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Abstract 

 

Dynamic Programming is a highly effective technique for the offline optimization of 

power trains, as it guarantees a globally optimal solution. This study investigates the two 

major problems associated with the application of dynamic programming for the 

optimization of hybrid marine power trains.  

The first issue is the high number of computations, which increases exponentially with 

the size of the problem. In order to reduce the number of computations, a variant of 

dynamic programming is investigated, called the iterative dynamic programming. The 

implementation problems with iterative dynamic programming have also been 

investigated and solutions are proposed to tackle the problems. 

The second issue is the loss of optimality due to the discretization of the continuous 

power train model. The introduction of different errors and their propagation through the 

optimization process is investigated. Multiple solutions are proposed in this area that aim 

to reduce the discretization errors without increasing the number of computations.  

In order to test and experimentally verify the investigations, two test cases of hybrid 

power trains are defined. The regular dynamic programming algorithm, as well as the 

proposed methodologies for improving the performance of the algorithm are 

implemented and tested for the two test cases. The performance of the test cases for 

different algorithms is presented in a comparative fashion. 
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1 Introduction 

Fuel efficiency of marine systems is one of the top concerns of the marine community, 

due to the recent shifts in fuel costs and income rates [1]. In addition to the fluctuating 

fuel prices, the increasing restrictions related to pollution and emissions has further 

increased the demand for development of vessels with flexibility in terms of optimizing 

fuel costs. 

1.1 Motivation 

The hybrid power train is a promising alternative to classic diesel engines with regards to 

reducing fuel costs as well as emissions, as it allows the usage of electric batteries in 

addition to existing power train components [2]. Due to the addition of degrees of 

freedom, hybrid power trains open up the possibilities of searching for optimal power 

management strategies. There already exists a vast literature on the optimal power 

management strategies for hybrid electric vehicles, for example in [2; 3; 4], and the 

concepts investigated within can be extended to hybrid marine systems. 

1.2 Prior Art 

The upgrade from a diesel engine to a hybrid engine can provide the designer with 

various possible system topologies. The Power Management Tool, developed by Bosch 

GmbH, aims to aid the designer by computing and comparing the optimal power 

management stratregies for different topologies of marine power trains. As the real time 

control is not a target of the Power Management Tool, the load cycle for the entire 

optimizaion interval can be known apriori. 

The Power Management Tool uses dynamic programing for optmization of power 

management stratregy, which is the ideal candidate for systems with perfectly known 
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load cycles and disturbances. Dynamic programming offers the advantage of 

guaranteeing the globally optimal solution for the given problem. 

1.3 Goals of the Project 

There are two major issues that are associated with the implementation of dynamic 

programming to continuous state space systems. Both the issues arise from the 

discretization of the continuous state space system, which is necessary to formulate it as 

part of the dynamic programming optimization problem. The first issue is the high 

number of computations involved in optimization, which increases exponentially as the 

problem size increases. The second issue is the mismatch between the discretized and 

continuous state space systems, which leads to sub-optimal solutions from dynamic 

programming.  

The goal of this work is the study of two issues, and investigation of methodologies that 

attempt to solve them. 

1.4 Structure of Thesis 

The thesis is structured as follows. The modeling of marine power trains for the Power 

Management Tool is introduced in Chapter 2, and two test vessels are defined for 

demonstration and experimentation. The dynamic programming algorithm, its theory and 

implementation is discussed in Chapter 3. In Chapter 4, an alternate of dynamic 

programming is introduced, iterative dynamic programming, which aims to reduce the 

computational complexity of the optimization procedure. The various errors involved 

with the application of dynamic programming to discretized drive trains are studied in 

Chapter 5. Several techniques to minimize the errors are also investigated. The simulation 

and experimentation results for the two test vessels are compiled in Chapter 6. Finally, 

the conclusions and further ideas are summarized in Chapter 7. 



2.1  Power Management Tool 

3 
 

2 Power Management of Marine Drive 

Trains 

The Power Management Tool is designed to aid in assessment of various layouts of 

marine vessel drive trains with respect to the fuel efficiency. In addition to the fuel 

consumption, it also allows the identification of relevant power bonds across various 

components of the drive trains. The results can further be used for the sensitivity analysis 

of the system with respect to the size and parameters of various components.  

2.1 Power Management Tool 

The Power Management Tool calculates the trajectory of control inputs for a drive train 

model that minimizex the fuel consumption for a given load cycle. The tool provides a 

Simulink library that includes models for various components involved in marine drive 

trains. The table below summarizes the types of components included in the tool. Each 

category is further divided into multiple types of models, and the parameters for each 

model can be set by the user. 

Table 2.1 Drive train components included in the Power Management Tool 

Power Sources/ Sinks Actuators 

Diesel Engine Electric Motor 

Electric Storage Hydraulic Machine 

Brake resistance  

 

The complete model of the drive train must follow the conventions discussed in the next 

section. The load cycle must be specified for every point in the complete optimization 
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&
''
(

��*��0.����	
��	�
,
--
. % 1(�, �) (2.2a) 

 ���
� % ℎ(�) (2.2b) 

where � represents the load requirement. The functions 1 and ℎ depend on the dynamics 

of the components modeled and are associated with various parameters that can be set by 

the user respectively. These are not relevant for the studies in this thesis, and are 

therefore not discussed further.  

The net DC current at the DC grid must be zero to ensure that the load requirement is 

satisfied.  

 ��5 + 7 ��8
�

89*
+ �	
� + �	�
 + ���
� % 0 (2.3) 

For / generators included in a model, an extra generator called balance generator must 

also be included, which is incorporated separately in Equation (2.3) as ��5. The balance 

generator has no state or control input associated with it. As the control inputs can only 

take values from a discrete range, the corresponding DC currents are also from a discrete 

set of values. It is possible that no combination of the possible discrete values of the DC 

current exactly satisfies the user defined load requirement. The DC current from the 

balance generator ��5 can take a value from continuous range to ensure that the net DC 

current is zero. The balance generator does have a maximum limit and can only assume 

negative values. Thus the only feasible control inputs to the system for a given load 

requirement are ones that allow Equation (2.3) to be satisfied. 

Specification of Load Cycle 

The load cycle is the load requirement on the actuators of the model for the complete 

length of the optimization interval. It is specified by a speed and torque vector for every 
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actuator. The time interval for optimization must be discretized, and a load requirement 

must be defined for every point in time. 

Simulation of Model 

The Simulink model can be called in a Matlab script as a function. At any time point <, 

the modeled drive train can be described by the following equations: 

 �= % >?�
, �
, �
@ (2.4a) 

 �
 % �?�
, �
, �
@, (2.4b) 

 �
 % �?�
, �
, �
@ (2.4c) 

�
 ∈ B
 represents the states, �
 ∈ C
 represents the control inputs and �
 the user 

defined load cycle. > is the transition function for a control input, � determines the fuel 

consumption for an input, and � decides whether a control input is feasible. The ranges of 

the states and inputs must be defined, within which they can only assume a finite set of 

values. B and C represent the discrete spaces for states and inputs respectively. Since > is 

a continuous function, �′ ∈ χ, where χ represents the continuous state space. 

2.3 Test Cases 

For the study of the optimization procedures used in the Power Management Tool, two 

test cases are defined. The two cases will be used to test the developed algorithms 

throughout the thesis. 

Vessel 1 

The Simulink model for the test case named ‘Vessel 1’ is shown in Figure 2.4. Vessel 1 

has no generator state, and only uses the balance generator. The only state is the battery 

State of Charge (SoC), and the control inputs are the battery current and the brake 

resistance current: 
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 � % (����), � % G�	
��	�
H (2.5) 

Vessel 2 

The Simulink model for the test case named ‘Vessel 1’ is shown in Figure 2.5. The states 

and the control inputs are: 

 � % G��������H , � % I�	
��	�
����J (2.6) 

The objective of including the state of the generator is to include a penalty for turning it 

on. The efficiency of the generators used in both the vessels is a non-linear function 

shown in Figure 2.3(a). This efficiency curve results in the fuel consumption functions of 

the vessels shown in Figure 2.3(b), based on the sizes of the generators set by the user.  
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Figure 2.3(a) Efficiency of the generators (Power normalized to maximum capacity) 

 

 

Figure 2.3(b) Fuel consumption curves of vessel 1 and 2 

(A) 
(A) (A) 

(W) 
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Figure 2.4 Simulink model of vessel 1Simulink model of vessel 1Simulink model of vessel 1 
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Figure 2.5 Simulink model oSimulink model of vessel 2f vessel 2 
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3 Optimization with Dynamic 

Programming 

The technique for optimization used in the Power Management tool is Dynamic 

Programming. Dynamic programming is an optimization technique which divides a 

complex problem into a sequence of simpler sub-problems. The sub-problems are 

optimized recursively, using the previous solutions, to calculate the optimum for the 

original problem. Dynamic programming is a powerful optimization technique used in 

many fields of study. The biggest advantage of the algorithm is that it guarantees a 

globally optimum solution for the given conditions of a problem. 

Dynamic programming is a popular approach used in the Optimization of Drive Trains  

that involve electric components in addition to diesel generators (Hybrid Vehicles) [3] 

[4].  A variety of goals for optimization can be set related to the safety, comfort and 

driving dynamics. For the Marine Drive Systems relevant in this thesis, the goal of 

optimization is the fuel consumption. The tool used for Dynamic Programming, called 

the dpm function, has been developed in [5] for MATLAB.  

3.1 Optimization of Marine Drive Trains 

For the discretized state-space model of the Drive Trains in Equations (2.4), the control 

policy � dictates the actions for every stage in the horizon T. 

