technische universitat
dortmund

Bachelorthesis

Evaluation of Multi-Mode Tasks under
Rate-Monotonic and
Earliest-Deadline-First Scheduling in

Real-Time-Systems

Vincent Meyers
May 14, 2017

Betreuer:
Professor Dr. Jian-Jia Chen

Dr-Ing. Anas Toma

Fakultat fir Informatik
Design Automation For Embedded Systems (Ls12)
Technische Universitdt Dortmund

http://ls12-www.cs.tu-dortmund.de

Contents

1 Introduction and Background

1.1 Imtroductiom
1.1.1 Multi-Mode Tasks in Real-Time Operating Systems
1.1.2 Thesis Contribution
1.1.3 Thesis Organization
1.2 Background
1.2.1 Real-Time Systems
1.2.2 Real-Time Tasks L
Sporadic and Periodic Tasks
1.2.3 Schedulers
Rate Monotonic Scheduling
Earliest Deadline First Scheduling
Performance metrics L.
1.24 System Overhead
1.25 FreeRTOS o o
Structure
Tasks
Scheduler oL
2 Multi-Mode Task Model

2.1 Motivationo Lo
2.2 Definition

Design and Implementation
3.1 Multi-Mode Tasks
3.1.1 Real-time constraints L
312 Modes
3.2 Rate-Monotonic Scheduler o o
3.3 Earliest-Deadline-First Scheduler
3.4 Additional Modificationso

10
11
12
13
13
13
15
17

19
19
21

i

Shared Processor Behavior

Configuration and Task Creation

3.5 Test Design and Task Generation
Randomized Task Sets
Realistic Task Sets

Hardware and External Interrupt

4 Results and Discussion

41 Results.
Scheduling Overhead
First Test Procedure
Second Test Procedure
4.2 Discussion

5 Conclusion

5.1 Summary ...
5.2 Future Work

List of Figures

Bibliography

CONTENTS

41

.......... 41
.......... 41
.......... 42
.......... 45
.......... 49

51

.......... ol
.......... 52

54

56

Chapter 1

Introduction and Background

1.1 Introduction

1.1.1 Multi-Mode Tasks in Real-Time Operating Systems

Today auto-mobiles are no longer only mechanical systems but additionally contain em-
bedded electronic and software components. Improvements in functionalities, performance,
comfort and safety have been provided significantly by electronics and software technolo-
gies [19]. Embedded electronics and networks can be used to control the physical processes
in an auto-mobile to create an advanced automotive system [15]. These so called Cyber-
Physical Systems(CPS), which are systems designed to have tight coordination between
computational and physical resources [15], have advanced in recent years due to the ubig-
uity of available networks and sensors that can be accessed [11]. In 2005, more than 70
microprocessors embedding up to 500MB were used in automotive systems [19]. The func-
tionality of those embedded systems may range from controlling the wipers and doors to
controlling the engine and the fuel flow. In order to guarantee a correct behavior, the
automotive embedded system has to react within a precise time constraint on events based
on the environment and is therefore called a real-time system. The timing correctness is
important as delayed reactions can result in faulty behavior in the automotive system and
potentially lead to loss of safety for the driver. In order to achieve safety and reliability
the hardware and the software of the system have to be considered.

The software of an automotive application may be modeled as a set of independent
recurrent tasks with each task generating an infinite number of jobs which are being exe-
cuted by the system. These tasks are processed by the central processing unit (CPU) of
the embedded system. As a processor is a limited resource and can only execute one task
at a particular time, the tasks have to share it in some way. Consequently, a set of rules,
known as scheduling algorithm, are employed to determine which task is executed by the
CPU. Usually a task’s job has a fixed worst-case time needed for its execution. Now to

control the engine of an auto-mobile, a task may release jobs depending on the engines

1

2 CHAPTER 1. INTRODUCTION AND BACKGROUND

9)

Q)

Figure 1.1: Simplified visualization of a crankshaft with rotation speed w

speed. In order to meet the timing constraint given by the environment and prevent a
potential system failure, the job has to react before the next job is generated. Therefore,
the task might have to shed some of its functionality to meet its deadline which is its
next release time. Classical solutions to this problem feature tasks with different modes of
execution where in the case of a mode change all tasks perform a transition to their new
parameters [20]. In some cases though, tasks may react on different inputs or differently on
the same input and thus have to switch modes independently of another. In our example
of the auto-mobile’s engine the input for the corresponding tasks is the engine speed and
the tasks’ functionalities are part of the fuel injection system. Every time the crankshaft,
which is visualized in figure 1.1, finishes a rotation the tasks have to execute their respec-
tive functions. This happens when the piston reaches its highest position. If the engine
speeds up, the tasks eventually need to use another algorithm or function to achieve their
goal to avoid deadline misses. Additionally it has been the case that the system is more
stable at higher rotation speeds but needs additional functions to be executed at lower
speeds to keep the engine stable. Consequently, these functions do not need to be executed
at higher speed which can be exploited to reduce execution times [6]. A multi-mode task
model suited for this case has been presented in Rate-Adaptive Tasks: Model, Analysis,
and Design Issues and is referred to as the Variable Rate Behavior task model [6]. Huan
and Chen provide techniques for analyzing the schedulability of such a model in their pa-
per Techniques for Schedulability Analysis in Mode Change Systems under Fized-Priority
Scheduling [11]. Furthermore, they show the advantages of using a fixed-priority schedul-
ing algorithm over a dynamic scheduling algorithm when scheduling multi-mode tasks by

a simulation.

1.1. INTRODUCTION 3

1.1.2 Thesis Contribution

The current results regarding the comparison of multi-mode tasks under dynamic and
static scheduling were achieved by simulation. Experimental evaluation by implementing
the model and using it on real hardware is also important as the results might differ from

theory.

The goal of this thesis is to evaluate multi-mode tasks under rate-monotonic(RM)
and earliest-deadline-first(EDF) scheduling in a real-time operating system. The main
interest here lies in the comparison of the schedulers overheads and the influence that the
transitioning between different modes has on specific evaluation metrics like the number
of late tasks. Therefore, we implement the multi-mode task model along with the rate
monotonic and earliest deadline first scheduling algorithm. The real time system chosen
for this task is FreeRT'OS. We use the Raspberry Pi, a device with a BCM2835 micro-
controller which is used in a lot of embedded systems projects, as the environment for
our experiments. In these experiments, we evaluate and compare the presented schedulers
using different metrics. Furthermore, we apply two different test procedures, one with
randomized values and the other with more realistic values as they can be found in real-
world automotive software systems. The results of our evaluation can then be used for

further research and analysis.

1.1.3 Thesis Organization

This thesis will start by giving background information about important subjects which
we will use in this work. The background is divided into a detailed explanation about real-
time tasks and operating systems(RTOS), schedulers and the real-time operating system
FreeRTOS. Additionally, particular terms which will be used throughout the thesis are
explained. Starting with a presentation of real-time tasks and real-time operating systems
gives an insight to the importance of testing the multi-mode task model in practice. We
then introduce the rate-monotonic and earliest deadline first scheduling procedures and
their characteristics, which will be significant for the implementation. The last section
of the background then gives an introduction to the real-time system FreeRTOS and its
structure. The reader will then be able to understand the modifications we make to the
system which are presented and explained in chapter 3. The chapter also covers the test
design and task generation which will provide our test data. The results of the evaluation
are then presented and discussed in chapter 4. The final chapter gives a summary of this

thesis as well as giving directions for future work and pointing out unresolved problems.

4 CHAPTER 1. INTRODUCTION AND BACKGROUND

1.2 Background

1.2.1 Real-Time Systems

Real-time systems are computing systems which have precise timing constraints in which
they have to react based on events in the environment. Therefore correctness of such a
system does not solely depend on the resulting output but also on the time said output gets
produced. If the response of the system is too slow, it could render the response useless or

even have a dangerous aftermath [5].

The following is a list of examples given by the book Hard Real-Time Computing
System [5]:

Chemical and nuclear plant control,

e control of complex production processes,

e railway switching systems,

e automotive applications,

e flight control systems,

e telecommunication systems,

e medical systems,

e military systems,

e space missions.

The term real-time does not mean that a system is able to react wvery fast to envi-
ronmental changes but instead means that its response to external events meets a timing
constraint proportional to the characteristics of the physical environment. Also the systems

reaction has to happen during the evolution of the external events.

1.2. BACKGROUND 5!

Control
System

Sensory Actuation

System System

[ENVIRONMENT j

Figure 1.2: Block diagram of a real-time control system

Subsequently the environment is always an essential part of real-time systems [5]. A
typical structure of a real-time system for the control of a physical system, e.g. an engine,
is shown in figure 1.2.

As mentioned before, being fast is not as important for a real-time system than meeting

specific timing constraints. In other words, the system has to be predictable [5].

1.2.2 Real-Time Tasks

A task is a set of instructions or computations that are sequentially executed by the central
processing unit of a system [5]. In an environment with multiple concurrent tasks, tasks
compete with one another for the control of the CPU. Concurrent tasks are tasks that
overlap in time [5].

Consequently a task can either be waiting for the processor or executing on the proces-
sor. We call waiting tasks ready, executing tasks running and tasks that could potentially
execute active |5]. Additionally there might the case of a task being delayed or suspended,
in which we will refer to the task as blocked.

In cyber-physical systems, like an automotives engine control, tasks might need to meet
real-time constraints to prevent system failure or misbehavior [17]. Such a task is called a
real-time task and the real-time constraint the task has to meet is called a deadline [5].
If not meeting that constraint results in a catastrophe, the deadline is called hard [17]. In

the following we distinguish between the following kinds of tasks [5]:

Hard: The real-time task is hard if not meeting the deadline can result in catastrophic

consequences

6 CHAPTER 1. INTRODUCTION AND BACKGROUND

Firm: The real-time task is firm if not meeting the deadline renders the produced results

useless but does not do any damage to the system

Soft: The real-time task is soft if not meeting the deadline reduces the performance but

is acceptable for the system

The three categories above are also referred to as the criticality of a task [5]. Our example
of a task controlling the engine’s fuel flow from the introductory chapter 1.1.1 falls under
the category of hard tasks.

The next part of this section focuses on additional timing constraints which characterize

a task and its execution.

