6 . v6_o :

5 produce blur_x :

6 for v8 :

7 for v7 :

8 for v6 . v6_vo :

9 vectorized v6 . v6_vi in [0 , 3] :

10 blur_x (. . .) = . . .

11 consume blur_x :

12 for v8 :

13 for v7 . v7_i in [0 , 7] :

14 for v6 . v6_i . v6_i_vo :

15 vectorized v6 . v6_i . v6_i_vi in [0 , 3] :

16 blur_y (. . .) = . . .

Schedule B.1: Auto-scheduled pipeline for blur (parallelism 4)

B. Reviewed schedules 43

1 // Para l l e l i sm t h r e s h o l d : 16 Cache s i z e : 32KB Cost ba lance : 10

2 produce blur_y :

3 parallel v7 . v7_o :

4 for v6 . v6_o :

5 produce blur_x :

6 for v8 :

7 for v7 :

8 for v6 . v6_vo :

9 vectorized v6 . v6_vi in [0 , 3] :

10 blur_x (. . .) = . . .

11 consume blur_x :

12 for v8 :

13 for v7 . v7_i in [0 , 7] :

14 for v6 . v6_i . v6_i_vo :

15 vectorized v6 . v6_i . v6_i_vi in [0 , 3] :

16 blur_y (. . .) = . . .

Schedule B.2: Auto-scheduled pipeline for blur (parallelism 16)

1 // Para l l e l i sm t h r e s h o l d : 16 Cache s i z e : 512KB Cost ba lance : 5

2 produce blur_y :

3 parallel v8 :

4 parallel v7 . v7_o :

5 for v6 . v6_o :

6 produce blur_x :

7 for v8 :

8 for v7 :

9 for v6 . v6_vo :

10 vectorized v6 . v6_vi in [0 , 3] :

11 blur_x (. . .) = . . .

12 consume blur_x :

13 for v7 . v7_i in [0 , 6 3] :

14 for v6 . v6_i . v6_i_vo :

15 vectorized v6 . v6_i . v6_i_vi in [0 , 3] :

16 blur_y (. . .) = . . .

Schedule B.3: Auto-scheduled pipeline for blur (cost balance 5)

44 Appendix

1 // Para l l e l i sm t h r e s h o l d : 16 Cache s i z e : 512KB Cost ba lance : 10

2 produce blur_y :

3 parallel v7 . v7_o :

4 for v6 . v6_o :

5 produce blur_x :

6 for v8 :

7 for v7 :

8 for v6 . v6_vo :

9 vectorized v6 . v6_vi in [0 , 3] :

10 blur_x (. . .) = . . .

11 consume blur_x :

12 for v8 :

13 for v7 . v7_i in [0 , 6 3] :

14 for v6 . v6_i . v6_i_vo :

15 vectorized v6 . v6_i . v6_i_vi in [0 , 3] :

16 blur_y (. . .) = . . .

Schedule B.4: Auto-scheduled pipeline for blur (cost balance 10)

1 // Para l l e l i sm t h r e s h o l d : 16 Cache s i z e : 512KB Cost ba lance : 15

2 produce blur_y :

3 parallel v8 :

4 parallel v7 . v7_o :

5 for v6 . v6_o :

6 produce blur_x :

7 for v8 :

8 for v7 :

9 for v6 . v6_vo :

10 vectorized v6 . v6_vi in [0 , 3] :

11 blur_x (. . .) = . . .

12 consume blur_x :

13 for v7 . v7_i in [0 , 3 1] :

14 for v6 . v6_i . v6_i_vo :

15 vectorized v6 . v6_i . v6_i_vi in [0 , 3] :

16 blur_y (. . .) = . . .

Schedule B.5: Auto-scheduled pipeline for blur (cost balance 15)

C. Extremely large execution time for first runs 45

C. Extremely large execution time for �rst runs

During the review of the gathered results from the benchmark developed in this thesis,

it was observable that the first execution of a auto-scheduled pipeline always took about

1 to 2 seconds longer than all of the remaining ones. This was very disconcerting, since

the usual variation between runs never exceeded 1%, as explained in Section 5.1.

