

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

System Optimization of Hybrid Marine Systems

Supervisors:

Submitted by:

Student ID Number:

Handover of the Topic

Submitted on

TECHNISCHE UNIVERSITÄT DORTMUND

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

System Optimization of Hybrid Marine Systems

Supervisors:

Submitted by:

Student ID Number:

Handover of the Topic

Submitted on

TECHNISCHE UNIVERSITÄT DORTMUND

Faculty of

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

System Optimization of Hybrid Marine Systems

Supervisors:

Submitted by:

Student ID Number:

Handover of the Topic

Submitted on:

TECHNISCHE UNIVERSITÄT DORTMUND

Faculty of Computer Science

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

GROUP

Master Thesis

System Optimization of Hybrid Marine Systems

Student ID Number:

Handover of the Topic:

TECHNISCHE UNIVERSITÄT DORTMUND

Computer Science

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

GROUP

Master Thesis

System Optimization of Hybrid Marine Systems

Prof.

Dr.-Ing. Philip Nagel

Osama M

181037

18.10.2016

18.04.2017

TECHNISCHE UNIVERSITÄT DORTMUND

Computer Science

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

Master Thesis

System Optimization of Hybrid Marine Systems

rof. Dr. Jian-

Ing. Philip Nagel

Osama Maqbool

181037

18.10.2016

18.04.2017

TECHNISCHE UNIVERSITÄT DORTMUND

Computer Science

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

System Optimization of Hybrid Marine Systems

-Jia Chen

Ing. Philip Nagel

aqbool

TECHNISCHE UNIVERSITÄT DORTMUND

DESIGN AUTOMATION FOR EMBEDDED SYSTEMS

System Optimization of Hybrid Marine Systems

Jia Chen

System Optimization of Hybrid Marine Systems

Eidesstattliche Versicherung

Maqbool, Osama Matr.-Nr. 181037

Ich versichere hiermit an Eides statt, dass ich die vorliegende Masterarbeit mit dem Titel

‘System Optimization of Hybird Marine Systems’ selbstständig und ohne unzulässige

fremde Hilfe erbracht habe. Ich habe keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich gemacht. Die Arbeit

hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Ort, Datum

Unterschrift

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung

einer Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die

Ordnungswidrigkeit kann mit einer Geldbuße von bis zu 50.000,00 € geahndet werden.

Zuständige Verwaltungsbehörde für die Verfolgung und Ahndung von

Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der Technischen Universität

Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden

Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5

Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3

Jahren oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie

z.B. die Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in

Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

Ort, Datum

Unterschrift

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor Prof. Jian Jia Chen for the

support and guidance during the Master thesis. Secondly, I would sincerely like to thank

Dr. Philip Nagel for his supervision. His guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor and mentor

for my Master thesis.

Besides my supervisors, I would especially like to thank Mr. Nguyen Quang Huy for his

support and suggestions. The research carried out would not have been possible without

his valuable insights.

Lastly, I would like to express my gratitude to the CR/AEI department at Robert Bosch

GmbH for providing me the opportunity to work at their project, and granting me access

to the research facilities.

Abstract

Dynamic Programming is a highly effective technique for the offline optimization of

power trains, as it guarantees a globally optimal solution. This study investigates the two

major problems associated with the application of dynamic programming for the

optimization of hybrid marine power trains.

The first issue is the high number of computations, which increases exponentially with

the size of the problem. In order to reduce the number of computations, a variant of

dynamic programming is investigated, called the iterative dynamic programming. The

implementation problems with iterative dynamic programming have also been

investigated and solutions are proposed to tackle the problems.

The second issue is the loss of optimality due to the discretization of the continuous

power train model. The introduction of different errors and their propagation through the

optimization process is investigated. Multiple solutions are proposed in this area that aim

to reduce the discretization errors without increasing the number of computations.

In order to test and experimentally verify the investigations, two test cases of hybrid

power trains are defined. The regular dynamic programming algorithm, as well as the

proposed methodologies for improving the performance of the algorithm are

implemented and tested for the two test cases. The performance of the test cases for

different algorithms is presented in a comparative fashion.

i

Table of Contents

 List of Figures iii

 List of Tables v

 List of Symbols and Abbreviations vii

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Prior Art.. 1

1.3 Goals of the Project .. 2

1.4 Structure of Thesis ... 2

2 Power Management of Marine Drive Trains ... 3

2.1 Power Management Tool ... 3

2.2 Modeling of Drive Trains ... 4

2.3 Test Cases ... 7

3 Optimization with Dynamic Programming .. 13

3.1 Optimization of Marine Drive Trains ... 13

3.2 Principles of Dynamic Programming ... 14

3.3 Application to Drive Trains .. 17

3.3.1 Optimization of Vessel 1 .. 17

3.3.2 Computational Complexity ... 26

3.3.3 Optimization of Vessel 2 .. 28

3.4 Issues with Dynamic Programming ... 29

4 Iterative Dynamic Programming ... 30

4.1 Motivation .. 30

4.2 Iterative Reduction of State Space (IDP2) ... 31

4.2.1 Implementation Issues of IDP2 ... 35

4.2.2 Grid Adjustment.. 39

5 Errors in Dynamic Programming ... 41

5.1 Sources of Error ... 41

5.2 Error in Greedy Cost .. 42

ii

5.2.1 Greedy Cost Dependence on Experiment Variables 42

5.2.2 Representation error of Greedy Cost .. 45

5.3 Error in Cost-to-go ... 47

5.3.1 Representation error of Cost-to-go ... 47

5.3.2 Interpolation error in Cost-to-go ... 50

5.3.3 Additional Errors .. 51

5.3.4 Summarizing the Errors .. 52

5.4 Offline estimation of Representation error ... 53

5.4.1 Error Prediction based on Empirical Data .. 53

5.4.2 Nyquist based approach .. 58

5.5 Gradients near boundary points .. 60

5.5.1 Level set Method ... 60

5.5.2 Boundary Line Method ... 64

5.5.3 Implementation of Boundary Line Method .. 65

6 Experimental Results .. 69

6.1 Dynamic Programming .. 69

6.1.1 Application to Vessel 1 ... 70

6.1.2 Application to Vessel 2 ... 73

6.2 Iterative Dynamic Programming .. 76

6.2.1 Application to Vessel 1 ... 77

6.2.2 Application to Vessel 2 ... 80

6.3 Error in Dynamic Programming ... 82

6.3.1 Sensitivity to Discretization .. 82

6.3.2 Error Factor Calculation ... 84

6.3.3 Adaptive Input Grid .. 85

6.3.4 Boundary line Method .. 85

7 Conclusion and Future Work .. 87

7.1 Errors of Discretization .. 87

7.2 Reduction of Computational Complexity .. 88

 Bibliography .. i

iii

List of Figures

Figure 2.1 Inputs and outputs of the Power Management Tool .. 4

Figure 2.2 Backwards modelling of Drive Trains .. 5

Figure 2.3(a) Efficiency of the generators .. 9

Figure 2.4 Simulink model of vessel 1 ... 10

Figure 2.5 Simulink model of vessel 2 ... 11

Figure 3.1 Multi-stage decision process ... 15

Figure 3.2 Example of Bellman's principle of optimality ... 16

Figure 3.3 Backwards induction: step 1 .. 20

Figure 3.4 Cost-to-go and optimal inputs saved for stage N-1 ... 23

Figure 3.5 Cost-to-go evolution through stages ... 23

Figure 3.6 Forwards induction: Calculation of optimal trajectory using an initial state .. 25

Figure 4.1 Iterative Reduction of search space on a convex performance function (with

small but highly frequent variations) .. 34

Figure 4.2 Convergence of policy iteration with a good inital policy (b) Convergence of

policy iteration with a bad initial policy ... 34

Figure 4.3 Evaluation of the optimal policy with two different discretization schemes. A

finer grid does not guarantee a better solution .. 37

Figure 4.4 A search region defined around an optimal trajectory can exceed the physical

bounds of the system ... 38

Figure 5.1 Greedy Cost representation by the input grid .. 43

Figure 5.2 Projection on the greedy cost from different state points within a stage 45

Figure 5.3 Representation errors from different discretization schemes 46

Figure 5.4 Cost-to-go representation by the input grid ... 48

Figure 5.5 Representation of cost-to-go with a poorly discretized state grid 49

Figure 5.6 Interpolation error in cost-to-go .. 50

Figure 5.7 Interpolation error in cost-to-go with generator penalty 52

Figure 5.8 Error Factor calculation for one-dimensional grid .. 54

iv

Figure 5.9 Offline computed errors of discretization for adjacent points in the input grid

... 55

Figure 5.10 Number of grid points adapted for the load cycked cycle 58

Figure 5.11 Hypothetical total cost function represented with grid interval twice the

maximum frequency ... 60

Figure 5.12 Backwards reachable space in a two-dimensional state space due to end-

constraints ... 61

Figure 5.13 Calculation of the backward reachable space .. 62

Figure 5.14 Propagation of infeasible points due to high load requirements 63

Figure 5.15 Calculation of boundaries using the boundary line method 68

Figure 6.1(a) Optimal input trajectories for vessel 1 for given load cycle 71

Figure 6.1(b) Optimal state and cost trajectories for vessel 1 ... 72

Figure 6.2(a) Optimal input trajectories for vessel 2 for given load cycle 74

Figure 6.2(b) Optimal state and cost trajectories for vessel 1 ... 75

Figure 6.3 Performance of idp2 compared with regular dp on vessel 1 78

Figure 6.4 Comparison of optimal trajectories of idp2 and regular dp on vessel 1 79

Figure 6.5 Performance of idp2 compared with regular dp on vessel 2 80

Figure 6.6 Comparison of optimal trajectories of idp2 and regular dp on vessel 2 81

Figure 6.7 Sensitivity of performance index to discretization in Vessel 1 83

Figure 6.8 Offline error factor computed for different discretizations vs actual

performance .. 85

Figure 6.9 Comparison of adaptive input grid with uniform input grid 86

Figure 6.10 Comparison of the cost-to-go gradients from the level set and boundary line

method... 86

v

List	of	Tables	

Table 2.1 Drive train components included in the Power Management Tool 3

Table 6.1 Interval and the step size of optimization ... 69

Table 6.2 dpm function parameters for regular dynamic programming 69

Table 6.3(a) State parameters in Scheme 1 for vessel 1 ... 70

Table 6.3(b) Input parameters in Scheme 1 for vessel 1 ... 70

Table 6.4(a) State parameters in Scheme 1 for vessel 2 ... 73

Table 6.4(b) Input parameters in Scheme 1 for vessel 2 ... 73

Table 6.5 Discretization Scheme 2 ... 76

Table 6.6 Discretization Scheme 3 ... 76

Table 6.7 Calculation paramters for IDP2 .. 77

Table 6.8 Parameters for sensitivity analysis to discretization ... 82

Table 6.9 Parameters for error factor calculation ... 84

vi

List of Symbols and Abbreviations

Symbol Description Unit

���� State of charge of battery %

���� Generator state whether it is on or off -

�	
� Control input to battery Amperes

���� Control input to generator Amperes

�	�
 Control Input to brake resistance Amperes

� Load cycle/ Load requirement Watts

�	
� DC current from battery to DC grid Amperes

���� DC current from generator to DC grid Amperes

�	�
 DC current from brake resistance to DC grid Amperes

���
� DC current equivalent of the load requirement Amperes

� Control policy -

� Fuel consumption (greedy cost) Grams

� Cost-to-go Grams

SoC State of Charge -

dpm Implemented dynamic programming function -

IDP Iterative Dynamic Programming -

1.1 Motivation

1

1 Introduction

Fuel efficiency of marine systems is one of the top concerns of the marine community,

due to the recent shifts in fuel costs and income rates [1]. In addition to the fluctuating

fuel prices, the increasing restrictions related to pollution and emissions has further

increased the demand for development of vessels with flexibility in terms of optimizing

fuel costs.

1.1 Motivation

The hybrid power train is a promising alternative to classic diesel engines with regards to

reducing fuel costs as well as emissions, as it allows the usage of electric batteries in

addition to existing power train components [2]. Due to the addition of degrees of

freedom, hybrid power trains open up the possibilities of searching for optimal power

management strategies. There already exists a vast literature on the optimal power

management strategies for hybrid electric vehicles, for example in [2; 3; 4], and the

concepts investigated within can be extended to hybrid marine systems.

1.2 Prior Art

The upgrade from a diesel engine to a hybrid engine can provide the designer with

various possible system topologies. The Power Management Tool, developed by Bosch

GmbH, aims to aid the designer by computing and comparing the optimal power

management stratregies for different topologies of marine power trains. As the real time

control is not a target of the Power Management Tool, the load cycle for the entire

optimizaion interval can be known apriori.

The Power Management Tool uses dynamic programing for optmization of power

management stratregy, which is the ideal candidate for systems with perfectly known

1.3 Goals of the Project

2

load cycles and disturbances. Dynamic programming offers the advantage of

guaranteeing the globally optimal solution for the given problem.

1.3 Goals of the Project

There are two major issues that are associated with the implementation of dynamic

programming to continuous state space systems. Both the issues arise from the

discretization of the continuous state space system, which is necessary to formulate it as

part of the dynamic programming optimization problem. The first issue is the high

number of computations involved in optimization, which increases exponentially as the

problem size increases. The second issue is the mismatch between the discretized and

continuous state space systems, which leads to sub-optimal solutions from dynamic

programming.

The goal of this work is the study of two issues, and investigation of methodologies that

attempt to solve them.

1.4 Structure of Thesis

The thesis is structured as follows. The modeling of marine power trains for the Power

Management Tool is introduced in Chapter 2, and two test vessels are defined for

demonstration and experimentation. The dynamic programming algorithm, its theory and

implementation is discussed in Chapter 3. In Chapter 4, an alternate of dynamic

programming is introduced, iterative dynamic programming, which aims to reduce the

computational complexity of the optimization procedure. The various errors involved

with the application of dynamic programming to discretized drive trains are studied in

Chapter 5. Several techniques to minimize the errors are also investigated. The simulation

and experimentation results for the two test vessels are compiled in Chapter 6. Finally,

the conclusions and further ideas are summarized in Chapter 7.

2.1 Power Management Tool

3

2 Power Management of Marine Drive

Trains

The Power Management Tool is designed to aid in assessment of various layouts of

marine vessel drive trains with respect to the fuel efficiency. In addition to the fuel

consumption, it also allows the identification of relevant power bonds across various

components of the drive trains. The results can further be used for the sensitivity analysis

of the system with respect to the size and parameters of various components.

2.1 Power Management Tool

The Power Management Tool calculates the trajectory of control inputs for a drive train

model that minimizex the fuel consumption for a given load cycle. The tool provides a

Simulink library that includes models for various components involved in marine drive

trains. The table below summarizes the types of components included in the tool. Each

category is further divided into multiple types of models, and the parameters for each

model can be set by the user.

Table 2.1 Drive train components included in the Power Management Tool

Power Sources/ Sinks Actuators

Diesel Engine Electric Motor

Electric Storage Hydraulic Machine

Brake resistance

The complete model of the drive train must follow the conventions discussed in the next

section. The load cycle must be specified for every point in the complete optimization

2.2 Modeling

interval. In addition to the model and the load cycle, the bounds and discretization of the

state and input vectors also need to be specified by the user.

The result from the tool is an optimal control input trajecto

fuel consumption for the complete load cycle. For the

resultant state trajectory, power flow across different components and resultant loses, and

the fuel consumption trajectory

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

feasibility study for system upgrades, or isolation of drive train

2.2

The Power Manag

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

requirement

backwards modeling of a drive train is shown in Figure 2.2.

actuators is converted into a DC current demand which is fed to the DC grid. The

convention set in

indicate the demand.

power sources to fulfill the load requirement from the actuators. Each of the power

sources has a n

Modeling of Drive Trains

interval. In addition to the model and the load cycle, the bounds and discretization of the

state and input vectors also need to be specified by the user.

The result from the tool is an optimal control input trajecto

fuel consumption for the complete load cycle. For the

resultant state trajectory, power flow across different components and resultant loses, and

the fuel consumption trajectory

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

feasibility study for system upgrades, or isolation of drive train

 Modeling of Drive Trains

The Power Manag

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

requirement are specified by the user as the load

backwards modeling of a drive train is shown in Figure 2.2.

actuators is converted into a DC current demand which is fed to the DC grid. The

convention set in

indicate the demand.

power sources to fulfill the load requirement from the actuators. Each of the power

sources has a n

of Drive Trains

interval. In addition to the model and the load cycle, the bounds and discretization of the

state and input vectors also need to be specified by the user.

The result from the tool is an optimal control input trajecto

fuel consumption for the complete load cycle. For the

resultant state trajectory, power flow across different components and resultant loses, and

the fuel consumption trajectory

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

feasibility study for system upgrades, or isolation of drive train

Modeling of Drive Trains

The Power Management Tool

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

are specified by the user as the load

backwards modeling of a drive train is shown in Figure 2.2.

actuators is converted into a DC current demand which is fed to the DC grid. The

convention set in the power management tool is that positive value of the DC current to

indicate the demand. The control inputs of the system are the currents supplied by the

power sources to fulfill the load requirement from the actuators. Each of the power

sources has a nominal voltage specified as a parameter.

Figure

of Drive Trains

interval. In addition to the model and the load cycle, the bounds and discretization of the

state and input vectors also need to be specified by the user.

The result from the tool is an optimal control input trajecto

fuel consumption for the complete load cycle. For the

resultant state trajectory, power flow across different components and resultant loses, and

the fuel consumption trajectory are also presente

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

feasibility study for system upgrades, or isolation of drive train

Modeling of Drive Trains

ement Tool uses backward modeling

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

are specified by the user as the load

backwards modeling of a drive train is shown in Figure 2.2.

actuators is converted into a DC current demand which is fed to the DC grid. The

the power management tool is that positive value of the DC current to

The control inputs of the system are the currents supplied by the

power sources to fulfill the load requirement from the actuators. Each of the power

ominal voltage specified as a parameter.

Figure 2.1 Inputs and outputs of the Power Management Tool

interval. In addition to the model and the load cycle, the bounds and discretization of the

state and input vectors also need to be specified by the user.

The result from the tool is an optimal control input trajecto

fuel consumption for the complete load cycle. For the

resultant state trajectory, power flow across different components and resultant loses, and

also presented. The performance of various system

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

feasibility study for system upgrades, or isolation of drive train

Modeling of Drive Trains

backward modeling

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

are specified by the user as the load

backwards modeling of a drive train is shown in Figure 2.2.

actuators is converted into a DC current demand which is fed to the DC grid. The

the power management tool is that positive value of the DC current to

The control inputs of the system are the currents supplied by the

power sources to fulfill the load requirement from the actuators. Each of the power

ominal voltage specified as a parameter.

Inputs and outputs of the Power Management Tool

interval. In addition to the model and the load cycle, the bounds and discretization of the

state and input vectors also need to be specified by the user.

The result from the tool is an optimal control input trajectory, calculated for the minimum

fuel consumption for the complete load cycle. For the optimal

resultant state trajectory, power flow across different components and resultant loses, and

d. The performance of various system

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

feasibility study for system upgrades, or isolation of drive trains

backward modeling of the drive train. The simulation

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

are specified by the user as the load requirement.

backwards modeling of a drive train is shown in Figure 2.2. The load requirement at the

actuators is converted into a DC current demand which is fed to the DC grid. The

the power management tool is that positive value of the DC current to

The control inputs of the system are the currents supplied by the

power sources to fulfill the load requirement from the actuators. Each of the power

ominal voltage specified as a parameter.

Inputs and outputs of the Power Management Tool

interval. In addition to the model and the load cycle, the bounds and discretization of the

ry, calculated for the minimum

optimal input trajectory, the

resultant state trajectory, power flow across different components and resultant loses, and

d. The performance of various system

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

 with higher losses.

of the drive train. The simulation

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

requirement. An example of the

The load requirement at the

actuators is converted into a DC current demand which is fed to the DC grid. The

the power management tool is that positive value of the DC current to

The control inputs of the system are the currents supplied by the

power sources to fulfill the load requirement from the actuators. Each of the power

ominal voltage specified as a parameter.

Inputs and outputs of the Power Management Tool

interval. In addition to the model and the load cycle, the bounds and discretization of the

ry, calculated for the minimum

input trajectory, the

resultant state trajectory, power flow across different components and resultant loses, and

d. The performance of various system

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

with higher losses.

of the drive train. The simulation

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

An example of the

The load requirement at the

actuators is converted into a DC current demand which is fed to the DC grid. The

the power management tool is that positive value of the DC current to

The control inputs of the system are the currents supplied by the

power sources to fulfill the load requirement from the actuators. Each of the power

ominal voltage specified as a parameter.

Inputs and outputs of the Power Management Tool

4

interval. In addition to the model and the load cycle, the bounds and discretization of the

ry, calculated for the minimum

input trajectory, the

resultant state trajectory, power flow across different components and resultant loses, and

d. The performance of various system

layouts can be compared, and can be used as a broad guide in the design of drive trains, a

of the drive train. The simulation

in backward modeling uses the torque and speed requirement on the actuators to calculate

the required energy which must be provided by the power sources. The torque and speed

An example of the

The load requirement at the

actuators is converted into a DC current demand which is fed to the DC grid. The

the power management tool is that positive value of the DC current to

The control inputs of the system are the currents supplied by the

power sources to fulfill the load requirement from the actuators. Each of the power

ominal voltage specified as a parameter.