1.2.1 Definition. A basic unit of execution or task in execution handled by the operating

system is called a job J [17].

Jobs have the following timing parameters [5]:

Arrival time: The time at which the job becomes ready for execution is called arrival

time a; or release time 7;.

WCET: The Worst-Case Execution Time(WCET) C; is the upper bound of the

duration of a task execution.

Absolute deadline: The time at which the job should be completed is called absolute
deadline d;.

Relative deadline: The time length between the arrival time a; and the absolute deadline

d; is called relative deadline D;.
Start time: The time at which the job starts its execution is called start time s;.

Finish time: The time at which the job finishes its execution is called finish time f;.

C;
¢ >
Ti
| — —
a; Si Ji d;

Figure 1.3: Timing parameters of a real-time task

Figure 1.3 shows some typical task parameters explained above. In addition to those pa-
rameters we introduce the following characteristics which are not essential for the operating

system but for doing measurements in our evaluation [5]:

1.2. BACKGROUND 7

Response time: The time length the job needs to finish its execution after its arrival,

which is f; — aj, is called response time ;.

Lateness: The lateness L; describes the time between the task’s completion and its

deadline f; — d;. If the task exceeds its deadline the lateness is positive.

Tardiness: The time a task stays active after its deadline is called tardiness FE; = maz(0, L;)

Laxity: The maximum delay acceptable for a task to complete within its deadline is the
la:vity Xi = di — Q; — Cz

We have described the parameters for a task which executes a single time and will now

introduce tasks which are executing recurrently.

Sporadic and Periodic Tasks

Next to the introduced constraints tasks can be characterized by their regularity of acti-

vation. Tasks can be seperated into periodic and aperiodic tasks [17]:

1.2.2 Definition. A task 7; which requests the processor exactly every p time units is
called periodic task with period T; and phase ¢; which indicates the first release time
of the task.

A periodic task 7; can be denoted as a quadruple(triple) 7, = (¢4, Cy, T3, D;).

If ; is omitted, it can be assumed that ¢; = 0.

1.2.3 Definition. Tasks which execute at unpredictable times but have a minimum seper-
ation between the times at which they execute are called sporadic. 7; is the minimum
seperation time.

A sporadic task 7; can be denoted as a triple ; = (Cy, T3, D;).

Tasks which are neither periodic nor sporadic are called aperiodic.
Figure 1.4 shows exemplary sequences of instances for a periodic and an aperiodic task.
The phase ¢; is zero. Both periodic and aperiodic tasks generate an infinite sequence of

identical jobs however the aperiodic jobs to not arrive regularly.

8 CHAPTER 1. INTRODUCTION AND BACKGROUND

D;
—
first job C. k" job
1
Ti
[] [I I
1
(a)
Vi DZ \ < DZ \
Ti OZ
1 1 t
;1 di,l ;2 dl 2

(b)

Figure 1.4: Task executions for a periodic (a) and aperiodic task (b)

Taking on the example of engine control in an automotive, such a system may be mod-
elled as multiple independent recurrent tasks instead of implementing all functionality in
a single task. We denote a set of tasks as task set I'. Furthermore a task set with implicit
deadline is a task set for which D; = T; holds for every task 7; [17]. For clarity, the Jobs

of a task 7; are from now on referred to as J; 1, J; 2,

The central processing unit of an embedded system is a limited resource which a task
may periodically utilize to a certain degree. Using the timing constraints of a task we

define the task utilization of a task 7; and total utilization of a task set I' as follows [16]:

Task utilization: U; := %

Total utilization: U(T) =) Ui

1.2.3 Schedulers

In a system where a single processing unit has to handle a set of tasks with overlapping ex-
ecution times the CPU has to be assigned according to predefined criteria called scheduling
policy |5]. The set of rules which realizes the scheduling policy is called scheduling algo-
rithm and the procedure of actually selecting a task to transition from the ready to the
running state is called dispatching. Following a scheduler is the part of the system that
chooses which task is going to control the CPU next. The resulting order of tasks is called
a schedule [5].

1.2. BACKGROUND 9

For the process of scheduling each task 7; of task set I' is assigned a priority ;.

1.2.4 Definition. A schedule S is a mapping of jobs to the time at which they are
granted access to the processor, such that each job is executed until completion.

A schedule can be defined as a function:

c:R—N

o(t) = j denotes the job J; ; of task 7; executed at time t

o(t) = 0 denotes that the system is idle at time t

The processor performs a context switch at time t if o(¢) changes its value at some time t.

A schedule is feasible if all jobs which are scheduled meet their specified constraints |5].
Accordingly, a task set is said to be schedulable if an algorithm which produces a feasible
schedule for that task set exists [5]. Given a task set I" with total utilization U we define
the upper bound U, (T, A) of the set under scheduling algorithm A as the maximum value
of processor utilization for which I" set is schedulable [5]. This means that increasing U
by increasing the tasks’ computation times or decreasing periods results in I' becoming
infeasible. Figure 1.5 shows a schedule with U,, ~ 0.83 for two tasks 7 and m». 79 is
the higher priority task in this example. Increasing any execution time will result in an

infeasible schedule since the first job of 7 will miss its deadline.

. B B)
p)
- |L|L |LIL —— ¢
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1.5: A task set with U, = % ~ 0.83

Additionally we specify the minimum of all Uy, of " as the least upper bound Uy [5]:
Uup = HlFiIl Uuw(L', A)

Consequently every task set with U < Upp(A) is feasible under scheduling algorithm A [5].

If a task is executing while another task with a higher priority becomes ready it might
be important to let the higher priority task access the CPU and let the lower priority task
finish afterwards. This process is called preemption. More reasons for allowing preemption

are allowing tasks to perform exception handling in a timely fashion and being able to

10 CHAPTER 1. INTRODUCTION AND BACKGROUND

schedule tasks with a higher processor utilization [5]. Therefore we distinguish scheduling

between preemptive and non-preemptive scheduling as follows [5]:

Non-preemptive: For non-preemptive scheduling there can be only one time interval
with o(t) = j for every J; in the corresponding period pj, where t is covered by the

interval.

Preemptive: For preemptive scheduling there can be more than one time interval with

o(t) = j for every J; in the corresponding period p;.

M) dispatching termination
_______ N cee H Execution

E scheduling

preemption

Figure 1.6: A queue of tasks that is being scheduled and dispatched.

When classifying a scheduling algorithm we can do so by considering further characteristics
of the algorithm like the parameters its decisions are based on. If the parameters are fixed
we call the scheduling static and dynamic if they can change during the time that our
system is active [5]. Additionally the time at which decisions are made is an identifying
property. Thus, we distinguish between off-line scheduling, which is assigning the task
priorities of the entire task set before the tasks are activated, and online scheduling, in
which the algorithm makes decisions at runtime whenever a task enters the ready state or
a task terminates [5]. Lastly scheduling algorithms differ in the resulting schedule that is
aimed for and accepted. A heuristic algorithm uses a heuristic function in order to find
an optimal schedule. Consequently, it is not guaranteed to find one but will always tend
towards the optimal schedule. On the contrary, an optimal scheduling algorithm minimizes
a given cost function, or if not defined, achieves a feasible schedule. If the algorithm always
finds an existing feasible schedule it is called optimal [5].

An exemplary scheduling algorithm for static scheduling is the Rate-Monotonic Schedul-
ing Algorithm. For dynamic scheduling an exemplary scheduling algorithm is the Earliest-
Deadline-First Scheduling Algorithm. These scheduling algorithms are explained in the

following sections. When explaining the schedulers we refer to periodic scheduling.

Rate Monotonic Scheduling

One of the scheduling algorithms implemented in this work is the Rate Monotonic (RM)
scheduling algorithm. This algorithm assigns priorities based on the periods of tasks. The
shorter the period (or the higher the request rate), the higher is the priority assigned to

1.2. BACKGROUND 11

the task. Since periods are fixed parameters which are set before task execution, the rate

monotonic scheduling algorithm is classified as a static algorithm [5].

"]

~
+

<
~

i
C, + 2C; '

Figure 1.7: A task set scheduled following the RM policy

Figure 1.7 shows a task set scheduled using the rate monotonic algorithm. The response
time of 7, is delayed by the interference of the higher priority task 7.

Liu and Layland proved that RM is an optimal fixed-priority algorithm in 1973. In
addition they showed that any task that can be scheduled by a static scheduling algorithm
can be scheduled by RM [16]. Moreover they derived a least upper bound for the processor
utilization for n periodic tasks under RM scheduling, which is [16]:

Upp =1In2 ~ 0.69

Earliest Deadline First Scheduling

The second scheduling algorithm introduced in this section is the Earliest Deadline First
(EDF) algorithm, which is a dynamic algorithm that chooses task priorities based on their
absolute deadlines. More precisely, the closer a task is to its absolute deadline the higher
its priority will be [5]. The algorithm is then dynamic as the absolute deadline of a periodic

task is not a static parameter. It is computed as follows:
dij = ¢i+ (j —1)Ti + D;
The least upper bound for EDF is Uy, = 1 [5]. Specifically, the following theorem holds[16]:

1.2.5 Theorem. For a given set of n tasks, the EDF scheduling algorithm is feasible if
and only if

|2

<1

S

1

n
=1

Figure 1.8 shows a schedule produced by RM and EDF on the same task set. It highlights

the advantage of EDF being able to schedule task sets with a higher processor utilization.

12 CHAPTER 1. INTRODUCTION AND BACKGROUND

71 will miss its first deadline’s deadline under RM scheduling while the set is schedulable
under EDF. However, in praxis using dynamic scheduling like EDF comes at the cost of
having to sacrifice computation time on dynamically calculating the schedule each time a

task readies. We will show this in the results of our experiments in chapter 4.