 � % {�5, �*, … , �QR*} for � ∈ T (3.1) 

The set T spans all the possible control policies for the system. The problems in this 

thesis are assumed with a perfect knowledge of the parameters and disturbances U
 for 

the complete horizon V of the optimization interval. The total cost for the time horizon of V, for a control policy � can be formulated as: 
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 �X = 7 �
,X
YR*

95  (3.2) 

The total cost is the total fuel consumption that results from a control policy for the 

complete optimization interval horizon. The goal of optimization is to find the optimal 

policy �∗ that minimizes the total fuel consumption for the complete duration of the 

optimization interval: 

 �X∗ = minX �X (3.3) 

The formulation of the total cost function �X is quite useful, as it includes the costs �
 for 

the complete horizon of the optimization interval. The alternative is to only minimize the 

current cost for a stage �
 with no regard to the future stages. This technique is 

commonly known as the greedy approach. For hybrid Drive Trains, the greedy approach 

would discharge the battery at every step, as the battery does not consume fuel. Due to 

the inclusion of the future parameters �
[*: �Y in addition to the current �
, the optimal 

approach would not always be the full discharge of the battery, but rather to save the 

battery for high load requirements in the future. Thus it represents the optimal Power 

Management strategy for hybrid Drive Trains for a discretized interval of N steps, given 

that the parameters and disturbances U are known for every stage of the interval. 

3.2 Principles of Dynamic Programming 

The Dynamic programming algorithm defines a multi-stage decision process for the 

optimization problem in Equation (3.3). A discretized state vector �
 of the system is 

defined at every stage. �
 is a permissible action at the stage < . A feasible set of actions 

must exist for the state  �
 at any given stage <. Each action �
 causes a transition of the 

state �
 into one of the system states �
[* defined for the next stage < + 1. Each action 

also has a cost associated with it. To ensure the applicability of dynamic programming, 

the properties of the system modeled in the problem must fulfill the following conditions 

as described by Bellman [6] [4]: 
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The backward induction is not the only method in Dynamic programming. A forward 

induction, that starts from �52�53, can be used in a similar way. Backward induction is 

more commonly used as it tackles the problem defined for a state space in a more 

intuitive manner. 

3.3 Application to Drive Trains 

Equation 3.6a and 3.6b very aptly depict the application of Dynamic programming as a 

backward recursive algorithm for the power management optimization of Drive Trains. 

For each stage of the multi-stage decision process in the Drive Train, the parameter U
 is 

defined as a scalar load requirement �
. The set of feasible actions at any stage must be 

able to fulfill the load requirement for the stage without violating any state bounds. The 

implementation of Dynamic programming can be intuitively explained by its application 

to the test vessels defined in Section 2.3. 

3.3.1 Optimization of Vessel 1 

Vessel 1 defines a Drive Train with a single-dimensional state space.  

a. Discretization of State and Input Space 

The discretization of the SoC state is a decision taken by the user of the Power 

Management Tool. Thus for each state, the discretization creates multiple points of a state 

within a stage. The examples in this section have the SoC discretized into three points.  

For the demonstration of the application of Dynamic programming, the input �	�
 is 

ignored for the sake of simplification. The battery input is discretized into three points. 

 C = {�*, �0, �i} (3.6) 

�* increases the SoC (charging), �0 keeps SoC the same, and �i decreases the SoC 

(discharging) 
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Despite the discretization of the state and input space, the transition function in  �= = >?�
, �
, �
@ still has a continuous range.  

b. Specification of Load Cycle 

The load cycle for the optimization interval is defined as: 

 � = {ℎb�ℎ, ℎb�ℎ, jkU, jkU} (3.7) 

A ℎb�ℎ load requirement is higher than the maximum capacity of the balance generator, 

and the battery must be discharged to fulfill the requirement. A jkU load requirement is 

lower than both the maximum capacities of the balance generator and the battery, and can 

be satisfied by only discharging the battery. 

c. Formulation of Sub-problem 

The backward-induction algorithm described by Equation (3.5) can be applied to the 

discretized states and inputs of Vessel 1. Due to the discretized state points, the sub-

problem at each stage can be further divided into smaller problems. Furthermore, no costs 

for the end stage V are modelled in the systems studied in this thesis. The optimization 

algorithm can therefore be divided into a set of the following sub-problems, generalized 

for any /-dimensional state space: 

 �Y?�Y@ = 0 (3.8a) 

 �
?�
8 @ = ab/ef ^�?�
8 , �
2�
8 3, �
@ + �
[*2�′3_,  �
8 ∈ B
 , �
 ∈ C
, �′ ∈ l
[* 

such that 

�= = >?�
, �
, �
@ 

�?�
, �
, �
@ = 0 

(3.8b) 

 

 

 

 

�
8  represents the state point b for the discretization done at stage <.The set of feasible 

control inputs �
 for stage < result in a set of transitions defined by Equation (3.8).  
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d. Backwards Induction 

The backwards induction method used for the optimization of the fuel consumption for 

Vessel 1 is demonstrated in Figure 3.3. The figure is a schematic to demonstrate the 

process of Backwards Induction, and any values shown are only an approximation of the 

actual system.  

1. For stage V g 1, there is no cost-to-go of the future stages. The cost of all the 

feasible inputs are computed for every state point �YR*8 , and the minimum cost is 

saved for the state point, forming the cost-to-go function for stage V g 1,   �YR*2�YR*3. The minimum costs, or equivalently the saved cost-to-go’s are 

displayed within the circles in Figure 3.3. For the lowest state point at any stage, 

input �i is infeasible as the SoC cannot go below 0%.  

 for ��n ,      C� = {�*, �0}  

2. For each state point �YR08 , the optimal input minimizes not just the cost, but the 

cost and the cost-to-go.  The cost-to-go  �YR* is only saved for the discretized 

state space �YR* ∈ BYR*. The transitions from �* and �i however, do not belong 

to the discretized state space BYR*. There can be several methods to calculate the 

appropriate cost-to-go for the continuous state space �YR*2>2�YR0, �, �YR033, 

such as using the nearest neighbors or using linear interpolation. The dpm 

function uses linear interpolation between the neighboring points �
[*. 

3. At stage V g 3, the cost and the cost-to-go is minimized in the same way as the 

last stage, using linear interpolation where necessary. The load requirement �YRi 

is higher than the total capacity of the generator, which means that the battery 

must discharge to fulfill the requirement. Thus for every state point �YRi8 , the only 

feasible input is �i which discharges the battery.  

 CYRi = {�i}  
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For �YRin , input �i is also infeasible as the SoC cannot discharge below 0%. This 

state point has no feasible inputs, and it violates the initial condition mentioned 

for formulation of a multi-stage problem, i.e., every state must have a feasible set 

of inputs. Thus this state point is infeasible, and the cost-to-go �YRi2�YRin 3 = ∞. 

The infinite cost is implemented by a very large number. 

4. Stage V g 4 is the final step of backwards induction, and the first stage for the 

multi-stage decision process. The load cycle is UYRr is also high, requiring the 

battery to discharge. The notable phenomenon for this stage occurs for the state 

point �YRrr . On application of input �i to �YRrr , the transition lies in between �YRir  and �YRin . Thus the cost-to-go �YRi2�YRir 3 must be linearly interpolated 

with an infeasible cost (representing infinity) at �YRi2�YRin 3, to calculate 

�YR*2>?�YRrr , �i, �YRr@3, the resultant of which will also be a very high cost. The 

conditions for the state point �YRrn  will be the same as the last step and the point 

will be treated as infeasible.  

 

The computation at the four stages calculates a map of optimal policies for the complete 

discretized state space. The optimal state trajectory through the four stages can now be 

computed for any initial state.  

Evolution of Cost-to-Go 

The cost-to-go saved at stage V g 1 for the actual costs in Vessel 1 as well as the optimal 

control inputs are shown in Figure 3.4a and b. The cheapest action is to discharge the 

battery as much as the feasible input range allows, and fulfill the remaining load 

requirement using the generator. The same minimum battery input is feasible for most of 

the SoC values, which is why a constant cost-to-go is observed for most SoC values. As 

the SoC approaches 0%, the feasible input range decreases. The closer the SoC moves to 0%, the less it can discharge and the more the generator power is required. This creates a 

gradient in the cost-to-go at a point close to 0%. Figure 3.5 shows the propagation of the 

cost-to-go as the optimizer moves backwards through the stages. After stage V g 1 

discharging is not always the best strategy.  
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Figure 3.4 Cost-to-go and optimal inputs saved for stage N-1 

 

Figure 3.5  Cost-to-go evolution through stages 
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Discharging will save the fuel consumption costs, but will transition towards a low SoC 

where the cost-to-go is higher. A high slope, indicating a high future cost propagates 

towards higher SoC’s as previous stages are evaluated.  

A difference in the slopes between different regions of the cost-to-go acts as the point of 

restriction to transition into a region. 

e. Forwards Run 

The forwards run process calculates the optimal control input and the corresponding state 

trajectory for an initial state by using the cost-to-go map saved in the backwards 

induction.  

1. An initial state point is chosen for stage 1. Let it be �8�8� = �213 = 25%.   

2. The costs for the complete set of feasible control inputs applied to the initial state 

point is calculated. The optimal input is minimized for both the cost and cost-to-

go. The cost-to-go map has already been computed for each state point during the 

backwards induction. The required linear interpolation also follows the same 

procedure as before. The optimal control input is saved as the first point of the 

optimized control input trajectory. 

3. The next state point is chosen at stage 2 by applying the optimal control input 

calculated in the previous step to the initial state. 

 �0 = >?�0, ��u�213, �0@, �0 ∈ l0 (3.9a) 

Note that the �0 may or may not be one of the points of the discretized state grid, 

as it belongs to the continuous state space. The next optimization is done by 

applying all the feasible control inputs to �0. Once again, the optimization is done 

for both the cost and the cost-to-go. 

4. The optimal state and input trajectory is computed for all the stages as described 

in step 1 and 3.  

The recursive algorithm for forwards run can generally be described as: 
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��u�213 = �8�8� (3.10a) 

v2<3 = minef w�?��u�2<3, �
, U
@ + �
[* G>?��u�2<3, �
, �
@Hx , 
��u�2<3 ∈ l
, �
 ∈ C
 

(3.10b) 

��u�2< + 13 = >?��u�2<3, ��u�2<3, U
@ (3.10c) 

��u� describes the optimal state, v the optimal cost, and ��u� the optimal input 

trajectories. 

A solution using just the discretized state space points does not need the forward run and 

can simply be computed using the cost-to-go map for any initial state. The forward run 

reduces the dependency of the solution on the state discretization and offers a more 

robust solution. 