2.2 Modeling

In addition to the control inputs, the

power sources

����

positive control input

negative

resistance

brake resistance

resistance

the current

is always negative, as the generator cannot input any power.

states, and represent whether the corresponding generator is on or off. The us

choose the number of generators, and whether to include a battery or not in the drive train

model.

between the control inputs, load requirement and the corresponding

DC grid can be characterized by the following equations:

Modeling of Drive Trains

In addition to the control inputs, the

power sources. The

 refers to the State of Charge (SoC) of the electric battery. The applicatio

positive control input

negative �	
� controls the

resistance acts as a sink for extra

brake resistance

resistance cannot supply any

current supplied by each corresponding generator. The control input of the generator

is always negative, as the generator cannot input any power.

states, and represent whether the corresponding generator is on or off. The us

choose the number of generators, and whether to include a battery or not in the drive train

model. The control inputs are not directly fed to the DC grid.

between the control inputs, load requirement and the corresponding

DC grid can be characterized by the following equations:

of Drive Trains

Figure

In addition to the control inputs, the

The general st

�

refers to the State of Charge (SoC) of the electric battery. The applicatio

positive control input �	
� controls the

controls the

acts as a sink for extra

is controlled by

cannot supply any

plied by each corresponding generator. The control input of the generator

is always negative, as the generator cannot input any power.

states, and represent whether the corresponding generator is on or off. The us

choose the number of generators, and whether to include a battery or not in the drive train

control inputs are not directly fed to the DC grid.

between the control inputs, load requirement and the corresponding

DC grid can be characterized by the following equations:

of Drive Trains

Figure 2.2 Backwards modelling of Drive Trains

In addition to the control inputs, the states of the system are also associated with the

states and inputs of the system are:

%
&
''(

��������,*...����,�,
--.

refers to the State of Charge (SoC) of the electric battery. The applicatio

controls the

controls the current supplied by the battery (discharging). The

acts as a sink for extra current

is controlled by �	�
. �
cannot supply any current. For

plied by each corresponding generator. The control input of the generator

is always negative, as the generator cannot input any power.

states, and represent whether the corresponding generator is on or off. The us

choose the number of generators, and whether to include a battery or not in the drive train

control inputs are not directly fed to the DC grid.

between the control inputs, load requirement and the corresponding

DC grid can be characterized by the following equations:

Backwards modelling of Drive Trains

states of the system are also associated with the

ates and inputs of the system are:

,
--. , � %

&
''
'(

refers to the State of Charge (SoC) of the electric battery. The applicatio

controls the current supplied

supplied by the battery (discharging). The

current in the system, an�	�
 can only have a positive value, as the

. For / diesel generators,

plied by each corresponding generator. The control input of the generator

is always negative, as the generator cannot input any power.

states, and represent whether the corresponding generator is on or off. The us

choose the number of generators, and whether to include a battery or not in the drive train

control inputs are not directly fed to the DC grid.

between the control inputs, load requirement and the corresponding

DC grid can be characterized by the following equations:

Backwards modelling of Drive Trains

states of the system are also associated with the

ates and inputs of the system are:

&
''
'(

�	
��	�
����,*...����,�,
--
-.

refers to the State of Charge (SoC) of the electric battery. The applicatio

supplied to the battery (charging) and a

supplied by the battery (discharging). The

in the system, and the

can only have a positive value, as the

diesel generators, �
plied by each corresponding generator. The control input of the generator

is always negative, as the generator cannot input any power. ����
states, and represent whether the corresponding generator is on or off. The us

choose the number of generators, and whether to include a battery or not in the drive train

control inputs are not directly fed to the DC grid.

between the control inputs, load requirement and the corresponding

DC grid can be characterized by the following equations:

Backwards modelling of Drive Trains

states of the system are also associated with the

,
refers to the State of Charge (SoC) of the electric battery. The applicatio

to the battery (charging) and a

supplied by the battery (discharging). The

d the current delivered to the

can only have a positive value, as the

����,* to ����
plied by each corresponding generator. The control input of the generator

���,* to ����
states, and represent whether the corresponding generator is on or off. The us

choose the number of generators, and whether to include a battery or not in the drive train

control inputs are not directly fed to the DC grid. The general relation

between the control inputs, load requirement and the corresponding DC currents at the

states of the system are also associated with the

(2.1)

refers to the State of Charge (SoC) of the electric battery. The application of a

to the battery (charging) and a

supplied by the battery (discharging). The brake

delivered to the

can only have a positive value, as the brake

���,� determine

plied by each corresponding generator. The control input of the generator

���,� are binary

states, and represent whether the corresponding generator is on or off. The user is free to

choose the number of generators, and whether to include a battery or not in the drive train

The general relation

DC currents at the

5

states of the system are also associated with the

1)

n of a

to the battery (charging) and a

brake

delivered to the

brake

determine

plied by each corresponding generator. The control input of the generator

are binary

er is free to

choose the number of generators, and whether to include a battery or not in the drive train

The general relation

DC currents at the

2.2 Modeling of Drive Trains

6

&
''
(

��*��0.����	
��	�
,
--
. % 1(�, �) (2.2a)

 ���
� % ℎ(�) (2.2b)

where � represents the load requirement. The functions 1 and ℎ depend on the dynamics

of the components modeled and are associated with various parameters that can be set by

the user respectively. These are not relevant for the studies in this thesis, and are

therefore not discussed further.

The net DC current at the DC grid must be zero to ensure that the load requirement is

satisfied.

 ��5 + 7 ��8
�

89*
+ �	
� + �	�
 + ���
� % 0 (2.3)

For / generators included in a model, an extra generator called balance generator must

also be included, which is incorporated separately in Equation (2.3) as ��5. The balance

generator has no state or control input associated with it. As the control inputs can only

take values from a discrete range, the corresponding DC currents are also from a discrete

set of values. It is possible that no combination of the possible discrete values of the DC

current exactly satisfies the user defined load requirement. The DC current from the

balance generator ��5 can take a value from continuous range to ensure that the net DC

current is zero. The balance generator does have a maximum limit and can only assume

negative values. Thus the only feasible control inputs to the system for a given load

requirement are ones that allow Equation (2.3) to be satisfied.

Specification of Load Cycle

The load cycle is the load requirement on the actuators of the model for the complete

length of the optimization interval. It is specified by a speed and torque vector for every

2.3 Test Cases

7

actuator. The time interval for optimization must be discretized, and a load requirement

must be defined for every point in time.

Simulation of Model

The Simulink model can be called in a Matlab script as a function. At any time point <,

the modeled drive train can be described by the following equations:

 �= % >?�
, �
, �
@ (2.4a)

 �
 % �?�
, �
, �
@, (2.4b)

 �
 % �?�
, �
, �
@ (2.4c)

�
 ∈ B
 represents the states, �
 ∈ C
 represents the control inputs and �
 the user

defined load cycle. > is the transition function for a control input, � determines the fuel

consumption for an input, and � decides whether a control input is feasible. The ranges of

the states and inputs must be defined, within which they can only assume a finite set of

values. B and C represent the discrete spaces for states and inputs respectively. Since > is

a continuous function, �′ ∈ χ, where χ represents the continuous state space.

2.3 Test Cases

For the study of the optimization procedures used in the Power Management Tool, two

test cases are defined. The two cases will be used to test the developed algorithms

throughout the thesis.

Vessel 1

The Simulink model for the test case named ‘Vessel 1’ is shown in Figure 2.4. Vessel 1

has no generator state, and only uses the balance generator. The only state is the battery

State of Charge (SoC), and the control inputs are the battery current and the brake

resistance current:

2.3 Test Cases

8

 � % (����), � % G�	
��	�
H (2.5)

Vessel 2

The Simulink model for the test case named ‘Vessel 1’ is shown in Figure 2.5. The states

and the control inputs are:

 � % G��������H , � % I�	
��	�
����J (2.6)

The objective of including the state of the generator is to include a penalty for turning it

on. The efficiency of the generators used in both the vessels is a non-linear function

shown in Figure 2.3(a). This efficiency curve results in the fuel consumption functions of

the vessels shown in Figure 2.3(b), based on the sizes of the generators set by the user.

2.3 Test Cases

9

Figure 2.3(a) Efficiency of the generators (Power normalized to maximum capacity)

Figure 2.3(b) Fuel consumption curves of vessel 1 and 2

(A)
(A) (A)

(W)

2.3

2.3 Test Cases

Figure 2.4 Simulink model of vessel 1Simulink model of vessel 1Simulink model of vessel 1

10

2.3

2.3 Test Cases

Figure 2.5 Simulink model oSimulink model of vessel 2f vessel 2

11

3.1 Optimization of Marine Drive Trains

13

3 Optimization with Dynamic

Programming

The technique for optimization used in the Power Management tool is Dynamic

Programming. Dynamic programming is an optimization technique which divides a

complex problem into a sequence of simpler sub-problems. The sub-problems are

optimized recursively, using the previous solutions, to calculate the optimum for the

original problem. Dynamic programming is a powerful optimization technique used in

many fields of study. The biggest advantage of the algorithm is that it guarantees a

globally optimum solution for the given conditions of a problem.

Dynamic programming is a popular approach used in the Optimization of Drive Trains

that involve electric components in addition to diesel generators (Hybrid Vehicles) [3]

[4]. A variety of goals for optimization can be set related to the safety, comfort and

driving dynamics. For the Marine Drive Systems relevant in this thesis, the goal of

optimization is the fuel consumption. The tool used for Dynamic Programming, called

the dpm function, has been developed in [5] for MATLAB.

3.1 Optimization of Marine Drive Trains

For the discretized state-space model of the Drive Trains in Equations (2.4), the control

policy � dictates the actions for every stage in the horizon T.

 � % {�5, �*, … , �QR*} for � ∈ T (3.1)

The set T spans all the possible control policies for the system. The problems in this

thesis are assumed with a perfect knowledge of the parameters and disturbances U
 for

the complete horizon V of the optimization interval. The total cost for the time horizon of V, for a control policy � can be formulated as:

3.2 Principles of Dynamic Programming

14

 �X = 7 �
,X
YR*

95 (3.2)

The total cost is the total fuel consumption that results from a control policy for the

complete optimization interval horizon. The goal of optimization is to find the optimal

policy �∗ that minimizes the total fuel consumption for the complete duration of the

optimization interval:

 �X∗ = minX �X (3.3)

The formulation of the total cost function �X is quite useful, as it includes the costs �
 for

the complete horizon of the optimization interval. The alternative is to only minimize the

current cost for a stage �
 with no regard to the future stages. This technique is

commonly known as the greedy approach. For hybrid Drive Trains, the greedy approach

would discharge the battery at every step, as the battery does not consume fuel. Due to

the inclusion of the future parameters �
[*: �Y in addition to the current �
, the optimal

approach would not always be the full discharge of the battery, but rather to save the

battery for high load requirements in the future. Thus it represents the optimal Power

Management strategy for hybrid Drive Trains for a discretized interval of N steps, given

that the parameters and disturbances U are known for every stage of the interval.

3.2 Principles of Dynamic Programming

The Dynamic programming algorithm defines a multi-stage decision process for the

optimization problem in Equation (3.3). A discretized state vector �
 of the system is

defined at every stage. �
 is a permissible action at the stage < . A feasible set of actions

must exist for the state �
 at any given stage <. Each action �
 causes a transition of the

state �
 into one of the system states �
[* defined for the next stage < + 1. Each action

also has a cost associated with it. To ensure the applicability of dynamic programming,

the properties of the system modeled in the problem must fulfill the following conditions

as described by Bellman [6] [4]:

3.2 Principles

• The decisions in a stage

stages or their stages.

• Except the state of the system, t

influence on the selection of future actions.

The systems considered in this study are deterministic and every action to a stat

determines a unique transition. The deterministic multi

stages is demonstrated in Figure

The Dyn

process is based on the Bellman’s principle of optimality.

Principle of Optimality

Bellman

characteristics

it states that:

„An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard

resulting from the first decision

The principle of optimality for three stages

the cheapest action that causes

from

Principles of Dynamic Programming

The decisions in a stage

stages or their stages.

Except the state of the system, t

influence on the selection of future actions.

The systems considered in this study are deterministic and every action to a stat

determines a unique transition. The deterministic multi

stages is demonstrated in Figure

The Dynamic programming approach for

process is based on the Bellman’s principle of optimality.

Principle of Optimality

ellman describes the property of the optimal policy defined for the systems with

characteristics defined in the above section. Coined as Bellman’s principle of optimality,

it states that:

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard

resulting from the first decision

principle of optimality for three stages

the cheapest action that causes

from �5 to �0 can o

of Dynamic Programming

The decisions in a stage

stages or their stages.

Except the state of the system, t

influence on the selection of future actions.

The systems considered in this study are deterministic and every action to a stat

determines a unique transition. The deterministic multi

stages is demonstrated in Figure

Figure

amic programming approach for

process is based on the Bellman’s principle of optimality.

Principle of Optimality

describes the property of the optimal policy defined for the systems with

defined in the above section. Coined as Bellman’s principle of optimality,

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard

resulting from the first decision

principle of optimality for three stages

the cheapest action that causes

can only be formulated by including

of Dynamic Programming

The decisions in a stage should not have any influence from

Except the state of the system, the history of the

influence on the selection of future actions.

The systems considered in this study are deterministic and every action to a stat

determines a unique transition. The deterministic multi

stages is demonstrated in Figure 3.1.

Figure 3.1 Multi-

amic programming approach for

process is based on the Bellman’s principle of optimality.

describes the property of the optimal policy defined for the systems with

defined in the above section. Coined as Bellman’s principle of optimality,

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard

resulting from the first decision.“ - Principle Of Optimality

principle of optimality for three stages

the cheapest action that causes �* to transition to

be formulated by including

of Dynamic Programming

not have any influence from

he history of the

influence on the selection of future actions.

The systems considered in this study are deterministic and every action to a stat

determines a unique transition. The deterministic multi

-stage decision process

amic programming approach for the optimization of the multi

process is based on the Bellman’s principle of optimality.

describes the property of the optimal policy defined for the systems with

defined in the above section. Coined as Bellman’s principle of optimality,

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard

Principle Of Optimality

principle of optimality for three stages is demonstrated in Figure 3.2.

to transition to �0
be formulated by including �*

not have any influence from

he history of the decisions on the

The systems considered in this study are deterministic and every action to a stat

determines a unique transition. The deterministic multi-stage decision process for N

stage decision process [4]

optimization of the multi

process is based on the Bellman’s principle of optimality.

describes the property of the optimal policy defined for the systems with

defined in the above section. Coined as Bellman’s principle of optimality,

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard

Principle Of Optimality

is demonstrated in Figure 3.2.

. The cheapest policy that transitions

*
.

not have any influence from the already considered

decisions on the system has no

The systems considered in this study are deterministic and every action to a stat

stage decision process for N

[4]

optimization of the multi-stage decision

describes the property of the optimal policy defined for the systems with

defined in the above section. Coined as Bellman’s principle of optimality,

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard

is demonstrated in Figure 3.2. �
eapest policy that transitions

15

the already considered

system has no

The systems considered in this study are deterministic and every action to a stat

stage decision process for N

stage decision

describes the property of the optimal policy defined for the systems with

defined in the above section. Coined as Bellman’s principle of optimality,

An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the state

�*
 represents

eapest policy that transitions

15

the already considered

system has no

The systems considered in this study are deterministic and every action to a state

stage decision process for N

stage decision

describes the property of the optimal policy defined for the systems with

defined in the above section. Coined as Bellman’s principle of optimality,

An optimal policy has the property that whatever the initial state and initial decision

to the state

represents

eapest policy that transitions

3.2 Principles

Generally speaking, if the optimal policy from stage

is known

^�8 , …

�Y describes the costs associated with the last stage, while

applying an action

Using the principle of optimality,

recursi

Starting from the last stage

stage to the end stage. The usage of cost

from only the current stage to the next. Cost

stage

Principles of Dynamic Programming

Generally speaking, if the optimal policy from stage

is known, it can be used to find the optimal policy from any stage

… , �YR*_ [3]

�
describes the costs associated with the last stage, while

applying an action

Using the principle of optimality,

recursion from stage

Starting from the last stage

stage to the end stage. The usage of cost

from only the current stage to the next. Cost

stage <, and is defined a

of Dynamic Programming

Generally speaking, if the optimal policy from stage

, it can be used to find the optimal policy from any stage

_ [3]. This allows the formulation of a

Figure 3.2 Example of Bellman's principle of optimality

�∗2�83 = � X∗̀∗

describes the costs associated with the last stage, while

applying an action �
 to the state

Using the principle of optimality,

on from stage V, a principle also termed as

�
?�

Starting from the last stage V
stage to the end stage. The usage of cost

from only the current stage to the next. Cost

, and is defined as a function of the state

of Dynamic Programming

Generally speaking, if the optimal policy from stage

, it can be used to find the optimal policy from any stage

. This allows the formulation of a

Example of Bellman's principle of optimality

∗̀ 2�83 = ab/XcП
describes the costs associated with the last stage, while

to the state �
.

Using the principle of optimality, dynamic programming solves the problem by backward

, a principle also termed as

�Y?�Y
?
@ = ab/ef ^�

V, backward i

stage to the end stage. The usage of cost-

from only the current stage to the next. Cost

s a function of the state

of Dynamic Programming

Generally speaking, if the optimal policy from stage

, it can be used to find the optimal policy from any stage

. This allows the formulation of a cost

Example of Bellman's principle of optimality

ab/{7 �
?�
,YR*

98

describes the costs associated with the last stage, while

ynamic programming solves the problem by backward

, a principle also termed as backward induction

? Y@ = �Y2�Y
�?�
, �
, �
@

, backward induction calculates the optimal cost from each

-to-go requires the optimization of the transitions

from only the current stage to the next. Cost-to-go is the optimal cost achievable from a

s a function of the state �
.

Generally speaking, if the optimal policy from stage 0 to V g 1
, it can be used to find the optimal policy from any stage

cost-to-go for every stage.

Example of Bellman's principle of optimality

? , �
, �
@ + �
describes the costs associated with the last stage, while �

ynamic programming solves the problem by backward

backward induction

3

@ + �
[*2�′3_
nduction calculates the optimal cost from each

go requires the optimization of the transitions

go is the optimal cost achievable from a

1 �5∗ = ^�5 ,
, it can be used to find the optimal policy from any stage

for every stage.

Example of Bellman's principle of optimality [3]

@ �Y2�Y3}

�
 describes the cost by

ynamic programming solves the problem by backward

backward induction.

_

nduction calculates the optimal cost from each

go requires the optimization of the transitions

go is the optimal cost achievable from a

16

, �*, … , �YR*
, it can be used to find the optimal policy from any stage < = b, �8∗ =

for every stage.

(3.4

describes the cost by

ynamic programming solves the problem by backward

(3.5a)

(3.5b)

nduction calculates the optimal cost from each

go requires the optimization of the transitions

go is the optimal cost achievable from a

16

*_

=

3.4)

describes the cost by

ynamic programming solves the problem by backward

a)

b)

nduction calculates the optimal cost from each

go requires the optimization of the transitions

go is the optimal cost achievable from a

3.3 Application to Drive Trains

17

The backward induction is not the only method in Dynamic programming. A forward

induction, that starts from �52�53, can be used in a similar way. Backward induction is

more commonly used as it tackles the problem defined for a state space in a more

intuitive manner.

3.3 Application to Drive Trains

Equation 3.6a and 3.6b very aptly depict the application of Dynamic programming as a

backward recursive algorithm for the power management optimization of Drive Trains.

For each stage of the multi-stage decision process in the Drive Train, the parameter U
 is

defined as a scalar load requirement �
. The set of feasible actions at any stage must be

able to fulfill the load requirement for the stage without violating any state bounds. The

implementation of Dynamic programming can be intuitively explained by its application

to the test vessels defined in Section 2.3.

3.3.1 Optimization of Vessel 1

Vessel 1 defines a Drive Train with a single-dimensional state space.

a. Discretization of State and Input Space

The discretization of the SoC state is a decision taken by the user of the Power

Management Tool. Thus for each state, the discretization creates multiple points of a state

within a stage. The examples in this section have the SoC discretized into three points.

For the demonstration of the application of Dynamic programming, the input �	�
 is

ignored for the sake of simplification. The battery input is discretized into three points.

 C = {�*, �0, �i} (3.6)

�* increases the SoC (charging), �0 keeps SoC the same, and �i decreases the SoC

(discharging)

3.3 Application to Drive Trains

18

Despite the discretization of the state and input space, the transition function in �= = >?�
, �
, �
@ still has a continuous range.

b. Specification of Load Cycle

The load cycle for the optimization interval is defined as:

 � = {ℎb�ℎ, ℎb�ℎ, jkU, jkU} (3.7)

A ℎb�ℎ load requirement is higher than the maximum capacity of the balance generator,

and the battery must be discharged to fulfill the requirement. A jkU load requirement is

lower than both the maximum capacities of the balance generator and the battery, and can

be satisfied by only discharging the battery.

c. Formulation of Sub-problem

The backward-induction algorithm described by Equation (3.5) can be applied to the

discretized states and inputs of Vessel 1. Due to the discretized state points, the sub-

problem at each stage can be further divided into smaller problems. Furthermore, no costs

for the end stage V are modelled in the systems studied in this thesis. The optimization

algorithm can therefore be divided into a set of the following sub-problems, generalized

for any /-dimensional state space:

 �Y?�Y@ = 0 (3.8a)

 �
?�
8 @ = ab/ef ^�?�
8 , �
2�
8 3, �
@ + �
[*2�′3_, �
8 ∈ B
 , �
 ∈ C
, �′ ∈ l
[*

such that

�= = >?�
, �
, �
@

�?�
, �
, �
@ = 0

(3.8b)

�
8 represents the state point b for the discretization done at stage <.The set of feasible

control inputs �
 for stage < result in a set of transitions defined by Equation (3.8).