T1
e -
T2
- T - 1 T T — ¢
0 1 2 3 4 5 6 7 8 9 10 11 12 13
(a)
kimeoverﬂow I
T1
- — L
T T T T — ¢
0 1 2 3 4 5 6 7 8 9 10 11 12 13

(b)

Figure 1.8: A periodic task set scheduled following the EDF (a) and RM (b) policy

Performance metrics

For our evaluation we need specific criteria to measure the performance of the presented

schedulers. Therefore, we introduce the following cost functions |5]:
Average response time:

Total completion time:
te = max(f;) — min(a;)
(2 (2

Weightes sum of completion times:

n
tyw = Z wzfz
=1

1.2. BACKGROUND 13

Maximum lateness:
Lmaac = mlax(fl - dl)

Maximum number of late tasks:

- 0, if f; <d;
Nigte = Zmiss(fi), with miss(f;) = f

i—1 1, otherwise

1.2.4 System Overhead

The information presented in this section is provided by Giorgio C. Buttazzo in his book
Hard Real-Time Computing Systems |5]. The time it takes for the processor to handle all
mechanisms which are not tied to executing jobs is called the overhead of the operating
system. Exemplary operations which cause overhead could be context switches, communi-
cation with peripheral devices or over channels or interrupt requests.

Switching the context is an important factor in operating system overheads. It is
independent from the implemented scheduling algorithm and the application. Another
cause for overhead is the system tick interrupt which happens periodically. Let) be the
period of the system tick and o be the worst-case execution time in which the interrupt

timer executes. The resulting utilization U; can be then computed as:

Uy =

Qla

1.2.5 FreeRTOS

FreeRTOS is a real-time operating system, short RT'OS, an operating system that supports
the construction of real-time systems. It is a widely used and relatively small application
consisting of up to 6 C files and supports various architectures.

Features of the system which make it a reasonable choice for this work are the pre-
emptive scheduler, which will be explained in section 3 of this chapter, the support for
real time tasks and the portable source code structure which allows FreeRTOS to run
on a Raspberry Pi B4. Additionally there are no software restrictions on the number of

real time tasks or the number of priorities that can be used and the assignment of priorities.

The following sections will provide detailed information about the properties of FreeR-
TOS that are important for this work. If not stated otherwise, the source for all information

in this section is taken from http://freertos.org [1].

Structure

In this section the structure of FreeRTOS is explained. The explanation will focus on

information which is important for the implementation of multi-mode tasks in FreeRTOS

14 CHAPTER 1. INTRODUCTION AND BACKGROUND

and the implementation of the schedulers.

Figure 1.9 and 1.10 give an overview of a FreeRTOS projects file structure. In our case the
demo application folder also contains the drivers needed to control particular peripherals
of our hardware. FreeRTOS can be customised by modifying the configuration file FreeR-
TOSConfig.h, i.e. turning preemption on or off and setting the frequency of the system

tick. This file must be present in the pre-processor include path of every application.

FreeRTOS
+ ---- Demo Contains the demo application projects
+1 ---- Source Contains the real time kernel source code
Figure 1.9: The basic folder structure of FreeRTOS
FreeRTOS
+1 -- Source The core FreeRTOS kernel files

+‘ - - include The core FreeRTOS kernel header files

+‘ -- Portable Processor specific code

% - Compiler x Ports supported for compiler x
+ - Compiler y Ports supported for compiler y

+ - MemMang Sample heap implementations

Figure 1.10: The structure of the FreeRTOS source folder including the portable folder

The following are variables and functions naming conventions in FreeRTOS which will
be complied in the implementation:

Variables (combinations are posssible):

e c: char

s: short

l: long

x: portBASE TYPE and any others
e u: unsigned

e D: pointer

1.2. BACKGROUND 15

Function prefic:
e prv: private function
e returning data type

e v: void

Tasks

This section will give a brief overview about how tasks are handled in FreeRTOS. The prop-
erties of tasks, their states and important related functions are explained. Only functions
and properties that are significant for this work are covered.

Tasks in FreeRT'OS execute within their own context with no dependency on other tasks
or the scheduler. Furthermore the scheduler activity is unknown to tasks and therefore
they are not responsible for the behavior of processor context switches. This is the sole
responsibility of the RTOS scheduler. Upon creation each task is assigned a task control
block, short TCB, which contains the stack pointer, two list items and the tasks priority.
Tasks can have priorities from 0, lowest, to configMAX PRIORITIES - 1, highest, where
configMAX PRIORITIES is configured in FreeRTOSConfig.h.

The creation of a task is possible with a call of the function:

zTaskCreate(TaskFunction_t pvTaskCode,
const char * pcName,
unsigned short usStackDepth,
void * pvParameters,
UBaseType_t uzPriority,
TaskHandle_t * xTaskHandle)

A task can be deleted by calling the function:
void vTaskDelete(TaskHandle t zTask)

If NULL is passed to vTaskDelete() the calling task will delete itself. Memory allocated by
the task code needs to be freed manually. Additionally a task can delay itself using either

void vTaskDelay(const TickType_t zTicksToDelay)
or

void vTaskDelayUntil(TickType_t *pzPrevious Wake Time,

const TickType t xTimelncrement)

16 CHAPTER 1. INTRODUCTION AND BACKGROUND

vTaskDelayUntil() allows a constant execution frequency while vTaskDelay() blocks the
task for a a given number of ticks relative to the time at which the function is called.

A task in FreeRTOS can be in four different states:
Running: The task is currently executing.
Ready: The task is ready to execute but preempted by a higher priority task. Only tasks
in the ready state can be selected to enter the running state.
Blocked: The task is waiting for an event and delays itself. After a timeout the task will
be unblocked.
Suspended: The task is blocked but does not unblock after a timeout. Instead the task
enters or exits the suspended state only when explicitly commanded to do so.

The possible state transitions are displayed in Figure 1.11. The task’s states are realized

Suspended

vTaskSuspend() vTaskSuspend()

vTaskResume()

~N

vTaskSuspend() Running

AN

Blocking API

function called

Event

Blocked

Figure 1.11: Valid state transitions for tasks in FreeRTOS

by doubly linked lists, a list for which each element in the list knows the previous and
next element in the list. Whenever we mention that a task is contained or inserted in a
list structure we actually mean that the pointer to that task’s TCB is being contained
or inserted to that list. Tasks which become ready to be executed or the task that is
currently running are contained in an array of doubly linked lists pzReady TasksLists/] of size
configMAX PRIORITIES according to their priority. Whenever a task is inserted to its

1.2. BACKGROUND 17

ready list its priority is checked against the currently highest priority uxzTopReadyPriority
in order to keep track of the highest priority and speeding up context switches. Suspended
tasks are inserted to zSuspended TaskList and delayed(blocked) tasks to pzDelayed TaskList.
As mentioned before the running task is contained within one of the lists in the array
prReadyTasksLists[configMAX PRIORITIES]. It is also pointed to by the pointer tskTCB
* wolatile prCurrentTCB. This is how FreeRTOS keeps track of the running task.

Scheduler

The scheduler of FreeRTOS is responsible for deciding which tasks executes at a specific
time. It is implemented in the routine which is executed for each system tick interrupt.
The implementation might vary with the corresponding port.

The following is an exemplary routine for the tick interrupt as it is implemented in the

port for the Raspberry pi:

void vTickISR (unsigned int nlRQ, void *pParam)

{

vTaskIncrementTick ();

#if configUSE PREEMPTION
vTaskSwitchContext ();
#endif
h

Time is measured in system ticks which can be configured to the desired frequency in
FreeRTOSConfig.h. The highest value which is possible for the tick ratio depends on
the hardware and the port. In vTaskIncrementTick() blocked tasks are be unblocked if
the required event happened. After that the actual scheduling process takes place in
the function vTaskSwitchContext(). Therefore the system loops through pzReadyTasksList
starting from uzTopReadyPriority down to the lowest priority and stops when it finds
a non-empty list. Consequently the tasks contained in that list have to be the tasks
with the highest priority. The value of uzTopReadyPriority is updated accordingly and
prCurrentTCB is set to the next item in the list. Subsequently if the list pzReady-
TasksLists[configMAX PRIORITIES] contains more than one task prCurrentTCB is al-
ternating between those tasks until one or both of them get blocked or suspended. There-

fore the processor is shared between tasks of the same priority.

18

CHAPTER 1. INTRODUCTION AND BACKGROUND

Chapter 2

Multi-Mode Task Model

In this chapter we introduce the task model which is to be implemented. An informal
explanation, the motivation for the model and a formal definition is given.

Multi-mode tasks are self-adjusting activities which are independent of other tasks. A
multi-mode task can execute in several modes which are specified by different execution
times, periods and deadlines. Such a task may change its mode dependent on an external

interrupt which may be used to reduce the execution time and lower the total utilization.

2.1 Motivation

In modern automotive systems computers are used to control and improve the performance
of various parts of the automotive system. These embedded systems are in continuous
interaction with various parts of the auto-mobile, for example the doors, the wipers, the
lights and most importantly the engine [19]. As a car is a safety-critical system which
needs to ensure functional and timing correctness, the engine control needs to be executing
flawlessly. Faulty behaviour can possibly result in a fatality. Now to react accordingly, the

embedded systems tasks which are interacting with the engine have the following structure:

set timer to interrupt periodically with period T;

at each timer interrupt do:
receive input over analog to digital conversion;
use input to compute control output;
send output over digital to analog conversion;

end

An angular task is a task which is is linked to the rotation of specific devices like the
crankshaft, gears or wheels. Let 7 be a task linked to the automotive’s crankshaft and
the related engine speed w. Such a task could be responsible for calculating the time at

which the spark signal has to be fired, adjusting the fuel flow as well as minimizing fuel

19

20 CHAPTER 2. MULTI-MODE TASK MODEL

consumption and emissions [11|. Generally such a sporadic task 7 is characterized by its
fixed worst-case execution time, period/minimum inter-arrival time and relative deadline.
Due to its dependency on the source of rotation, here described by the angle of crankshaft
0, speed of the crankshaft w and acceleration of the crankshaft « , the task’s period is

inversely proportional to w. The period can be computed as follows [4]:
0.
Tiw) = 2

With increasing rotation speed w the time available for the task to execute all of its
functions might not be long enough and the task will eventually miss its deadline. In a
hard real-time system this could potentially lead to catastrophic consequences [5]. Figure

2.1 shows an example for such an occurrence also called task overloading.

T1

time

Figure 2.1: The task is overloading during high speed rotations.

To guarantee that deadlines are met in the system described above, the characteristics
of the tasks need to be able to adapt to the engine speed. This can be accomplished by
shedding functions of the task which are not critical for the correct performance of the
automotive, e.g. fuel consumption and emission control. Doing so can reduce the worst-
case execution time and the deadline will be met. Consequential a task needs different
modes it can run on, depending on the engine speed w. This leads us to the definition of

multi-mode tasks.