3.3.2 Computational Complexity 

Dynamic programming guarantees a globally optimal solution for a given discretization 

of the problem, but poses a high computational complexity. BELLMAN referred to the 

computational complexity of implementing the algorithm as the ‘curse of dimensionality’ 

[7]. Given an application of dynamic programming that optimizes a problem by an 

exhaustive search on all possible solutions, the number of computations for the 

backwards induction process in a discrete grid is given by: 

 Vy,	
y
 = 2V. z{ . |}3. (3.11) 

where 

 V: number of stages 

z: Equally spaced intervals of the state space 

�: Number of dimensions for the state space 

|: Equally spaced intervals of the input space  

~: Number of dimensions for the input space 
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Equation 3.11 describes the number of computations for a problem with equally spaced 

state intervals and input intervals across the dimensions of state and input respectively 

and for all the stages of the problem. A computation refers to evaluation of the 

application of control input to the system. Generally, the states and inputs require a 

different discretization interval in different dimensions based on the properties and their 

influence to the system. Adaptive discretization schemes can also be used that vary the 

discretization intervals of the state and input across stages. The general number of 

computations in backwards induction can be given by: 

 Vy,	
y
 = 7 �� z�8
{

�9* . � |
8
}


9* �Y
89*  (3.12) 

where 

 z�8 : Equally spaced intervals for state dimension � at 

stage b 
|
8 : Equally spaced intervals for input dimension < at 

stage b 
 

 

The backwards induction process occupies most of the percentage of the computations of 

the Dynamic programming algorithm. Compared to this, the forward run has an 

exponentially fewer number of computations:  

 Vy,��� = 7 �� |
8
}


9* �Y
89*  (3.13) 

Thus for the complete algorithm, the total number of computations is: 

 Vy = 7 �� z�8
{

�9* . � |
8
}


9* �Y
89* + 7 �� |
8

}

9* �Y

89*  (3.14) 

The cost � is implemented in the form of a matrix of size z{ × V. The matrix must be 

saved for the computation of an optimal trajectory from an initial state. The 
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At every stage, the battery SoC state exists on two layers, one with the generator off and 

one with on. As long as the load requirement is satisfied, any state point can project on 

any of the two layers. The backwards induction and the forwards run will be executed in 

the same method as for Vessel 1, but with a two-dimensional cost-to-go matrix.  

3.4 Issues with Dynamic Programming 

The biggest and the most notorious issue with dynamic programming is the high number 

of computations involved. Even for simple problems, the computations are so high that it 

is rarely used as the algorithm for real-time optimal control. 

The second issue arises due to the discretization of the state and input space of the 

system, which is a requirement of dynamic programming. While Dynamic programming 

itself guarantees an optimal solution, the discretization puts a limit on the quality of the 

solution. Increasing the discretization, or refining the state and input grid improves the 

chances of approaching the true optimal solution of the continuous system, but the 

computations increase in a combinatorial fashion, hence the curse of dimensionality. 

The next two chapters study the two issues in depth, and investigate methodologies that 

aim to reduce the problems associated with discretization and dimensionality. 
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4 Iterative Dynamic Programming 

Iterative Dynamic Programming is a variant of the Dynamic programming algorithm that 

attempts to optimize a problem through a series of iterations. Based from an initial guess 

of the optimal policy, each iteration builds its parameters on the solution of the previous 

iteration. The process is repeated until the solution converges. 

4.1 Motivation 

The motivation behind the iterative approach to Dynamic programming is the 

impractically high number of computations. Section 1.3.1 showed the limits that the 

computational requirement places on the size and the complexity of the problem. The 

three commonly used classical techniques for reducing the dimensionality of problems 

have been discussed in [8]. Among the three techniques, this chapter discusses the 

method of iteratively computing nominal trajectories. In addition, parallel computing for 

Dynamic programming implementation is also considered. 

a. Parallel Processing 

For the fast and multi-core processors available today, parallel processing is the most 

obvious techniques to speed up the process of Dynamic programming. Parallel 

Programming can never be fully applied to the problems formulated in this thesis. This is 

because the sub-problem for each stage has a dependence on the previously solved sub-

problem. For example, during the backwards induction process in Section 1.3.1, no two 

stages can be optimized in parallel, as the optimization problems at each stage have 

dependence on the solutions of the future stages.  

The computations for one stage can be parallelized. Some programming algorithms for 

serial monadic problems (the sub-problems at each stage depend only on the solutions 

from the immediately preceding stage) has been suggested in [9]. A generic framework 

for implementation of parallel dynamic programming has been offered in [10]. The 
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implementation of most published techniques, however, requires significant modification 

(if not complete rewriting) of the dpm function implemented in MATLAB.  

The MATLAB Parallel Computing Toolbox also offers the feature to assign the sub-

problems of a task to various workers that compute in parallel. The toolbox functions are 

also quite easy to integrate with the dpm function. Unfortunately, the generation of 

workers and assignment of tasks requires a significant computation time on its own. It 

has been observed even for medium sized problems (Vessel 2) that although the parallel 

loops reduce the time taken for the computations at each stage, the overhead at the start 

of the loop causes the total algorithm time to be about the same or even worse than using 

single-thread loops.  

b. Iterative Dynamic Programming 

The techniques in Iterative Dynamic Programming (IDP) aim to tackle the problem of 

high complexity by reducing the search space. Instead of searching in the complete 

search space, the region with a high likelihood of containing the optimal solution is 

isolated and the search is constrained within this region. The process is carried out 

iteratively, and the search region is modified in each iteration based on the solution of the 

previous iteration. 

Wahl has suggested two methods of Iterative Dynamic Programming to optimize the 

speed strategy for a Hybrid Electric Vehicle [4]. The method investigated and 

implemented in this thesis is called the iterative reduction of search space, or simply 

IDP2. 

4.2 Iterative Reduction of State Space (IDP2) 

As the name suggests, this method follows a similar iterative pattern as policy iteration, 

but also shrinks the search space progressively. This results in a more refined grid in 

every iteration. Bellman first proposed the idea in Applied Dynamic programming [7]. A 

vast literature can be found on its application in different fields for the reduction of 

dimensionality.  
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Luus first applied the technique successfully to a multidimensional optimal problem in 

chemical engineering [11]. A similar application for optimization of DAE systems can be 

found in [12]. The application to Hybrid Electric Vehicle, as well as the implemented 

methodology in this thesis, can be found in [4] [13]. The algorithm implemented in this 

thesis carries out an iterative reduction of both the state and input space. The stages of the 

Iterative Reduction of Search Space algorithm for an V  stage process can be formally 

described with the following steps [4]: 

1. An initial state space is defined. 

 l� ∶% ^�� , ���8�� 2<3 ≤ �
� ≤ ��
�� 2<3 ; < = 0, … , V_ (4.4) 

For the initial stage, ��8��  and ��
��  represent the physical, or global boundaries 

of the system. l� is a discrete grid within the physical bounds. The number of 

points z in the grid is set according the desired accuracy and the computation 

time. The grid at the first step, therefore, is very coarse representation of the 

complete state space. 

2. Dynamic programming is applied to the calculated grid to calculate an optimal 

policy. 

 �
2�
3 ∶= ab/ef ^�?�
, �
, �
@ + �
[*2�′)_��f∈�f� , ef∈�f� , ��∈�f���  (4.5) 

3. The search region is reduced. 

 ��[* ∶= �. �� (4.6) 

The search region �� corresponds to the size of the state space in iteration j. For 

one-dimensional space, it is simply the difference between the upper and lower 

boundaries in the state space. The reduction factor � controls the reduction of 

state and input space.  

4. New boundaries around the optimal state trajectory calculated in step 2 are 

calculated. 
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 ��8��[* ∶= �∗ g ��[*2  (4.7a) 

 ��
��[* ∶= �∗ + ��[*2  (4.7b) 

5. The state space for the next iteration is calculated using the boundaries. 

 l�[* ∶= ^��[*, ���8��[* 2<3 ≤ �
�[* ≤ ��
��[* 2<3 ; < = 0, … , V_ (4.8) 

The new state space will be defined around the optimal trajectory calculated 

earlier. As this state space is calculated for a grid with a smaller area, discretizing 

it with the same number of points z  results in a finer grid than before. The new 

state space is used for the repetition of step 3. The process is repeated iteratively 

until the optimal policy converges. 

 

Figure 4.1 shows the advantage of iterative reduction of search space: refinement of grid 

at each iteration without an increase in the number of computations. The function 

displayed is the performance function of a system, which displays the optimal solution 

for all the set of possible control policies. The optimal performance, termed as the 

performance index is the total cost of the optimal cost trajectory. Due to the iterative 

refinement of the grid, IDP2 is able to find the global optimum despite the sharp 

variations in the performance function. 

The displayed function, however, has a generally convex nature despite the variations. 

The sub-optimal performance of IDP2 for a non-convex function is exhibited in Figure 

4.2. The convergence highly depends on the initial solution. The likelihood of 

convergence can also be controlled by the reduction factor. A very high reduction factor 

leads to a fast convergence, but has a high chance of converging to sub-optimal solutions. 

In contrast, a very low reduction factor has a higher chance of escaping sub-optimal 

solutions, but will exhibit a slow rate of convergence.  
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Extension to Multi-dimensional Systems 

For the Vessels defined in this thesis, the generator states are binary. The state space for 

these states cannot be reduced or modified, and the only remaining continuous battery 

SoC state makes the IDP2 implementation equivalent to one-dimensional state systems. 

The space reduction is also applied to the input space, which is multi-dimensional for 

both Vessel 1 and Vessel 2. For numerical implementation of the input space, a 

discretized input vector, containing the possible values for the input, must be defined for 

each dimension. The search region �� is calculated for each vector separately, as are the 

boundaries. 

4.2.1 Implementation Issues of IDP2 

There are two major issues that arise in the implementation of IDP2. This section 

discusses the issues and the proposed solutions.  

a. Premature convergence to Local Optima 

As the algorithm uses the highly expensive dynamic programming in multiple iterations, 

the size of the iterations must be reasonably small. This requires a small number of points 

in the state and input grid. Although the grid can be refined even with a small number of 

points by reducing its size, the first optimization is always carried out over the complete 

state and input space. The highly coarse grid in the first iteration causes high possibility 

of the optimal solution to be far away from the global optimum. In such a case, the next 

iterations will only search in the neighborhood of the first solution, iteratively reducing 

the search space. The global optimum will remain unchecked.  