3.3 Application to Drive Trains

19

d. Backwards Induction

The backwards induction method used for the optimization of the fuel consumption for

Vessel 1 is demonstrated in Figure 3.3. The figure is a schematic to demonstrate the

process of Backwards Induction, and any values shown are only an approximation of the

actual system.

1. For stage V g 1, there is no cost-to-go of the future stages. The cost of all the

feasible inputs are computed for every state point �YR*8 , and the minimum cost is

saved for the state point, forming the cost-to-go function for stage V g 1, �YR*2�YR*3. The minimum costs, or equivalently the saved cost-to-go’s are

displayed within the circles in Figure 3.3. For the lowest state point at any stage,

input �i is infeasible as the SoC cannot go below 0%.

 for ��n , C� = {�*, �0}

2. For each state point �YR08 , the optimal input minimizes not just the cost, but the

cost and the cost-to-go. The cost-to-go �YR* is only saved for the discretized

state space �YR* ∈ BYR*. The transitions from �* and �i however, do not belong

to the discretized state space BYR*. There can be several methods to calculate the

appropriate cost-to-go for the continuous state space �YR*2>2�YR0, �, �YR033,

such as using the nearest neighbors or using linear interpolation. The dpm

function uses linear interpolation between the neighboring points �
[*.

3. At stage V g 3, the cost and the cost-to-go is minimized in the same way as the

last stage, using linear interpolation where necessary. The load requirement �YRi

is higher than the total capacity of the generator, which means that the battery

must discharge to fulfill the requirement. Thus for every state point �YRi8 , the only

feasible input is �i which discharges the battery.

 CYRi = {�i}

3.3 Applic

Application to Drive Trains

Figure

Figure 3.3(b) Backwards induction: step 2

to Drive Trains

Figure 3.3(a) Backwards induction: step 1

Figure 3.3(b) Backwards induction: step 2

(a) Backwards induction: step 1

Figure 3.3(b) Backwards induction: step 2

(a) Backwards induction: step 1

Figure 3.3(b) Backwards induction: step 2

20

20

3.3 Application

Application to Drive Trains

Figure

Figure

to Drive Trains

Figure 3.3(c) Backwards induction: step

Figure 3.3(d) Backwards induction: step

Backwards induction: step

Backwards induction: step

Backwards induction: step 3

Backwards induction: step 4

21

21

3.3 Application to Drive Trains

22

For �YRin , input �i is also infeasible as the SoC cannot discharge below 0%. This

state point has no feasible inputs, and it violates the initial condition mentioned

for formulation of a multi-stage problem, i.e., every state must have a feasible set

of inputs. Thus this state point is infeasible, and the cost-to-go �YRi2�YRin 3 = ∞.

The infinite cost is implemented by a very large number.

4. Stage V g 4 is the final step of backwards induction, and the first stage for the

multi-stage decision process. The load cycle is UYRr is also high, requiring the

battery to discharge. The notable phenomenon for this stage occurs for the state

point �YRrr . On application of input �i to �YRrr , the transition lies in between �YRir and �YRin . Thus the cost-to-go �YRi2�YRir 3 must be linearly interpolated

with an infeasible cost (representing infinity) at �YRi2�YRin 3, to calculate

�YR*2>?�YRrr , �i, �YRr@3, the resultant of which will also be a very high cost. The

conditions for the state point �YRrn will be the same as the last step and the point

will be treated as infeasible.

The computation at the four stages calculates a map of optimal policies for the complete

discretized state space. The optimal state trajectory through the four stages can now be

computed for any initial state.

Evolution of Cost-to-Go

The cost-to-go saved at stage V g 1 for the actual costs in Vessel 1 as well as the optimal

control inputs are shown in Figure 3.4a and b. The cheapest action is to discharge the

battery as much as the feasible input range allows, and fulfill the remaining load

requirement using the generator. The same minimum battery input is feasible for most of

the SoC values, which is why a constant cost-to-go is observed for most SoC values. As

the SoC approaches 0%, the feasible input range decreases. The closer the SoC moves to 0%, the less it can discharge and the more the generator power is required. This creates a

gradient in the cost-to-go at a point close to 0%. Figure 3.5 shows the propagation of the

cost-to-go as the optimizer moves backwards through the stages. After stage V g 1

discharging is not always the best strategy.

3.3 Application to Drive Trains

23

Figure 3.4 Cost-to-go and optimal inputs saved for stage N-1

Figure 3.5 Cost-to-go evolution through stages

(A
)

(g
)

(g
)

3.3 Application to Drive Trains

24

Discharging will save the fuel consumption costs, but will transition towards a low SoC

where the cost-to-go is higher. A high slope, indicating a high future cost propagates

towards higher SoC’s as previous stages are evaluated.

A difference in the slopes between different regions of the cost-to-go acts as the point of

restriction to transition into a region.

e. Forwards Run

The forwards run process calculates the optimal control input and the corresponding state

trajectory for an initial state by using the cost-to-go map saved in the backwards

induction.

1. An initial state point is chosen for stage 1. Let it be �8�8� = �213 = 25%.

2. The costs for the complete set of feasible control inputs applied to the initial state

point is calculated. The optimal input is minimized for both the cost and cost-to-

go. The cost-to-go map has already been computed for each state point during the

backwards induction. The required linear interpolation also follows the same

procedure as before. The optimal control input is saved as the first point of the

optimized control input trajectory.

3. The next state point is chosen at stage 2 by applying the optimal control input

calculated in the previous step to the initial state.

 �0 = >?�0, ��u�213, �0@, �0 ∈ l0 (3.9a)

Note that the �0 may or may not be one of the points of the discretized state grid,

as it belongs to the continuous state space. The next optimization is done by

applying all the feasible control inputs to �0. Once again, the optimization is done

for both the cost and the cost-to-go.

4. The optimal state and input trajectory is computed for all the stages as described

in step 1 and 3.

The recursive algorithm for forwards run can generally be described as:

3.3 Application

Figure

Figure

Application

Figure 3.6(a) Forwards induction: Calculation of optimal trajectory using an initial state

Figure 3.6(b) Forwards inuction: The optimal sate trajectory points lie al

 to Drive Trains

(a) Forwards induction: Calculation of optimal trajectory using an initial state

.6(b) Forwards inuction: The optimal sate trajectory points lie al

to Drive Trains

(a) Forwards induction: Calculation of optimal trajectory using an initial state

.6(b) Forwards inuction: The optimal sate trajectory points lie al
state grid

(a) Forwards induction: Calculation of optimal trajectory using an initial state

.6(b) Forwards inuction: The optimal sate trajectory points lie al
state grid

(a) Forwards induction: Calculation of optimal trajectory using an initial state

.6(b) Forwards inuction: The optimal sate trajectory points lie al

(a) Forwards induction: Calculation of optimal trajectory using an initial state

.6(b) Forwards inuction: The optimal sate trajectory points lie also outside the defined

25

(a) Forwards induction: Calculation of optimal trajectory using an initial state

so outside the defined

25

so outside the defined

3.3 Application to Drive Trains

26

��u�213 = �8�8� (3.10a)

v2<3 = minef w�?��u�2<3, �
, U
@ + �
[* G>?��u�2<3, �
, �
@Hx ,
��u�2<3 ∈ l
, �
 ∈ C

(3.10b)

��u�2< + 13 = >?��u�2<3, ��u�2<3, U
@ (3.10c)

��u� describes the optimal state, v the optimal cost, and ��u� the optimal input

trajectories.

A solution using just the discretized state space points does not need the forward run and

can simply be computed using the cost-to-go map for any initial state. The forward run

reduces the dependency of the solution on the state discretization and offers a more

robust solution.

3.3.2 Computational Complexity

Dynamic programming guarantees a globally optimal solution for a given discretization

of the problem, but poses a high computational complexity. BELLMAN referred to the

computational complexity of implementing the algorithm as the ‘curse of dimensionality’

[7]. Given an application of dynamic programming that optimizes a problem by an

exhaustive search on all possible solutions, the number of computations for the

backwards induction process in a discrete grid is given by:

 Vy,	
y
 = 2V. z{ . |}3. (3.11)

where

 V: number of stages

z: Equally spaced intervals of the state space

�: Number of dimensions for the state space

|: Equally spaced intervals of the input space

~: Number of dimensions for the input space

3.3 Application to Drive Trains

27

Equation 3.11 describes the number of computations for a problem with equally spaced

state intervals and input intervals across the dimensions of state and input respectively

and for all the stages of the problem. A computation refers to evaluation of the

application of control input to the system. Generally, the states and inputs require a

different discretization interval in different dimensions based on the properties and their

influence to the system. Adaptive discretization schemes can also be used that vary the

discretization intervals of the state and input across stages. The general number of

computations in backwards induction can be given by:

 Vy,	
y
 = 7 �� z�8
{

�9* . � |
8
}

9* �Y
89* (3.12)

where

 z�8 : Equally spaced intervals for state dimension � at

stage b
|
8 : Equally spaced intervals for input dimension < at

stage b

The backwards induction process occupies most of the percentage of the computations of

the Dynamic programming algorithm. Compared to this, the forward run has an

exponentially fewer number of computations:

 Vy,��� = 7 �� |
8
}

9* �Y
89* (3.13)

Thus for the complete algorithm, the total number of computations is:

 Vy = 7 �� z�8
{

�9* . � |
8
}

9* �Y
89* + 7 �� |
8

}

9* �Y

89* (3.14)

The cost � is implemented in the form of a matrix of size z{ × V. The matrix must be

saved for the computation of an optimal trajectory from an initial state. The

3.3 Applic

implementation of the matrix also introduces a memory requirement for computer, again

putting a limit on the size of the system.

3.3.3

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

programming to multi

implemented for vessels in th

dimensional

typical multi

State of Charge (SoC) and t

battery current,

The

shown in Figure 3.6

Application

implementation of the matrix also introduces a memory requirement for computer, again

putting a limit on the size of the system.

3.3.3 Optimization of Vessel 2

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

programming to multi

implemented for vessels in th

dimensional systems, which helps avoid a lot of complexities that are associated with

typical multi-dimensional state spaces. The states of Vessel 2

State of Charge (SoC) and t

battery current, brake resistance

 multi-stage decision process for

shown in Figure 3.6

Figure

 to Drive Trains

implementation of the matrix also introduces a memory requirement for computer, again

putting a limit on the size of the system.

Optimization of Vessel 2

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

programming to multi-dimensional systems. The multi

implemented for vessels in th

systems, which helps avoid a lot of complexities that are associated with

dimensional state spaces. The states of Vessel 2

State of Charge (SoC) and t

brake resistance

stage decision process for

shown in Figure 3.6.

Figure 3.7 Projection of a state point on a two

to Drive Trains

implementation of the matrix also introduces a memory requirement for computer, again

putting a limit on the size of the system.

Optimization of Vessel 2

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

dimensional systems. The multi

implemented for vessels in the Power Management Tool is a simpler class of

systems, which helps avoid a lot of complexities that are associated with

dimensional state spaces. The states of Vessel 2

State of Charge (SoC) and the generator

brake resistance current and the generator current.

� = G��������H
stage decision process for the two

.7 Projection of a state point on a two

implementation of the matrix also introduces a memory requirement for computer, again

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

dimensional systems. The multi

e Power Management Tool is a simpler class of

systems, which helps avoid a lot of complexities that are associated with

dimensional state spaces. The states of Vessel 2

he generator on or off

current and the generator current.

H , � = I
the two-dimensional state space of Vessel 2

.7 Projection of a state point on a two

implementation of the matrix also introduces a memory requirement for computer, again

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

dimensional systems. The multi-dimensional state space

e Power Management Tool is a simpler class of

systems, which helps avoid a lot of complexities that are associated with

dimensional state spaces. The states of Vessel 2 are composed of

off state, and the control inputs are the

current and the generator current.

I�	
��	�
����J

dimensional state space of Vessel 2

.7 Projection of a state point on a two-layered state space

implementation of the matrix also introduces a memory requirement for computer, again

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

dimensional state space

e Power Management Tool is a simpler class of

systems, which helps avoid a lot of complexities that are associated with

are composed of

state, and the control inputs are the

current and the generator current.

J
dimensional state space of Vessel 2

layered state space

28

implementation of the matrix also introduces a memory requirement for computer, again

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

dimensional state space

e Power Management Tool is a simpler class of multi

systems, which helps avoid a lot of complexities that are associated with

are composed of the battery

state, and the control inputs are the

(3.15)

dimensional state space of Vessel 2 is

28

implementation of the matrix also introduces a memory requirement for computer, again

The optimization of Vessel 2 is a good demonstration of the application of Dynamic

dimensional state space

multi-

systems, which helps avoid a lot of complexities that are associated with

the battery

state, and the control inputs are the

15)

is

3.4 Issues with Dynamic Programming

29

At every stage, the battery SoC state exists on two layers, one with the generator off and

one with on. As long as the load requirement is satisfied, any state point can project on

any of the two layers. The backwards induction and the forwards run will be executed in

the same method as for Vessel 1, but with a two-dimensional cost-to-go matrix.

3.4 Issues with Dynamic Programming

The biggest and the most notorious issue with dynamic programming is the high number

of computations involved. Even for simple problems, the computations are so high that it

is rarely used as the algorithm for real-time optimal control.

The second issue arises due to the discretization of the state and input space of the

system, which is a requirement of dynamic programming. While Dynamic programming

itself guarantees an optimal solution, the discretization puts a limit on the quality of the

solution. Increasing the discretization, or refining the state and input grid improves the

chances of approaching the true optimal solution of the continuous system, but the

computations increase in a combinatorial fashion, hence the curse of dimensionality.

The next two chapters study the two issues in depth, and investigate methodologies that

aim to reduce the problems associated with discretization and dimensionality.

4.1 Motivation

30

4 Iterative Dynamic Programming

Iterative Dynamic Programming is a variant of the Dynamic programming algorithm that

attempts to optimize a problem through a series of iterations. Based from an initial guess

of the optimal policy, each iteration builds its parameters on the solution of the previous

iteration. The process is repeated until the solution converges.

4.1 Motivation

The motivation behind the iterative approach to Dynamic programming is the

impractically high number of computations. Section 1.3.1 showed the limits that the

computational requirement places on the size and the complexity of the problem. The

three commonly used classical techniques for reducing the dimensionality of problems

have been discussed in [8]. Among the three techniques, this chapter discusses the

method of iteratively computing nominal trajectories. In addition, parallel computing for

Dynamic programming implementation is also considered.

a. Parallel Processing

For the fast and multi-core processors available today, parallel processing is the most

obvious techniques to speed up the process of Dynamic programming. Parallel

Programming can never be fully applied to the problems formulated in this thesis. This is

because the sub-problem for each stage has a dependence on the previously solved sub-

problem. For example, during the backwards induction process in Section 1.3.1, no two

stages can be optimized in parallel, as the optimization problems at each stage have

dependence on the solutions of the future stages.

The computations for one stage can be parallelized. Some programming algorithms for

serial monadic problems (the sub-problems at each stage depend only on the solutions

from the immediately preceding stage) has been suggested in [9]. A generic framework

for implementation of parallel dynamic programming has been offered in [10]. The

4.2 Iterative Reduction of State Space (IDP2)

31

implementation of most published techniques, however, requires significant modification

(if not complete rewriting) of the dpm function implemented in MATLAB.

The MATLAB Parallel Computing Toolbox also offers the feature to assign the sub-

problems of a task to various workers that compute in parallel. The toolbox functions are

also quite easy to integrate with the dpm function. Unfortunately, the generation of

workers and assignment of tasks requires a significant computation time on its own. It

has been observed even for medium sized problems (Vessel 2) that although the parallel

loops reduce the time taken for the computations at each stage, the overhead at the start

of the loop causes the total algorithm time to be about the same or even worse than using

single-thread loops.

b. Iterative Dynamic Programming

The techniques in Iterative Dynamic Programming (IDP) aim to tackle the problem of

high complexity by reducing the search space. Instead of searching in the complete

search space, the region with a high likelihood of containing the optimal solution is

isolated and the search is constrained within this region. The process is carried out

iteratively, and the search region is modified in each iteration based on the solution of the

previous iteration.

Wahl has suggested two methods of Iterative Dynamic Programming to optimize the

speed strategy for a Hybrid Electric Vehicle [4]. The method investigated and

implemented in this thesis is called the iterative reduction of search space, or simply

IDP2.

4.2 Iterative Reduction of State Space (IDP2)

As the name suggests, this method follows a similar iterative pattern as policy iteration,

but also shrinks the search space progressively. This results in a more refined grid in

every iteration. Bellman first proposed the idea in Applied Dynamic programming [7]. A

vast literature can be found on its application in different fields for the reduction of

dimensionality.

4.2 Iterative Reduction of State Space (IDP2)

32

Luus first applied the technique successfully to a multidimensional optimal problem in

chemical engineering [11]. A similar application for optimization of DAE systems can be

found in [12]. The application to Hybrid Electric Vehicle, as well as the implemented

methodology in this thesis, can be found in [4] [13]. The algorithm implemented in this

thesis carries out an iterative reduction of both the state and input space. The stages of the

Iterative Reduction of Search Space algorithm for an V stage process can be formally

described with the following steps [4]:

1. An initial state space is defined.

 l� ∶% ^�� , ���8�� 2<3 ≤ �
� ≤ ��
�� 2<3 ; < = 0, … , V_ (4.4)

For the initial stage, ��8�� and ��
�� represent the physical, or global boundaries

of the system. l� is a discrete grid within the physical bounds. The number of

points z in the grid is set according the desired accuracy and the computation

time. The grid at the first step, therefore, is very coarse representation of the

complete state space.

2. Dynamic programming is applied to the calculated grid to calculate an optimal

policy.

 �
2�
3 ∶= ab/ef ^�?�
, �
, �
@ + �
[*2�′)_��f∈�f� , ef∈�f� , ��∈�f��� (4.5)

3. The search region is reduced.

 ��[* ∶= �. �� (4.6)

The search region �� corresponds to the size of the state space in iteration j. For

one-dimensional space, it is simply the difference between the upper and lower

boundaries in the state space. The reduction factor � controls the reduction of

state and input space.

4. New boundaries around the optimal state trajectory calculated in step 2 are

calculated.

4.2 Iterative Reduction of State Space (IDP2)

33

 ��8��[* ∶= �∗ g ��[*2 (4.7a)

 ��
��[* ∶= �∗ + ��[*2 (4.7b)

5. The state space for the next iteration is calculated using the boundaries.

 l�[* ∶= ^��[*, ���8��[* 2<3 ≤ �
�[* ≤ ��
��[* 2<3 ; < = 0, … , V_ (4.8)

The new state space will be defined around the optimal trajectory calculated

earlier. As this state space is calculated for a grid with a smaller area, discretizing

it with the same number of points z results in a finer grid than before. The new

state space is used for the repetition of step 3. The process is repeated iteratively

until the optimal policy converges.

Figure 4.1 shows the advantage of iterative reduction of search space: refinement of grid

at each iteration without an increase in the number of computations. The function

displayed is the performance function of a system, which displays the optimal solution

for all the set of possible control policies. The optimal performance, termed as the

performance index is the total cost of the optimal cost trajectory. Due to the iterative

refinement of the grid, IDP2 is able to find the global optimum despite the sharp

variations in the performance function.

The displayed function, however, has a generally convex nature despite the variations.

The sub-optimal performance of IDP2 for a non-convex function is exhibited in Figure

4.2. The convergence highly depends on the initial solution. The likelihood of

convergence can also be controlled by the reduction factor. A very high reduction factor

leads to a fast convergence, but has a high chance of converging to sub-optimal solutions.

In contrast, a very low reduction factor has a higher chance of escaping sub-optimal

solutions, but will exhibit a slow rate of convergence.

4.2 Iterative

Figure

Figure

Iterative Reduction of State Space (IDP2)

Figure 4.1 Iterative Reduction of search space on a convex performance function (with small but

Figure 4.2 (a) Convergence of

Reduction of State Space (IDP2)

Iterative Reduction of search space on a convex performance function (with small but

(a) Convergence of IDP2

Reduction of State Space (IDP2)

Iterative Reduction of search space on a convex performance function (with small but
highly frequent variations)

IDP2 with a good inital policy (b) Convergence of
initial policy

Reduction of State Space (IDP2)

Iterative Reduction of search space on a convex performance function (with small but
highly frequent variations)

with a good inital policy (b) Convergence of
initial policy

Iterative Reduction of search space on a convex performance function (with small but
highly frequent variations)

with a good inital policy (b) Convergence of

Iterative Reduction of search space on a convex performance function (with small but

with a good inital policy (b) Convergence of IDP2

34

Iterative Reduction of search space on a convex performance function (with small but

IDP2 with a bad

34

Iterative Reduction of search space on a convex performance function (with small but

with a bad

4.2 Iterative Reduction of State Space (IDP2)

35

Extension to Multi-dimensional Systems

For the Vessels defined in this thesis, the generator states are binary. The state space for

these states cannot be reduced or modified, and the only remaining continuous battery

SoC state makes the IDP2 implementation equivalent to one-dimensional state systems.