2.2. DEFINITION 21

2.2 Definition
Multi-mode tasks are denoted by sets of triples:

T, = {Til = (Cil?Til’Dil)a
Ti2 = (CZ’Q,TE,DZZ),

ceey

M; _ M; M; M;
Ti _(Oz aTz' 7Di)}

M; is the highest mode of task 7 and m is a mode with 1 <m < M;.

Ci" is the WCET of task 7; under mode m.

T™ is the minimum inter-arrival time of task 7; under mode m.

D7 is the relative deadline of task 7; under mode m. It is important to note that if a task
m

7" is released at time t the next release time of that task will be equal or bigger than

t +T]" even if a mode change happens while the task is delayed/blocked.

Example. This is an example of a multi-mode task with four types of execution modes

dependent on the rotation speed rpm.

rotation (rpm) || functions to be executed
[0,2000] f10; 1205 £30); £40);
[2000,4000] || f10); £20); f3();
[4000,6000] || £1(); f2();
[6000,8000] || f1()

9

The chronograph for Figure 2.1 subsequently looks as follows:

time

22

CHAPTER 2. MULTI-MODE TASK MODEL

Chapter 3
Design and Implementation

This chapter covers the implementation of multi-mode tasks and the rate-monotonic as
well as the earliest-deadline-first scheduler in FreeRTOS. We will start with the multi-

mode tasks as it is the fundamental system model used by the schedulers.

3.1 Multi-Mode Tasks

In this section we will give a step by step explanation on how the multi-mode task model

was implemented in the existing FreeRTOS port.

3.1.1 Real-time constraints

Multi-mode tasks are sporadic tasks. Thus in order to implement the multi-mode task
model in FreeRTOS a periodic or sporadic task model is needed. Before any of the systems
mechanisms can be exploited for that cause, the task control block structure of FreeRTOS
needs to be expanded by typical fields used in a periodic real-time system [5]. In addition
to the current fields of the TCB there will be the following added to the end of the TCB:

unsigned int uzPeriod: the period of task 7

unsigned int uzWCET: the worst-case execution time of task 7

unsigned int urDeadline: the relative deadline of task 7

unsigned int uzrPreviousWake Time: the previous wake time of task 7
The absolute deadline D of task 7 can then be computed by

D = uxDeadline + ux PreviousW akeTime

With these attributes added to tasks they also require initialization upon the tasks creation.

This can be achieved by adding them as parameters to the call of 2 TaskGenericCreate() and

23

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

the corresponding function zTaskCreate(). As real-world applications typically consist of
hard tasks and non-real-time tasks we want to keep the option of having non-real-time tasks
which will be assigned a fixed priority depending on the scheduling algorithm. Therefore we
implement an option to create either kind of task by passing different parameters. Which
parameters need to be passed is explained at the end of this chapter in section 3.4. For
prioritizing hard tasks over non-real-time tasks each scheduler will have its own mechanism.

We define the resulting function zTaskGenericCreate() as follows:

xTaskGenericCreate(pdTASK CODE pxTaskCode,
const signed char * const pcName,
unsigned short usStackDepth,
void *pvParameters,
unsigned portBASE TYPE uxPriority,
xTaskHandle *pxCreatedTask,
portSTACK TYPE *puxStackBuffer,
const xMemoryRegion * const xRegions,
portTickType period,
portTickType wcet,
portTickType deadline)

The added parameters period, wcet and deadline are unsigned as only values which are
greater than (are realistic. We also add those parameters to the function prolnitialise T'CB-
Variables() which is located in task.c. This function is responsible for the initialization
of the fields in the TCB. The idle task is initialized with 0 for wcet, period and port-
MAX DELAY for the deadline. Even though these are all the necessary changes for the
TCB the task execution is not yet periodic.

In general, tasks in FreeRTOS are not periodic even though the system supports mecha-
nism to implement periodicity. These mechanisms are software timers and the task control
function vTaskDelayUntil(). Therefore a periodic task system can be realized by using
either methods. A software timer can be set up to execute a function at a specific point in
the future and allows periodic execution of callback functions which are fired when a timer
expires. The period of a timer can be changed natively and a timer may be configured to
execute only one time or recurrently. The drawback of timers is that they all share the
same TCB of the timer service task, so they also share the same priority and consume
additional FreeRTOS heap to store the timer’s state. The advantage of software timers
however is that they don’t add any overhead to the system tick as the timer task does not

check expired timers during that time [1].

3.1. MULTI-MODE TASKS 25

vTaskDelayUntil() is a task control function located in the file task.c which takes a
pointer to a variable of type TickType t and a constant of the same type as parameters.

The function is defined as:

vTaskDelayUntil(TickType t *pxPreviousWakeTime,

const TickType t xTimelncrement)

A task that calls vTaskDelayUntil() will be placed on the sorted blocked list for an absolute
time [1]. The value which is assigned to the tasks generic list item is zTimelncrement, so
tasks get inserted to the list in the correct order. As a result the system only has to
check the current tick against the time of the first item in the blocked list and unblock
the corresponding task if necessary. Using vTaskDelayUntil() will one one hand consume
more RAM in comparison to software timers, as for each task a TCB has to be allocated.
On the other hand, having a TCB for each periodic activity of our application allows
more control, a more structured process when it comes to implementing the modes and
the function is not called from the system tick’s context either, so there is no overhead
added to the tick interrupt at that point. As the system checks for blocked tasks each
system tick, time will be consumed for unblocking a task and putting it on the ready
queue. In our approach we are using the function vTaskDelayUntil() to realize periodicity
in FreeRTOS as software timers are not part of the core system and might not be usable in
every project. Furthermore using the task control functions of FreeRTOS ensures control of
the system and minimizes the changes which need to be made. It is worth mentioning that
utilizing the function vTaskDelay() is not sufficient for the wanted behaviour as it does not
remember the last wake-time and will unblock the task at a relative time from the time it
is called instead of an absolute time in the future. This is shown in the comparison of both
functions in figure 3.1. The figure shows that vTaskDelay() is not suited for a periodic
task execution. To keep downward compatibility we add a function vTaskPeriodicDelay()
which has the same functionality as vTaskDelayUntil() but also updates the last wake time
of the calling task. We will refer to vTaskPeriodicDelay() instead of vTaskDelayUntil()
from now on.

Fach task is created with an associated task function which will be carried out each
time the task gets executed by the CPU. That task function is passed as the parameter
pdTASK CODE pzTaskCode. We can use this knowledge to manipulate the function in
a way that will make the related task periodic. To achieve this we will implement a new

function
void vMakePeriodic(void* pParameters)

which is getting passed a struct as a parameter. The reason for creating an additional
struct for each task is that the function pzPortInitialiseStack() expects parameters of type

(void*) for the task function parameters. A different option would have been to adapt

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

T1

T2

—
16

0 2 4 6 8 10 12 14

Figure 3.1: A comparison of the functions vTaskDelay() (m2) and vTaskDelayUntil() (2). Both

task are using the same worst-case execution time and implicit deadlines.

prPortInitialiseStack() to our needs but this would increase the work required to make an
existing application work in our system. We define the struct zPeriodicParameters with
the following fields:

pdTASK CODE zTaskCode: the task code to execute
void *rParameters: the parameters initially passed to zTaskCode

The wake time is stored in the variable zLast WakeTime. In our approach we are omitting
phases so each task starts at tick 0 and the first wake time of the task is set to 0. The
system may be expanded to use phases by adding field uzPhase to the TCB, initialise
it accordingly and set the zFrequency in vMakePeriodic to said phase. After that a call
of vTaskPeriodicDelay(&xLastWakeTime, xFrequency) can be done to actually delay the
task for its phase. Going on with the implementation of periodicity the original zTaskCode

is nested in an endless while-loop which looks like this:

while (1)

{
xFrequency = *(pxCurrentTCB >uxPeriod);
f(periodicParameters >xParameters);

vTaskPeriodicDelay (&xLastWakeTime, xFrequency);

}

f is pointing to the task function. Considering changes in the period we update zFrequency

every time the task wakes.

3.1. MULTI-MODE TASKS 27

Following these instructions we obtain a periodic system in FreeRTOS which allows
scheduling periodic, aperiodic, real-time and non-real-time tasks. The next section will

attend to expanding our periodic system to be able use multi-mode tasks.

3.1.2 Modes

To implement different modes of a task we have to turn their characteristics into a readable
form for the computer. Multi-mode tasks are, as described in chapter 2, denoted as a set
of triplets. The set’s length is not variable and therefore a suitable data structure is an
array. We will define an array for each real-time constraint of the task. The TCB fields

are then changed to:

portTickType * uxWCETs: the worst-execution times of the task

portTickType * uxPeriods: the periods of the task

portTickType * uzDeadlines: the deadlines of the task

Additionally the task has to know the fixed number of modes and for which values a mode

change has to take place. Thus we add the following two parameters:

unsigned int * uxModeBreaks: denotes the range for each mode

unsigned int * uxNumOfModes: the number of modes

urModeBreaks contains the maximum value for each mode. If compared to an external
input it allows to choose the adequate mode for that situation. The first mode at array

position 0 ranges from 0 to uzNumOfModes[0]. We add the parameters to the correspond-

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

ing functions as we did for the periodicity of the system and change the existing ones

accordingly:

xTaskGenericCreate(pdTASK CODE pxTaskCode,
const signed char * const pcName,
unsigned short usStackDepth,
void *pvParameters,
unsigned portBASE TYPE uxPriority,
xTaskHandle *pxCreated Task,
portSTACK TYPE *puxStackBuffer,
const xMemoryRegion * const xRegions,
portTickType * periods,
portTickType * wcets,
portTickType * deadlines,
unsigned int * uxModeBreaks,

unsigned int * uxNumOfModes)

For task creation the application has to specify the arrays and pass them to the function
as a pointer. The initialization of the TCB parameters is done in the same manner as
explained in the previous section.

