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Abstract
When partitioned scheduling is used in real-time multipro-
cessor systems, access to shared resources can jeopardize the
schedulability if the task partition is not done carefully. To
tackle this problem we change our view angle from focusing
on the computing tasks to focusing on the shared resources
by applying resource-oriented partitioned scheduling. We use
a release enforcement technique to shape the interference
from the higher-priority jobs to be sporadic, analyze the
schedulability, and provide strategies for partitioning both
the critical and the non-critical sections of tasks onto proces-
sors individually. Our approaches are shown to be e�ective,
both in the evaluations and from a theoretical point of view
by providing a speedup factor of 6, improving previously
known results.
1 Introduction
In real-time systems timeliness has to be achieved in addition
to functional correctness, i.e., calculations must not only be
done correctly but the results must be delivered within a
certain amount of time. In uniprocessor systems mutual
exclusion and synchronization based on priority inheritance
techniques have been well studied. Examples are the priority
ceiling protocol (PCP) [27], the priority inheritance protocol
(PIP) [27], and the stack resource policy (SRP) [3].

When real-time tasks are scheduled on multiprocessor
platforms three paradigms are widely adopted: partitioned,
global, and semi-partitioned scheduling. While partitioned
scheduling partitions the tasks statically among the available
processors the global scheduling approach allows a job to
be migrated freely. Under the semi-partitioned scheduling
approach each task may be statically divided into subtasks
and each (sub)task is then assigned to a processor statically.
A comprehensive survey of multiprocessor scheduling in
real-time systems can be found in [18].

Resource sharing and synchronization in multiprocessor
systems lead to additional synchronization overhead. The
existing multiprocessor resource sharing protocols like the
Multiprocessor Priority Ceiling Protocol (MPCP) (based on
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suspension locks) by Rajkumar [27] and the Multiprocessor
resource sharing Protocol (MrsP) (with spin locks) by Burns
and Wellings [12] ensure mutual exclusion, assuming a
given task partition. However, it was shown in [10] that
the number of priority-inversion blockings (pi-blockings)
can be lower bounded by the number of processors in the
worst case. This means that the advantages of reducing the
multiprocessor scheduling problem to uniprocessor subprob-
lems under partitioned scheduling can be outweighed by
the synchronization overhead if the partition is not done
carefully. Some heuristics to �nd good task partitions have
been proposed [24, 25, 37] but without theoretical analysis
with regards to speedup factors.

An alternative approach, namely resource-oriented parti-
tioned scheduling (ROP), was proposed by Huang et. al [23] in
2016 and is adopted here. As the shared resources are usually
the bottlenecks, ROP changes the view angle and focus on
the shared resources instead of the computing tasks. The spirit
behind ROP is to �rst assign each shared resource to one
designated synchronization processor, and the non-critical
sections will be executed on other application processors,
decoupled from the critical sections. By focusing on the
resource access, we can try to keep the response times of
the critical sections as short as possible. When considering
the non-critical sections, the worst-case response time of
those critical sections can be seen as suspension time of
self-suspending tasks on a uniprocessor due to the use of
partitioned scheduling. ROP focuses on the strategy of task
and resource partitioning and is in general compatible with
any suspension-based locking protocols extended from the
uniprocessor PCP (i.e., DPCP in [29]), SRP, FIFO (i.e., DFLP
in [7]), and priority-based non-preemptive scheduling.

Huang et. al [23] provided a general exploration of ROP
under �xed-priority scheduling. To keep their model general,
they assumed that the execution pattern of a task is not
known and can change from one job to another, i.e., similar
to the dynamic self-suspension task model.
Contributions: We analyze how the schedulability under
ROP can be improved by using release enforcement for the
task migration, assuming that the tasks can be modelled
according to the segmented self-suspensionmodel. Our work is
restricted to a very fundamental and yet challenging special
case where each task has one non-nested critical section and
the self-suspension time is reduced by the introduced release
enforcement in both critical and non-critical sections.
• Due to the recent development of scheduling and

analyzing segmented self-suspending real-time tasks,



we explain how these scheduling algorithms and
analyses, e.g., [22, 26, 35], can be jointly applied with
ROP in Section 4. This results in a family of possible
algorithms, which adopt �xed-priority scheduling for
the processors that execute critical sections, and either
�xed-priority or dynamic-priority scheduling for the
processors that execute only non-critical sections.