The space reduction is also applied to the input space, which is multi-dimensional for

both Vessel 1 and Vessel 2. For numerical implementation of the input space, a

discretized input vector, containing the possible values for the input, must be defined for

each dimension. The search region �� is calculated for each vector separately, as are the

boundaries.

4.2.1 Implementation Issues of IDP2

There are two major issues that arise in the implementation of IDP2. This section

discusses the issues and the proposed solutions.

a. Premature convergence to Local Optima

As the algorithm uses the highly expensive dynamic programming in multiple iterations,

the size of the iterations must be reasonably small. This requires a small number of points

in the state and input grid. Although the grid can be refined even with a small number of

points by reducing its size, the first optimization is always carried out over the complete

state and input space. The highly coarse grid in the first iteration causes high possibility

of the optimal solution to be far away from the global optimum. In such a case, the next

iterations will only search in the neighborhood of the first solution, iteratively reducing

the search space. The global optimum will remain unchecked.

The solution implemented for this problem is that at the expense of extra computations,

the number of grid points in the first iterations is kept relatively high. In fact, this

becomes necessary for the state grid as it is advisable to always observe the minimum

state discretization (introduced in Section 5.3.1). A higher number of grid points

increases the possibility of the first solution in the neighborhood of the global optimum.

For the iterations after the first, the number of grid points can be reset to a smaller

number according to the desired complexity of each iteration.

4.2 Iterative Reduction of State Space (IDP2)

36

b. Progressive deterioration of Optima

The solution of increasing the initial discretization of the problem introduces a new

problem. The coarseness of the grid can be expressed as a function of the number of

points and the grid size:

 ∆�= ∆2/ , �� 3, (4.9)

where / is the number of points in the grid and �� is the size of the initial grid.

Generally, the reduction of the size of the grid at every iteration ensures a less coarseness

as the number of points is kept the same. A higher number of points in the initial grid,

however, might cause the grid in the second iterations to be coarser despite the smaller

size of the grid. It might in fact take several iterations until the grid size is small enough

so that the grid coarseness is less than the initial grid. The iterations in between are

wasted. To avoid this phenomenon, the initial number of points, the number of points for

the remaining iterations and the reduction factor is kept such that:

 ∆2z + �� , �� 3 > ∆2z , ��[* 3, �� = ��, j = 00, j ≥ 1 (4.10)

� corresponds to the extra number of points for the initial grid.

Unfortunately, the problem does not end here. Consider the minima on the performance

functions in Figure 4.3, found by two different grids. The two grids have the same

number of points, but grid 2 has a smaller size and consequently less coarseness. Despite

the less coarseness of grid 2, it returns a poorer result than grid 1. This phenomenon,

discussed in detail in Section 5.2.2, is highly undesirable, as any iteration that does not

improve the previous solution is just wasted computations.

The IDP2 algorithm inherently offers the solution to this problem in Equations (4.7) by

including the solution as a mid-point of the new grid. The calculated grid in is therefore

always centered on the solution point (optimal trajectory point from previous iteration).

This ensures that the next solution is better or at least the same as the previous one.

4.2 Iterative

Figure

c.

Figure

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system.

There are two solutions for this problem:

1.

Iterative Reduction of State Space (IDP2)

Figure 4.3 Evaluation of the optimal policy with two different discretization schemes. A finer grid

c. Loss of Optima near Boundaries

Figure 4.4 demonstrates

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system.

There are two solutions for this problem:

1. Use a stage dependent reduction factor

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be

��
�5 can similarly be used for points near the upper boundary.

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this

also affects the optimal solutions at other stages.

Reduction of State Space (IDP2)

Evaluation of the optimal policy with two different discretization schemes. A finer grid
does not guarantee a better solution

Loss of Optima near Boundaries

demonstrates the problem with the mid

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system.

There are two solutions for this problem:

age dependent reduction factor

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be

can similarly be used for points near the upper boundary.

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this

also affects the optimal solutions at other stages.

Reduction of State Space (IDP2)

Evaluation of the optimal policy with two different discretization schemes. A finer grid
does not guarantee a better solution

Loss of Optima near Boundaries

the problem with the mid

vicinity of the boundary are used as the mid

boundaries might exceed the global boundaries of the system.

There are two solutions for this problem:

age dependent reduction factor

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be

� =
can similarly be used for points near the upper boundary.

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this

also affects the optimal solutions at other stages.

Reduction of State Space (IDP2)

Evaluation of the optimal policy with two different discretization schemes. A finer grid
does not guarantee a better solution

Loss of Optima near Boundaries

the problem with the mid-

vicinity of the boundary are used as the mid-points for the calculation, the new

boundaries might exceed the global boundaries of the system.

There are two solutions for this problem:

age dependent reduction factor �. The stages, for which the optimal state

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

none of the grid boundaries exceed the global bound

the lower boundary, the reduction factor can be

= ���8�5 g�∗���

can similarly be used for points near the upper boundary.

the draw back that the search space is unne

boundaries. Due to the prediction horizon involved in Dynamic programming, this

also affects the optimal solutions at other stages.

Evaluation of the optimal policy with two different discretization schemes. A finer grid
does not guarantee a better solution

-point approach. If the points in the

points for the calculation, the new

boundaries might exceed the global boundaries of the system.

. The stages, for which the optimal state

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

none of the grid boundaries exceed the global boundary. For an optimal point near

the lower boundary, the reduction factor can be

�

can similarly be used for points near the upper boundary.

the draw back that the search space is unnecessarily reduced at points near

boundaries. Due to the prediction horizon involved in Dynamic programming, this

also affects the optimal solutions at other stages.

Evaluation of the optimal policy with two different discretization schemes. A finer grid

point approach. If the points in the

points for the calculation, the new

. The stages, for which the optimal state

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

ary. For an optimal point near

can similarly be used for points near the upper boundary. This method has

cessarily reduced at points near

boundaries. Due to the prediction horizon involved in Dynamic programming, this

37

Evaluation of the optimal policy with two different discretization schemes. A finer grid

point approach. If the points in the

points for the calculation, the new

. The stages, for which the optimal state

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

ary. For an optimal point near

(3.11)

This method has

cessarily reduced at points near

boundaries. Due to the prediction horizon involved in Dynamic programming, this

37

Evaluation of the optimal policy with two different discretization schemes. A finer grid

point approach. If the points in the

points for the calculation, the new

. The stages, for which the optimal state

lies near boundaries should have a large reduction factor. This would result in a

grid so small that when centered on an optimal point near the global boundary,

ary. For an optimal point near

11)

This method has

cessarily reduced at points near

boundaries. Due to the prediction horizon involved in Dynamic programming, this

4.2 Iterative

2.

Figure

3.

Iterative Reduction of State Space (IDP2)

2. Chip off any grid boundary that exceeds the global boundary. This would result in

a grid that is no longer centered around the optimal trajectory near the boundaries.

This brings about the problem again that the new solution has

than in the previous iteration, as the previous solution point is no longer a grid

point near the

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

points until one of the points match

points required to match it with the discretized grid could go very high.

Figure 4.4 A search region defined around an optimal trajectory can exceed the physic

3. In addition to chipping off the grid boundary that exceeds the global boundary,

adjust the grid until

has been found to be the most useful and has implemented by the nam

adjustment algorithm.

Reduction of State Space (IDP2)

Chip off any grid boundary that exceeds the global boundary. This would result in

hat is no longer centered around the optimal trajectory near the boundaries.

This brings about the problem again that the new solution has

than in the previous iteration, as the previous solution point is no longer a grid

point near the boundaries. The dpm function only allows the definition of a

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

points until one of the points match

points required to match it with the discretized grid could go very high.

A search region defined around an optimal trajectory can exceed the physic

In addition to chipping off the grid boundary that exceeds the global boundary,

adjust the grid until one of the grid points matches the optimal point. This method

has been found to be the most useful and has implemented by the nam

adjustment algorithm.

Reduction of State Space (IDP2)

Chip off any grid boundary that exceeds the global boundary. This would result in

hat is no longer centered around the optimal trajectory near the boundaries.

This brings about the problem again that the new solution has

than in the previous iteration, as the previous solution point is no longer a grid

boundaries. The dpm function only allows the definition of a

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

points until one of the points match

points required to match it with the discretized grid could go very high.

A search region defined around an optimal trajectory can exceed the physic
of the system

In addition to chipping off the grid boundary that exceeds the global boundary,

one of the grid points matches the optimal point. This method

has been found to be the most useful and has implemented by the nam

adjustment algorithm.

Reduction of State Space (IDP2)

Chip off any grid boundary that exceeds the global boundary. This would result in

hat is no longer centered around the optimal trajectory near the boundaries.

This brings about the problem again that the new solution has

than in the previous iteration, as the previous solution point is no longer a grid

boundaries. The dpm function only allows the definition of a

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

points until one of the points matches the previous solution point. T

points required to match it with the discretized grid could go very high.

A search region defined around an optimal trajectory can exceed the physic
of the system

In addition to chipping off the grid boundary that exceeds the global boundary,

one of the grid points matches the optimal point. This method

has been found to be the most useful and has implemented by the nam

Chip off any grid boundary that exceeds the global boundary. This would result in

hat is no longer centered around the optimal trajectory near the boundaries.

This brings about the problem again that the new solution has

than in the previous iteration, as the previous solution point is no longer a grid

boundaries. The dpm function only allows the definition of a

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

es the previous solution point. T

points required to match it with the discretized grid could go very high.

A search region defined around an optimal trajectory can exceed the physic

In addition to chipping off the grid boundary that exceeds the global boundary,

one of the grid points matches the optimal point. This method

has been found to be the most useful and has implemented by the nam

Chip off any grid boundary that exceeds the global boundary. This would result in

hat is no longer centered around the optimal trajectory near the boundaries.

This brings about the problem again that the new solution has may be

than in the previous iteration, as the previous solution point is no longer a grid

boundaries. The dpm function only allows the definition of a

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

es the previous solution point. The number of

points required to match it with the discretized grid could go very high.

A search region defined around an optimal trajectory can exceed the physic

In addition to chipping off the grid boundary that exceeds the global boundary,

one of the grid points matches the optimal point. This method

has been found to be the most useful and has implemented by the nam

38

Chip off any grid boundary that exceeds the global boundary. This would result in

hat is no longer centered around the optimal trajectory near the boundaries.

may be being worse

than in the previous iteration, as the previous solution point is no longer a grid

boundaries. The dpm function only allows the definition of a

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

he number of

points required to match it with the discretized grid could go very high.

A search region defined around an optimal trajectory can exceed the physical bounds

In addition to chipping off the grid boundary that exceeds the global boundary,

one of the grid points matches the optimal point. This method

has been found to be the most useful and has implemented by the name of grid

38

Chip off any grid boundary that exceeds the global boundary. This would result in

hat is no longer centered around the optimal trajectory near the boundaries.

being worse

than in the previous iteration, as the previous solution point is no longer a grid

boundaries. The dpm function only allows the definition of a

uniform grid (equally spaced grid points). Thus the only way to include the

previous solution point as one of the grid point is to increase the number of grid

he number of

al bounds

In addition to chipping off the grid boundary that exceeds the global boundary,

one of the grid points matches the optimal point. This method

grid

4.2 Iterative Reduction of State Space (IDP2)

39

4.2.2 Grid Adjustment

The grid adjustment algorithm is applied to every point in the optimal state and input

trajectories that lies close to the boundary. It is summarized in Algorithm 1. The

threshold and the maximum number of grid points can be defined by the user. With every

point, the information of whether it lies near the upper or the lower boundary is also

needed. For the lower boundary, the algorithm will only shift the grid upwards, and vice

versa. Therefore for an optimal point near the lower boundary, the difference considered

is the minimum difference of the point from a grid point that lies below it, and the grid

can only be shifted upwards. Similarly, the minimum difference considered for an

optimal point near the upper boundary is only from the grid points above it. If the

difference is less than the defined threshold, the grid is simply shifted by the difference.

Otherwise, new points are added in the grid until the difference is less than the threshold.

Algorithm 1 Grid Adjustment

1. procedure GridAdjust(xSol,grid,mode)

2. thresh ← acceptable shifting of the grid

3. n ← number of points in the grid

4. nMax ← maximum number of points allowed

5. if mode % up then

6. diff ← positive difference of xSol from the closest grid point above it

7. if mode % down then

8. diff ← negative difference of xSol from the closest grid point below it

9. loop:

10. if diff ≤ thresh then

11. grid ← grid + diff

12. return grid

13. if diff > thresh then

14. n ← n + 2

15. grid ← generate grid with n points

16. if n > nMax then

17. break;

18. goto loop

4.2 Iterative Reduction of State Space (IDP2)

40

The grid adjustment does not always guarantee the improvement of solutions. It is

possible that despite increasing the number of points to the maximum, the minimum

difference between the grid points and the previous solution point is greater than the

defined threshold. Based on the range of the state and input space, the threshold and

maximum grid points can be defined separately by the user for each state and input to

maximize the chances of the convergence of the grid adjustment algorithm.

Optimality of IDP2

As the first iteration searches the complete search space, IDP2, similar to regular

dynamic programming can guarantee the global optimum of the problem under the initial

discretization. Further iterations have a high chance of improving the solution due to the

grid adjustment algorithm. To be shown in Section 6.2, the final solution of IDP2 far

exceeds the initial solution for the defined test cases.

5.1 Sources of Error

41

5 Errors in Dynamic Programming

Section 3.3.1 discusses the curse of dimensionality associated with the application of

dynamic programming due to discretization. The errors associated with discrete dynamic

programming that cause the solution to diverge from the global optimum were raised by

Bellman himself [7], and are generally considered in most applications that use dynamic

programming. The intuitive deduction is that the optimal solution for the discretized

space will approach the true solution, i.e., the solution with a continuous space, as the

number of points in the discretization grid increases. This convergence of discretization

procedures has also theoretically been proven in [14] and [15], under the assumptions of

a smooth cost function. Even though no analytical models are included for the systems

discussed in this thesis, the assumptions of smoothness can be extended to the cost

functions and thus the convergence of discretization can be assumed. This chapter

discusses the errors of both the input and state discretization in context of Marine Drive

Systems and the implemented dpm function.

5.1 Sources of Error

The backwards induction method for a discretized state and input space was formulated

as such in Section 3.3.1.

 �
?�
@ % ab/ef ^�?�YR*8 , �
, �
@ + �
[*2�′)_ (5.1a)

 �
?�
@ % ab/ef ^θ(�YR*8 , �
, �
, �′)_ (5.1b)

A new term, the total cost θ is introduced in this chapter, which helps in the study of

numerical errors. Error at stage < is the difference of the solution of Equation (5.1) from

the true solution. There are two sources of error in Equation (5.1):

1. Error in Greedy Cost: The cost function �, also called the greedy cost in context

of optimization problems should be well represented by the state-input space. The

5.2 Error in Greedy Cost

42

discretization of the continuous state and control input variables � and � limits the

search on the functions to a set of finite points. The higher the discretization, the

higher is the probability of containing the globally optimum points as one of the

search points.

2. Error in Cost-to-Go: The error of representation also exists for the cost-to-go �
[*. In addition, this function exhibits an error of interpolation. As the cost-to-go

�
[* is saved only for the discrete state space �
[* ∈ B
[*, the cost-to-go for the

continous variable �′ is calculated using linear interpolation. This introduces an

error for a non-linear cost-to-go function.

All of the above sources of errors cause the total cost θ to be misrepresented in

comparison to the true total cost, which results in the estimation of false minima.

5.2 Error in Greedy Cost

For an V stage problem, Equation (5.1) for the second last stage V − 1 is reduced to:

 �YR*?�YR*8 @ % ab/ef ^�?�YR*8 , �YR*, �YR*@_ |�YR*8 ∈ BYR*, �YR* ∈ CYR* (5.2)

There is no cost-to-go defined for stage N, therefore only the greedy cost needs to be

optimized. The dpm function optimizes Equation (5.2) by running an exhaustive search

on the cost of all the feasible control inputs �YR* on the state point �YR*8 . The exhaustive

search takes the form of a projection on the fuel consumption function. In Figure 5.1, the

projected search region consists of the three marked points on the fuel consumption

curve.

5.2.1 Greedy Cost Dependence on Experiment Variables

The fuel consumption is not a function of the control inputs, rather the current that the

generator must supply to satisfy the load requirement. However the load requirement,

states and inputs related to non-generator components influence the generator demand

and consequently the greedy cost.

5.2 Error

The DC grid equation for a vessel containing one generator state is:

The demand on the generators can be defined as:

Any parameters of the system that influence

consumption.

discussed in the following sections.

a.

For a system with one generator state

on the greedy cost:

Error in Greedy Cost

The DC grid equation for a vessel containing one generator state is:

The demand on the generators can be defined as:

Any parameters of the system that influence

consumption. The dependence of fuel consumption o

discussed in the following sections.

a. Dependence on Inputs

For a system with one generator state

on the greedy cost:

in Greedy Cost

Figure 5.1

The DC grid equation for a vessel containing one generator state is:

��
The demand on the generators can be defined as:

Any parameters of the system that influence

The dependence of fuel consumption o

discussed in the following sections.

Dependence on Inputs

For a system with one generator state

on the greedy cost:

1 Greedy Cost representation by the input grid

The DC grid equation for a vessel containing one generator state is:

�5 + ��* + �	
�
The demand on the generators can be defined as:

		�	
� 6 �	�

⇒����
��

Any parameters of the system that influence

The dependence of fuel consumption o

discussed in the following sections.

Dependence on Inputs

For a system with one generator state (Vessel 2)

Greedy Cost representation by the input grid

The DC grid equation for a vessel containing one generator state is:

	
� 6 �	�
 6
The demand on the generators can be defined as:

	�
 6 ���
� = �

���
�� = −2��5 6
Any parameters of the system that influence ����
��

The dependence of fuel consumption o

(Vessel 2), the inputs have the following influence

Greedy Cost representation by the input grid

The DC grid equation for a vessel containing one generator state is:

���
� = 0

����
��

6 ��*3

���
�� will have an influence on the fuel

The dependence of fuel consumption on the state, inputs and load cycle is

, the inputs have the following influence

Greedy Cost representation by the input grid

The DC grid equation for a vessel containing one generator state is:

will have an influence on the fuel

n the state, inputs and load cycle is

, the inputs have the following influence

43

(5.3a)

(5.3b)

(5.3c)

will have an influence on the fuel

n the state, inputs and load cycle is

, the inputs have the following influence

43

3a)

3b)

3c)

will have an influence on the fuel

n the state, inputs and load cycle is

, the inputs have the following influence

5.2 Error in Greedy Cost

44

• The input �	�
 for the brake resistance is generally the same as �	�
. Therefore

����
�� ∝ �	�
.

• The relation between �	
� and �	
� depends on the efficiency of the battery

converter. The cases considered in this study assume the efficiency to be constant.

Therefore �	
�=α�	
�, where α is the constant efficiency. ����
�� ∝ �	
�.
• The inputs for the generator ��* also influences the grid current ��* based on the

converter efficiency of the generator. This is also assumed to be constant for all

cases in this study. Again ��*=β��*, where β is the constant efficiency.

Therefore ����
�� ∝ ��*.

The three discretized inputs form an input grid, which is the set of all the possible input

combinations that are feasible for the state point. Each node in the grid is associated with

a greedy cost, and the set of all greedy costs form the search region on the fuel

consumption function. Input grid discretization determines the resolution of the search

region on the fuel consumption function. A finer discretization of the input grid

corresponds to a higher resolution of the search region, which increases the probability of

finding the optimal point with an exhaustive search.

b. Dependence on States and Load Cycle

• In a real battery, the battery state, the state of charge (SoC) influences the

efficiency of the battery. This changes the relationship of the DC current �	
� to

the applied input �	
�. The battery state SoC will therefore influence ����
��,

which limits the choice of control inputs that satisfy the load requirement.

• For the optimization experiments in this study, the battery model implemented is

simplified and a constant efficiency is assumed. For most battery SoC points, the

feasible control inputs remain the same. As the control inputs correspond to the

greedy cost, each state point has the same search region on the fuel consumption

function, as shown in Figure 5.2. At boundaries however, the available control

inputs are limited, which shrinks the search region. For example, battery SoC at

0% cannot discharge any further, and any negative control inputs are infeasible.

5.2 Error

•

•

5.2.2

The difference between the

cost and the continuous search region on the greedy cost

Generally, a finer input discretization leads to a search region with high resolution, which

increases the probability of reducing the representation erro

is not guaranteed

figures show the function represented for three different discretizations. The first figure

shows the minimum obtained by a reference discret

second has a discretization better than

Error in Greedy Cost

 The generator states are binary states, indicating the switching action of a

generator. Switching a generator on incurs a

Figure 5.2

 The load cycle contributes directly to

the next. For every stage, the load cycle can be considered as on offset to the

search region.