Having implemented the model’s parameters, mode changes need to be brought into the
system now. We declare a function vUpdate Mode() which chooses the appropriate mode for
the given input. This function is not responsible for computing the input, it solely chooses
a mode depending on the tasks uzModeBreaks. The input value, which is determined by
an external interrupt in most cases, is stored in the global variable volatile unsigned int
externallnput. The variable is declared volatile as its value might change at any time. If
an application wants to make use of multi-mode tasks it therefore has to implement some
mechanic to change that variables value. Otherwise ezternallnput is always 0 which results
in the first mode being chosen. According to our definition of multi-mode tasks in chapter
2, tasks do not change their mode during runtime and a tasks next release time is that
of the last modes period even if the mode changes while the task is blocked. Therefore it
is sufficient if we update a tasks mode right before its next wake-time. This can be done
by calling vUpdateMode() at the start of the function prvAddTaskToReadyQueue(). It
follows that at the time the task unblocks and gets executed by the CPU it will be in its
correct mode for the time that it was released. Subsequently choosing the correct mode
adds to the systems overhead .As the time needed for updating the mode is dependent on
each individual task it should be measured and taken into consideration when designing

an application for this system.

3.2. RATE-MONOTONIC SCHEDULER 29

3.2 Rate-Monotonic Scheduler

In this section we will explain how we implemented the rate-monotonic scheduler in our
system. We will start by the basic idea followed by further improvements done to enhance

the scheduling process.

In order to implement a rate-monotonic scheduling policy as explained in section 1.2.3
we have to assign priorities before starting our scheduler and executing tasks. For that we
implement a new function vAssignPriorities() which will be called in vTaskStartScheduler()
right after the creation of the idle task so all tasks to be scheduled are present for the
scheduling process. We reserve priority 1 and pzReadyTasksLists[1] for the rate-monotonic
scheduling algorithm. All real-time tasks are temporarily inserted with priority 1 and thus
the list of ready tasks pzReadyTasksLists[1] contains all tasks which require scheduling.
The non-real-time tasks are excluded from the scheduling process and are assigned a static
priority depending on the applications choice. Preferably the application uses priorities
which have been created solely for those tasks and which are below the priorities reserved
for real-time tasks.

To explain our goals for the rate-monotonic scheduling we first present a simple solution for
scheduling multi-mode tasks in a rate-monotonic way. This can be implemented by setting
the number of priorities to the highest period which can be assigned in the application.

Then each tasks priority can be computed by
m =configM AX PRIORITIES —T;

This guarantees that each task is assigned the correct priority, but it might also result
in a huge number of unused priorities, e.g. scheduling one task with period 2000 will
need 2000 priorities. This will create additional overhead for finding the highest priority
task and require more available RAM as a list has to be initialized for each priority. The
overhead is a result of FreeRTOS iterating over the list of priorities until it finds the highest
priority task. The time needed for this is in the worst-case O(n) where n is the number of
priorities. Nonetheless, this approach gives us an impression about our requirements for

the rate-monotonic scheduling, which are:
e static priority assignment
e exactly one priority for each period used
e cach mode needs to be covered
e no unused priorities exist

Preferably we would also like to do context switches in constant instead of linear time to

reduce the system overhead.

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

Based on these requirements we now begin by designing the function vAssignPriori-
ties(). As each mode’s period of each task needs to be considered by the scheduling we

link them in the following struct:

struct doublyLinkedListNode {

unsigned int value;

void xtask;

int mode;

volatile struct doublyLinkedListNode #*prev;

volatile struct doublyLinkedListNode #*next;
b
The structs name gives away that we are going to insert the created structs in a doubly
linked list. This is done so that we can iterate over a sorted list and assign the priorities.
The struct contains a value field for the modes period, a pointer to the corresponding
TCB and a field for the tasks mode. We iterate over our list of tasks stored in pzReady-
TasksLists[1] and for each mode insert a doublyLinkedListNode into our sorted doubly
linked list. This leaves us with a list of all modes in a sorted order which we can track
back to the corresponding tasks. To be able to assign the priorities statically each task
also requires an array of priorities to choose its current priority from. Therefore we add
a field unsigned int *uzPriorities to the TCB. The values for this array are then set by

iterating over the list of modes in a for-loop and for each mode do:
TCB — uxPrioritiesimode] = configM AX PRIORITIES —i—1

We subtract an additional 1 from the priority as the highest priority is not to be assigned
in FreeRTOS. Finally we have to move each task to the ready-list of its current priority. In
order to do so, we remove each list from the list of readied tasks and insert it again. As our
priorities are assigned correctly by the procedure explained above, the tasks will get inserted
in correct order and dependent on their current task. Thus, using our implementation of
vAssignPriorities(), we meet our requirements for the rate-monotonic scheduling.
Additionally we want to solve the problem of choosing the highest priority task to
execute in constant time and highlight that our improvements greatly reduce the systems
overhead. To achieve this we need a data structure in which we can store the priorities of
readied tasks. This data structure does not necessarily need to be fully ordered as long as
it allows choosing the greatest value stored in it in constant time. Consequently we choose
a binary heap, a data structure which can be viewed as a binary tree while it is actually
an array object. A binary heap is represented by the attributes A.length, the length of the
array A, and A.heap — size, the number of elements currently in the heap. The heap gets
filled like a binary tree except for the lowest level which is filled starting from the left up

to a certain point [8]. Figure 3.2 shows how priorities can be contained in a binary heap in

3.2. RATE-MONOTONIC SCHEDULER 31

descending order. The figure can be read as eight readied tasks with the highest priority
task having a priority of 17 and two tasks with priority 14.

Index | 1 | 2| 3|4 |5]6]|7]|8

@ @ @ e Key 17|14 |14 (10 |11 |12 |7 |9

Figure 3.2: Binary min heap representation with 8 nodes and its actual array

For the scheduling process we are only interested in the time needed for inserting,
extracting and finding elements in the heap. According to table 3.1 we can find the

maximum priority in constant time 6(1). In order to make use of the binary heap we need

find-max(A) | extract-max(A) | insert(A, k)
O(1) O(logn) O(logn)

Table 3.1: Running time of binary heap operations [8]

to implement some additional modifications:
1. Upon readying a task, insert its priority in the heap

2. Assign the highest priority task with uzTopReadyPriority = heap[0] in v TaskSwitch-
Context()

3. Extract the highest priority from the heap in the call of vTaskPeriodicDelay()

The reason for extracting the priority after the task is done executing instead of when it
gets selected by the dispatcher is that if the task gets preempted, it cannot be chosen again
if its priority has already been extracted. As a task in our model calls vTaskPeriodicDelay()
after finishing its function, we can extract the priority right before adding the task to the
list of delayed tasks in said function. The task cannot get interrupted by a higher priority
task while doing so as all other tasks are suspended during the process.

Even though a binary heap allows us to dispatch tasks in constant time, it also generates
additional overhead during the tick interrupt, precisely after adding a task to the ready

queue. Table 3.1 shows that inserting a priority takes O(log n) time. It would be more

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

efficient if a priority could be inserted in constant time as well. Therefore we implement a

pairing heap alongside the binary heap.

A pairing heap can be viewed as a heap-ordered tree similar to the binary heap. To
make our implementation efficient we will use the child-sibling representation of a tree, also
known as the binary tree representation [12]. In this representation we have a half-ordered
binary tree, where half-ordered means that the key of any node is at least less than the

key of any node in its left subtree. Figure 3.3 shows a visualization of a pairing heap [10].

Figure 3.3: A pairing heap tree representation.

We will not go into detail about the specifics of a pairing heap and instead focus on the
properties which we can exploit to enhance our RM scheduler. The table 3.2 summarizes

the running time of pairing heap’s operations.

find-min(A) | extract-min(A) | insert(A, k) | meld(A;, As)
o(1) O(logn)* o(1) O(1)

1 Amortized time.

Table 3.2: Running time of pairing heap operations

Pairing heaps turned out to not be an efficient choice for the system as for each task
an additional node structure has to be created and kept at runtime. This required more
memory than accessible for a high number of tasks. Therefore we do not include the pairing
heap in our evaluation and the final system does not support it. It will still remain in the
system as a choice between the standard FreeRTOS dispatcher, binary heap and pairing
heap. We also omit the pairing heap from the comparison of generated overhead displayed
in figure 3.4 as scheduling 100 or more tasks using pairing heaps was not possible in our

system.

3.3. EARLIEST-DEADLINE-FIRST SCHEDULER 33

Worst-case overhead generated by Sl and BHI

—— Standard impl.
2501 Binary heap impl.

200 A

150 A

Time in ps

100 A

50 A

0 T T T T T T T T T
10 20 30 40 50 60 70 80 90 100

Number of tasks

Figure 3.4: A comparison of generated overhead by the standard implementation(SI) and the

binary heap implementation(BHI)

3.3 Earliest-Deadline-First Scheduler

This section will cover our design plans and implementation for the Earliest Deadline First

scheduler as described in section 1.2.3.

Before beginning with the implementation of EDF we will make changes to our task
creation functions just as we did for RM. Real-time tasks will be scheduled after their
absolute deadline, therefore we omit the priority(set it to 1) in the call of zTuskCreate().
Non-real-time tasks on the other hand have no deadline and need to be executed with a
lower priority. Hence, we create the non-real-time tasks with a deadline which is set to
the highest value possible and subtract that value with the chosen priority for the task.
This way the tasks can still be executed in the order of their priorities but will not be
executed by the CPU if a real-time task is ready. Now, with tasks being created with their
appropriate parameters we can start implementing the EDF scheduler.

First of all, we have to take a look at the data structure used in FreeRTOS. As described
in section 1.2.5 FreeRTOS uses an array of linked lists to store the readied tasks according
to their priority. Since arrays have a fixed length in C they are not that suitable for using a
dynamic scheduling algorithm as the number of tasks might change during the evolution of
the system. Of course arrays could still be used but that would mean losing the advantage
of having a variable number of tasks or the array would need to be big enough for any

eventual number of tasks. Another option is to reallocate the size of the array but that

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

is not always possible and time consuming. Thus, instead of using an array of lists we
reduce the structure to just one doubly linked list which will contain all the readied tasks.
Doing that allows us to implement the EDF scheduler while keeping modifications to the
system at a minimum. By keeping the amount of modifications low we keep the stability of
the system and reduce the potential for faulty behavior. This modification is implemented
by removing the array property for every occurrence of pxReadyTasksLists and changing
the logic of the surrounding code to fit the new structure, i.e. removing for-loops that
looped over the list. Any occurrence of pzReadyTasksLists[configMAX PRIORITIES | is
changed to listGET OWNER_OF HEAD ENTRY(&pxzReadyTasksLists) as the head
of this list will always be our highest priority task.