• In Section 5, we show that the rate-monotonic pri-
ority assignment together with PCP under release
enforcement and ROP has a speedup factor of 6 with
respect to a necessary scheduling condition, improv-
ing the best previously known result 11 − 6/(m + 1)
by Huang et. al [23].

• Based on release enforcement under ROP, we explore
8 di�erent algorithms, combining four di�erent ap-
proaches for scheduling non-critical sections and two
approaches for scheduling critical sections. These are
shown e�ective against the state-of-the-art multipro-
cessor synchronization scheduling algorithms and
their analyses in the evaluations in Section 6.

Note that we do not intend to compare the performance
of the locking protocols in this paper. We refer the readers to
[39] for a survey and detailed comparisons of the global
scheduling protocols that will be shortly summarized in
Section 3.2. We show that a simple combination of release
enforcement and ROP can take care of task partitioning and
priority assignment directly and yield good performance
both theoretically and empirically. For comparing with the
other lock-based protocols that are shortly summarized in
Section 3.2 for partitioned or semi-partitioned scheduling,
reasonable task partitioning or priority assignments have to
be provided. We will detail the settings in Section 6.

2 System Model and Notation
In this section we will introduce the basic task model
and general notation we use in this paper. We consider
a set of n independent sporadic tasks τ = {τ1,τ2, …,τn } in
a multiprocessor platform, consisting of m ≥ 2 identical
processors ℘ = {℘1, ℘2, .., ℘m } and r mutually exclusive
shared resources RS = {R1,R2, …,Rr }.
Task model: Each sporadic task is characterized as
τi = (Ci ,Ai ,Ti ,Di ), where Ci is the upper bound on the
amount of execution time without resource access, called
non-critical-section execution time, and Ai is the upper
bound on the amount of execution time during resource
access, called critical-section execution time. The worst-case
execution time (WCET) of task τi isWCETi = Ci + Ai , i.e.,
it includes critical-sections and non-critical-sections. Each
task releases an in�nite number of task instances (also called
jobs) where two job releases are separated at least by the
given minimum inter-arrival time constraint Ti , i.e., if a job
of task τi arrives at time θa , the next instance of the task
must arrive at θa +Ti or later. The relative deadline of task τi
is denoted with Di , i.e., a job at θa must �nish up to Ci +Ai
units of execution time before θa + Di . Furthermore, we
assume all tasks have to be executed sequentially, i.e., a task

instance can only run at one processor at any time, and that
when a job requests a shared resource it can not continue its
execution until the shared resource is granted. We consider
implicit-deadline task sets in this paper, i.e., Di = Ti ∀τi .
Shared resources: In general, shared resources can be in-
memory data, e.g., a set of variables, or external objects,
like �les, database connections, and network connections.
To prevent race conditions, shared resources are accessed
mutually exclusively, i.e., for each shared resource R j it is
not possible that two jobs are both in a critical section that
accesses the same resource R j at the same time. We focus
on logical shared resources, i.e., a piece of code executed
on processors. Hence, we assume that shared resources are
not processor-speci�c. The jobs of any task may request
exclusive access to any of the shared resources R1,R2, …,Rr .
Furthermore, we assume the access to a shared resource to
be non-preemptive from other accesses to the same resource,
i.e., once a task τi accesses a shared resource R j no other task
is allowed to access R j until τi �nishes the execution on R j .
Execution pattern: We restrict ourselves to the case where
each job of each task accesses only one shared resource at
most once. Therefore, the critical sections are not nested by
de�nition. We assume a given execution pattern. Speci�cally,
for each τi , we assume to know the maximum amount
of execution time before the critical section, denoted as
Ci ,1, the maximum amount of execution time inside the
critical section, denoted as Ai , and the maximum amount of
execution time after the critical section, denoted as Ci ,2. We
assume this pattern is precisely known, i.e., Ci ,1 +Ci ,2 = Ci .
This assumption can be relaxed by applying Hybrid Self-
Suspension Models proposed by von der Brüggen et al. [34].
Further notation: The utilization of task τi regarding
execution of non-critical sections is de�ned as UC

i = Ci/Ti
while the total critical section utilization of task τi is denoted
byU A

i = Ai/Ti . Therefore, the utilization of task τi is denoted
as Ui = (Ci + Ai )/Ti , assuming that UΣ =