5.2.2 Representation error of Greedy Cost

The difference between the

cost and the continuous search region on the greedy cost

Generally, a finer input discretization leads to a search region with high resolution, which

increases the probability of reducing the representation erro

is not guaranteed

figures show the function represented for three different discretizations. The first figure

shows the minimum obtained by a reference discret

second has a discretization better than

in Greedy Cost

The generator states are binary states, indicating the switching action of a

generator. Switching a generator on incurs a

2 Projection on the greedy cost from different state points within a stage

The load cycle contributes directly to

the next. For every stage, the load cycle can be considered as on offset to the

search region.

Representation error of Greedy Cost

The difference between the optimal point in the discretized search regio

cost and the continuous search region on the greedy cost

Generally, a finer input discretization leads to a search region with high resolution, which

increases the probability of reducing the representation erro

is not guaranteed. Consider the cost consumption function

figures show the function represented for three different discretizations. The first figure

shows the minimum obtained by a reference discret

second has a discretization better than

The generator states are binary states, indicating the switching action of a

generator. Switching a generator on incurs a

Projection on the greedy cost from different state points within a stage

The load cycle contributes directly to

the next. For every stage, the load cycle can be considered as on offset to the

Representation error of Greedy Cost

optimal point in the discretized search regio

cost and the continuous search region on the greedy cost

Generally, a finer input discretization leads to a search region with high resolution, which

increases the probability of reducing the representation erro

. Consider the cost consumption function

figures show the function represented for three different discretizations. The first figure

shows the minimum obtained by a reference discret

second has a discretization better than ∆

(stages)

The generator states are binary states, indicating the switching action of a

generator. Switching a generator on incurs a penalty in the fuel consumption.

Projection on the greedy cost from different state points within a stage

The load cycle contributes directly to ����
��
the next. For every stage, the load cycle can be considered as on offset to the

Representation error of Greedy Cost

optimal point in the discretized search regio

cost and the continuous search region on the greedy cost

Generally, a finer input discretization leads to a search region with high resolution, which

increases the probability of reducing the representation erro

. Consider the cost consumption function

figures show the function represented for three different discretizations. The first figure

shows the minimum obtained by a reference discret

∆�, but is reduced by a non

The generator states are binary states, indicating the switching action of a

penalty in the fuel consumption.

Projection on the greedy cost from different state points within a stage

���
�� , but only varies from one stage to

the next. For every stage, the load cycle can be considered as on offset to the

Representation error of Greedy Cost

optimal point in the discretized search regio

cost and the continuous search region on the greedy cost is the

Generally, a finer input discretization leads to a search region with high resolution, which

increases the probability of reducing the representation error. A better solution

. Consider the cost consumption functions in Figure

figures show the function represented for three different discretizations. The first figure

shows the minimum obtained by a reference discretization ∆� (

, but is reduced by a non

The generator states are binary states, indicating the switching action of a

penalty in the fuel consumption.

Projection on the greedy cost from different state points within a stage

, but only varies from one stage to

the next. For every stage, the load cycle can be considered as on offset to the

optimal point in the discretized search region on the greedy

is the representation error.

Generally, a finer input discretization leads to a search region with high resolution, which

A better solution

in Figure 5.

figures show the function represented for three different discretizations. The first figure

(shown by a circle

, but is reduced by a non-integer factor. The

45

The generator states are binary states, indicating the switching action of a

penalty in the fuel consumption.

Projection on the greedy cost from different state points within a stage

, but only varies from one stage to

the next. For every stage, the load cycle can be considered as on offset to the

n on the greedy

representation error.

Generally, a finer input discretization leads to a search region with high resolution, which

A better solution, however,

5.3. The three

figures show the function represented for three different discretizations. The first figure

shown by a circle). The

integer factor. The

45

The generator states are binary states, indicating the switching action of a

, but only varies from one stage to

the next. For every stage, the load cycle can be considered as on offset to the

n on the greedy

representation error.

Generally, a finer input discretization leads to a search region with high resolution, which

, however,

3. The three

figures show the function represented for three different discretizations. The first figure

. The

integer factor. The

5.2 Error

original grid points are displaced, and the calculated minimum (shown by a triangle) is

actually worse. The third figure reduces

will remain in the new grid, which will result in a minima better or at least equal to the

one obtained with the original grid (shown by square).

Improving the discretization by a non

of obtaining a better solution. The fact is crucial in the study of discretization

convergence

The gr

��8�

the representation error, which only depends on t

For the simplified battery model implemented throughout this study, every state point

�
[*8

relevant for improving the

Error in Greedy Cost

original grid points are displaced, and the calculated minimum (shown by a triangle) is

actually worse. The third figure reduces

will remain in the new grid, which will result in a minima better or at least equal to the

obtained with the original grid (shown by square).

Improving the discretization by a non

of obtaining a better solution. The fact is crucial in the study of discretization

convergence.

Figure

greedy cost function can be formulated to include

 refers to the global solution on the search space projected by

representation error, which only depends on t

For the simplified battery model implemented throughout this study, every state point

 will project on the same search region. Therefore, the state discretization is not

relevant for improving the

in Greedy Cost

original grid points are displaced, and the calculated minimum (shown by a triangle) is

actually worse. The third figure reduces

will remain in the new grid, which will result in a minima better or at least equal to the

obtained with the original grid (shown by square).

Improving the discretization by a non

of obtaining a better solution. The fact is crucial in the study of discretization

Figure 5.3 Representation errors from different discretization schemes

eedy cost function can be formulated to include

�?	�YR*8

refers to the global solution on the search space projected by

representation error, which only depends on t

For the simplified battery model implemented throughout this study, every state point

will project on the same search region. Therefore, the state discretization is not

relevant for improving the representation error

original grid points are displaced, and the calculated minimum (shown by a triangle) is

actually worse. The third figure reduces

will remain in the new grid, which will result in a minima better or at least equal to the

obtained with the original grid (shown by square).

Improving the discretization by a non-integer factor theref

of obtaining a better solution. The fact is crucial in the study of discretization

Representation errors from different discretization schemes

eedy cost function can be formulated to include

? *, �YR*, �YR
refers to the global solution on the search space projected by

representation error, which only depends on t

For the simplified battery model implemented throughout this study, every state point

will project on the same search region. Therefore, the state discretization is not

representation error

original grid points are displaced, and the calculated minimum (shown by a triangle) is

actually worse. The third figure reduces ∆� by an integer factor of

will remain in the new grid, which will result in a minima better or at least equal to the

obtained with the original grid (shown by square).

integer factor theref

of obtaining a better solution. The fact is crucial in the study of discretization

Representation errors from different discretization schemes

eedy cost function can be formulated to include

R*@ = 	��8� 6

refers to the global solution on the search space projected by

representation error, which only depends on the input discretization.

For the simplified battery model implemented throughout this study, every state point

will project on the same search region. Therefore, the state discretization is not

representation error.

original grid points are displaced, and the calculated minimum (shown by a triangle) is

by an integer factor of

will remain in the new grid, which will result in a minima better or at least equal to the

obtained with the original grid (shown by square).

integer factor therefore only

of obtaining a better solution. The fact is crucial in the study of discretization

Representation errors from different discretization schemes

eedy cost function can be formulated to include the represntation

6 ¤��u� 2∆�YR
refers to the global solution on the search space projected by

he input discretization.

For the simplified battery model implemented throughout this study, every state point

will project on the same search region. Therefore, the state discretization is not

original grid points are displaced, and the calculated minimum (shown by a triangle) is

by an integer factor of 2. The original points

will remain in the new grid, which will result in a minima better or at least equal to the

only increases the

of obtaining a better solution. The fact is crucial in the study of discretization

Representation errors from different discretization schemes

the represntation error as:

R*3

refers to the global solution on the search space projected by �YR*8 . ¤
he input discretization.

For the simplified battery model implemented throughout this study, every state point

will project on the same search region. Therefore, the state discretization is not

46

original grid points are displaced, and the calculated minimum (shown by a triangle) is

The original points

will remain in the new grid, which will result in a minima better or at least equal to the

increases the chances

of obtaining a better solution. The fact is crucial in the study of discretization

Representation errors from different discretization schemes

error as:

(5.4)

¤��u� refers to

For the simplified battery model implemented throughout this study, every state point

will project on the same search region. Therefore, the state discretization is not

46

original grid points are displaced, and the calculated minimum (shown by a triangle) is

The original points

will remain in the new grid, which will result in a minima better or at least equal to the

chances

of obtaining a better solution. The fact is crucial in the study of discretization

4)

refers to

For the simplified battery model implemented throughout this study, every state point

will project on the same search region. Therefore, the state discretization is not

5.3 Error in Cost-to-go

47

Propagation of Error

For an V stage problem, Equation (5.1) for the stage V − 2 is:

 �YR0?�YR08 @ = ab/ef ^�?	�YR0
8 , �YR0, �YR0@ 6 �YR*?�′@_ (5.5a)

 �YR0?�YR08 @ = ab/ef ^θ2�YR0, ��¥¦§ , ��¥¦§ , �′3_ (5.5b)

The cost-to-go �YR* will be computed with a representation error:

 �YR*?�YR*8 @ = ��8� 6 ¤��u� 2∆�YR*3 (5.6)

Thus the representation error propagates the next stage. Unlike stage V − 1, the objective

at stage V − 2 is not to find the optimum on the greedy cost �, but the total cost θ. In

addition to the representation of the greedy cost, the cost-to-go should also be well

represented.

5.3 Error in Cost-to-go

5.3.1 Representation error of Cost-to-go

As shown in Figure 5.4, each state point �YR08 also projects a search region on the cost-to-

go function. In this case, the resultant state from a control input, �= = >2�
, �
3, rather

than the control input itself, corresponds to a point on the cost-to-go function. Therefore

unlike the greedy cost, each state point �
8 has a different projection on the cost-to-go

function for the same set of control inputs.

The principle for the control input discretization works the same way as the greedy cost.

A fine input grid results in a projection of a high resolution search region on the cost-to-

go function, which increases the probability of finding the true optimum.

The objective function for minimization in Equation 5.5 is not just the greedy cost or the

cost-to-go, but the sum of both. Changing the state discretization will result in the same

set of greedy cost search regions, but different cost-to-go search regions. Therefore, the

5.3 Error

state disc

The representation error can therefore be formulated for stage

θ�8�

discretization.

discrete search space

¤��u¨

function, and therefore depends on both the input and state discretization.

representation er

The discussion of state discretization also brings about a spec

errors discussed in the next section, which can be

discretization.

Error in Cost

state discretization also has an effect in the representation error on the total cost function.

The representation error can therefore be formulated for stage

θ?�YR08 , �Y
 refers to the true optimum on the total cost function, without any errors of

discretization. ¤��u¨
discrete search space

 depends on the misrepresentation of both the greedy cost and the cost

function, and therefore depends on both the input and state discretization.

representation error from the previous step

The discussion of state discretization also brings about a spec

errors discussed in the next section, which can be

discretization.

in Cost-to-go

retization also has an effect in the representation error on the total cost function.

The representation error can therefore be formulated for stage

YR0, �YR0, �=

refers to the true optimum on the total cost function, without any errors of

��u¨ is the representation error on

discrete search space on total cost from the global minima of the continuous search space.

depends on the misrepresentation of both the greedy cost and the cost

function, and therefore depends on both the input and state discretization.

ror from the previous step

Figure 5.4

The discussion of state discretization also brings about a spec

errors discussed in the next section, which can be

retization also has an effect in the representation error on the total cost function.

The representation error can therefore be formulated for stage

=@ = 	θ�8� 6

refers to the true optimum on the total cost function, without any errors of

is the representation error on

on total cost from the global minima of the continuous search space.

depends on the misrepresentation of both the greedy cost and the cost

function, and therefore depends on both the input and state discretization.

ror from the previous step

4 Cost-to-go representation by the input grid

The discussion of state discretization also brings about a spec

errors discussed in the next section, which can be

retization also has an effect in the representation error on the total cost function.

The representation error can therefore be formulated for stage

6 ¤��u¨ ?∆�YR
refers to the true optimum on the total cost function, without any errors of

is the representation error on θ , the dif

on total cost from the global minima of the continuous search space.

depends on the misrepresentation of both the greedy cost and the cost

function, and therefore depends on both the input and state discretization.

ror from the previous step ¤��u� is also propagated to the solution.

representation by the input grid

The discussion of state discretization also brings about a spec

errors discussed in the next section, which can be

retization also has an effect in the representation error on the total cost function.

The representation error can therefore be formulated for stage V

? R0, ∆�YR0@ 6

refers to the true optimum on the total cost function, without any errors of

, the difference of the minima of the

on total cost from the global minima of the continuous search space.

depends on the misrepresentation of both the greedy cost and the cost

function, and therefore depends on both the input and state discretization.

is also propagated to the solution.

representation by the input grid

The discussion of state discretization also brings about a spec

 avoided by setting a

retization also has an effect in the representation error on the total cost function.

− 2 as:

@ 6 ¤��u� 2∆�YR
refers to the true optimum on the total cost function, without any errors of

ference of the minima of the

on total cost from the global minima of the continuous search space.

depends on the misrepresentation of both the greedy cost and the cost

function, and therefore depends on both the input and state discretization.

is also propagated to the solution.

representation by the input grid

The discussion of state discretization also brings about a special case of discretization

avoided by setting a minimum state

48

retization also has an effect in the representation error on the total cost function.

R*3 (5.8)

refers to the true optimum on the total cost function, without any errors of

ference of the minima of the

on total cost from the global minima of the continuous search space.

depends on the misrepresentation of both the greedy cost and the cost-to-go

function, and therefore depends on both the input and state discretization. The

is also propagated to the solution.

ial case of discretization

minimum state

48

retization also has an effect in the representation error on the total cost function.

8)

refers to the true optimum on the total cost function, without any errors of

ference of the minima of the

on total cost from the global minima of the continuous search space.

go

The

ial case of discretization

minimum state

5.3 Error

Minimum State Discretization

The representation of the cost

points

cost-to

This can cause major errors in optimization, as the minimum on the total cost

in the unsearched area.

and a

Thus for any stage

The equation above

state.

Error in Cost

Minimum State Discretization

he representation of the cost

points is shown in Figure 5.5

to-go is left un

This can cause major errors in optimization, as the minimum on the total cost

in the unsearched area.

and a minimum state discretization

Figure

Thus for any stage

The equation above

. The state and input parameters must be set such that a discretized SoC

in Cost-to-go

Minimum State Discretization

he representation of the cost

s shown in Figure 5.5

go is left un-searched, even with infinite input discretization.

This can cause major errors in optimization, as the minimum on the total cost

in the unsearched area. This phenomenon should be avoided to avoid loss of information,

minimum state discretization

Figure 5.5 Represent

Thus for any stage <, the state should be discretized such that

The equation above is only re

he state and input parameters must be set such that a discretized SoC

Minimum State Discretization

he representation of the cost-to-go for the exhaustive searches of two consecutive state

s shown in Figure 5.5. With the state discretization in the figure, a region of the

searched, even with infinite input discretization.

This can cause major errors in optimization, as the minimum on the total cost

This phenomenon should be avoided to avoid loss of information,

minimum state discretization should be observed at every stage.

Representation of cost

, the state should be discretized such that

>2�
8 , ��
�
>2�
8 , �

is only relevant for the battery SoC

he state and input parameters must be set such that a discretized SoC

go for the exhaustive searches of two consecutive state

. With the state discretization in the figure, a region of the

searched, even with infinite input discretization.

This can cause major errors in optimization, as the minimum on the total cost

This phenomenon should be avoided to avoid loss of information,

should be observed at every stage.

ation of cost-to-go with a poorly discretized state grid

, the state should be discretized such that

�
�, U3 � �
��8�, U3 � �

levant for the battery SoC

he state and input parameters must be set such that a discretized SoC

go for the exhaustive searches of two consecutive state

. With the state discretization in the figure, a region of the

searched, even with infinite input discretization.

This can cause major errors in optimization, as the minimum on the total cost

This phenomenon should be avoided to avoid loss of information,

should be observed at every stage.

go with a poorly discretized state grid

, the state should be discretized such that

�
8[*

�
8R*

levant for the battery SoC as it is the only discretizable

he state and input parameters must be set such that a discretized SoC

go for the exhaustive searches of two consecutive state

. With the state discretization in the figure, a region of the

searched, even with infinite input discretization.

This can cause major errors in optimization, as the minimum on the total cost

This phenomenon should be avoided to avoid loss of information,

should be observed at every stage.

go with a poorly discretized state grid

as it is the only discretizable

he state and input parameters must be set such that a discretized SoC

49

go for the exhaustive searches of two consecutive state

. With the state discretization in the figure, a region of the

This can cause major errors in optimization, as the minimum on the total cost θ might lie

This phenomenon should be avoided to avoid loss of information,

go with a poorly discretized state grid

(5.7a)

(5.7b)

as it is the only discretizable

he state and input parameters must be set such that a discretized SoC point can be

49

go for the exhaustive searches of two consecutive state

. With the state discretization in the figure, a region of the

might lie

This phenomenon should be avoided to avoid loss of information,

7a)

7b)

as it is the only discretizable

can be

5.3 Error

charged or discharged to the

to-go function

the control input discretization.

Satisfying the minimum state discretization does not eliminate the dependency of

representation error on state discretization.

5.3.2

In addition to representation errors, the cost

interpolation in Equation 5.5. This error is demonstrated in

The figure

using a generator with linear fuel consumption characteristics. The first discretization

scheme is assumed to be infinite, and the cost

function (continuous line).The second discretization scheme sets the state interval at

10%, but the cost

(asterisks). The cost

interpolation from discretized points is also shown (dotted line). Despite the absence of

(g
)

Error in Cost

charged or discharged to the

go function. The resolution of the search region can then be improved by increasing

the control input discretization.

Satisfying the minimum state discretization does not eliminate the dependency of

representation error on state discretization.

5.3.2 Interpolation error in

In addition to representation errors, the cost

interpolation in Equation 5.5. This error is demonstrated in

The figure shows the calculated cost

using a generator with linear fuel consumption characteristics. The first discretization

scheme is assumed to be infinite, and the cost

function (continuous line).The second discretization scheme sets the state interval at

10%, but the cost

(asterisks). The cost

interpolation from discretized points is also shown (dotted line). Despite the absence of

in Cost-to-go

charged or discharged to the

The resolution of the search region can then be improved by increasing

the control input discretization.

Satisfying the minimum state discretization does not eliminate the dependency of

representation error on state discretization.

Interpolation error in

In addition to representation errors, the cost

interpolation in Equation 5.5. This error is demonstrated in

Figure

shows the calculated cost

using a generator with linear fuel consumption characteristics. The first discretization

scheme is assumed to be infinite, and the cost

function (continuous line).The second discretization scheme sets the state interval at

10%, but the cost-to-go calculated at the state points is without any representation error

(asterisks). The cost-to-go function calculated for t

interpolation from discretized points is also shown (dotted line). Despite the absence of

charged or discharged to the adjacent points

The resolution of the search region can then be improved by increasing

the control input discretization.

Satisfying the minimum state discretization does not eliminate the dependency of

representation error on state discretization.

Interpolation error in Cost

In addition to representation errors, the cost

interpolation in Equation 5.5. This error is demonstrated in

Figure 5.6 Interpolation e

shows the calculated cost-to-go at stage

using a generator with linear fuel consumption characteristics. The first discretization

scheme is assumed to be infinite, and the cost

function (continuous line).The second discretization scheme sets the state interval at

go calculated at the state points is without any representation error

go function calculated for t

interpolation from discretized points is also shown (dotted line). Despite the absence of

points. This allows the search of the complete

The resolution of the search region can then be improved by increasing

Satisfying the minimum state discretization does not eliminate the dependency of

representation error on state discretization.

Cost-to-go

In addition to representation errors, the cost-to-go

interpolation in Equation 5.5. This error is demonstrated in

Interpolation error in cost

go at stage V
using a generator with linear fuel consumption characteristics. The first discretization

scheme is assumed to be infinite, and the cost-to

function (continuous line).The second discretization scheme sets the state interval at

go calculated at the state points is without any representation error

go function calculated for the remaining state space, using linear

interpolation from discretized points is also shown (dotted line). Despite the absence of

. This allows the search of the complete

The resolution of the search region can then be improved by increasing

Satisfying the minimum state discretization does not eliminate the dependency of

go �YR* will also introduce errors of

interpolation in Equation 5.5. This error is demonstrated in Figure

rror in cost-to-go

V − 1 for two discretization schemes,

using a generator with linear fuel consumption characteristics. The first discretization

to-go calcul

function (continuous line).The second discretization scheme sets the state interval at

go calculated at the state points is without any representation error

he remaining state space, using linear

interpolation from discretized points is also shown (dotted line). Despite the absence of

. This allows the search of the complete

The resolution of the search region can then be improved by increasing

Satisfying the minimum state discretization does not eliminate the dependency of

will also introduce errors of

Figure 5.6.

for two discretization schemes,

using a generator with linear fuel consumption characteristics. The first discretization

go calculated represents the true

function (continuous line).The second discretization scheme sets the state interval at

go calculated at the state points is without any representation error

he remaining state space, using linear

interpolation from discretized points is also shown (dotted line). Despite the absence of

50

. This allows the search of the complete cost

The resolution of the search region can then be improved by increasing

Satisfying the minimum state discretization does not eliminate the dependency of

will also introduce errors of

for two discretization schemes,

using a generator with linear fuel consumption characteristics. The first discretization

ated represents the true

function (continuous line).The second discretization scheme sets the state interval at

go calculated at the state points is without any representation error

he remaining state space, using linear

interpolation from discretized points is also shown (dotted line). Despite the absence of

50

cost-

The resolution of the search region can then be improved by increasing

Satisfying the minimum state discretization does not eliminate the dependency of

will also introduce errors of

for two discretization schemes,

using a generator with linear fuel consumption characteristics. The first discretization

ated represents the true

function (continuous line).The second discretization scheme sets the state interval at

go calculated at the state points is without any representation error

he remaining state space, using linear

interpolation from discretized points is also shown (dotted line). Despite the absence of

5.3 Error in Cost-to-go

51

representation errors, the error of interpolation can be observed at the area of non-

linearity.