Now all tasks get inserted in the same list on creation but they are not ordered by
their absolute deadline yet. Lists in FreeRTOS are storing their items in ascending order
of their value. We can use this property to employ an EDF scheduling policy. Therefore
we add the absolute deadline to the inserted item before the call of vlListInsert during
the execution of prvAddTaskToReadyQueue(). This can be done by using the following

function from list.c:

listSET LIST ITEM VALUE(&(pxTCB->xGenericListItem),
pxTCB->uxPreviousWakeTime +
*(pxTCB->uxDeadline + pxTCB->uxMode));

We then insert the item linked to the task TCB with vListInsert() instead of vListInser-
tEnd() as the former iterates through the list and inserts items by ascending order of their
values. Additionally we iterate through the list of readied tasks to assign the task priorities
in descending order. Potentially, this step could be left out as only the task at the head of
prReadyTasksLists will be executed at any time and thus there is no need for a priority.
However, some functionalities of the system might need a priority value so we will keep

the parameter. The worst-case time our scheduler needs for scheduling one task is O(n).

3.4 Additional Modifications

Shared Processor Behavior

In this section we will perform an additional change to the system in order to improve
the overall performance and to make our EDF execute appropriately. In FreeRTOS tasks
standardly share the processor if they have the same priority. This behavior is achieved
by setting the pointer to the currently executing TCB to the next TCB on the list during
each tick interrupt. If the list only contains one item the pointer is set to that item. Two
problems arise from this procedure. First, in order to implement our EDF scheduler we

reduced the array of ready lists to only one ready list containing all tasks. Therefor, all

3.4. ADDITIONAL MODIFICATIONS 35

readied tasks would share the processor without considering their priority. Secondly, the
system needs to save the old tasks state and restore the new tasks state each system tick
which results in a high overhead for a low interrupt tick frequency. Figure 3.5 shows an
exemplary task execution of two tasks with the same priority in FreeRTOS. The figure is
a simplification to visualize the cost of context switching and not actual footage of the
system. The area between the dashed lines in the figure represent the context switch. This
figure exaggerates the time needed for performing a context switch. The actual cost of

switching between two tasks is measured approximately 4us per context switch.

A A

1

,
,

T
g BENE - NENE I

Figure 3.5: Two tasks with the same priority sharing the processor

We solve this problem by setting xCurrentTCB to the head of the corresponding ready
list instead. Furthermore we only perform a context switch only if the highest priority
changed or if the current task moved to the blocked state. Context switches are then only
conducted when necessary. Tasks with the same priority are going to run in order of their

transition to the ready state.

Configuration and Task Creation

As mentioned before we handle tasks differently depending on the values passed by the
call of zTaskCreate():

Real-time-task: uxPriority = 1
Non-real-task: deadline = 0
Periodic: period[0] > 0
Aperiodic period[0] = 0

These values can be mixed to create tasks with the desired functionality. Non-real-time
tasks are not scheduled and aperiodic tasks have to take care of recurrent execution them-
selves. Also aperiodic tasks should delete or suspend themselves if they are not going to

be executed again in the evolution of the system.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

We add several configurations to the system which will be needed for the evaluation
or visualization of the scheduling. The following constants are added to the file FreeR-
TOSConfig.h:

configANALYSE METRICS: Allows tracking of data for the metrics
configANALYSE OVERHEAD: Counts the times needed for the tick interrupt
configPLOTTING MODE: Tracks task parameters at context switches
configTICKS TO EVAL: The time in milliseconds for any of above modes to run

configEVAL THRESHOLD: The time between evaluations, must be big enough for

tasks to delete themselves
configUSE TASK SETS: 1 if task sets are used, 0 otherwise
configSET SIZE: The number of task sets that are used
configNUMBER _OF TASKS: The number of tasks in each set

A python script using for each configuration is provided. The "plotting" mode can be
used with the script plotter.py. For using the task set loading configuration the application

needs to implement the function createSet(int i) in main.h.

3.5 Test Design and Task Generation

In this section we are presenting our test procedures for the created model and explain how
we generated the tasks for the tests. For the evaluation we set configANALYSE METRICS
and configUSE _ TASK SETS to 1. The corresponding configuration values are set accord-
ing to the values described for each test design below.

According to the simulation done by Huang and Chen EDF is expected to perform
poorly with increasing number of modes and increasing proportion of multi-mode tasks for
a set number of modes [11]. In order to check if this behavior is similar for our system
model we implement a python script to generate tasks in a similar manner as it is done in
their simulation. Furthermore we generate task sets with timing characteristics similar to
applications of a real-world automotive software system.

We use the boot-over-serial bootloader raspbootin to load the compiled kernel for each

evaluation on our hardware to speed up the evaluation process.

Randomized Task Sets

For the the first procedure we begin by generating a set of utilization values for a given total

utilization and number of tasks. This can be done by using the UUniFast algorithm [3].

3.5. TEST DESIGN AND TASK GENERATION 37

Following, the tasks real-time constraints have to be calculated accordingly. Therefore we
choose a similar approach as in Efficient exact schedulability tests for fived priority real-time
systems 9] and generate periods in the range of 1-100ms from an exponential distribution.
The WCET C; of each task could then be calculated by T; x U; and deadlines are implicit.
Now that the tasks are generated a proportion p of those tasks are converted to multi-
mode tasks with M modes. Actually the script converts every task into a multi-mode
task with non-multi-mode tasks having M = 1. The first mode of each task is assigned
the aforementioned generated values. If a task is a multi-mode tasks the values for its
remaining modes are scaling by the factor 1.5, i.e., C/L-mJrl = 1.5 C/", TZ-erl = 15T
For each multi-mode task one of the modes is then chosen to have the highest utilization
while the worst-case execution times of the other modes are reduced by multiplying them
with random values between 0.75 and 1. The needs to be called over a terminal and requires

a set of parameters to be passed in the order described below:
Cardinality: The cardinality of each set

Utilization: The total utilization of each set

Minimum period: The lower bound of task periods

Maximum period: The upper bound of task periods

Number of modes: The number of modes multi-mode tasks have
Proportion: The number(not percentage) of multi-mode tasks
Number of Sets: The number of sets that will be created

An exemplary call would be: python3 taskGen.py 10 60 1 100 5 5 100
Setting the minimum and maximum period to the same value will result in tasks having
exactly that value as their period. Using the following parameters we generate and evaluate

the system behavior 100 task sets:
Cardinality: 10

Modes: 5, 8, 10

Multi-mode tasks: 50%
Utilization: 10-100% in steps of 10

Each task set is going to run on the system for 10 seconds plus a threshold of 5800 mil-
liseconds for each task to delete itself. The data sent by the hardware is processed by the
script metrics.py which is making use of a serial connection to first send over the kernel

and then receive the data.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

Realistic Task Sets

The second set of test data is created by using a script written by Georg von der Briiggen.
It allows the creation of sets of tasks which share the characteristics of a automotive
software system as presented in Real World Automotive Benchmarks For Free [13]. These
characteristics cover the distribution of tasks among periods, the typical number of tasks,
average execution times of tasks and factors for determining the best- and worst-case

execution times. Table 3.3 shows the distribution of tasks among periods [13].

Period Share
1 ms 3 %
2 ms 2%
5 ms 2%
10 ms 25 %
20 ms 25 %
50 ms 3 %

100 ms 20 %

200 ms 1%

1000 ms 4%

angle-synchronous ms | 15 %

Table 3.3: Task distribution among periods

The angle-synchronous tasks which take 15% of all tasks are converted to multi-mode
tasks as their worst-case execution time needs to adapt to their reduced period. In our case
the maximum engine speed is 6000rpm with 4 available cylinders. For the conversion to
multi-mode tasks we will divide the engine speed into 6 intervals and calculate the periods

by the upper bound of each mode as displayed in table 3.4.

Mode: 0 1 2 3 4 5
Range: | 0-1000 | 1001-2000 | 2001-3000 | 3001-4000 | 4001-5000 | 5001-6000
Period: | 30 ms 15 ms 10 ms 7.5 ms 6 ms 5 ms

Table 3.4: 6 modes ranging from 0-6000rpm with their periods

The WCET generated by the script was assigned to the lowest mode and the remaining
modes had their WCET calculated regarding the first modes utilization, i.e. C; = T; x Uy,
with Uy = %1 Therefore all modes have the same utilization with decreasing period and
WCET for higher modes.

With the goal of creating a realistic environment for our system we make some changes

to our metrics.py script. Instead of sending a signal every 5 ms and traversing through the

3.5. TEST DESIGN AND TASK GENERATION 39

modes we implement a crankshaft simulation. The simulation starts at an angular speed
of 1rpm and increases by 1000 rpm over 500 ms while sending a signal to the pi every time
the piston reaches is maximum position. This happens every time after one full rotation
of the crankshaft. Once the simulated crankshaft gains its highest speed of 6000 rpm it
will slow back down to 1 rpm. The acceleration/deceleration is steady during the whole
execution, it only changes its sign. The actual angular speed is not transmitted as our
application has no use for it. Instead we will use the modes’ numbers as breakpoints for
mode changes. We generate 100 task sets per utilization 10-100 in steps of 10.

The data sent by the hardware is processed by the script metrics2.py which is making
use of a serial connection to first send over the kernel and then receive the data. The

crankshaft simulation is also implemented in this script.

Hardware and External Interrupt

The hardware used for our evaluation is a Raspberry Pi B+ with the following specifica-

tions:

CPU Type/Architecture/Family ARM1176JZF-S/ARMv6(32Bit)/ARM11
CPU Frequency: 700MHz

Cores: 1

RAM: 512MB

Chipset: BCM2835

Figure 3.6 shows the Raspberry Pi B+ which is used in our evaluation.