Further investigation revealed that this was caused by the way pipeline.realize(...) is imple-

mented in Halide. It also acts as a short-cut which includes a call to pipeline.jit_ compile(...).
This compilation is responsible for compiling the Halide program into usable machine

code and the jit (just-in-time) version outputs this directly into the host memory [Cf. 12].

By specifically implementing a call to jit_ compile before any performance measuring was

conducted, the discrepancy between the first execution time and all the others was fully

dissolved.

List of Figures

1.1. Rise of parallel computing. 1

2.1. Accesses with temporal locality . 7

2.2. Accesses with spatial locality . 7

2.3. Effects of reordering on loop traversal . 8

2.4. Traversal without tiling . 9

2.5. Traversal with tiling . 9

2.6. Minimizing redundancy through stage-wise computation 12

2.7. Example throughput for increasing thread counts 15

2.8. Reuse of data with varying levels of parallelism 16

3.1. Throughput of Halide schedules for the Blur, Unsharp and Harris pipeline. 19

4.1. DAG visualization of the Blur pipeline . 25

4.2. DAG visualization of the Unsharp pipeline 26

4.3. DAG visualization of the Harris pipeline 28

5.1. Throughput of the auto-scheduler on ARM-based devices 30

5.2. Effects on the auto-scheduler by low levels of parallelism threshold 32

5.3. Harris benchmark on the ODROID-X04 for varying cache sizes 33

5.4. Blur benchmark on the Raspberry Pi 2 B for varying cache sizes 34

5.5. Unsharp benchmark on the ODROID-XU4 for varying cache sizes 36

5.6. Unsharp benchmark on the Raspberry Pi 2 B for varying cache sizes . . . 37

List of Tables

4.1. Specification of the tested devices . 22

List of Code Samples

2.1. Reordering traversal order in Halide . 9

2.2. Tiled traversal in Halide . 10

2.3. Fully inlined blurY calculation . 12

2.4. Forcing full stage-wise schedule in Halide 13

2.5. Parallel, tiled traversal in Halide . 14

List of Algorithms and Schedules

2.1. Sample implementation of 3x3 Blur Pipeline in Halide 6

4.1. Pseudo-Code of Configuration-Switcher . 24

4.2. 3x3 Blur pipeline implementation with repeated boundaries 25

4.3. Unsharp pipeline implementation with repeated boundaries 26

4.4. Harris pipeline implementation with repeated boundaries 27

B.1. Auto-scheduled pipeline for blur (parallelism 4) 42

B.2. Auto-scheduled pipeline for blur (parallelism 16) 43

B.3. Auto-scheduled pipeline for blur (cost balance 5) 43

B.4. Auto-scheduled pipeline for blur (cost balance 10) 44

B.5. Auto-scheduled pipeline for blur (cost balance 15) 44

Bibliography

[1] S. G. Berg, “Cache prefetching”, Department of Computer Science & Engineering

University of Washington, Tech. Rep., 2002.

[2] P. J. Denning, “The locality principle”, Communications of the ACM, vol. 48, no. 7,

pp. 19–25, 2005.

[3] P. J. Denning and T. G. Lewis, “Exponential laws of computing growth”, Communi-
cations of the ACM, vol. 60, no. 1, pp. 54–65, 2016.

[4] (Jan. 2017). Halide/readme.md, [Online]. Available: https://github.com/halide/

Halide/blob/master/README.md (visited on 04/04/2017).

[5] C. Harris and M. Stephens, “A combined corner and edge detector.”, in Alvey vision
conference, vol. 15, 1988, pp. 147–151.

[6] J. Hruska. (Apr. 2015). Moore’s law is dead, long live moore’s law, ExtremeTech,

[Online]. Available: https://www.extremetech.com/extreme/203490-moores-

law-is-dead-long-live-moores-law (visited on 12/13/2016).

[7] C. Kanan and G. W. Cottrell, “Color-to-grayscale: Does the method matter in image

recognition?”, PloS one, vol. 7, no. 1, 2012.

[8] M. Kowarschik and C. Weiß, “An overview of cache optimization techniques and

cache-aware numerical algorithms”, in Algorithms for Memory Hierarchies — Advan-
ced Lectures, volume 2625 of Lecture Notes in Computer Science, Springer, 2003, pp. 213–

232.