The true cost-to-go calculatedshows a non-linearity at SoC = 15% because as SoC goes

below 15%, the available discharge of the battery is limited, which increases the demand

on the generator. Even though the cost-to-go is computed without error for the discretized

state space at stage V − 1, the discretization will introduce errors of interpolation during

the minimization at the next stage, i.e., stage V − 2.

The error for stage N-2 in equation 5.8 can be updated to include the expected error of

interpolation as well.

 θ = 	θ�8� 6 ¤��u¨ ?∆�YR0, ∆�YR0@ 6 ¤8����u© ?∆�YR*@ 6 ¤��u� 2∆�YR*3 (5.9)

5.3.3 Additional Errors

a. Generator Switching Penalty

With the inclusion of the generator state, the cost-to-go becomes a two layered function

similar to the state grid. The generator penalty can introduce a new error of interpolation,

shown by Figure 5.7. The cost-to-go in Figure 5.7 shows the cost-to-go for the generator

‘off’ state at stage V − 1, calculated for a relatively large battery and a high load cycle.

At 35% SoC, the battery can no longer fully discharge, which increases the demand on

one generator, resulting in the gradient at 35%. The generator used will be the balance

generator, as turning generator 1 on will incur a penalty in addition to the generator fuel

consumption function. At 15% however, the battery discharge is limited to less than half

its complete range, and balance generator is no longer enough to fulfill the load

requirement. At this point, generator 1 must be turned on, the penalty of which causes the

plateau and the higher slope at 15%. The figure highlights the additional errors of

interpolation around the resultant points of non-linearity. Thus the inclusion of the

generator penalty can also result in higher errors of interpolation.

5.3 Error

b.

In real systems, the battery efficiency is not constant, but is a variable dependent on the

SoC.

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

SoC, shown in Figure

different set of both the greedy cost and the cost

the total cost will increase even more, further

5.3.4

The cases in Figures

characteristics. As was seen in Section

generators with non

function results in

does not occur at one point, rather throughout the cost

Thus the error in for the sub

following components:

(g
)

Error in Cost

Figure

b. Dependence of Greedy Cost on SoC

In real systems, the battery efficiency is not constant, but is a variable dependent on the

SoC. Thus, the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

SoC, shown in Figure

fferent set of both the greedy cost and the cost

the total cost will increase even more, further

5.3.4 Summarizing the Errors

The cases in Figures

characteristics. As was seen in Section

generators with non

function results in

does not occur at one point, rather throughout the cost

Thus the error in for the sub

following components:

in Cost-to-go

Figure 5.7 Interpolation error in cost

Dependence of Greedy Cost on SoC

In real systems, the battery efficiency is not constant, but is a variable dependent on the

the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

SoC, shown in Figure 5.2, no longer holds. Changing state discretization will result in a

fferent set of both the greedy cost and the cost

the total cost will increase even more, further

Summarizing the Errors

The cases in Figures 5.6 - 5.

characteristics. As was seen in Section

generators with non-linear characteristics.

function results in a highly non

does not occur at one point, rather throughout the cost

Thus the error in for the sub

following components:

Interpolation error in cost

Dependence of Greedy Cost on SoC

In real systems, the battery efficiency is not constant, but is a variable dependent on the

the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

2, no longer holds. Changing state discretization will result in a

fferent set of both the greedy cost and the cost

the total cost will increase even more, further

Summarizing the Errors

5.7 are shown for generator

characteristics. As was seen in Section 2.3

linear characteristics.

a highly non-linear total cost, due to which

does not occur at one point, rather throughout the cost

Thus the error in for the sub-problem at any stage, formulated by Equation (

Interpolation error in cost-to-go with generator penalty

Dependence of Greedy Cost on SoC

In real systems, the battery efficiency is not constant, but is a variable dependent on the

the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

2, no longer holds. Changing state discretization will result in a

fferent set of both the greedy cost and the cost-to-go functions, and the non

the total cost will increase even more, further increasing

7 are shown for generator

2.3, both the

linear characteristics. The addition of the non

linear total cost, due to which

does not occur at one point, rather throughout the cost

problem at any stage, formulated by Equation (

go with generator penalty

In real systems, the battery efficiency is not constant, but is a variable dependent on the

the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

2, no longer holds. Changing state discretization will result in a

go functions, and the non

increasing the error of interpolation.

7 are shown for generators with linear fuel consumption

, both the test cases

The addition of the non

linear total cost, due to which

does not occur at one point, rather throughout the cost-to-go function.

problem at any stage, formulated by Equation (

go with generator penalty

In real systems, the battery efficiency is not constant, but is a variable dependent on the

the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

2, no longer holds. Changing state discretization will result in a

go functions, and the non

the error of interpolation.

s with linear fuel consumption

 studied in the thesis use

The addition of the non-linear cost

 the error of interpolation

go function.

problem at any stage, formulated by Equation (

52

In real systems, the battery efficiency is not constant, but is a variable dependent on the

the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

2, no longer holds. Changing state discretization will result in a

go functions, and the non-linearity of

the error of interpolation.

s with linear fuel consumption

studied in the thesis use

linear cost-to-go

the error of interpolation

problem at any stage, formulated by Equation (5.1) has the

52

In real systems, the battery efficiency is not constant, but is a variable dependent on the

the relation of the battery control input to the DC current supplied by the

battery changes with the SoC. Therefore the assumption of a greedy cost independent of

2, no longer holds. Changing state discretization will result in a

linearity of

s with linear fuel consumption

studied in the thesis use

go

the error of interpolation

) has the

5.4 Offline estimation of Representation error

53

 �
2�
8 3 = �
,��e�2�
8 3 6 ¤��u¨ ?∆�
, ∆�
@ 6 ¤8����u© ?∆�
[*@ 6 ¤u��u (5.10)

�
,��e�2�
8 3 represents the true optimal cost-to-go for the sub-problem b at stage <. The

true optimal cost-to-go is the cost-to-go without any discretization errors. The cost-to-go

calculated for the discretized state and input grids has a difference from the true

optimum, which is due to the representation error of the total cost function, dependent on

both the input and state discretization for stage <, the interpolation error, dependent on

the state discretization at stage < 6 1, and an error propagated from the previously solved

stages.

5.4 Offline estimation of Representation error

This section proposes methodologies to predict the representation errors at different

stages before running the optimization procedure, or the offline estimation of errors.

5.4.1 Error Prediction based on Empirical Data

The greedy cost term is predictable as it is always a subset of the fuel consumption

function. For all the set of greedy costs calculated during DP optimization,

«�8
YR*

89*
⊂	v (5.14)

�8 is the greedy cost for a stage, while C represents the set of fuel consumption data. It

was discussed in Section 5.2.1 that due to the simplifications of the battery in this thesis,

the greedy cost only changes through stages as the load requirement changes. The fuel

consumption data is included as part of the model before running the optimization. This

section proposes a method to use empirical observations from a black box Drive Train

model to estimate the quality of the fuel consumption function representation. The quality

is represented by an error factor.

5.4 Offline

a.

The ideal discretization of a grid that represents a function would have no difference

between the discrete optimum and the global optimum. For the ideal discretization, the

function is linear between any two adjacent points

any adjacent points will represent the true function. The error factor is the mea

deviation of the linearly interpolated value from the true function value, and thus

corresponds to the quality of the discretization.

demonstrated graphically in Figure

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

calculate a measure of the representation error, or the error factor.

grid, intermediate points will be inserted between a square of original points, and for a

three dimensional grid, a cube. As the

the addition of intermediate points between every two elements of the vector allows the

generation of extra points for any

Offline estimation of Representation error

a. Calculation of Error Factor

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

function is linear between any two adjacent points

any adjacent points will represent the true function. The error factor is the mea

deviation of the linearly interpolated value from the true function value, and thus

corresponds to the quality of the discretization.

demonstrated graphically in Figure

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

calculate a measure of the representation error, or the error factor.

grid, intermediate points will be inserted between a square of original points, and for a

three dimensional grid, a cube. As the

the addition of intermediate points between every two elements of the vector allows the

generation of extra points for any

estimation of Representation error

Calculation of Error Factor

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

function is linear between any two adjacent points

any adjacent points will represent the true function. The error factor is the mea

deviation of the linearly interpolated value from the true function value, and thus

corresponds to the quality of the discretization.

demonstrated graphically in Figure

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

calculate a measure of the representation error, or the error factor.

grid, intermediate points will be inserted between a square of original points, and for a

three dimensional grid, a cube. As the

the addition of intermediate points between every two elements of the vector allows the

generation of extra points for any

Figure 5.8 Error Factor calculation for one

estimation of Representation error

Calculation of Error Factor

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

function is linear between any two adjacent points

any adjacent points will represent the true function. The error factor is the mea

deviation of the linearly interpolated value from the true function value, and thus

corresponds to the quality of the discretization.

demonstrated graphically in Figure 5.9

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

calculate a measure of the representation error, or the error factor.

grid, intermediate points will be inserted between a square of original points, and for a

three dimensional grid, a cube. As the /
the addition of intermediate points between every two elements of the vector allows the

generation of extra points for any /- dimensional grid.

Error Factor calculation for one

estimation of Representation error

Calculation of Error Factor

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

function is linear between any two adjacent points, and the linear interpolation between

any adjacent points will represent the true function. The error factor is the mea

deviation of the linearly interpolated value from the true function value, and thus

corresponds to the quality of the discretization.

 for a one-dimensional grid.

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

calculate a measure of the representation error, or the error factor.

grid, intermediate points will be inserted between a square of original points, and for a

/- dimensional grid is generated

the addition of intermediate points between every two elements of the vector allows the

dimensional grid.

Error Factor calculation for one

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

, and the linear interpolation between

any adjacent points will represent the true function. The error factor is the mea

deviation of the linearly interpolated value from the true function value, and thus

corresponds to the quality of the discretization. The error factor calculation is

dimensional grid.

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

calculate a measure of the representation error, or the error factor.

grid, intermediate points will be inserted between a square of original points, and for a

dimensional grid is generated

the addition of intermediate points between every two elements of the vector allows the

dimensional grid.

Error Factor calculation for one-dimensional grid

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

, and the linear interpolation between

any adjacent points will represent the true function. The error factor is the mea

deviation of the linearly interpolated value from the true function value, and thus

The error factor calculation is

dimensional grid. Between every two

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

calculate a measure of the representation error, or the error factor. For a two d

grid, intermediate points will be inserted between a square of original points, and for a

dimensional grid is generated from

the addition of intermediate points between every two elements of the vector allows the

dimensional grid

54

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

, and the linear interpolation between

any adjacent points will represent the true function. The error factor is the measured

deviation of the linearly interpolated value from the true function value, and thus

The error factor calculation is

Between every two

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

For a two dimensional

grid, intermediate points will be inserted between a square of original points, and for a

from / vectors,

the addition of intermediate points between every two elements of the vector allows the

54

The ideal discretization of a grid that represents a function would have no difference

etween the discrete optimum and the global optimum. For the ideal discretization, the

, and the linear interpolation between

sured

deviation of the linearly interpolated value from the true function value, and thus

The error factor calculation is

Between every two

points of the original grid, new points are added on which the function is evaluated. The

evaluation is compared with the linear interpolation between the original points to

imensional

grid, intermediate points will be inserted between a square of original points, and for a

vectors,

the addition of intermediate points between every two elements of the vector allows the

5.4 Offline estimation of Representation error

55

Using the methodology shown in the figure above, the error factor can be calculated to

include the representation errors for all the adjacent points in a grid as follows:

 ¬ = ∑ �U8 . 2z?�′8@ − ®?�′8@3��89*
∑ U8�89*

 (5.15)

�′ defines a grid of size / that contains intermediate points between the points in the

original grid �. z denotes linear interpolation, and z?�′8@ represents the linearly

interpolated values calculated using the original grid evaluations ®2�83. Any deviation

between two values that is higher than the user defined threshold is penalized extra using

the weights. In addition, the existence of both negative and positive errors indicates a

point of inflexion between adjacent points. This is penalized extra by setting the weights

high. The points in the vicinity of infeasible points are ignored.

Figure 5.9 Offline computed errors of discretization for adjacent points in the input grid

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Error of discretization

0

10

20

30

40

50

60

(g)

5.4 Offline estimation of Representation error

56

The represented function corresponds to the greedy cost search region on the fuel

consumption function. As the control input grid has been found to represent the greedy

cost, the error factor is only calculated for the input grid. The error factor, therefore, is a

measure of the representation error of the greedy cost.

Figure 5.10 shows the error distribution between all adjacent input points for a given sub-

problem b at stage <, calculated from real optimization interval data. The symmetric

distribution of the errors around zero reflects the symmetry of the cost consumption

curve, indicating an equal distribution of local minima and maxima. As input

discretization improves, the errors cluster closer to zero. An infinite input discretization

will return an error distribution that is a straight line on zero, i.e., the error of

discretization for all the adjacent points will be zero.

The second factor influencing the search region on the cost consumption curve is the load

requirement. As the load requirement changes along the stages of the optimization

process, the error factor is calculated for various stages and averaged.

b. Adaptive Input Grid

Based on the offline error factor calculation, an adaptive input grid can also be calculated.

The adaptive input grid calculation is summarized in Algorithm 2.

The motivation behind the adaptive input is that the load cycle changes with the stage. As

the different load requirements in the load cycle may have search region on the fuel

consumption function, different load requirements may search on regions with different

degrees of linearity.

The algorithm calculates a discretization for multiple load requirements in the load cycle,

such that the error factor corresponding to each load requirement does not surpass a

defined threshold. The error factor threshold is defined by the user. Calculating the error

factor for the complete load cycle can be computationally infeasible. Therefore, error

factor is calculated for just a few samples of load requirement, spaced evenly between the

minimum and the maximum load requirement throughout the multi-stage process. For

5.4 Offline estimation of Representation error

57

each sample of the load requirement, sufficient input discretization is calculated that

brings the error factor within the defined threshold.

Algorithm 2 Calculation of Adaptive Input

1. procedure CALCULATE ADAPTIVE(grid)

2. thresh ← desired error factor

3. loadReq ← samples from the load cycle

4. n ← 1

5. loopU:

6. loopL:

7. e ← errorFactor (loadReq(n) , grid(n))

8. if e > thresh then

9. grid(n) ← increase grid discretization

10. goto loopL

11. n ← n + 1

12. if n < length(loadReq) then

13. goto loopU

14. if n % length(loadReq) then

15. grid ← discretization for remaining stages using linear interpolation

For the remaining load cycle, the required input discretization is linearly interpolated,

under the assumption of a smooth fuel efficiency curve. This results in an input grid that

is adapted to the load cycle set for optimization.

For stages with load requirement that search on a region of high non-linearity, the

adaptive grid will have a finely discretized grid and for stages with load requirement that

search on a region of relatively low non-linearity, the adaptive grid will have a coarsely

discretized grid. An example of the adaptive grid calculated for a load cycle is shown in

Figure 5.10, which shows the total number of points in the input grid at each stage,

calculated based on the load cycle at the stage and the region it corresponds to on the fuel

consumption curve.

5.4 Offline estimation of Representation error

58

Figure 5.10 Number of grid points adapted for the load cycle

5.4.2 Nyquist based approach

This approach aims to calculate maximum bounds on the discretization errors before

starting the optimization procedure. It requires the analytical modeling of the cost

consumption of the generators. As this requires additional effort and it must be done

every time a new model of the generators is implemented, the approach proposed is not

implemented and only has been mentioned to suggest further study into the idea.

Figure 5.11 shows a hypothetical total cost function θ, calculated for a state point and

represented by a given input grid. For any input grid, it can be inferred that

 ��8�,��8� g ��8�,��e� ≤ ∆� (5.11)

0 100 200 300 400 500 600 700 800
-1

0

1

2

3
105

0 100 200 300 400 500 600 700

Time

5

10

15

20

Time (stages)

5.4 Offline estimation of Representation error

59

��8�,��8� represents the grid point that returns the minimum cost, while ��8�,��e� is a

hypothetical point that would return the true minimum cost. This means that the true

minimum on the function must lie between any of the two grid points.

The Nyquist–Shannon theorem for sampling signals states that the sampling frequency

must be at least twice the maximum frequency of the continuous signal to preserve

complete information about the continuous signal [16]:

 ®° ≥ 2®�
� (5.12)

The input discretization ∆� can be thought of as the sampling frequency of the signal.

Figure 5.11 shows the signal sampled at 2®�
�, and the worst result that can be achieved

with this discretization.

Sampling at this discretization allows a more feasible upper bound on the difference

between the grid point samples the minimum cost and the point of the true minimum cost.

 ��8�,��8� g ��8�,��e� ≤ ∆�/2 (5.13)

This means that the true minimum lies in an area around the grid point that is 50% of the

distance between subsequent grid points. Sampling at frequencies higher than two will

similarly allow an upper bound that is even closer to the grid points. Although an

analytical model can be developed for the greedy cost function, the cost-to-go is an

implicit DP function and cannot be predicted according to the best knowledge of the

author. However, the state discretization can be used to calculate an upper bound on the

maximum frequency possible for the cost-to-go functions throughout the multi-stage

optimization. Based on the maximum frequencies calculated, this approach can be used to

provide probabilistic error bounds for representation errors in addition to the optimal

solution.

5.5 Gradients

Figure

5.5

5.5.1

The dpm function provides the option of using the

optimal trajecto

set algorithm defines a

reachable space at a stage spans the state points in a state space, o

can be applied such that the states end up within the end constraints at the last stage. For

a multi

constraints is Figure

transition into the next state by the function:

Gradients near boundary points

Figure 5.11 Hypothetical total cost function represented with grid interval twice the maximum

 Gradients near boundary points

5.5.1 Level set Method

The dpm function provides the option of using the

optimal trajectories of states end up within the user

set algorithm defines a

reachable space at a stage spans the state points in a state space, o

can be applied such that the states end up within the end constraints at the last stage. For

a multi-dimensional state space, the backward reachable space is demonstrated for end

constraints is Figure

transition into the next state by the function:

near boundary points

Hypothetical total cost function represented with grid interval twice the maximum

Gradients near boundary points

Level set Method

The dpm function provides the option of using the

ries of states end up within the user

set algorithm defines a backward

reachable space at a stage spans the state points in a state space, o

can be applied such that the states end up within the end constraints at the last stage. For

dimensional state space, the backward reachable space is demonstrated for end

constraints is Figure 5.12. For a given state point at

transition into the next state by the function:

near boundary points

Hypothetical total cost function represented with grid interval twice the maximum
frequency

Gradients near boundary points

The dpm function provides the option of using the

ries of states end up within the user

backward-reachable

reachable space at a stage spans the state points in a state space, o

can be applied such that the states end up within the end constraints at the last stage. For

dimensional state space, the backward reachable space is demonstrated for end

For a given state point at

transition into the next state by the function:

�′ =

Hypothetical total cost function represented with grid interval twice the maximum
frequency

Gradients near boundary points

The dpm function provides the option of using the level set

ries of states end up within the user-

reachable space for each stage

reachable space at a stage spans the state points in a state space, o

can be applied such that the states end up within the end constraints at the last stage. For

dimensional state space, the backward reachable space is demonstrated for end

For a given state point at

transition into the next state by the function:

= ®
2�
, �
3

Hypothetical total cost function represented with grid interval twice the maximum

level set algorithm to ensure that the

-defined end constraints. The

space for each stage

reachable space at a stage spans the state points in a state space, o

can be applied such that the states end up within the end constraints at the last stage. For

dimensional state space, the backward reachable space is demonstrated for end

For a given state point at stage <, a control input causes a

3

Hypothetical total cost function represented with grid interval twice the maximum

algorithm to ensure that the

defined end constraints. The

space for each stage [17]. The backward

reachable space at a stage spans the state points in a state space, on which control inputs

can be applied such that the states end up within the end constraints at the last stage. For

dimensional state space, the backward reachable space is demonstrated for end

, a control input causes a

60

Hypothetical total cost function represented with grid interval twice the maximum

algorithm to ensure that the

defined end constraints. The level t

. The backward

n which control inputs

can be applied such that the states end up within the end constraints at the last stage. For

dimensional state space, the backward reachable space is demonstrated for end

, a control input causes a

60

Hypothetical total cost function represented with grid interval twice the maximum

algorithm to ensure that the

level t-

. The backward-

n which control inputs

can be applied such that the states end up within the end constraints at the last stage. For

dimensional state space, the backward reachable space is demonstrated for end-

, a control input causes a

5.5 Gradients

Level set

backward

The algorithm is illus

identifies the valid control input candidates based on the values of the

at the resultant points

transition into the backward reachable state is considered (black dots vs. empty

diamonds). There can also be points, such as

into the backward reachable space. As the figure shows, the cost

based on an alternative control scheme

drives the state as close as possible to the backward reachable space (black triangle). This

approach gives the advantage that the cost at p

space does not need to be set as infinite, which avoids high gradients.