The solution implemented for this problem is that at the expense of extra computations, 

the number of grid points in the first iterations is kept relatively high. In fact, this 

becomes necessary for the state grid as it is advisable to always observe the minimum 

state discretization (introduced in Section 5.3.1). A higher number of grid points 

increases the possibility of the first solution in the neighborhood of the global optimum. 

For the iterations after the first, the number of grid points can be reset to a smaller 

number according to the desired complexity of each iteration.  
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b. Progressive deterioration of Optima 

The solution of increasing the initial discretization of the problem introduces a new 

problem. The coarseness of the grid can be expressed as a function of the number of 

points and the grid size: 

 ∆�= ∆2/ , �� 3, (4.9) 

where / is the number of points in the grid and �� is the size of the initial grid.  

Generally, the reduction of the size of the grid at every iteration ensures a less coarseness 

as the number of points is kept the same. A higher number of points in the initial grid, 

however, might cause the grid in the second iterations to be coarser despite the smaller 

size of the grid. It might in fact take several iterations until the grid size is small enough 

so that the grid coarseness is less than the initial grid. The iterations in between are 

wasted. To avoid this phenomenon, the initial number of points, the number of points for 

the remaining iterations and the reduction factor is kept such that: 

 ∆2z + �� , �� 3 > ∆2z , ��[* 3, �� = ��, j = 00, j ≥ 1 (4.10) 

 

� corresponds to the extra number of points for the initial grid.  

Unfortunately, the problem does not end here. Consider the minima on the performance 

functions in Figure 4.3, found by two different grids. The two grids have the same 

number of points, but grid 2 has a smaller size and consequently less coarseness. Despite 

the less coarseness of grid 2, it returns a poorer result than grid 1. This phenomenon, 

discussed in detail in Section 5.2.2, is highly undesirable, as any iteration that does not 

improve the previous solution is just wasted computations.  

The IDP2 algorithm inherently offers the solution to this problem in Equations (4.7) by 

including the solution as a mid-point of the new grid. The calculated grid in is therefore 

always centered on the solution point (optimal trajectory point from previous iteration). 

This ensures that the next solution is better or at least the same as the previous one. 



4.2  Iterative

 

Figure 

 

c.

Figure 

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system. 

There are two solutions for this problem: 

1.

 

Iterative Reduction of State Space (IDP2)

Figure 4.3 Evaluation of the optimal policy with two different discretization schemes. A finer grid 

c. Loss of Optima near Boundaries

Figure 4.4 demonstrates 

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system. 

There are two solutions for this problem: 

1. Use a stage dependent reduction factor 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be 

��
�5  can similarly be used for points near the upper boundary. 

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this 

also affects the optimal solutions at other stages. 

Reduction of State Space (IDP2)

Evaluation of the optimal policy with two different discretization schemes. A finer grid 
does not guarantee a better solution

Loss of Optima near Boundaries

demonstrates the problem with the mid

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system. 

There are two solutions for this problem: 

age dependent reduction factor 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be 

can similarly be used for points near the upper boundary. 

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this 

also affects the optimal solutions at other stages. 

Reduction of State Space (IDP2)

Evaluation of the optimal policy with two different discretization schemes. A finer grid 
does not guarantee a better solution

Loss of Optima near Boundaries

the problem with the mid

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system. 

There are two solutions for this problem: 

age dependent reduction factor 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be 

� =
can similarly be used for points near the upper boundary. 

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this 

also affects the optimal solutions at other stages. 

Reduction of State Space (IDP2) 

Evaluation of the optimal policy with two different discretization schemes. A finer grid 
does not guarantee a better solution

Loss of Optima near Boundaries 

the problem with the mid-

vicinity of the boundary are used as the mid-points for the calculation, the new 

boundaries might exceed the global boundaries of the system. 

There are two solutions for this problem:  

age dependent reduction factor �. The stages, for which the optimal state 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be 

= ���8�5 g�∗���  

can similarly be used for points near the upper boundary. 

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this 

also affects the optimal solutions at other stages. 

Evaluation of the optimal policy with two different discretization schemes. A finer grid 
does not guarantee a better solution 

-point approach. If the points in the 

points for the calculation, the new 

boundaries might exceed the global boundaries of the system.  

. The stages, for which the optimal state 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

none of the grid boundaries exceed the global boundary. For an optimal point near 

the lower boundary, the reduction factor can be  

�
 

can similarly be used for points near the upper boundary. 

the draw back that the search space is unnecessarily reduced at points near 

boundaries. Due to the prediction horizon involved in Dynamic programming, this 

also affects the optimal solutions at other stages.  

Evaluation of the optimal policy with two different discretization schemes. A finer grid 

point approach. If the points in the 

points for the calculation, the new 

. The stages, for which the optimal state 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

ary. For an optimal point near 

can similarly be used for points near the upper boundary. This method has 

cessarily reduced at points near 

boundaries. Due to the prediction horizon involved in Dynamic programming, this 

37

Evaluation of the optimal policy with two different discretization schemes. A finer grid 

point approach. If the points in the 

points for the calculation, the new 

. The stages, for which the optimal state 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

ary. For an optimal point near 

(3.11)

This method has 

cessarily reduced at points near 

boundaries. Due to the prediction horizon involved in Dynamic programming, this 

37 

 

Evaluation of the optimal policy with two different discretization schemes. A finer grid 

point approach. If the points in the 

points for the calculation, the new 

. The stages, for which the optimal state 

lies near boundaries should have a large reduction factor. This would result in a 

grid so small that when centered on an optimal point near the global boundary, 

ary. For an optimal point near 

11) 

This method has 

cessarily reduced at points near 

boundaries. Due to the prediction horizon involved in Dynamic programming, this 



4.2  Iterative

 

2.

Figure 

 

3.

 

 

Iterative Reduction of State Space (IDP2)

2. Chip off any grid boundary that exceeds the global boundary. This would result in 

a grid that is no longer centered around the optimal trajectory near the boundaries. 

This brings about the problem again that the new solution has 

than in the previous iteration, as the previous solution point is no longer a grid 

point near the 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

points until one of the points match

points required to match it with the discretized grid could go very high. 

Figure 4.4 A search region defined around an optimal trajectory can exceed the physic

3. In addition to chipping off the grid boundary that exceeds the global boundary, 

adjust the grid until 

has been found to be the most useful and has implemented by the nam

adjustment algorithm.

Reduction of State Space (IDP2)

Chip off any grid boundary that exceeds the global boundary. This would result in 

hat is no longer centered around the optimal trajectory near the boundaries. 

This brings about the problem again that the new solution has 

than in the previous iteration, as the previous solution point is no longer a grid 

point near the boundaries. The dpm function only allows the definition of a 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

points until one of the points match

points required to match it with the discretized grid could go very high. 

A search region defined around an optimal trajectory can exceed the physic

In addition to chipping off the grid boundary that exceeds the global boundary, 

adjust the grid until one of the grid points matches the optimal point. This method 

has been found to be the most useful and has implemented by the nam

adjustment algorithm.

Reduction of State Space (IDP2)

Chip off any grid boundary that exceeds the global boundary. This would result in 

hat is no longer centered around the optimal trajectory near the boundaries. 

This brings about the problem again that the new solution has 

than in the previous iteration, as the previous solution point is no longer a grid 

boundaries. The dpm function only allows the definition of a 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

points until one of the points match

points required to match it with the discretized grid could go very high. 

A search region defined around an optimal trajectory can exceed the physic
of the system

In addition to chipping off the grid boundary that exceeds the global boundary, 

one of the grid points matches the optimal point. This method 

has been found to be the most useful and has implemented by the nam

adjustment algorithm.  

Reduction of State Space (IDP2) 

Chip off any grid boundary that exceeds the global boundary. This would result in 

hat is no longer centered around the optimal trajectory near the boundaries. 

This brings about the problem again that the new solution has 

than in the previous iteration, as the previous solution point is no longer a grid 

boundaries. The dpm function only allows the definition of a 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

points until one of the points matches the previous solution point. T

points required to match it with the discretized grid could go very high. 

A search region defined around an optimal trajectory can exceed the physic
of the system 

In addition to chipping off the grid boundary that exceeds the global boundary, 

one of the grid points matches the optimal point. This method 

has been found to be the most useful and has implemented by the nam

Chip off any grid boundary that exceeds the global boundary. This would result in 

hat is no longer centered around the optimal trajectory near the boundaries. 

This brings about the problem again that the new solution has 

than in the previous iteration, as the previous solution point is no longer a grid 

boundaries. The dpm function only allows the definition of a 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

es the previous solution point. T

points required to match it with the discretized grid could go very high. 

A search region defined around an optimal trajectory can exceed the physic

In addition to chipping off the grid boundary that exceeds the global boundary, 

one of the grid points matches the optimal point. This method 

has been found to be the most useful and has implemented by the nam

Chip off any grid boundary that exceeds the global boundary. This would result in 

hat is no longer centered around the optimal trajectory near the boundaries. 

This brings about the problem again that the new solution has may be

than in the previous iteration, as the previous solution point is no longer a grid 

boundaries. The dpm function only allows the definition of a 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

es the previous solution point. The number of 

points required to match it with the discretized grid could go very high. 

A search region defined around an optimal trajectory can exceed the physic

In addition to chipping off the grid boundary that exceeds the global boundary, 

one of the grid points matches the optimal point. This method 

has been found to be the most useful and has implemented by the nam

38

Chip off any grid boundary that exceeds the global boundary. This would result in 

hat is no longer centered around the optimal trajectory near the boundaries. 

may be being worse 

than in the previous iteration, as the previous solution point is no longer a grid 

boundaries. The dpm function only allows the definition of a 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

he number of 

points required to match it with the discretized grid could go very high.  