[9] G. E. Moore, “Cramming more components onto integrated circuits”, Electronics,

vol. 38, no. 8, Apr. 1965.

[10] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian, “Au-

tomatically scheduling halide image processing pipelines”, ACM Transactions on
Graphics (TOG), vol. 35, no. 4, 2016, Proceedings of ACM SIGGRAPH 2016.

[11] National Research Council, The Future of Computing Performance: Game Over or Next
Level?, S. H. Fuller and L. I. Millett, Eds. Washington, DC: The National Academies

Press, Jan. 2011, ISBN: 978-0-309-15951-7.

[12] J. Ragan-Kelley. (Mar. 2014). Static vs. jit compilation, [Online]. Available: https:

//github.com/halide/Halide/wiki/Static-vs.-JIT-compilation (visited on

04/05/2017).

https://github.com/halide/Halide/blob/master/README.md
https://github.com/halide/Halide/blob/master/README.md
https://www.extremetech.com/extreme/203490-moores-law-is-dead-long-live-moores-law
https://www.extremetech.com/extreme/203490-moores-law-is-dead-long-live-moores-law
https://github.com/halide/Halide/wiki/Static-vs.-JIT-compilation
https://github.com/halide/Halide/wiki/Static-vs.-JIT-compilation

52 Bibliography

[13] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F. Durand,

“Decoupling algorithms from schedules for easy optimization of image processing

pipelines”, ACM Transactions on Graphics (TOG), vol. 31, no. 4, Jul. 2012, In Procee-

dings of SIGGRAPH 2012.

[14] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,

“Halide: A language and compiler for optimizing parallelism, locality, and recom-

putation in image processing pipelines”, ACM SIGPLAN Notices, vol. 48, no. 6,

pp. 519–530, 2013.

[15] (Feb. 2015). Raspberry pi 2 - colated faq’s, [Online]. Available: http://jamesrandominfo.

blogspot.de/2015/02/raspberry-pi-2-colated-faqs.html (visited on 04/04/2017).

[16] (Jan. 2015). Samsung exynos 5422 - linux exynos, [Online]. Available: http : / /

linux-exynos.org/wiki/Samsung_Exynos_5422 (visited on 04/04/2017).

http://jamesrandominfo.blogspot.de/2015/02/raspberry-pi-2-colated-faqs.html
http://jamesrandominfo.blogspot.de/2015/02/raspberry-pi-2-colated-faqs.html
http://linux-exynos.org/wiki/Samsung_Exynos_5422
http://linux-exynos.org/wiki/Samsung_Exynos_5422

Eidesstattliche Versicherung

______________________________ ____________________

Name, Vorname Matr.-Nr.

Ich versichere hiermit an Eides statt, dass ich die vorliegende Bachelorarbeit/Masterarbeit* mit

dem Titel

__

__

__

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich

gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

__________________________ _______________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer

Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit

einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für

die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der

Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden

Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5

Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren

oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die

Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

_____________________________ _________________________
Ort, Datum Unterschrift

	Table of Contents
	Introduction
	Goal of the thesis
	Structure of the thesis

	Fundamentals of resource-aware programming in Halide
	The Halide language
	Locality
	Temporal Locality
	Spatial Locality
	Application of locality in Halide schedules

	Redundancy
	Favouring redundant computations over memory accesses
	Preventing redundant computations

	Parallelism
	Pitfalls of increasing parallelism

	The Halide auto-scheduler and its limitations
	Development of the auto-scheduler
	Parameters of the configurations
	Capabilities and limitations of the auto-scheduler

	Benchmarking the auto-scheduler
	Tested platforms
	Implementation of the benchmark
	Configuration-Switcher
	Pipelines to be inspected

	Evaluation of the benchmark
	Set up of the benchmark result generation
	Auto-scheduler performance on ARM-based devices
	Benchmark results
	Effects of the parallelism threshold
	Performance differences for computationally bounded pipelines
	Performance differences for memory bounded pipelines

	Conclusion and outlook
	Summary
	Outlook

	Appendix
	Full benchmark results
	Reviewed schedules
	Extremely large execution time for first runs

	List of figures and tables
	List of code samples and algorithms
	Bibliography
	Eidesstattliche Versicherung