Figure 3.6: The Raspberry Pi B+ with attached Pibrella Board

The port of FreeRTOS to the Raspberry Pi has been released by James Walmsley on
GitHub and is a community project. GPIO drivers and a global IRQ handler are part
of the project. While implementing the external interrupt we found an error in the IRQ

handler which made it impossible to access particular interrupts. To be specific, the upper

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

10 bits of the of the basic ARM pending interrupt register were not checked in the handler.
These bits are used to show that selected interrupts from the GPU are pending. In the
original implementation only the lower 7 bits and bit 8 and 9, which signal that interrupts
unknown to the CPU register are pending, are processed. The 10 GPU interrupts which
could cause the problem are from the GPU side, namely GPU IRQ 7, 9, 10, 18, 19, 53, 54,
55, 56, 57, 62. However, they would not cause bit 8 or 9 of the register to be set, because
according to the manual those bits are only for interrupts which are not connected to the

basic pending register [2]. We could fix the error by adding the condition:

if (ulMaskedStatus & 0xFFC00){
handleRange (ulMaskedStatus & O0xFFC00 & enabled[2], 64);

}

For our evaluation we setup the UART interface of the Raspberry Pi B+ and configure it to
cause an interrupt upon receiving a byte. The corresponding interrupt service routine reads
the byte and sets the global variable externallnput to the number of the mode determined
by the script used in the respective evaluation. The function setup UARTInterrupt() for
setting up the UART interface is implemented in the file uart.c located in the drivers folder.
setupUARTInterrupt() is then called at the start of our main thread.

Chapter 4

Results and Discussion

In this chapter we submit the results of the evaluation for each test procedure and discuss

the results.

4.1 Results

In this section we present and explain the results from each test. We address the results

of each test result separately.

Scheduling Overhead

We start by the comparison of each schedulers overhead. Figure 4.1 shows the maximum
and median overhead generated by each scheduler. Tasks’ modes were not updated for

measuring the overhead. It can be seen that RM has an advantage over EDF. This can

Worst-case overhead generated by RM and EDF Median overhead generated by RM and EDF
— RM — RM
EDF 17.5 EDF
200
15.0
150 125
El El
£ c
> o 10.0
£ £
F 100 A =
7.51
5.0
50 4
2.5

o
IS

0 T T T T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Number of tasks Number of tasks

—
o

Figure 4.1: A comparison of the maximum and median overhead generated by RM and EDF for

increasing number of tasks

be explained by the simplicity of RM’s static implementation while the EDF scheduler

41

42 CHAPTER 4. RESULTS AND DISCUSSION

has to iterate over the whole list of readied tasks each time a task readies. Let n be the
cardinality of the task set. In the worst-case of all tasks of the task set becoming ready at
the same time, the time needed for scheduling is O(n?). Precisely, we receive the worst-case
scenario when all tasks of the set get inserted with equal or ascending absolute deadline as
we then have to iterate over the whole lists for each task. The worst-case time can then
be calculated by > 7" ;i = "2;", thus O(n?). For our RM scheduler using the binary heap

the worst-case time needed is O(n * log n) when all tasks arrive at the same time. The

right figure also shows that RM performs better when comparing the median values.

First Test Procedure

Success ratio

M=5,p=>50%
1.0 — — RM

EDF
0.8 1

0.6

0.4+

0.2 1

0.0 1

M = 10, p = 50%

1.01 — RM

EDF

Success ratio

0.8

0.6 1

0.4+

0.2 4

0.0 1
10 20 30 40 50 60 70 80 90 100
Total Utilization

Figure 4.2: The success ratio of all task sets under RM and EDF in %

We begin by comparing the success ratio, which is the number of task sets that are
schedulable divided by the number of task sets. Figure 4.2 shows that EDF suffers more
from an increasing amount of modes than RM. While RM is able to schedule all of our task
sets for up to 40% utilization, EDF can only achieve that for up to 20%. Nevertheless, for
EDF more task sets were found schedulable than for EDF for a total utilization of 50%
and above.

Continuing with the results it is noticeable that the number of missed tasks only in-
creases slightly compared to EDF when applying the rate-monotonic scheduling algorithm.

This can be seen in figure 4.3.

4.1. RESULTS

2.54

2.0

151

1.01

0.5 4

0.0

Maximum number of missed tasks

M =5, p =50%

43

#missed tasks

2.04

1.5

1.0 1

0.5 4

~—— EDF

M =10, p = 50%

~—— EDF

0.0

10 20 30 40 50 60 70 80 90

4000 -

3000 A

2000 A

1000

Time in us

4000 -

3000 A

2000 A

1000 +

0+ T T T T T

Total Utilization

Figure 4.3: The maximum number of missed tasks per task set

Average Response Time

M =5, p =50%

100

~—— EDF

M =10, p = 50%

——

04

~—— EDF

1

0 20 30 40 50 60 70 80 90
Total Utilization

100

Figure 4.4: The average response time in microseconds with increasing utilization

The most noticeable result in the comparison of the average response time in figure 4.4
is the peak for both schedulers at 70% utilization which shifts to 80% utilization for RM for

44 CHAPTER 4. RESULTS AND DISCUSSION

a number of 10 modes. These peaks can be explained by the way we calculate the average
response time as we can only measure it for tasks that are actually executing at some
point. So if a task is preempted by higher priority tasks until the end of the evaluation, its
response time can not be considered and does not add to the average response time. We
conclude that for a total utilization of over 70% for EDF and 70% or 80% for RM(depending
on the number of modes) the number of tasks that are delayed until the end of evaluation
rises drastically. This results in a lower average response time which only considers the
high priority tasks. The design of the task sets for which the task’s WCET increases by
the factor 1.5 per mode m is the reason for the higher worst average response time as it

can be seen in the plot for M = 10.

Maximum Lateness

M=5,p=50%

200001 — RM
EDF
15000 -
10000 A

5000 A

—5000 -

—10000

M = 10, p = 50%

Time in us

200004 — RM
EDF
15000
10000 1

5000 A
01 \/
~5000 W’/’//

—10000

10 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 1(‘)0
Total Utilization

Figure 4.5: The maximum lateness in microseconds with increasing utilization

We could not draw any conclusion about the effect of multi-mode tasks on the maximum
lateness from the first test procedure. As shown in figure 4.5 the values only differ minimal
which could be caused by the diversity of the task sets used for the different numbers of

modes.

4.1. RESULTS 45

Second Test Procedure

In the following we will present the results of the second test procedure.

Percentage of schedulable task sets

1.0 —— RM

EDF

0.8 A

0.6 A

0.4 A

Success ratio

0.2 A

0.0 A

10 20 30 40 50 60 70 80 90 100
Total utilization

Figure 4.6: The success ratio of all tasks under RM and EDF in %

The earliest-deadline-first scheduler was performing poorly when using realistic task
sets. The generated task sets were not found schedulable for a total utilization of over
30% while under RM a schedulability of up to 60% could be achieved. However, neither

scheduler could schedule any of the task sets with a total utilization of 70% and above.

46 CHAPTER 4. RESULTS AND DISCUSSION

Percentage of missed deadlines

1.04 —— RM
EDF

0.8 A

o
(0)]
I

Percentage

o
B
I

0.2 A

0.0

10 20 30 40 50 60 70 80 90 100
Total utilization

Figure 4.7: The ratio of missed tasks under RM and EDF in %

In addition to the schedulability we compare the percentage of missed tasks for each
utilization. We can see that while none of the task sets were schedulable under RM for a
total utilization of 70% and above it was still possible to successfully execute around 50%
of the tasks. The results shown in figure 4.7 for EDF are much worse here because tasks
with small periods which are guaranteed to execute under RM can be preempted by tasks
which are close to their deadline. This allows all tasks to eventually finish their execution

for the price of missing their deadlines.

4.1. RESULTS 47

Average response time

260 1 —— RM
EDF
240 A

220 A

N

o

o
I

Time in ys
=
(o]
o
1

=

(e))

o
1

140 -

120 -

10 20 30 40 50 60 70 80 90 100
Total utilization

Figure 4.8: The average response time in microseconds with increasing utilization

Figure 4.8 displays the average response time for EDF and RM for the second test
procedure. The findings are different from the first test procedure where both schedulers
had similar results and a peak at 70%. The average response times for RM and EDF go
along with our results for the schedulability and the percentage of missed tasks. For higher
utilizations more preemptions occur under both scheduling algorithms, thus increasing the
response time of lower priority tasks. While multi-mode tasks with sizable WCET might
dominate each other under EDF [11] that is not the case for RM because of the static

priority assignment.

48 CHAPTER 4. RESULTS AND DISCUSSION

Maximum lateness

6000000 -

EDF

5000000 -

4000000 +

3000000 -

Time in us

2000000 -

1000000 A

0

10 20 30 40 50 60 70 80 90 100
Total utilization

Figure 4.9: The maximum lateness in microseconds with increasing utilization

Finally, we are comparing the maximum lateness produced by each scheduler respec-
tively. The results are shown in figure 4.9. Again, the results from the second test procedure
differ from the first test procedure. Under RM the maximum lateness is relatively small
even when the task set is not schedulable. Our results for the percentage of missed tasks
and the way in which we retrieved the data can be used to explain this. As mentioned
before we only retrieved the arrival and finish times of tasks that actually finished at some
point during the evaluation. It occurs that under rate-monotonic scheduling, tasks with
low priorities might be preempted by higher priority tasks for the whole duration of the
evaluation. Therefore, only the maximum lateness of high priority tasks is considered.
Under EDF on the other hand, tasks will eventually finish their execution once they get

close enough to their deadline and thus contribute higher values to the maximum lateness.

4.2. DISCUSSION 49

4.2 Discussion

In this section we discuss the results from the two testing procedures which have been
conducted.