Figure

Gradients near boundary points

Level set algorithm considers only those control inputs feasible that cause

backward-reachable space.

The algorithm is illus

identifies the valid control input candidates based on the values of the

at the resultant points

transition into the backward reachable state is considered (black dots vs. empty

diamonds). There can also be points, such as

into the backward reachable space. As the figure shows, the cost

based on an alternative control scheme

drives the state as close as possible to the backward reachable space (black triangle). This

approach gives the advantage that the cost at p

space does not need to be set as infinite, which avoids high gradients.

Figure 5.12 Backwards reachable space in a two

near boundary points

algorithm considers only those control inputs feasible that cause

reachable space.

The algorithm is illustrated in Figure

identifies the valid control input candidates based on the values of the

at the resultant points ²2®

transition into the backward reachable state is considered (black dots vs. empty

diamonds). There can also be points, such as

into the backward reachable space. As the figure shows, the cost

based on an alternative control scheme

drives the state as close as possible to the backward reachable space (black triangle). This

approach gives the advantage that the cost at p

space does not need to be set as infinite, which avoids high gradients.

Backwards reachable space in a two

near boundary points

algorithm considers only those control inputs feasible that cause

trated in Figure 5.1

identifies the valid control input candidates based on the values of the

2�u, �33. Only the positive

transition into the backward reachable state is considered (black dots vs. empty

diamonds). There can also be points, such as

into the backward reachable space. As the figure shows, the cost

based on an alternative control scheme

drives the state as close as possible to the backward reachable space (black triangle). This

approach gives the advantage that the cost at p

space does not need to be set as infinite, which avoids high gradients.

Backwards reachable space in a two

algorithm considers only those control inputs feasible that cause

13. For a point

identifies the valid control input candidates based on the values of the

. Only the positive

transition into the backward reachable state is considered (black dots vs. empty

diamonds). There can also be points, such as �³, for which no control input transitions

into the backward reachable space. As the figure shows, the cost

based on an alternative control scheme �́
2�³3. The optimal control input in this case

drives the state as close as possible to the backward reachable space (black triangle). This

approach gives the advantage that the cost at points outside the backwards reachable

space does not need to be set as infinite, which avoids high gradients.

Backwards reachable space in a two-dimensional state space due to end
[17]

algorithm considers only those control inputs feasible that cause

. For a point �u at stage

identifies the valid control input candidates based on the values of the

. Only the positive point–

transition into the backward reachable state is considered (black dots vs. empty

, for which no control input transitions

into the backward reachable space. As the figure shows, the cost

. The optimal control input in this case

drives the state as close as possible to the backward reachable space (black triangle). This

oints outside the backwards reachable

space does not need to be set as infinite, which avoids high gradients.

dimensional state space due to end

algorithm considers only those control inputs feasible that cause �
at stage <, point-

identifies the valid control input candidates based on the values of the point

–set values, ind

transition into the backward reachable state is considered (black dots vs. empty

, for which no control input transitions

into the backward reachable space. As the figure shows, the cost-to-go at these points is

. The optimal control input in this case

drives the state as close as possible to the backward reachable space (black triangle). This

oints outside the backwards reachable

space does not need to be set as infinite, which avoids high gradients.

dimensional state space due to end

61

�′ to be in the

-set algorithm

point-set function

set values, indicating a

transition into the backward reachable state is considered (black dots vs. empty

, for which no control input transitions

t these points is

. The optimal control input in this case

drives the state as close as possible to the backward reachable space (black triangle). This

oints outside the backwards reachable

dimensional state space due to end-constraints

61

to be in the

set algorithm

set function

icating a

transition into the backward reachable state is considered (black dots vs. empty

, for which no control input transitions

t these points is

. The optimal control input in this case

drives the state as close as possible to the backward reachable space (black triangle). This

oints outside the backwards reachable

constraints

5.5 Gradients

a.

A state discretization less than the minimum state discretization is not compatible with

the level set algorithm. The minimum state discretization (Section

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

the application of control inputs that exist with

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

are already within the end

shown in Figure 5.1

discretization can therefore lead to highly sub

space is limited to the end

Gradients near boundary points

a. Effect of low State Discretization

A state discretization less than the minimum state discretization is not compatible with

the level set algorithm. The minimum state discretization (Section

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

the application of control inputs that exist with

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

are already within the end

shown in Figure 5.1

discretization can therefore lead to highly sub

space is limited to the end

Figure

near boundary points

Effect of low State Discretization

A state discretization less than the minimum state discretization is not compatible with

the level set algorithm. The minimum state discretization (Section

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

the application of control inputs that exist with

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

are already within the end-constrai

shown in Figure 5.12. Using the level set method without following the minimum state

discretization can therefore lead to highly sub

space is limited to the end-constraints.

Figure 5.13 Calculation of the backward reachable space

near boundary points

Effect of low State Discretization

A state discretization less than the minimum state discretization is not compatible with

the level set algorithm. The minimum state discretization (Section

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

the application of control inputs that exist with

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

constraints, and the feasible state space will not diverge as

. Using the level set method without following the minimum state

discretization can therefore lead to highly sub

constraints.

Calculation of the backward reachable space

Effect of low State Discretization

A state discretization less than the minimum state discretization is not compatible with

the level set algorithm. The minimum state discretization (Section

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

the application of control inputs that exist within the user

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

nts, and the feasible state space will not diverge as

. Using the level set method without following the minimum state

discretization can therefore lead to highly sub-optimal solutions, as the feasible state

Calculation of the backward reachable space

A state discretization less than the minimum state discretization is not compatible with

the level set algorithm. The minimum state discretization (Section

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

in the user-defined range. If the level set

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

nts, and the feasible state space will not diverge as

. Using the level set method without following the minimum state

optimal solutions, as the feasible state

Calculation of the backward reachable space

A state discretization less than the minimum state discretization is not compatible with

the level set algorithm. The minimum state discretization (Section 5.3.1) for the battery

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

defined range. If the level set

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

nts, and the feasible state space will not diverge as

. Using the level set method without following the minimum state

optimal solutions, as the feasible state

Calculation of the backward reachable space [17]

62

A state discretization less than the minimum state discretization is not compatible with

) for the battery

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

defined range. If the level set

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

nts, and the feasible state space will not diverge as

. Using the level set method without following the minimum state

optimal solutions, as the feasible state

62

A state discretization less than the minimum state discretization is not compatible with

) for the battery

SoC is the state discretization such that any point in the discretized state space can be

charged as well as discharged to at least its closest points in the discretized state space, by

defined range. If the level set

method is used for state discretization less than the minimum state discretization, the

backwards reachable space of the end constraints will only include the state points that

nts, and the feasible state space will not diverge as

. Using the level set method without following the minimum state

optimal solutions, as the feasible state

5.5 Gradie

b.

The load requirement can also introduce infeasible state points

reachable space. The introduction of infeasible state points due to high load requirements

was introduced in Section 1.3.

system with one generator state.

The load cycl

at 0% (the battery cannot be discharged). The infeasible cost

regardless of the generator state, as turning on the generator and running it on full

capacity is not enough

requirement at stage

The next SoC point must project on the generator ‘on’ layer at stage

generator must

also discharge. The cost

between a feasible and an infeasible cost

simila

the actuators provide so much current to the DC grid that the battery must discharge to

keep the net zero.

Gradients near boundary points

b. Infeasibilities for Load Requirements

The load requirement can also introduce infeasible state points

reachable space. The introduction of infeasible state points due to high load requirements

was introduced in Section 1.3.

system with one generator state.

The load cycle is high at stage

at 0% (the battery cannot be discharged). The infeasible cost

regardless of the generator state, as turning on the generator and running it on full

capacity is not enough

requirement at stage

The next SoC point must project on the generator ‘on’ layer at stage

generator must be turned on to satisfy the load requirement. However, the battery must

also discharge. The cost

between a feasible and an infeasible cost

similar infeasible cost

the actuators provide so much current to the DC grid that the battery must discharge to

keep the net zero.

Figure

near boundary points

Infeasibilities for Load Requirements

The load requirement can also introduce infeasible state points

reachable space. The introduction of infeasible state points due to high load requirements

was introduced in Section 1.3.

system with one generator state.

e is high at stage

at 0% (the battery cannot be discharged). The infeasible cost

regardless of the generator state, as turning on the generator and running it on full

capacity is not enough to satisfy the load requirement if the battery is empty.

requirement at stage < is similarly high, and an infeasible cost

The next SoC point must project on the generator ‘on’ layer at stage

be turned on to satisfy the load requirement. However, the battery must

also discharge. The cost-to-go for this transition is obtained by the linear interpolation

between a feasible and an infeasible cost

r infeasible cost-to-go is also possible if the load requirement is too negative, i.e.,

the actuators provide so much current to the DC grid that the battery must discharge to

keep the net zero.

Figure 5.14 Propagation of infeasible points due to high load requirements

near boundary points

Infeasibilities for Load Requirements

The load requirement can also introduce infeasible state points

reachable space. The introduction of infeasible state points due to high load requirements

was introduced in Section 1.3.3. It is demonstrate

system with one generator state.in Figure

e is high at stage < + 1, such that it cannot be satisfied if the battery SoC is

at 0% (the battery cannot be discharged). The infeasible cost

regardless of the generator state, as turning on the generator and running it on full

to satisfy the load requirement if the battery is empty.

is similarly high, and an infeasible cost

The next SoC point must project on the generator ‘on’ layer at stage

be turned on to satisfy the load requirement. However, the battery must

go for this transition is obtained by the linear interpolation

between a feasible and an infeasible cost

go is also possible if the load requirement is too negative, i.e.,

the actuators provide so much current to the DC grid that the battery must discharge to

Propagation of infeasible points due to high load requirements

Infeasibilities for Load Requirements

The load requirement can also introduce infeasible state points

reachable space. The introduction of infeasible state points due to high load requirements

demonstrated

Figure 5.14.

, such that it cannot be satisfied if the battery SoC is

at 0% (the battery cannot be discharged). The infeasible cost

regardless of the generator state, as turning on the generator and running it on full

to satisfy the load requirement if the battery is empty.

is similarly high, and an infeasible cost

The next SoC point must project on the generator ‘on’ layer at stage

be turned on to satisfy the load requirement. However, the battery must

go for this transition is obtained by the linear interpolation

between a feasible and an infeasible cost-to-go, which results in a very high cost. A

go is also possible if the load requirement is too negative, i.e.,

the actuators provide so much current to the DC grid that the battery must discharge to

Propagation of infeasible points due to high load requirements

Infeasibilities for Load Requirements

The load requirement can also introduce infeasible state points

reachable space. The introduction of infeasible state points due to high load requirements

d on a two-layered state space

, such that it cannot be satisfied if the battery SoC is

at 0% (the battery cannot be discharged). The infeasible cost-to

regardless of the generator state, as turning on the generator and running it on full

to satisfy the load requirement if the battery is empty.

is similarly high, and an infeasible cost-to

The next SoC point must project on the generator ‘on’ layer at stage

be turned on to satisfy the load requirement. However, the battery must

go for this transition is obtained by the linear interpolation

go, which results in a very high cost. A

go is also possible if the load requirement is too negative, i.e.,

the actuators provide so much current to the DC grid that the battery must discharge to

Propagation of infeasible points due to high load requirements

The load requirement can also introduce infeasible state points within backwards

reachable space. The introduction of infeasible state points due to high load requirements

layered state space

, such that it cannot be satisfied if the battery SoC is

to-go is saved at 0% SoC

regardless of the generator state, as turning on the generator and running it on full

to satisfy the load requirement if the battery is empty.

to-go is saved for 0% SoC.

The next SoC point must project on the generator ‘on’ layer at stage <
be turned on to satisfy the load requirement. However, the battery must

go for this transition is obtained by the linear interpolation

go, which results in a very high cost. A

go is also possible if the load requirement is too negative, i.e.,

the actuators provide so much current to the DC grid that the battery must discharge to

Propagation of infeasible points due to high load requirements

63

within backwards

reachable space. The introduction of infeasible state points due to high load requirements

layered state space for a

, such that it cannot be satisfied if the battery SoC is

go is saved at 0% SoC

regardless of the generator state, as turning on the generator and running it on full

to satisfy the load requirement if the battery is empty. The load

go is saved for 0% SoC.

< 6 1, as the

be turned on to satisfy the load requirement. However, the battery must

go for this transition is obtained by the linear interpolation

go, which results in a very high cost. A

go is also possible if the load requirement is too negative, i.e.,

the actuators provide so much current to the DC grid that the battery must discharge to

Propagation of infeasible points due to high load requirements

63

within backwards

reachable space. The introduction of infeasible state points due to high load requirements

for a

, such that it cannot be satisfied if the battery SoC is

go is saved at 0% SoC

regardless of the generator state, as turning on the generator and running it on full

The load

go is saved for 0% SoC.

, as the

be turned on to satisfy the load requirement. However, the battery must

go for this transition is obtained by the linear interpolation

go, which results in a very high cost. A

go is also possible if the load requirement is too negative, i.e.,

the actuators provide so much current to the DC grid that the battery must discharge to

5.5 Gradients near boundary points

64

The high cost-to-go can propagate to the complete state space, if the load requirement is

persistently high. The lesser the state discretization, the faster it propagates to other

states, which can result in high erroneous optimal solution.

5.5.2 Boundary Line Method

The dpm function also offers a boundary line method to cater for end-constraints [18].

The boundary line method calculates the boundary before running Dynamic

programming, and comes up with a much more precise state space boundary between the

feasible and the infeasible regions. It is only implemented for one-dimensional states.

The Boundary Line method defines a function such that

 ®
2�
, �
3 = >
2�
 , �
3 − �
 (5.14)

As the method is only implemented for one dimension, there only exists the upper and the

lower boundary. The lower boundary is initialized by the straight constraint �
,��µ =
��,�8�. At any stage < during the calculation of the lower boundary, the following

problem is solved to find the boundary point:

 maxef ®
?�
,��µ, �
@,
such that

®
?�
,��µ, �
@ 6 �
,��µ = �
[*,��µ

(5.15)

The function ®
 is maximized iteratively until a specific tolerance ε is achieved:

 ·�
[*,��µ −maxef ®
?�
,��µ, �
@¸ < ε (5.16)

For the case of a battery SoC as the state, the function ®
 refers to the charging of the

battery. Given a boundary point �
[*,��µ , the boundary line method will calculate the

minimum boundary point �
,��µ that can charge to �
[*,��µ. Only boundary points �
,��µ,

that can charge to the point �
[*,��µ and also fulfill the load requirement �
 are

considered. Thus the infeasible points in Figure 5.13 will be excluded during the

5.5 Gradients near boundary points

65

calculation of the boundary. With no infeasible points, high gradients can completely be

avoided using this method. The same technique is used for calculating the upper

boundary, but Equation (5.15) is solved as a minimization problem.

5.5.3 Implementation of Boundary Line Method

a. Extension to multi-dimensional Systems

The boundary line method cannot be directly implemented to drive trains, as the system

generally has a multi-dimensional state space. Due to the binary nature of the generator

states however, the boundary only needs to be calculated for the battery SoC, and the

concept of the upper and the lower boundary can still be applied to the multi-dimensional

state grid.

The maximization in Equation (5.15) is subject to the load requirement at stage <. Any

feasible input combination must satisfy the DC grid Equation:

 ��5 67��8
Y

89*
6 �	
� 6 �	�
 6 ���
� = 0 (5.17)

Charging of the battery is achieved by a positive �	
�. The generator currents can only

assume negative values, and the brake resistance can only assume positive values.

Therefore, the maximum available charge to the battery is:

 ��5 67��8
Y

89*
− �	�
 − ���
� = �	
� (5.18)

�	�
 can be disregarded as it can be driven to zero independently. Assuming the sum of

generators large enough to fully charge the battery, a negative or zero load cycle allows

the battery to charge as much as possible, consequently allowing �
,��µ to assume the

lowest possible value from �
[*,��µ. As the load cycle increases in the positive direction,

the maximum possible value of �	
� also decreases, consequently decreasing the charge

available to the battery. The higher the load cycle, the closer will �
,��µ be to �
[*,��µ. In

case of very high load cycles that exceed the maximum current from the generators, the

5.5 Gradients near boundary points

66

battery must also be discharged and �
,��µ will be higher than �
[*,��µ, as �	
� can only

assume negative values.

The maximization in Equation (5.15) does not take any costs into account, therefore, the

generator running or switching costs are irrelevant. Thus the lower boundary can be

calculated for the battery SoC regardless of the number of generator states. Similar

methodology can also be applied for the calculation of the upper boundary.

b. Integration of Boundary line Method with dpm function

Under the assumption that the balance generator is large enough to fully charge the

battery, the Boundary line method offered by the dpm function can also be implemented

to system with generator states. The integration requires a definition of a reduced model.

The reduced model consists of only the battery, brake resistance and the balance

generator. Vessel 1 describes a reduced model. The size and parameters of the

components are set the same as of their counterparts in the original model. The definition

of a single state model allows the use of the Boundary line method implemented in the

dpm function, as it is only programmed for single-dimensional systems. An equivalent

load cycle must be calculated for the reduced model. The equivalent load cycle for a

reduced model is the load cycle that returns the same boundaries for the reduced model as

the original load cycle would for the original model. The equivalent load cycle is

calculated separately for the lower and the upper boundary calculation.

Lower Boundary Calculation

For each stage of the multi-stage process, the equivalent load cycle for the lower

boundary is:

���³2<3 =
¹º
»
º¼ 0, ��2<3 ≤7��8,�
�

Y

89*
��2<3 −7��8,�
�

Y

89*
, ��2<3 >7��8,�
�

Y

89*

 (5.19)

5.5 Gradients near boundary points

67

For the original model, load requirement achievable by the generators with states leaves

balance generator free to fully charge the battery. For the reduced model lower boundary

calculation, this is equivalent to 0 load requirement, as 0 load requirement will also leave

balance generator to fully charge the battery.

For load requirement that also requires the balance generator, the maximum charge

available to the battery is what remains of the balance generator current after the load

requirement has been satisfied. The equivalent load requirement is the remaining demand

on the balance generator, if all the other generators are running on their maximum

capacity.

Upper Boundary Calculation

The upper boundary is calculated by the maximum amount the battery can discharge. The

amount of discharge possible is only limited if the load requirement is close to zero or

negative. For the lower or negative load requirements, the battery and the brake

resistance are the only relevant components and they are identical in the reduced as well

as the original model. To keep the load cycle feasible, an upper cap on the load

requirement is set.

 ���³2<3 = ��5,�
�, ��2<3 > ��5,�
� (5.20)

Any load requirement that exceeds the maximum capacity of the balance generator is set

to an achievable value. The equivalence does not matter. As the battery is smaller than

the balance generator, it can be fully discharged for both load requirements, equal to

balance generators maximum capacity or above.

The calculated boundaries by the boundary line-method on the equivalent basic system

can be used as the global boundaries for the original system. The method can be applied

to a system regardless of the number of generators with states. A comparison of the

boundaries calculated for Vessel 2 using the boundary line and the level set method is

shown in Figure 5.15. Both the boundaries are calculated for user defined end-

constraints. At high load requirements, the minimum achievable points from the

boundary line method are higher.

5.5 Gradients

These points are included in the boundaries calculated from the level set method, and

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

method.

using this method.

Gradients near boundary points

Figure

These points are included in the boundaries calculated from the level set method, and

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

method. This is due to the tolerance set in Equation (

using this method.

x
S

o
C

 b
o

u
n
d

a
ri

e
s
 (

%
)

near boundary points

Figure 5.15 Calculation of boundaries us

These points are included in the boundaries calculated from the level set method, and

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

This is due to the tolerance set in Equation (

using this method.

near boundary points

Calculation of boundaries us

These points are included in the boundaries calculated from the level set method, and

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

This is due to the tolerance set in Equation (

Calculation of boundaries using the boundary line method

These points are included in the boundaries calculated from the level set method, and

would include infeasible costs within the state space

introduces an offset from 0% and 100% throughout, which

This is due to the tolerance set in Equation (

Time (stages)

ing the boundary line method

These points are included in the boundaries calculated from the level set method, and

would include infeasible costs within the state space. The boundary line method also

introduces an offset from 0% and 100% throughout, which is absent in the level set

This is due to the tolerance set in Equation (5.16), and is actually a drawback of

)

ing the boundary line method

These points are included in the boundaries calculated from the level set method, and

The boundary line method also

is absent in the level set

16), and is actually a drawback of

68

ing the boundary line method

These points are included in the boundaries calculated from the level set method, and

The boundary line method also

is absent in the level set

16), and is actually a drawback of

68

These points are included in the boundaries calculated from the level set method, and

The boundary line method also

is absent in the level set

16), and is actually a drawback of

6.1 Dynamic Programming

69

6 Experimental Results

This chapter presents the results of the different aspects of Dynamic Programming

investigated in this thesis, applied to the test cases defined in Section 2.3. The studies

have been carried out using the dpm function developed in [5].