A search region defined around an optimal trajectory can exceed the physical bounds 

In addition to chipping off the grid boundary that exceeds the global boundary, 

one of the grid points matches the optimal point. This method 

has been found to be the most useful and has implemented by the name of grid 

38 

Chip off any grid boundary that exceeds the global boundary. This would result in 

hat is no longer centered around the optimal trajectory near the boundaries. 

being worse 

than in the previous iteration, as the previous solution point is no longer a grid 

boundaries. The dpm function only allows the definition of a 

uniform grid (equally spaced grid points). Thus the only way to include the 

previous solution point as one of the grid point is to increase the number of grid 

he number of 

 

al bounds 

In addition to chipping off the grid boundary that exceeds the global boundary, 

one of the grid points matches the optimal point. This method 

grid 



4.2  Iterative Reduction of State Space (IDP2) 

39 
 

4.2.2 Grid Adjustment 

The grid adjustment algorithm is applied to every point in the optimal state and input 

trajectories that lies close to the boundary. It is summarized in Algorithm 1. The 

threshold and the maximum number of grid points can be defined by the user. With every 

point, the information of whether it lies near the upper or the lower boundary is also 

needed. For the lower boundary, the algorithm will only shift the grid upwards, and vice 

versa. Therefore for an optimal point near the lower boundary, the difference considered 

is the minimum difference of the point from a grid point that lies below it, and the grid 

can only be shifted upwards. Similarly, the minimum difference considered for an 

optimal point near the upper boundary is only from the grid points above it. If the 

difference is less than the defined threshold, the grid is simply shifted by the difference. 

Otherwise, new points are added in the grid until the difference is less than the threshold. 

 

Algorithm 1 Grid Adjustment 

1. procedure GridAdjust(xSol,grid,mode) 

2.       thresh ← acceptable shifting of the grid 

3.       n ← number of points in the grid 

4.       nMax ← maximum number of points allowed 

5.       if mode % up then 

6.             diff ← positive difference of xSol from the closest grid point above it 

7.       if mode % down then 

8.             diff ← negative difference of xSol from the closest grid point below it 

9. loop: 

10.       if diff  ≤  thresh then 

11.             grid ← grid + diff 

12.             return grid 

13.       if diff  >  thresh then 

14.             n ← n + 2 

15.             grid ← generate grid with n points 

16.       if n  >  nMax then 

17.             break; 

18.       goto  loop  
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The grid adjustment does not always guarantee the improvement of solutions. It is 

possible that despite increasing the number of points to the maximum, the minimum 

difference between the grid points and the previous solution point is greater than the 

defined threshold. Based on the range of the state and input space, the threshold and 

maximum grid points can be defined separately by the user for each state and input to 

maximize the chances of the convergence of the grid adjustment algorithm. 

Optimality of IDP2 

As the first iteration searches the complete search space, IDP2, similar to regular 

dynamic programming can guarantee the global optimum of the problem under the initial 

discretization. Further iterations have a high chance of improving the solution due to the 

grid adjustment algorithm. To be shown in Section 6.2, the final solution of IDP2 far 

exceeds the initial solution for the defined test cases. 



5.1  Sources of Error 

41 
 

5 Errors in Dynamic Programming 

Section 3.3.1 discusses the curse of dimensionality associated with the application of 

dynamic programming due to discretization. The errors associated with discrete dynamic 

programming that cause the solution to diverge from the global optimum were raised by 

Bellman himself [7], and are generally considered in most applications that use dynamic 

programming. The intuitive deduction is that the optimal solution for the discretized 

space will approach the true solution, i.e., the solution with a continuous space, as the 

number of points in the discretization grid increases. This convergence of discretization 

procedures has also theoretically been proven in [14] and [15], under the assumptions of 

a smooth cost function. Even though no analytical models are included for the systems 

discussed in this thesis, the assumptions of smoothness can be extended to the cost 

functions and thus the convergence of discretization can be assumed. This chapter 

discusses the errors of both the input and state discretization in context of Marine Drive 

Systems and the implemented dpm function.  

5.1 Sources of Error 

The backwards induction method for a discretized state and input space was formulated 

as such in Section 3.3.1. 

 �
?�
@ % ab/ef ^�?�YR*8 , �
, �
@ + �
[*2�′)_ (5.1a) 

 �
?�
@ % ab/ef ^θ(�YR*8 , �
, �
, �′)_ (5.1b) 

A new term, the total cost θ is introduced in this chapter, which helps in the study of 

numerical errors. Error at stage < is the difference of the solution of Equation (5.1) from 

the true solution. There are two sources of error in Equation (5.1): 

1. Error in Greedy Cost: The cost function �, also called the greedy cost in context 

of optimization problems should be well represented by the state-input space. The 
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discretization of the continuous state and control input variables � and � limits the 

search on the functions to a set of finite points. The higher the discretization, the 

higher is the probability of containing the globally optimum points as one of the 

search points.  

2. Error in Cost-to-Go: The error of representation also exists for the cost-to-go �
[*. In addition, this function exhibits an error of interpolation. As the cost-to-go 

�
[* is saved only for the discrete state space �
[* ∈ B
[*, the cost-to-go for the 

continous variable �′ is calculated using linear interpolation. This introduces an 

error for a non-linear cost-to-go function.  

 

All of the above sources of errors cause the total cost θ to be misrepresented in 

comparison to the true total cost, which results in the estimation of false minima.  

5.2 Error in Greedy Cost 

For an V stage problem, Equation (5.1) for the second last stage V − 1 is reduced to:  

 �YR*?�YR*8 @ % ab/ef ^�?�YR*8 , �YR*, �YR*@_ |�YR*8 ∈ BYR*, �YR* ∈ CYR* (5.2) 

There is no cost-to-go defined for stage N, therefore only the greedy cost needs to be 

optimized. The dpm function optimizes Equation (5.2) by running an exhaustive search 

on the cost of all the feasible control inputs �YR* on the state point �YR*8 . The exhaustive 

search takes the form of a projection on the fuel consumption function. In Figure 5.1, the 

projected search region consists of the three marked points on the fuel consumption 

curve.   

5.2.1 Greedy Cost Dependence on Experiment Variables 

The fuel consumption is not a function of the control inputs, rather the current that the 

generator must supply to satisfy the load requirement. However the load requirement, 

states and inputs related to non-generator components influence the generator demand 

and consequently the greedy cost. 
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• The input �	�
 for the brake resistance is generally the same as �	�
. Therefore 

����
�� ∝ �	�
. 

• The relation between �	
� and  �	
� depends on the efficiency of the battery 

converter. The cases considered in this study assume the efficiency to be constant. 

Therefore �	
�=α�	
�, where α is the constant efficiency. ����
�� ∝ �	
�. 
• The inputs for the generator ��* also influences the grid current ��* based on the 

converter efficiency of the generator. This is also assumed to be constant for all 

cases in this study. Again ��*=β��*, where β is the constant efficiency. 

Therefore ����
�� ∝ ��*. 

The three discretized inputs form an input grid, which is the set of all the possible input 

combinations that are feasible for the state point. Each node in the grid is associated with 

a greedy cost, and the set of all greedy costs form the search region on the fuel 

consumption function. Input grid discretization determines the resolution of the search 

region on the fuel consumption function. A finer discretization of the input grid 

corresponds to a higher resolution of the search region, which increases the probability of 

finding the optimal point with an exhaustive search. 

b. Dependence on States and Load Cycle 

• In a real battery, the battery state, the state of charge (SoC) influences the 

efficiency of the battery. This changes the relationship of the DC current �	
� to 

the applied input �	
�. The battery state SoC will therefore influence ����
��, 

which limits the choice of control inputs that satisfy the load requirement.   

• For the optimization experiments in this study, the battery model implemented is 

simplified and a constant efficiency is assumed. For most battery SoC points, the 

feasible control inputs remain the same. As the control inputs correspond to the 

greedy cost, each state point has the same search region on the fuel consumption 

function, as shown in Figure 5.2. At boundaries however, the available control 

inputs are limited, which shrinks the search region. For example, battery SoC at 

0% cannot discharge any further, and any negative control inputs are infeasible. 
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Propagation of Error 

For an V stage problem, Equation (5.1) for the stage V − 2 is:  

 �YR0?�YR08 @ = ab/ef ^�?	�YR0
8 , �YR0, �YR0@ 6 �YR*?�′@_ (5.5a) 

 �YR0?�YR08 @ = ab/ef ^θ2�YR0, ��¥¦§ , ��¥¦§ , �′3_ (5.5b) 

The cost-to-go �YR* will be computed with a representation error:  

 �YR*?�YR*8 @ = ��8� 6 ¤��u� 2∆�YR*3 (5.6) 

Thus the representation error propagates the next stage. Unlike stage V − 1, the objective 

at stage V − 2 is not to find the optimum on the greedy cost �, but the total cost θ. In 

addition to the representation of the greedy cost, the cost-to-go should also be well 

represented.  

5.3 Error in Cost-to-go 

5.3.1 Representation error of Cost-to-go 

As shown in Figure 5.4, each state point �YR08  also projects a search region on the cost-to-

go function. In this case, the resultant state from a control input, �= = >2�
, �
3, rather 

than the control input itself, corresponds to a point on the cost-to-go function. Therefore 

unlike the greedy cost, each state point �
8  has a different projection on the cost-to-go 

function for the same set of control inputs.  

The principle for the control input discretization works the same way as the greedy cost. 

A fine input grid results in a projection of a high resolution search region on the cost-to-

go function, which  increases the probability of finding the true optimum.  

The objective function for minimization in Equation 5.5 is not just the greedy cost or the 

cost-to-go, but the sum of both. Changing the state discretization will result in the same 

set of greedy cost search regions, but different cost-to-go search regions. Therefore, the 
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representation errors, the error of interpolation can be observed at the area of non-

linearity. 

The true cost-to-go calculatedshows a non-linearity at SoC = 15% because as SoC goes 

below 15%, the available discharge of the battery is limited, which increases the demand 

on the generator. Even though the cost-to-go is computed without error for the discretized 

state space at stage V − 1, the discretization will introduce errors of interpolation during 

the minimization at the next stage, i.e., stage V − 2.  

The error for stage N-2 in equation 5.8 can be updated to include the expected error of 

interpolation as well. 

 θ = 	θ�8� 6 ¤��u¨ ?∆�YR0, ∆�YR0@ 6 ¤8����u© ?∆�YR*@ 6 ¤��u� 2∆�YR*3 (5.9) 

5.3.3 Additional Errors 

a. Generator Switching Penalty 

With the inclusion of the generator state, the cost-to-go becomes a two layered function 

similar to the state grid. The generator penalty can introduce a new error of interpolation, 

shown by Figure 5.7. The cost-to-go in Figure 5.7 shows the cost-to-go for the generator 

‘off’ state at stage V − 1, calculated for a relatively large battery and a high load cycle. 