∑n
i=1Ui ≤ m as

otherwise a feasible schedule is not possible. The utiliza-
tion of τi on resource Rq is U

Rq
i , i.e., U Rq

i = U A
i if τi

accesses Rq and 0 otherwise. The total utilization of Rq

is U Rq =
∑
τi ∈τ U

Rq
i ; the total utilization of non-critical-

sections is UC =
∑
τi ∈τ U

C
i ; the total utilization of shared

resources isU RS = ∑
Rq ∈RS U

Rq .WCRT (Ci ,1), WCRT (Ci ,2),
andWCRT (Ai ) denote the worst-case response time of the
related subtask (under the considered scheduling algorithm).
Schedulability and Priorities: A system τ is called feasible
under a scheduling algorithm A, if the schedule produced by
A ensures that the task set is scheduled without any dead-
lines misses. A schedulability test of a scheduling algorithm
veri�es whether the task system is feasible under the given
algorithm. A schedulability test is su�cient, if all the task
sets it deems schedulable are in fact schedulable. A necessary
schedulability test deems all the task sets unschedulable that
are unschedulable; and an exact test is both necessary and
su�cient. We consider both �xed-priority scheduling (FP)
and dynamic-priority scheduling (DP) in this paper. If FP is
used, we assume that each task has a unique priority, and



hp (τk ) and lp (τk ) are the sets of higher-priority and lower-
priority tasks than task τk , respectively. Speci�cally, we will
always use FP for scheduling the critical sections.
Speedup Factors: We use the speedup factor to quantify the
sub-optimality of our scheduling algorithm: A scheduling
algorithm (schedulability test, respectively) has a speedup
factor ρ ≥ 1, if it is guaranteed that any task system that is
feasible upon a speci�ed platform can be scheduled (deemed
schedulable by the test, respectively) upon a platform in
which each processor is speed up by at least ρ. Chen et al. [15]
have recently presented the potential pitfalls of arguments
based on the speedup factors. We note that our scheduling
algorithm and statements do not have any of those pitfalls.

3 Background and Related Work
3.1 Single Processor Systems
As shared resources must be serially executed to achieve
mutual exclusion, the execution of critical sections inevitably
causes some delay due to priority inversion, i.e., a task is
prevented from executing due to another task with a lower
priority that holds a shared resource, also called pi-blocking.
Three approaches are considered here:
Non-Preemptive Protocol (NPP): A critical section that
has started to be executed cannot be preempted by any other
job until the critical section is �nished. Under �xed-priority
NPP the maximum blocking time Bk for a task τk is

Bk = max
τi ∈lp (τk )

{Ai } (1)

NPP can also be applied by using an FIFO queue or non-
preemptive EDF with a di�erent response time analysis.
Priority Inheritance Protocol (PIP) and Priority Ceil-
ing Protocol (PCP): To avoid unnecessary blocking of high-
priority tasks due to unrelated shared resources, the PIP and
PCP were introduced by Sha et. al [30]. The PIP allows a
lower-priority task to temporally inherit the priority of a
higher-priority task that it blocks. In the PCP, each resource
Rq is assigned a priority ceiling C (Rq ) that is equivalent
to the base priority of task τj of the highest-priority task
that accesses Rq . A job can only allocate a resource, if its
priority is higher than the highest priority ceiling among the
currently allocated resources. Suppose that Lk is a subset of
lp (τk ), in which the resource ceiling of the shared resource
requested by a task τi in Lk is higher than or equal to the
priority of τk . Under PCP, as shown in [30],

Bk = max
τi ∈Lk

{Ai }. (2)

Stack Resource Policy (SRP): The SRP is also a classical
uniprocessor locking protocol proposed by Baker [3]. The
worst-case response time of a job can incur under the SRP
is the same as under the PCP. Therefore, the results in this
paper based on the PCP can also be applied to the SRP.