6.1 Dynamic Programming

This section presents the results of the application of regular dynamic programming to

both the test cases. The discretization scheme used for both the test cases is labeled as

Scheme 1, to distinguish it from other schemes that will be used in this chapter. The time

interval and step size have been kept the same throughout the chapter as summarized in

Table 6.1.

Table 6.1 Interval and the step size of optimization

Time steps Step size

700 1

The dpm function parameters specified for the application of regular dynamic

programming are specified in Table 6.2.

Table 6.2 dpm function parameters for regular dynamic programming

Boundary Method Infeasible cost

Level set 1 × 10¿

The level set boundary method has been discussed in Section 5.5.1.Error! Reference

source not found. The infeasible cost is a very high number set to approximate the

infinity cost of infeasible points. The infeasible cost is set high enough so that it is higher

6.1 Dynamic Programming

70

than any cost or the cost-to-go accumulated during the optimization. An unnecessarily

high infeasible cost should also be avoided, as it increases the gradients near boundaries

if the Level set method is used.

6.1.1 Application to Vessel 1

The calculation parameters for the application of regular dynamic programming to vessel

1 specified are summarized in Tables 6.3.

Table 6.3(a) State parameters in Scheme 1 for vessel 1

Parameters Battery SoC

Steps 25

Initial State 50

Final State Minimum 48

Final State Maximum 52

State Grid Minimum 0

State Grid Maximum 100

The end constraints for the battery are specified around 50% so that the battery is not

completely depleted at the end of the opimization interval. This represents a realistic

scenario, as the availabl battery SoC at the start of the interval is also 50%.

Table 6.3(b) Input Parameters in Scheme 1 for vessel 1

Parameters Battery Current (A)
Brake resistance

Current (A)

Steps 25 5

Minimum -800 0

Maximum 800 500

6.1 Dynamic Programming

71

Figure 6.1(a) Optimal input trajectories for vessel 1 for given load cycle

lo
a
d
 c

y
c
le

 (
W

)

u
b

a
t(A

)
u

b
rk

(A
)

Time (stages)

6.1 Dynamic Programming

72

Figure 6.1(b) Optimal state and cost trajectories for vessel 1

S
o
C

C
o
s
t

A
c
c
u
m

u
la

te
d
 c

o
s
t

Time (stages)

(g
)

 (
%

)
(g

)

6.1 Dynamic Programming

73

6.1.2 Application to Vessel 2

The calculation parameters for the application of regular dynamic programming to vessel

2 specified are summarized in Tables 6.4.

Table 6.4(a) State parameters in Scheme 1 for vessel 2

Parameters Battery SoC Generator state

Steps 25 2

Initial State 50 0

Final State Minimum 48 0

Final State Maximum 52 1

State Grid Minimum 0 0

State Grid Maximum 100 1

The generator states are only binary, and represent wether the generator has been

switched on or off. The state is implemented in order to introduce a penalty for switching

on a generator.

Table 6.4(b) Input Parameters in Scheme 1 for vessel 2

Parameters Battery Current (A)
Brk. Res. Current

(A)

Generator

Current (A)

Steps 25 5 20

Minimum -800 0 -1000

Maximum 800 500 0

Trajectory Oscillations

The oscillatory behavior of the state as well as the optimal control inputs can be observed

for both the test cases. The behavior arises due to the non-linear nature of the generator

fuel consumption function.

6.1 Dynamic Programming

74

Figure 6.2(a) Optimal input trajectories for vessel 2 for given load cycle

0 100 200 300 400 500 600 700 800
-2

0

2

4

6

lo
a
d
 c

y
c
le

 (
W

)

105

0 100 200 300 400 500 600 700
-1000

-500

0

500

1000

u
b

a
t(A

)

0 100 200 300 400 500 600 700
-1000

-500

0

u
g

e
n
(A

)

0 100 200 300 400 500 600 700

Time

0

200

400

600

u
b

rk
(A

)

Time (stages)

6.1 Dynamic Programming

75

Figure 6.2(b) Optimal state and cost trajectories for vessel 2

Time (stages)

(g
)

(%
)

(-
)

6.2 Iterative Dynamic Programming

76

For the load cycle interval that is below the optimal capacity of the generators, it is

cheaper to alternatively use the genera tors at full and minimum capacity, as compared to

running them at mid-capacity. This can explicitly be seen in Figure 6.2 (a) in the optimal

control input trajectory for the generator. The control input oscillates only between

minimal and maximum operation.

6.2 Iterative Dynamic Programming

The results of the iterative dynamic programming are compared with regular dynamic

programming applied to different discretization schemes, in addition to Scheme 1

introduced in Table 6.3 and 6.4. The range of the states and control inputs is kept the

same, but the number of steps is varied. The schemes are summarized in the Tables 6.5

and 6.6.

Table 6.5 Discretization Scheme 2

State / Control Input Number of Steps

Battery SoC 35

Battery Current 35

Brk. Res. Current 10

Generator Current 30

The discretization scheme 3 is only defined for Vessel 1, as the computational complexity

for its application to Vessel 2 is extremely high.

Table 6.6 Discretization Scheme 3

State / Control Input Number of Steps

Battery SoC 50

Battery Current 55

Brk. Res. Current 15

6.2 Iterative Dynamic Programming

77

The discretization for IDP2, as well as the reduction factor is the same for both the test

cases, and is summarized in table 6.7.

Table 6.7 Calculation paramters for IDP2

IDP2 parameters

Reduction factor γ 0.8

Convergence Tolerance 200

SoC steps 10

Initial battery current steps 11

Initial brk. Res. current steps 5

Initial generator current steps 10

SoC steps 5

Battery current steps 5

Brk. Res. current steps 5

The convergence tolerance is the criteria for the termination of the iterative procedure. If

the performance index (total cost) of two consecutive iterations falls within this tolerance,

the procedure is assumed to be converged and terminated. As discussed in Section 0, the

initial discretization is kept high to improve the chances of a good initial policy.

6.2.1 Application to Vessel 1

Figure 6.3 shows the perorfmance indexes of consequetive IDP2 iterations, compared

with regular dynamic programming with the three afore-mentioned schemes, applied to

Vessel 1.

Due to the implemented grid adjustment algorithm, the performance of IDP2 always

improves along iterations. Despite the apparently good performance, the algorithm has

converged to a local optimum with respect to discretization scheme 3.

6.2 Iterative Dynamic Programming

78

Figure 6.3 Performance of idp2 compared with regular dp on vessel 1

This is further highlighted in the comparison of the optimal trajectories between IDP2

and regular DP on scheme 3, shown in Figure 6.4. The solution is does not converge

towards the better optimum, rather converges to a different one. Therefore, although

Iterative Dynamic Programming shows superior performance in the cases tested, it

always poses the risk of convergence to poor optima.

P
e
rf

o
rm

a
n
c
e
 i
n
d
e
x

A
c
u
u
m

u
la

te
d
 c

o
m

p
u
ta

ti
o
n
s

 (
g

)

6.2 Iterative Dynamic Programming

79

Figure 6.4 Comparison of optimal trajectories of idp2 and regular dp on vessel 1

(%
)

(A
)

(A
)

Time (stages)

6.2 Iterative Dynamic Programming

80

6.2.2 Application to Vessel 2

Figure 6.5 and 6.6 show the application of IDP2 to vessel 2, compared with regular

dynamic programming. This is one of the cases where the initial coarse discretization

exceeds the performance of the finer discretization in discretization scheme 1.

Figure 6.5 Performance of idp2 compared with regular dp on vessel 2

P
e
rf

o
rm

a
n
c
e
 i
n
d
e
x

A
c
u
u
m

u
la

te
d
 c

o
m

p
u
ta

ti
o
n
s

(g
)

6.2 Iterative Dynamic Programming

81

Figure 6.6 Comparison of optimal trajectories of idp2 and regular dp on vessel 2

0 100 200 300 400 500 600 700 800
0

50

100

0 100 200 300 400 500 600 700
-1000

-500

0

0 100 200 300 400 500 600 700
0

200

400

idp2

dp scheme 2

0 100 200 300 400 500 600 700

time

-1000

0

1000

Time (stages)

(A
)

(A
)

(A
)

(%
)

6.3 Error in Dynamic Programming

82

6.3 Error in Dynamic Programming

This section presents the experimental results associated with the errors in dynamic

programming as discussed in Chapter 5.

6.3.1 Sensitivity to Discretization

The sensitivity analysis is only carried out for vessel 1, as it requires repeated

optimization experiments under different configurations. Such analysis for vessel 2

requires considerable time and computational effort. The performance index for varying

state and input discretization schemes of vessel 1 is shown in Figure 6.7. The state and

input discretization are increased geometrically.

 ∆�8 = À1.52∆�8R*3Á, b = 1,2, … , V (6.1a)

 ∆�8 = À1.52∆�8R*3Á, b = 1,2, … , V (6.1b)

The initial state and input discretization is summarized in Table 6.8. As the state and

input discretization is varied independently, the corresponding constant state and input

discretization is also listed.

Table 6.8 Parameters for sensitivity analysis to discretization

State / Control Input State Variation Input Variation

Battery SoC 3 (initial) 16 (constant)

Battery Current 5 (constant) 3 (initial)

Brk. Res. Curent 11 (constant) 5 (initial)

The experiments in Figure 6.7 are carried out with the same state and input ranges as

listed in Table 6.3, but no end-constraints area added. The figure brings various

observations about the sensitivity of the performance index to discretization to light.

Firstly, the performance index is more sensitive to input discretization as compared

6.3 Error in Dynamic Programming

83

to the state discretization. An explanation of this is that the input discretization effects the

error of representation on both the greedy cost and the cost-to-go, while the state

discretization only effects the representation error on the cost-to-go.

Secondly, a sharp decline in the performance index can be observed between the state

discretization 2 and 3, the point where the minimum state discretization is satisfied. As

there are no end-constraints included, the error cannot be attributed to the restricted state

space of the level set method (Section 5.5).

Figure 6.7 Sensitivity of performance index to discretization in Vessel 1

The other explanation is the additional representation error due to the voilation of the

minimum state discretization (Section 5.3.1).

Thirdly, performance index does not always improve with the increase in the state and

input discretization. This confirms that the increase in discretization only increases the

probability of improving the solution (Section 5.2.2).

The explanations offered for the observations in Figure 6.5 are only conjecture on part of

the author. As the experiments have not been repeated for more test cases, the phenomena

P
e
rf

o
rm

a
n
c
e
 i
n
d
e
x

Input discretization (index) State discretization (index)

(g
)

6.3 Error in Dynamic Programming

84

(higher input discretization dependence and sharp decline for state discretization) might

also be completely random events.

6.3.2 Error Factor Calculation

The offline error factor (Section 5.4.1) is calculated for vessel 1 for the different input

discretizations used in Figure 6.8. The user parameters for error factor calculation are

listed in Table 6.9.

Table 6.9 Parameters for error factor calculation

Parameter Set value

Error threshold 0.5

Number of intermediate

points
5

Any error factor lower than the error threshold is penalized. The number of intermediate

points is the number of points added between all the adjacent points of the input grid to

check the liearity of the cost function.

For each input discretization, the error factor is calculated for fifty evenly spaced samples

of the load cycle in Figure 6.1 (a). The displayed error factor in Figure 6.8 is the average

of the error factors for each load cycle sample.

The error factor corresponds to the probability of improving the opimal solution, and it

does match the evolution of actual performance indexes for different input

discretizations, particularly in the initial points of high slope. Despite the oscillations in

the performance index at the later points, it also generally converges in the same region

where the error factor converges. Thus the error factor can be used to find a reasonable

input discretization before the optimization procedure.

6.3 Error in Dynamic Programming

85

Figure 6.8 Offline error factor computed for different discretizatons vs actual performance

6.3.3 Adaptive Input Grid

A method to compute an adaptive input grid based on the error factor is introduced in

Section 5.4.1. Based on five different thresholds of the error factor, adaptive input

discretization schemes have been computed and the performance of dynamic

programming on these schemes is shown in Figure 6.9. The performance is compared

with uniform input discretization schemes.

The adaptive grid clearly has a superior performnce to the uniform grid, as it computes a

better optimum in roughly ten times lesser number of computations.

6.3.4 Boundary line Method

The boundary line method has been implemented to vessel 2 using the simplification

techniques introduced in Section 5.5.2. The cost-to-go functions for the two methods,

level set and boundary line are compared in Figure 6.10 for stages with high load

requirements. It can be seen that the high gradients in the cost-to-go from the level set

method, that propagate through the stages, are absent in the cost-to-go from the boundary

line method.

E
rr

o
r

fa
c
to

r

P
e

rf
o

rm
a

n
c
e

 in
d

e
x

 (
g

)
(g

)
Input discretization (index) Input discretization (index)

6.3 Error

Figure

Error in Dynamic Programming

Figure

Figure 6.10 Comparison of the cost

0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
109

 (
g

)

 (
g

)

in Dynamic Programming

Figure 6.9 Comparison of adaptive input grid with u

Comparison of the cost

50

Battery SoC

in Dynamic Programming

Comparison of adaptive input grid with u

Comparison of the cost-to-go gradients from the level set and boundary line method

100

Battery SoC

stage k

stage k-1

stage k-2

stage k-3

 (%)

Comparison of adaptive input grid with u

go gradients from the level set and boundary line method

100 0
9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Comparison of adaptive input grid with uniform input grid

go gradients from the level set and boundary line method

Battery SoC

104

niform input grid

go gradients from the level set and boundary line method

50

Battery SoC (%)

86

niform input grid

go gradients from the level set and boundary line method

100

86

go gradients from the level set and boundary line method

7.1 Errors of Discretization

87

7 Conclusion and Future Work

The advantage of dynamic programming is that it guarantees the optimality for a given

problem. For the application of dynamic programming to continuous systems, the

continuous system must be discretized, which can lead to a difference of the optimal

results for a discretized system from the optimal results for a continuous system. The

optimization on a very fine discretization has a high chance of returning the global

optimum close to that of the continuous system, but the computational restrictions make

very fine discretization schemes practically infeasible.

7.1 Errors of Discretization

For the case of marine drive trains included in the Power Management Tool, the studies

carried out in this thesis give a concrete analysis of the source and nature of the

optimization errors due to discretization. The results can be used by the user to estimate

(qualitatively or quantitatively) the probable error introduced by discretization, and

include it with the optimal cost to offer more realistic results.

In addition, the analysis of errors has also lead to suggestions that can be taken to reduce

the risk of errors without increasing the computational complexity. Firstly, as the optimal

solution has shown a higher sensitivity to input as compared to state discretization, the

input discretization should be set higher. Secondly, the proposed algorithm of adapting

the input grid discretization to the fuel consumption curve can be used to further reduce

the probability of representation errors.

There exist numerous aspects of study which can be carried out in future to further

facilitate the user in using the optimal results. Some of them have been suggested as

follows:

7.2 Reduction of Computational Complexity

88

a. Analytical Modeling of Generators

The analytical modeling of generators can be highly useful in computing the

mathematical probability of errors associated with discretization. One of the suggested

areas of study was introduced in Section 5.4.2, which proposes the calculation of the

worst case errors based on the frequency analysis of the fuel consumption of the

generators.

b. Non-Uniform Grid

The dpm function, although highly useful, also puts limitations on the flexibility in

dynamic programming algorithm. One of the limitations is that it only allows the

generation of grids with equally spaced intervals between the set minimum and maximum

range. A non-uniform spacing of the grid, with more points in regions of non-linearity

may prove beneficial to reduce the representation errors without increasing the

computational effort.

c. Non-Linear Interpolation

Another limitation by the dpm function is that it only allows linear interpolation in the

cost-to-go values. A study into the implementation of polynomial based interpolations

can also be carried out to see the effect on the interpolation errors.

7.2 Reduction of Computational Complexity

In order to reduce the computational complexity of optimization procedures, iterative

dynamic programming has been shown as a promising alternative to dynamic

programming. Iterative dynamic programming offers the probability of an optimal

solution with significantly lesser number of computations. However, it also exhibits the

drawback of only searching the limited state and input space, which poses the risk of sub-

optimal convergence. Despite the additional risk of sub-optimal convergence, a guarantee

for the worst possible solution (with high probability of significantly better results) can

be formulated.

7.2 Reduction of Computational Complexity

89

a. Parallelization of IDP

The reduction factor and the initial policy can have a large effect on the convergence and

the rate of convergence of the algorithm to the final solution. A suggested area of study is

to parallelize multiple processes of IDP with different parameters. There can be two

variants of this approach:

1. Start the parallel processes with the same initial policy, but different reduction

factors. In the case that the initial guess lies in the vicinity of the optimal solution,

the process with a high reduction factor can quickly converge to the solution. In

the case of a bad initial guess, processes with a lower reduction factor propose

additional chances of escaping the local optimum. The parallel processes can also

communicate the results amongst to improve successive iterations.

2. Use different initial policies for different parallel processes. This results in the

search of multiple regions of the state space in parallel.

7.2 Reduction of Computational Complexity

i

Bibliography

1. Energy Efficiency: the Other Alternative Fuel. http://www.abb.com. [Online]

http://www.abb.com/cawp/abbzh252/1e61c6abed230ba6c12571bf0058af8a.aspx.

2. Ambühl, Daniel. Energy management strategies for hybrid electric vehicles. Diss.

ETH ZURICH, 2009.

3. Radke, Tobias. Energieoptimale Längsführung von Kraftfahrzeugen durch Einsatz

vorausschauender Fahrstrategien. Vol. 19. KIT Scientific Publishing, 2013.

4. Wahl, Hans-Georg. Optimale Regelung eines prädiktiven Energiemanagements von

Hybridfahrzeugen. Vol. 43. KIT Scientific Publishing, 2015.

5. Sundstrom, Olle, and Lino Guzzella. "A generic dynamic programming Matlab

function." Control Applications,(CCA) & Intelligent Control,(ISIC), 2009 IEEE. IEEE,

2009.

6. Richard Ernest Bellman. Dynamic Programming. Dover Publications, Incorporated,

2003.

7. Bellman, Richard E., and Stuart E. Dreyfus. Applied dynamic programming. Princeton

university press, 2015.

8. De Madrid, A. P., S. Dormido, and F. Morilla. "Reduction of the dimensionality of

dynamic programming: A case study." American Control Conference, 1999. Proceedings

of the 1999. Vol. 4. IEEE, 1999.

9. Canto, Sebastian Dormido, Angel P. de Madrid, and Sebastiįn Dormido Bencomo.

"Parallel dynamic programming on clusters of workstations." IEEE Transactions on

Parallel and Distributed Systems 16.9 (2005): 785-798.

7.2 Reduction of Computational Complexity

ii

10. Tang, Shanjiang, et al. "Easypdp: an efficient parallel dynamic programming runtime

system for computational biology." IEEE Transactions on Parallel and Distributed

Systems 23.5 (2012): 862-872.

11. Luus, Rein. "Optimal control by dynamic programming using systematic reduction in

grid size." International Journal of Control 51.5 (1990): 995-1013.

12. Dadebo, S. A., and K. B. McAuley. "Dynamic optimization of constrained chemical

engineering problems using dynamic programming." Computers & chemical

engineering 19.5 (1995): 513-525.

13. Wahl, Hans-Georg, and Frank Gauterin. "An iterative dynamic programming

approach for the global optimal control of hybrid electric vehicles under real-time

constraints." Intelligent Vehicles Symposium (IV), 2013 IEEE. IEEE, 2013.

14. Bertsekas, D. "Convergence of discretization procedures in dynamic

programming." IEEE Transactions on Automatic Control 20.3 (1975): 415-419.

15. Fox, Bennett L. "Discretizing dynamic programs." Journal of Optimization Theory

and Applications 11.3 (1973): 228-234.

16. Shannon, Claude Elwood. "Communication in the presence of noise." Proceedings of

the IRE 37.1 (1949): 10-21.

17. Elbert, Philipp, Soren Ebbesen, and Lino Guzzella. "Implementation of dynamic

programming for $ n $-dimensional optimal control problems with final state

constraints." IEEE Transactions on Control Systems Technology 21.3 (2013): 924-931.

18. Sundström, O., D. Ambühl, and L. Guzzella. "On implementation of dynamic

programming for optimal control problems with final state constraints." Oil & Gas

Science and Technology–Revue de l’Institut Français du Pétrole 65.1 (2010): 91-102.

Filename: master thesis 2.docx
Directory: C:\Users\Maqbool\Documents
Template:

 C:\Users\Maqbool\AppData\Roaming\Microsoft\Templates\Norma
l.dotm

Title:
Subject:
Author: Maqbool
Keywords:
Comments:
Creation Date: 4/3/2017 2:27:00 AM
Change Number: 13
Last Saved On: 4/17/2017 8:44:00 PM
Last Saved By: Maqbool
Total Editing Time: 1,742 Minutes
Last Printed On: 4/17/2017 8:45:00 PM
As of Last Complete Printing
 Number of Pages: 101
 Number of Words: 19,553 (approx.)
 Number of Characters: 111,457 (approx.)