At 35% SoC, the battery can no longer fully discharge, which increases the demand on 

one generator, resulting in the gradient at 35%. The generator used will be the balance 

generator, as turning generator 1 on will incur a penalty in addition to the generator fuel 

consumption function. At 15% however, the battery discharge is limited to less than half 

its complete range, and balance generator is no longer enough to fulfill the load 

requirement. At this point, generator 1 must be turned on, the penalty of which causes the 

plateau and the higher slope at 15%. The figure highlights the additional errors of 

interpolation around the resultant points of non-linearity. Thus the inclusion of the 

generator penalty can also result in higher errors of interpolation. 
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8 3 6 ¤��u¨ ?∆�
, ∆�
@ 6 ¤8����u© ?∆�
[*@ 6 ¤u��u (5.10) 

�
,��e�2�
8 3 represents the true optimal cost-to-go for the sub-problem b at stage <. The 

true optimal cost-to-go is the cost-to-go without any discretization errors.  The cost-to-go 

calculated for the discretized state and input grids has a difference from the true 

optimum, which is due to the representation error of the total cost function, dependent on 

both the input and state discretization for stage <, the interpolation error, dependent on 

the state discretization at stage < 6 1, and an error propagated from the previously solved 

stages.  

5.4 Offline estimation of Representation error 

This section proposes methodologies to predict the representation errors at different 

stages before running the optimization procedure, or the offline estimation of errors. 

5.4.1 Error Prediction based on Empirical Data 

The greedy cost term is predictable as it is always a subset of the fuel consumption 

function.  For all the set of greedy costs calculated during DP optimization,  

 
«�8
YR*

89*
⊂	v (5.14) 

�8 is the greedy cost for a stage, while C represents the set of fuel consumption data. It 

was discussed in Section 5.2.1 that due to the simplifications of the battery in this thesis, 

the greedy cost only changes through stages as the load requirement changes. The fuel 

consumption data is included as part of the model before running the optimization. This 

section proposes a method to use empirical observations from a black box Drive Train 

model to estimate the quality of the fuel consumption function representation. The quality 

is represented by an error factor.  
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Using the methodology shown in the figure above, the error factor can be calculated to 

include the representation errors for all the adjacent points in a grid as follows: 

 ¬ = ∑ �U8 . 2z?�′8@ − ®?�′8@3��89*
∑ U8�89*

 (5.15) 

�′ defines a grid of size / that contains intermediate points between the points in the 

original grid �. z denotes linear interpolation, and z?�′8@ represents the linearly 

interpolated values calculated using the original grid evaluations ®2�83. Any deviation 

between two values that is higher than the user defined threshold is penalized extra using 

the weights. In addition, the existence of both negative and positive errors indicates a 

point of inflexion between adjacent points. This is penalized extra by setting the weights 

high. The points in the vicinity of infeasible points are ignored. 

 

Figure 5.9 Offline computed errors of discretization for adjacent points in the input grid 
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The represented function corresponds to the greedy cost search region on the fuel 

consumption function. As the control input grid has been found to represent the greedy 

cost, the error factor is only calculated for the input grid. The error factor, therefore, is a 

measure of the representation error of the greedy cost.   

Figure 5.10 shows the error distribution between all adjacent input points for a given sub-

problem b at stage <, calculated from real optimization interval data. The symmetric 

distribution of the errors around zero reflects the symmetry of the cost consumption 

curve, indicating an equal distribution of local minima and maxima. As input 

discretization improves, the errors cluster closer to zero. An infinite input discretization 

will return an error distribution that is a straight line on zero, i.e., the error of 

discretization for all the adjacent points will be zero. 

The second factor influencing the search region on the cost consumption curve is the load 

requirement. As the load requirement changes along the stages of the optimization 

process, the error factor is calculated for various stages and averaged.  

b. Adaptive Input Grid 

Based on the offline error factor calculation, an adaptive input grid can also be calculated. 

The adaptive input grid calculation is summarized in Algorithm 2.  

The motivation behind the adaptive input is that the load cycle changes with the stage. As 

the different load requirements in the load cycle may have search region on the fuel 

consumption function, different load requirements may search on regions with different 

degrees of linearity. 

The algorithm calculates a discretization for multiple load requirements in the load cycle, 

such that the error factor corresponding to each load requirement does not surpass a 

defined threshold. The error factor threshold is defined by the user. Calculating the error 

factor for the complete load cycle can be computationally infeasible. Therefore, error 

factor is calculated for just a few samples of load requirement, spaced evenly between the 

minimum and the maximum load requirement throughout the multi-stage process. For 
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each sample of the load requirement, sufficient input discretization is calculated that 

brings the error factor within the defined threshold.  

Algorithm 2 Calculation of Adaptive Input 

1. procedure CALCULATE ADAPTIVE(grid) 

2.       thresh ← desired error factor 

3.       loadReq ← samples from the load cycle 

4.       n ← 1      

5. loopU: 

6. loopL: 

7.       e ← errorFactor (loadReq(n) , grid(n)) 

8.       if e >  thresh then 

9.             grid(n) ← increase grid discretization 

10.             goto  loopL 

11.       n ← n + 1 

12.       if n <  length(loadReq) then 

13.       goto  loopU 

14.       if n  %  length(loadReq) then 

15.             grid ← discretization for remaining stages using linear interpolation 

 

For the remaining load cycle, the required input discretization is linearly interpolated, 

under the assumption of a smooth fuel efficiency curve. This results in an input grid that 

is adapted to the load cycle set for optimization. 

For stages with load requirement that search on a region of high non-linearity, the 

adaptive grid will have a finely discretized grid and for stages with load requirement that 

search on a region of relatively low non-linearity, the adaptive grid will have a coarsely 

discretized grid. An example of the adaptive grid calculated for a load cycle is shown in 

Figure 5.10, which shows the total number of points in the input grid at each stage, 

calculated based on the load cycle at the stage and the region it corresponds to on the fuel 

consumption curve. 
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Figure 5.10 Number of grid points adapted for the load cycle 

 

5.4.2 Nyquist based approach 

This approach aims to calculate maximum bounds on the discretization errors before 

starting the optimization procedure. It requires the analytical modeling of the cost 

consumption of the generators. As this requires additional effort and it must be done 

every time a new model of the generators is implemented, the approach proposed is not 

implemented and only has been mentioned to suggest further study into the idea. 

Figure 5.11 shows a hypothetical total cost function θ, calculated for a state point and 

represented by a given input grid. For any input grid, it can be inferred that  

 ��8�,��8� g ��8�,��e� ≤ ∆� (5.11) 
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��8�,��8� represents the grid point that returns the minimum cost, while ��8�,��e� is a 

hypothetical point that would return the true minimum cost. This means that the true 

minimum on the function must lie between any of the two grid points.  

The Nyquist–Shannon theorem for sampling signals states that the sampling frequency 

must be at least twice the maximum frequency of the continuous signal to preserve 

complete information about the continuous signal [16]: 

 ®° ≥ 2®�
� (5.12) 

The input discretization ∆� can be thought of as the sampling frequency of the signal. 

Figure 5.11 shows the signal sampled at 2®�
�, and the worst result that can be achieved 

with this discretization. 

Sampling at this discretization allows a more feasible upper bound on the difference 

between the grid point samples the minimum cost and the point of the true minimum cost. 

 ��8�,��8� g ��8�,��e� ≤ ∆�/2 (5.13) 

This means that the true minimum lies in an area around the grid point that is 50% of the 

distance between subsequent grid points. Sampling at frequencies higher than two will 

similarly allow an upper bound that is even closer to the grid points. Although an 

analytical model can be developed for the greedy cost function, the cost-to-go is an 

implicit DP function and cannot be predicted according to the best knowledge of the 

author. However, the state discretization can be used to calculate an upper bound on the 

maximum frequency possible for the cost-to-go functions throughout the multi-stage 

optimization. Based on the maximum frequencies calculated, this approach can be used to 

provide probabilistic error bounds for representation errors in addition to the optimal 

solution. 
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The high cost-to-go can propagate to the complete state space, if the load requirement is 

persistently high. The lesser the state discretization, the faster it propagates to other 

states, which can result in high erroneous optimal solution. 

5.5.2 Boundary Line Method 

The dpm function also offers a boundary line method to cater for end-constraints [18].  

The boundary line method calculates the boundary before running Dynamic 

programming, and comes up with a much more precise state space boundary between the 

feasible and the infeasible regions. It is only implemented for one-dimensional states. 

The Boundary Line method defines a function such that 

 ®
2�
, �
3 = >
2�
 , �
3 − �
 (5.14) 

As the method is only implemented for one dimension, there only exists the upper and the 

lower boundary. The lower boundary is initialized by the straight constraint �
,��µ =
��,�8�. At any stage < during the calculation of the lower boundary, the following 

problem is solved to find the boundary point: 

 maxef ®
?�
,��µ, �
@, 
such that 

®
?�
,��µ, �
@ 6 �
,��µ = �
[*,��µ 

(5.15) 

The function ®
 is maximized iteratively until a specific tolerance ε  is achieved: 

 ·�
[*,��µ −maxef ®
?�
,��µ, �
@¸ < ε (5.16) 

For the case of a battery SoC as the state, the function ®
 refers to the charging of the 

battery. Given a boundary point �
[*,��µ , the boundary line method will calculate the 

minimum boundary point �
,��µ that can charge to �
[*,��µ. Only boundary points �
,��µ, 

that can charge to the point �
[*,��µ and also fulfill the load requirement �
 are 

considered. Thus the infeasible points in Figure 5.13 will be excluded during the 
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calculation of the boundary. With no infeasible points, high gradients can completely be 

avoided using this method. The same technique is used for calculating the upper 

boundary, but Equation (5.15) is solved as a minimization problem. 

5.5.3 Implementation of Boundary Line Method 

a. Extension to multi-dimensional Systems 

The boundary line method cannot be directly implemented to drive trains, as the system 

generally has a multi-dimensional state space. Due to the binary nature of the generator 

states however, the boundary only needs to be calculated for the battery SoC, and the 

concept of the upper and the lower boundary can still be applied to the multi-dimensional 

state grid.  