3.2 Multiprocessor Systems
Multiprocessor real-time locking protocols can be classi�ed
into suspension-based protocols [9, 10, 27, 29] and spin-
based protocols [12, 21, 36]. From an algorithmic optimality

point of view, there are two categories for quantifying
multiprocessor real-time locking protocols. One is from the
speedup factor perspective. For multiprocessor scheduling
with resource sharing the �rst algorithm with a speedup
factor, i.e., 12(1 + 3r/4m), was gEDF-vpr by Andersson and
Easwaran [1]. This bound was improved by Andersson and
Raravi [2], who proposed LP-EE-vpr which has a speedup
factor of 4 · (1+

⌈
r
m

⌉
) ≥ 8. Note that we simpli�ed the bound

for LP-EE-vpr to match the case we analyze here while the
bound in [2] is more general. The best known general bound
was presented by Huang et al. [23] for their algorithm ROP-
PCP, i.e., 11− 6

m+1 . These speedup factors are only valid when
there is at most one (non-nested) critical section per task.

Another theoretical perspective is to analyze the pi-
blocking. Brandenburg and Anderson [10] showed that
Ω(m) pi-blocking is unavoidable under suspension-oblivious
schedulability analysis. To this end, the Flexible Multi-
processor Locking Protocol (FMLP) [6], the Generalized
FIFO Multiprocessor Locking Protocol (FMLP+) [9], O (m)
multiprocessor locking protocol (OMLP) [11], and the Dis-
tributed FIFO Locking Protocol (DFLP) [8] are proved to be
asymptotically optimal for minimizing the pi-blocking by
using FIFO-waiting queues. However, the empirical results
in [39] showed that asymptotically optimal protocols do not
necessarily perform well. Yang et al. [39] have summarized
and compared the protocols using global scheduling, and
concluded that the FMLP and the Priority Inheritance Proto-
col (PIP) are the best of the existing protocols under global
rate-monotonic scheduling when the linear-programming
(LP) based schedulability tests in [7] are used.

For partitioned and semi-partitioned scheduling, there are
several real-time locking protocols such as the Distributed
PCP (DPCP) [29], the Multiprocessor PCP (MPCP) [27],
the Multiprocessor Resource Stack Policy (MSRP) [21], the
Flexible Multiprocessor Locking Protocol (FMLP) [6], and
the Multiprocessor resource sharing Protocol (MrsP) [12].
Essentially, the performance of resource sharing protocols
highly depends on how the tasks are partitioned. With regard
to task partitioning, the following results have been reported:
1) a synchronization-aware partitioned heuristic tailored
to the MPCP in [24], and 2) a blocking-aware partitioning
method in [25]. Unfortunately, unsafe schedulability tests
were adopted in the above results. Please refer to [38] for
details. Wieder and Brandenburg [37] used integer linear pro-
gramming and developed a Greedy Slacker (GS) algorithm
to partition the tasks under the MRSP protocol.

4 Our ROP Scheduling
This section �rst explains the general concept of resource-
oriented partitioned scheduling (ROP) and then presents our
extension of ROP for the special case when each task has at
most one non-nested critical section.

4.1 ROP by Huang et al. [23]
The general ROP approach is: 1) The m processors are
partitioned into mR synchronization processors for critical



sections andmC application processors for non-critical sec-
tions, 2) The related critical sections of each shared resource
are assigned to one designated synchronization processor,
3) The non-critical section of each task is statically allocated
onto a designated application processor. When a job enters a
critical section, it suspends itself on its application processor
and returns to the ready queue of the application processor
after its critical section is executed on the synchronization
processor. Note that both critical and non-critical sections
of a task may still be executed on the same processor as
the remaining capacity on the synchronization processors
can be used to execute non-critical sections. As a task is
possibly executed on more than one processor, resource-
oriented partitioned scheduling has additional overheads,
similar to semi-partitioned scheduling, when compared to
partitioned scheduling. The critical points for designing a
good algorithm based on ROP are:

1. the number of synchronization processors,
2. regarding the critical sections, the partition of the

shared resources on those synchronization processors,
3. regarding the non-critical sections, the partition of the

sporadic real-time tasks onto application processors,
4. the assigned base priorities for the sporadic tasks, and
5. the moment on the synchronization processor to

request the critical section of a task.
Huang et. al [23] only considered the �rst four points and
assumed that task migration is possible at any time, due to
the use of the more general dynamic self-suspension model.