First of all, it has to be said that the first procedure does not show precise results
from which a conclusion can be drawn. For more evident results a higher number of
modes and longer evaluation times are needed. This would have exceeded the time limits
of this thesis. Nevertheless, we can identify a downward trend in performance for the
EDF scheduler with increasing number of modes while RM on the other hand keeps more
stable. With the exception of the maximum lateness, EDF has performed slightly worse
when setting the number of modes from 5 to 10. Still, overall EDF performed better
than RM regarding high values for the total utilization. One reason for this kind of test
procedure favoring EDF is that we only generated 10 tasks per set. As shown in our
comparison of overhead the difference between the schedulers is only around 3us for 10
tasks. Therefore, the overhead does not affect the performance as much. Furthermore, the
worst-case overhead is not guaranteed to occur as the periods are randomly generated and
can be up to 5567ms for 10 modes. Regardless of these results we show that RM is more
suitable for scheduling multi-mode tasks in a real environment by analyzing the second test
procedure which is more realistic. The task sets used in the second test procedure feature
tasks with a period of 1ms which put a lot of pressure on the system considering generated
overhead and tasks with periods that overlap often during the evolution of the system.
Moreover all non-multi-mode tasks which make up 85% of the system are guaranteed to
arrive each 1000ms as that is the least common multiple of the corresponding periods.
The task sets generated for the second procedure are therefore determined to create higher
overhead which results in a lower amount of schedulable task sets for EDF. As explained
in section 4.1 the percentage of missed tasks is higher for EDF than for RM because EDF
sacrifices keeping the deadline for letting tasks finish their execution. Considering that, in
cases where hard real-time tasks are present, RM will be the preferred choice as missing a
deadline can result in catastrophic consequences.

Finally, it has to be mentioned that these results do not consider task overruns which
can potentially occur upon a deadline miss as presented in Overrun Handling for Mized-
Criticality Support in RTEMS [7].

50

CHAPTER 4. RESULTS AND DISCUSSION

Chapter 5

Conclusion

5.1 Summary

In this thesis we compared multi-mode tasks under EDF and RM scheduling in a real
environment using real hardware. We successfully implemented the task model and each
scheduler. We realized a rate-monotonic scheduling algorithm that can schedule multi-
mode tasks and leaves no unused priorities in the system. In order to reduce the systems
overhead we removed the shared processor behavior that is present in FreeRTOS. Addi-
tionally, we reduced the worst-case time for the tick interrupt by implementing a binary
heap that stores the priorities for the rate-monotonic scheduling. The earliest-deadline-
first scheduling algorithm was realized by inserting task that become ready into an ordered
doubly linked list. The tasks get inserted in ascending order by their absolute deadline. An
external interrupt triggered through the UART when receiving a byte was also added to the
system. To achieve this a missing part in the corresponding driver had to be supplemented.
Moreover, we expanded the system by configurations that help with evaluating the system
and provide tools to generate two different kinds of task sets. In order to come closer to
a real-world situation which benefits from the usage of multi-mode tasks, we implemented
a crankshaft simulation. The need for multi-mode tasks when implementing angular tasks
with periods tied to the rotation of the crankshaft is an example that was brought up in
the introduction and carried through the work.

We found out that EDF allows scheduling of task sets of higher total utilization when
tasks in the task set have long periods with mostly non-overlapping arrival times. The
reason for this is that the overhead generated by EDF is not affecting the system as much
for those kinds of task sets. While we showed that EDF outperforms RM in the first test
procedure, it still yielded worse results for each evaluation metric with increasing number
of modes. The rate-monotonic scheduler on the other hand performed significantly better
than EDF when using realistic task sets which contained a fixed distribution of tasks

among periods. Furthermore, the rate-monotonic scheduler proved to perform more stable

o1

52 CHAPTER 5. CONCLUSION

with increasing numbers of modes in the first test procedure. The results of the first test
procedure, even if they are not as precise, match the results from the simulation done by
Huan and Chen which showed that the performance of EDF drops when the number of
modes increases [11]. Reviewing the results of our evaluation we come to the conclusion
that EDF performs poorly in a real environment compared to RM as we showed with the

simulation of the crankshaft.

5.2 Future Work

In this work we evaluated multi-mode tasks in a real environment under the rate-monotonic
and earliest-deadline-first scheduling algorithms. The modified operating system FreeR-
TOS has been tested on the Raspberry Pi B+ which was first released 3 years ago. Mi-
croprocessor technology though, is developing rapidly [18]. Future analysis could therefore
be done using different and more efficient hardware as our designed system can be used on
any hardware for which a port to FreeRTOS is provided. For further enhancements the
binary heap used in the implementation of the rate-monotonic scheduler can be improved
by using a hardware accelerated binary heap as it is proposed in Hardware-software ar-
chitecture for priority queue management in real-time and embedded systems [14]. That
approach allows insert operations in time O(1). As mentioned in the discussion of the
results in section 4.2, the current system does not consider task overruns. The detection
of deadline misses however, is possible by comparing the current system tick against the
previous wake time and period of a task. Therefore future research could investigate in
the problem of handling task overruns in a multi-mode task model. In addition to that
a real application for FreeRTOS which could benefit from using multi-mode tasks could
be modified to fit our designed system. The benefits and drawbacks of such modifications

could then be evaluated.

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11

21

3.1

3.2
3.3
3.4

3.5
3.6

4.1

4.2
4.3
4.4
4.5
4.6

Simplified visualization of a crankshaft with rotation speed w 2
Block diagram of a real-time control system 5
Timing parameters of a real-time task 6
Task executions for a periodic (a) and aperiodic task (b) 8
A task set with Uy, = % ~0.83. 9
A queue of tasks that is being scheduled and dispatched. 10
A task set scheduled following the RM policy 11
A periodic task set scheduled following the EDF (a) and RM (b) policy . . 12
The basic folder structure of FreeRTOS 14
The structure of the FreeRTOS source folder including the portable folder . 14
Valid state transitions for tasks in FreeRTOS 16
The task is overloading during high speed rotations. 20

A comparison of the functions vTaskDelay() (12) and vTaskDelayUntil()

(12). Both task are using the same worst-case execution time and implicit

deadlines. 26
Binary min heap representation with 8 nodes and its actual array 31
A pairing heap tree representation. oL 32

A comparison of generated overhead by the standard implementation(SI)

and the binary heap implementation(BHI) 33
Two tasks with the same priority sharing the processor 35
The Raspberry Pi B+ with attached Pibrella Board 39

A comparison of the maximum and median overhead generated by RM and

EDF for increasing number of tasks o000 41
The success ratio of all task sets under RM and EDF in % 42
The maximum number of missed tasks per taskset 43
The average response time in microseconds with increasing utilization . . . 43
The maximum lateness in microseconds with increasing utilization 44
The success ratio of all tasks under RM and EDF in % 45

93

o4

LIST OF FIGURES

4.7 The ratio of missed tasks under RM and EDFin % 46
4.8 The average response time in microseconds with increasing utilization . . . 47
48

4.9 The maximum lateness in microseconds with increasing utilization

Bibliography

1]
2]

3]

[4]

15]

[6]

7]

8]

19]

[10]

[11]

http:/ /www.freertos.org.

BCM2835 ARM Peripherals. Broadcom Europe Ltd. 406 Science Park Milton Road
Cambridge CB4 OWW, 2012.

Bini, ENRICO and GIORGIO C BUTTAZZO: Measuring the performance of schedula-
bility tests. Real-Time Systems, 30(1):129-154, 2005.

BIONDI, ALESSANDRO and GIORGIO BUTTAZZO: Real-time analysis of engine control

applications with speed estimation. In Design, Automation & Test in Furope Confer-
ence & FEzhibition (DATE), 2016, pages 193-198. IEEE, 2016.

ButTazzo, GIORGIO C.: Hard Real-Time Computing Systems: Predictable Schedul-
wng Algorithms and Applications. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 2004.

BuTTAazzo, Giorcio C, ENRICO BINI and DARREN BUTTLE: Rate-adaptive tasks:
Model, analysis, and design issues. In Design, Automation and Test in Europe Con-
ference and Ezhibition (DATE), 201/, pages 1-6. IEEE, 2014.

CHEN, KUAN-HSUN, GEORG VON DER BRUGGEN and JiAN-JiA CHEN: Overrun
Handling for Mixzed-Criticality Support in RTEMS. In WMC 2016, 2016.

CorMEN, T. H., C. E. LEISERSON, R. L. RivesT and C. STEIN: Introduction to
Algorithms. MIT Press, Cambridge MA, 2009. 3rd edition.

Davis, ROBERT I, ATTiLA ZABOS and ALAN BURNS: Efficient exact schedula-

bility tests for fized priority real-time systems. IEEE Transactions on Computers,
57(9):1261-1276, 2008.

FrREDMAN, M. L., R. SEDGEWICK, D. D. SLEATOR and R. E. TARJAN: The Pairing
Heap: A New Form of Self-Adjusting Heap. Algorithmica, 1(1-4):111-129, 1986.

HuaNG, WEN-HUNG and JIAN-JIA CHEN: Techniques for Schedulability Analysis
in Mode Change Systems under Fized-Priority Scheduling. 2015 IEEE 21st Interna-

95

56

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

tional Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 00:176-186, 2015.

KNUTH, D. E.: Fundamental Algorithms, volume 1 of The Art of Computer Program-
ming. Addison-Wesley, Boston, MA, 1997. 3rd edition.

KRAMER, SIMON, DIRK ZIEGENBEIN and ARNE HAMANN: Real World Automotive

Benchmarks For Free.

KuMAR, NG CHETAN, SUDHANSHU VYAS, RON K CYTRON, CHRISTOPHER D GILL,
JOSEPH ZAMBRENO and PHILLIP H JONES: Hardware-software architecture for pri-

ority queue management in real-time and embedded systems. International Journal of
Embedded Systems, 6(4):319-334, 2014.

Lee, EDWARD A: Cyber physical systems: Design challenges. In Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium on,
pages 363-369. IEEE, 2008.

Liu, CHUNG LAUNG and JAMES W LAYLAND: Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46-61,
1973.

MARWEDEL, PETER: Embedded System Design. Springer Netherlands, 2010.

NAFFZIGER, SAMUEL: Technology tmpacts from the new wave of architectures for
media-rich workloads. In VLSI Technology (VLSIT), 2011 Symposium on, pages 6—
10. IEEE, 2011.

NaVET, NicoLAS and FRANGQOISE SIMONOT-LION: Awutomotive embedded systems
handbook. CRC press, 2008.

SHA, Lui, RAGUNATHAN RAJKUMAR, JOHN LEHOCZKY and KRITHI RAMAM-

RITHAM: Mode change protocols for priority-driven preemptive scheduling. Real-Time
Systems, 1(3):243-264, 1989.