The maximization in Equation (5.15) is subject to the load requirement at stage <. Any 

feasible input combination must satisfy the DC grid Equation:  

 ��5 67��8
Y

89*
6 �	
� 6 �	�
 6 ���
� = 0 (5.17) 

Charging of the battery is achieved by a positive �	
�. The generator currents can only 

assume negative values, and the brake resistance can only assume positive values. 

Therefore, the maximum available charge to the battery is: 

 ��5 67��8
Y

89*
− �	�
 − ���
� = �	
� (5.18) 

�	�
 can be disregarded as it can be driven to zero independently. Assuming the sum of 

generators large enough to fully charge the battery, a negative or zero load cycle allows 

the battery to charge as much as possible, consequently allowing �
,��µ to assume the 

lowest possible value from �
[*,��µ. As the load cycle increases in the positive direction, 

the maximum possible value of �	
� also decreases, consequently decreasing the charge 

available to the battery. The higher the load cycle, the closer will �
,��µ be to �
[*,��µ. In 

case of very high load cycles that exceed the maximum current from the generators, the 
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battery must also be discharged and �
,��µ will be higher than �
[*,��µ, as �	
� can only 

assume negative values.  

The maximization in Equation (5.15) does not take any costs into account, therefore, the 

generator running or switching costs are irrelevant. Thus the lower boundary can be 

calculated for the battery SoC regardless of the number of generator states. Similar 

methodology can also be applied for the calculation of the upper boundary. 

b. Integration of Boundary line Method with dpm function 

Under the assumption that the balance generator is large enough to fully charge the 

battery, the Boundary line method offered by the dpm function can also be implemented 

to system with generator states. The integration requires a definition of a reduced model. 

The reduced model consists of only the battery, brake resistance and the balance 

generator. Vessel 1 describes a reduced model. The size and parameters of the 

components are set the same as of their counterparts in the original model. The definition 

of a single state model allows the use of the Boundary line method implemented in the 

dpm function, as it is only programmed for single-dimensional systems. An equivalent 

load cycle must be calculated for the reduced model. The equivalent load cycle for a 

reduced model is the load cycle that returns the same boundaries for the reduced model as 

the original load cycle would for the original model. The equivalent load cycle is 

calculated separately for the lower and the upper boundary calculation. 

Lower Boundary Calculation 

For each stage of the multi-stage process, the equivalent load cycle for the lower 

boundary is:  

 

���³2<3 =
¹º
»
º¼ 0, ��2<3 ≤7��8,�
�

Y

89*
��2<3 −7��8,�
�

Y

89*
, ��2<3 >7��8,�
�

Y

89*

 (5.19) 
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For the original model, load requirement achievable by the generators with states leaves 

balance generator free to fully charge the battery. For the reduced model lower boundary 

calculation, this is equivalent to 0 load requirement, as 0 load requirement will also leave 

balance generator to fully charge the battery. 

For load requirement that also requires the balance generator, the maximum charge 

available to the battery is what remains of the balance generator current after the load 

requirement has been satisfied. The equivalent load requirement is the remaining demand 

on the balance generator, if all the other generators are running on their maximum 

capacity.   

Upper Boundary Calculation 

The upper boundary is calculated by the maximum amount the battery can discharge. The 

amount of discharge possible is only limited if the load requirement is close to zero or 

negative. For the lower or negative load requirements, the battery and the brake 

resistance are the only relevant components and they are identical in the reduced as well 

as the original model. To keep the load cycle feasible, an upper cap on the load 

requirement is set. 

 ���³2<3 = ��5,�
�, ��2<3 > ��5,�
� (5.20) 

Any load requirement that exceeds the maximum capacity of the balance generator is set 

to an achievable value. The equivalence does not matter. As the battery is smaller than 

the balance generator, it can be fully discharged for both load requirements, equal to 

balance generators maximum capacity or above.  

The calculated boundaries by the boundary line-method on the equivalent basic system 

can be used as the global boundaries for the original system. The method can be applied 

to a system regardless of the number of generators with states. A comparison of the 

boundaries calculated for Vessel 2 using the boundary line and the level set method is 

shown in Figure 5.15. Both the boundaries are calculated for user defined end-

constraints. At high load requirements, the minimum achievable points from the 

boundary line method are higher. 



5.5  Gradients

 

 

 

These points are included in the boundaries calculated from the level set method, and 

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

method. 

using this method. 

Gradients near boundary points

Figure 

These points are included in the boundaries calculated from the level set method, and 

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

method. This is due to the tolerance set in Equation (

using this method. 

x
S

o
C

 b
o

u
n
d

a
ri

e
s
 (

%
) 

near boundary points

Figure 5.15 Calculation of boundaries us

These points are included in the boundaries calculated from the level set method, and 

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

This is due to the tolerance set in Equation (

using this method.  

near boundary points 

Calculation of boundaries us

These points are included in the boundaries calculated from the level set method, and 

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

This is due to the tolerance set in Equation (

Calculation of boundaries using the boundary line method

These points are included in the boundaries calculated from the level set method, and 

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

This is due to the tolerance set in Equation (

Time (stages)

ing the boundary line method

These points are included in the boundaries calculated from the level set method, and 

would include infeasible costs within the state space. The boundary line method also 

introduces an offset from 0% and 100% throughout, which is absent in the level set 

This is due to the tolerance set in Equation (5.16), and is actually a drawback of 

) 

ing the boundary line method

These points are included in the boundaries calculated from the level set method, and 

The boundary line method also 

is absent in the level set 

16), and is actually a drawback of 

68

ing the boundary line method 

These points are included in the boundaries calculated from the level set method, and 

The boundary line method also 

is absent in the level set 

16), and is actually a drawback of 

68 

 

These points are included in the boundaries calculated from the level set method, and 

The boundary line method also 

is absent in the level set 

16), and is actually a drawback of 



6.1  Dynamic Programming 

69 
 

6 Experimental Results 

This chapter presents the results of the different aspects of Dynamic Programming 

investigated in this thesis, applied to the test cases defined in Section 2.3. The studies 

have been carried out using the dpm function developed in [5]. 

6.1 Dynamic Programming 

This section presents the results of the application of regular dynamic programming to 

both the test cases. The discretization scheme used for both the test cases is labeled as 

Scheme 1, to distinguish it from other schemes that will be used in this chapter. The time 

interval and step size have been kept the same throughout the chapter as summarized in 

Table 6.1. 

Table 6.1 Interval and the step size of optimization 

Time steps Step size 

700 1 

 

The dpm function parameters specified for the application of regular dynamic 

programming are specified in Table 6.2. 

Table 6.2 dpm function parameters for regular dynamic programming 

Boundary Method Infeasible cost 

Level set 1 × 10¿ 

 

The level set boundary method has been discussed in Section 5.5.1.Error! Reference 

source not found. The infeasible cost is a very high number set to approximate the 

infinity cost of infeasible points. The infeasible cost is set high enough so that it is higher 
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than any cost or the cost-to-go accumulated during the optimization. An unnecessarily 

high infeasible cost should also be avoided, as it increases the gradients near boundaries 

if the Level set method is used. 

6.1.1 Application to Vessel 1 

The calculation parameters for the application of regular dynamic programming to vessel 

1 specified are summarized in Tables 6.3. 

Table 6.3(a) State parameters in Scheme 1 for vessel 1 

Parameters Battery SoC 

Steps 25 

Initial State 50 

Final State Minimum 48 

Final State Maximum 52 

State Grid Minimum 0 

State Grid Maximum 100 

 

The end constraints for the battery are specified around 50% so that the battery is not 

completely depleted at the end of the opimization interval. This represents a realistic 

scenario, as the availabl battery SoC at the start of the interval is also 50%. 

Table 6.3(b) Input Parameters in Scheme 1 for vessel 1 

Parameters Battery Current (A) 
Brake resistance 

Current (A) 

Steps 25 5 

Minimum -800 0 

Maximum 800 500 
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Figure 6.1(a) Optimal input trajectories for vessel 1 for given load cycle 
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Figure 6.1(b) Optimal state and cost trajectories for vessel 1 
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6.1.2 Application to Vessel 2 

The calculation parameters for the application of regular dynamic programming to vessel 

2 specified are summarized in Tables 6.4. 

Table 6.4(a) State parameters in Scheme 1 for vessel 2 

Parameters Battery SoC Generator state 

Steps 25 2 

Initial State 50 0 

Final State Minimum 48 0 

Final State Maximum 52 1 

State Grid Minimum 0 0 

State Grid Maximum 100 1 

 

The generator states are only binary, and represent wether the generator has been 

switched on or off. The state is implemented in order to introduce a penalty for switching 

on a generator. 

Table 6.4(b) Input Parameters in Scheme 1 for vessel 2 

Parameters Battery Current (A) 
Brk. Res. Current 

(A) 

Generator 

Current (A) 

Steps 25 5 20 

Minimum -800 0 -1000 

Maximum 800 500 0 

 

Trajectory Oscillations 

The oscillatory behavior of the state as well as the optimal control inputs can be observed 

for both the test cases. The behavior arises due to the non-linear nature of the generator 

fuel consumption function.   
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Figure 6.2(a) Optimal input trajectories for vessel 2 for given load cycle 
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Figure 6.2(b) Optimal state and cost trajectories for vessel 2 
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For the load cycle interval that is below the optimal capacity of the generators, it is 

cheaper to alternatively use the genera tors at full and minimum capacity, as compared to 

running them at mid-capacity. This can explicitly be seen in Figure 6.2 (a) in the optimal 

control input trajectory for the generator. The control input oscillates only between 

minimal and maximum operation. 

6.2 Iterative Dynamic Programming 

The results of the iterative dynamic programming are compared with regular dynamic 

programming applied to different discretization schemes, in addition to Scheme 1 

introduced in Table 6.3 and 6.4. The range of the states and control inputs is kept the 

same, but the number of steps is varied. The schemes are summarized in the Tables 6.5 

and 6.6. 

Table 6.5 Discretization Scheme 2 

State / Control Input Number of  Steps 

Battery SoC 35 

Battery Current 35 

Brk. Res. Current 10 

Generator Current 30 

 

The discretization scheme 3 is only defined for Vessel 1, as the computational complexity 

for its application to Vessel 2 is extremely high.  