4.2 Release Enforcement
The main idea of ROP is to separate the critical and non-
critical sections by migrating all critical sections for the same
resource to one processor. After that the schedulability of the
critical sections and the non-critical sections can be analyzed
individually. Therefore, executing the critical section of a
task on the synchronization processor can be considered as
if the task suspends itself from its application processor.
Please note that the literature regarding self-suspension
has been seriously �awed as reported in [14]. However, the
techniques used in this paper have none of the �aws reported
in [14]. A current review of the state-of-the-art regarding
self-suspension can be found in [16].

From the perspective of the shared resources, the critical
sections migrating to the synchronization processor can be
modeled as incoming sporadic tasks. However, if the task
migration happens directly when Ck ,1 �nishes its execution,
the time di�erence between the best-case and the worst-
case response time of Ck ,1 has to be taken into account as
release jitter, e.g., detailed in [38] for the original DPCP. This
jitter introduces pessimism when analysing the WCRT of the
critical section and can be removed by enforcing the critical
sections to be periodic, i.e., migrating the task τk to the
synchronization processor at the �xed time tmiдr

k ,1 after the
task is released on the application processor. This does not
mean that the task migration is enforced to be periodic but
that the critical section is only considered by the scheduler

at time t
miдr
k ,1 plus the arrival time of the job. The same

holds true for the non-critical sections if the task is migrated
back according to the WCRT of the critical section. We use
WCRT (Ak ) on the synchronization processor as suspension
time directly, i.e., the task is migrated back after exactly that
amount of time. Therefore, we have release enforcement for
both migrations and there is no release jitter for Ck ,2 as well.

This approach is also called phase modi�cation (PM)
in [5, 31] and static o�set in [26] in the literature. Due to the
strict release enforcement of the release times of computation
demands Ck ,1, Ak , and Ck ,2, we do not need to consider
any release jitter. This enforcement is di�erent from other
enforcement strategies with similar names, i.e., the period
enforcer in [28] and the release guard in [31], in which the
release time of Ak (Ck ,2, respectively) of task τk should be
at least Tk apart from Ak (Ck ,2, respectively) of the previous
job of τk . The period enforcer [28] has recently been shown
incompatible with all existing analysis regarding suspension-
based locking protocols by Chen and Brandenburg in [13].

Under release enforcement, the timing analysis is equiv-
alent to end-to-end deadline analysis, e.g., [5], or the static-
o�set FP uniprocessor analysis, e.g., [26]. However, our focus
here is to partition and schedule those tasks. We will apply
existing safe timing analysis and scheduling algorithms
based on self-suspension, detailed in Section 4.3. Other
approaches that can be used to assign relative deadlines and
validateWCRT (Ck ,1) +WCRT (Ak ) +WCRT (Ck ,2) ≤ Tk un-
der release enforcement can be applied.

4.3 Schedulability Tests under Release Enforcement
Under ROP, the schedulability on each processor can be
analyzed individually. While the actual mappings of tasks
and resources will be described in Section 4.4, we focus on
the the scheduling decisions for the individual processors
and the schedulability tests in this subsection. Therefore, we
will assume a mapping of shared resources and tasks onto
processors to be given. First, we consider the scheduling
regarding critical sections and the resulting response time
on a synchronization processor, determining the maximum
suspension time Sk for τk regarding the application pro-
cessors. After that, we use this suspension time to ana-
lyze the schedulability on the application processor. We
set individual deadlines Dk ,1 and Dk ,2 for the �rst and
second computation segments, respectively. Under the re-
lease enforcement, a task τk is schedulable by a scheduling
algorithm if 1) Dk ,1 + Sk + Dk ,2 ≤ Tk , 2)WCRT (Ck ,1) ≤ Dk ,1
and WCRT (Ck ,2) ≤ Dk ,2, and 3) the suspension time is
bounded by Sk , i.e.,WCRT (Ak ) ≤ Sk . As we use them for the
preplanned migration, Di ,1, Si , and Di ,2 will also be set for
FP. For the simplicity of presentation, we will say that task τi
migrates to its synchronization processor Di ,1 time units after
a job of task τi arrives and task τi migrates to its application
processor Si + Di ,1 time units after a job of task τi arrives.