Table 6.6 Discretization Scheme 3 

State / Control Input Number of  Steps 

Battery SoC 50 

Battery Current 55 

Brk. Res. Current 15 
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The discretization for IDP2, as well as the reduction factor is the same for both the test 

cases, and is summarized in table 6.7. 

Table 6.7 Calculation paramters for IDP2 

IDP2 parameters 

Reduction factor γ 0.8 

Convergence Tolerance 200 

SoC steps 10 

Initial battery current steps  11 

Initial brk. Res. current steps  5 

Initial generator current steps  10 

SoC steps 5 

Battery current steps 5 

Brk. Res. current steps 5 

 

The convergence tolerance is the criteria for the termination of the iterative procedure. If 

the performance index (total cost) of two consecutive iterations falls within this tolerance, 

the procedure is assumed to be converged and terminated. As discussed in Section 0, the 

initial discretization is kept high to improve the chances of a good initial policy. 

6.2.1 Application to Vessel 1 

Figure 6.3 shows the perorfmance indexes of consequetive IDP2 iterations, compared 

with regular dynamic programming with the three afore-mentioned schemes, applied to 

Vessel 1.  

Due to the implemented grid adjustment algorithm, the performance of IDP2 always 

improves along iterations. Despite the apparently good performance, the algorithm has 

converged to a local optimum with respect to discretization scheme 3. 
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Figure 6.3 Performance of idp2 compared with regular dp on vessel 1 

This is further highlighted in the comparison of the optimal trajectories between IDP2 

and regular DP on scheme 3, shown in Figure 6.4. The solution is does not converge 

towards the better optimum, rather converges to a different one. Therefore, although 

Iterative Dynamic Programming shows superior performance in the cases tested, it 

always poses the risk of convergence to poor optima.  
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Figure 6.4 Comparison of optimal trajectories of idp2 and regular dp on vessel 1 

  

(%
) 

(A
) 

(A
) 

Time (stages) 



6.2  Iterative Dynamic Programming 

80 
 

6.2.2 Application to Vessel 2 

Figure 6.5 and 6.6 show the application of  IDP2 to vessel 2, compared with regular 

dynamic programming. This is one of the cases where the initial coarse discretization 

exceeds the performance of the finer discretization in discretization scheme 1.

 

Figure 6.5 Performance of idp2 compared with regular dp on vessel 2 
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Figure 6.6 Comparison of optimal trajectories of idp2 and regular dp on vessel 2 
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6.3 Error in Dynamic Programming 

This section presents the experimental results associated with the errors in dynamic 

programming as discussed in Chapter 5.  

6.3.1 Sensitivity to Discretization 

The sensitivity analysis is only carried out for vessel 1, as it requires repeated 

optimization experiments under different configurations. Such analysis for vessel 2 

requires considerable time and computational effort. The performance index for varying 

state and input discretization schemes of vessel 1 is shown in Figure 6.7. The state and 

input discretization are increased geometrically. 

 ∆�8 = À1.52∆�8R*3Á, b = 1,2, … , V (6.1a) 

 ∆�8 = À1.52∆�8R*3Á, b = 1,2, … , V (6.1b) 

The initial state and input discretization is summarized in Table 6.8. As the state and 

input discretization is varied independently, the corresponding constant state and input 

discretization is also listed. 

Table 6.8 Parameters for sensitivity analysis to discretization 

State / Control Input State Variation Input Variation 

Battery SoC 3 (initial) 16 (constant) 

Battery Current 5 (constant) 3 (initial) 

Brk. Res. Curent 11 (constant) 5 (initial) 

 

The experiments in Figure 6.7 are carried out with the same state and input ranges as 

listed in Table 6.3, but no end-constraints area added. The figure brings various 

observations about the sensitivity of the performance index to discretization to light. 

Firstly, the performance index is more sensitive to input discretization as compared 
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to the state discretization. An explanation of this is that the input discretization effects the 

error of representation on both the greedy cost and the cost-to-go, while the state 

discretization only effects the representation error on the cost-to-go. 

Secondly, a sharp decline in the performance index can be observed between the state 

discretization 2 and 3, the point where the minimum state discretization is satisfied. As 

there are no end-constraints included, the error cannot be attributed to the restricted state 

space of the level set method (Section 5.5).  

 

Figure 6.7 Sensitivity of performance index to discretization in Vessel 1 

 

The other explanation is the additional representation error due to the voilation of the 

minimum state discretization (Section 5.3.1).  

Thirdly, performance index does not always improve with the increase in the state and 

input discretization. This confirms that the increase in discretization only increases the 

probability of improving the solution (Section 5.2.2). 

The explanations offered for the observations in Figure 6.5 are only conjecture on part of 

the author. As the experiments have not been repeated for more test cases, the phenomena 
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(higher input discretization dependence and sharp decline for state discretization) might 

also be completely random events. 

6.3.2 Error Factor Calculation 

The offline error factor (Section 5.4.1) is calculated for vessel 1  for the different input 

discretizations used in Figure 6.8. The user parameters for error factor calculation are 

listed in Table 6.9. 

Table 6.9 Parameters for error factor calculation 

Parameter Set value 

Error threshold 0.5 

Number of intermediate 

points 
5 

 

Any error factor lower than the error threshold is penalized. The number of intermediate 

points is the number of points added between all the adjacent points of the input grid to 

check the liearity of the cost function. 

For each input discretization, the error factor is calculated for fifty evenly spaced samples 

of the load cycle in Figure 6.1 (a). The displayed error factor in Figure 6.8 is the average 

of the error factors for each load cycle sample. 

The error factor corresponds to the probability of improving the opimal solution, and it 

does match the evolution of actual performance indexes for different input 

discretizations, particularly in the initial points of high slope. Despite the oscillations in 

the performance index at the later points, it also generally converges in the same region 

where the error factor converges. Thus the error factor can be used to find a reasonable 

input discretization before the optimization procedure. 
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Figure 6.8 Offline error factor computed for different discretizatons vs actual performance 

6.3.3 Adaptive Input Grid 

A method to compute an adaptive input grid based on the error factor is introduced in 

Section 5.4.1. Based on five different thresholds of the error factor, adaptive input 

discretization schemes have been computed and the performance of dynamic 

programming on these schemes is shown in Figure 6.9. The performance is compared 

with uniform input discretization schemes. 

The adaptive grid clearly has a superior performnce to the uniform grid, as it computes a 

better optimum in roughly ten times lesser number of computations.  

6.3.4 Boundary line Method 

The boundary line method has been implemented to vessel 2 using the simplification 

techniques introduced in Section 5.5.2. The cost-to-go functions for the two methods, 

level set and boundary line are compared in Figure 6.10 for stages with high load 

requirements. It can be seen that the high gradients in the cost-to-go from the level set 

method, that propagate through the stages, are absent in the cost-to-go from the boundary 

line method. 
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7 Conclusion and Future Work  

The advantage of dynamic programming is that it guarantees the optimality for a given 

problem. For the application of dynamic programming to continuous systems, the 

continuous system must be discretized, which can lead to a difference of the optimal 

results for a discretized system from the optimal results for a continuous system. The 

optimization on a very fine discretization has a high chance of returning the global 

optimum close to that of the continuous system, but the computational restrictions make 

very fine discretization schemes practically infeasible. 

7.1 Errors of Discretization 

For the case of marine drive trains included in the Power Management Tool, the studies 

carried out in this thesis give a concrete analysis of the source and nature of the 

optimization errors due to discretization. The results can be used by the user to estimate 

(qualitatively or quantitatively) the probable error introduced by discretization, and 

include it with the optimal cost to offer more realistic results.  

In addition, the analysis of errors has also lead to suggestions that can be taken to reduce 

the risk of errors without increasing the computational complexity. Firstly, as the optimal 

solution has shown a higher sensitivity to input as compared to state discretization, the 

input discretization should be set higher. Secondly, the proposed algorithm of adapting 

the input grid discretization to the fuel consumption curve can be used to further reduce 

the probability of representation errors. 

There exist numerous aspects of study which can be carried out in future to further 

facilitate the user in using the optimal results. Some of them have been suggested as 

follows: 
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a. Analytical Modeling of Generators 

The analytical modeling of generators can be highly useful in computing the 

mathematical probability of errors associated with discretization. One of the suggested 

areas of study was introduced in Section 5.4.2, which proposes the calculation of the 

worst case errors based on the frequency analysis of the fuel consumption of the 

generators. 

b. Non-Uniform Grid 

The dpm function, although highly useful, also puts limitations on the flexibility in 

dynamic programming algorithm. One of the limitations is that it only allows the 

generation of grids with equally spaced intervals between the set minimum and maximum 

range. A non-uniform spacing of the grid, with more points in regions of non-linearity 

may prove beneficial to reduce the representation errors without increasing the 

computational effort. 

c. Non-Linear Interpolation 

Another limitation by the dpm function is that it only allows linear interpolation in the 

cost-to-go values. A study into the implementation of polynomial based interpolations 

can also be carried out to see the effect on the interpolation errors. 

7.2 Reduction of Computational Complexity 

In order to reduce the computational complexity of optimization procedures, iterative 

dynamic programming has been shown as a promising alternative to dynamic 

programming. Iterative dynamic programming offers the probability of an optimal 

solution with significantly lesser number of computations. However, it also exhibits the 

drawback of only searching the limited state and input space, which poses the risk of sub-

optimal convergence. Despite the additional risk of sub-optimal convergence, a guarantee 

for the worst possible solution (with high probability of significantly better results) can 

be formulated.  
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a. Parallelization of IDP 

The reduction factor and the initial policy can have a large effect on the convergence and 

the rate of convergence of the algorithm to the final solution. A suggested area of study is 

to parallelize multiple processes of IDP with different parameters. There can be two 

variants of this approach: 

1. Start the parallel processes with the same initial policy, but different reduction 

factors. In the case that the initial guess lies in the vicinity of the optimal solution, 

the process with a high reduction factor can quickly converge to the solution. In 

the case of a bad initial guess, processes with a lower reduction factor propose 

additional chances of escaping the local optimum. The parallel processes can also 

communicate the results amongst to improve successive iterations. 

2. Use different initial policies for different parallel processes. This results in the 

search of multiple regions of the state space in parallel.  
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