We �rst assume that each processor is either a synchro-
nization processor or an application processor and consider
the case that the critical and the non-critical sections are



scheduled on the same processor afterwards. We will always
consider the schedulability of task τk , assuming that the
schedulability of the tasks that are previously assigned on
the same processor is already assured. The task set is deemed
schedulable if all tasks are schedulable.

For τk the set of tasks placed on the same synchronization
processor as the critical section and the set of tasks placed on
the same application processor as the non-critical section are
not necessarily identical. In addition, the priority ordering
of tasks on a synchronization processor is not necessarily
the same as on an application processors. Therefore, we
introduce the following notation:
• regarding critical sections: hps (τk ) denotes the tasks

with higher priority than τk on the synchronization
processor, i.e., �xed-priority scheduling (FP) is used.

• regarding non-critical sections: hpa(τk ) denotes the
tasks with higher priority than τk on the application
processor if FP is used.

4.3.1 Critical Section Response Time Analysis
For each synchronization processor, the task priorities are
assigned according to RM. Due to release enforcement,
the inter-arrival time of a task τi on the synchronization
processor is at leastTi . Therefore, the following time-demand
analysis (TDA) in [17, 33] can be safely used to test whether
the response time of Ak is no more than Tk :

∃t , 0 < t ≤ Tk and Bk +Ak +
∑

τi ∈hps (τk )

⌈
t

Ti

⌉
Ai ≤ t (3)

If Eq. (3) holds for some values of t , we can take the minimum
t∗k ,s among those values as the maximum suspension time Sk .
Note that Bk is calculated depending on the resource sharing
policy, i.e., Eq. (1) for NPP and Eq. (2) for PCP.

4.3.2 Scheduling Analysis for Non-Critical Sections
We need to validate ifWCRT (Ck ,1) + Sk +WCRT (Ck ,2) ≤ Tk
to determine whether τk is deemed to be schedulable under
the scheduling policy on the application processor. Note
that Sk =WCRT (Ak ) was determined beforehand (see Sec-
tion 4.3.1). We set individual deadlines Dk ,1 ≥WCRT (Ck ,1)
and Dk ,2 ≥WCRT (Ck ,2) for Ck ,1 and Ck ,2, respectively, with
Dk ,1+Sk+Dk ,2 = Tk . While those deadlines are not necessary
when scheduling tasks with FP, they are used for both FP and
DP to determine the point in time where the migration takes
place, i.e., the migration to the synchronization processor
happens at θa+Dk ,1 and the migration back to the application
processor at θa + Dk ,1 + Sk where θa is the jobs arrival time.

When considering τk , we assume that Di ,1 and Di ,2 are
already assigned for all tasks τi that are already allocated to
the processor. As recently shown in [22, 35], those tasks
can be modeled as general multiframe (GMF) tasks [4]
with two frames, i.e., τi is represented by two 3-tuples
τi = {(C

1
i ,D1

i ,T 1
i ), (C2

i ,D2
i ,T 2

i )}, representing two alternately
released subtasks. The computation time for the GMF sub-
tasks is the same as for the computation segments, i.e.,
C1
i = Ci ,1 and C2

i = Ci ,2. As the second computation

segment is released after the suspension interval we know
that D1

i = Di ,1 and T 1
i = Di ,1 + Si . Moreover, T 2

i = Ti −T
1
i =

Ti − Di ,1 − Si and D2
i = Di ,2 = Ti − Di ,1 − Si .

Fixed-priority - FRD - Rate Monotonic (FP-RM): The
task priorities on each application processor are assigned
in RM order. We determine WCRT (Ck ,1) = t∗k ,1 and
WCRT (Ck ,2) = t∗k ,2 by looking for the minimum t such that

0 < t ≤ Ti and Ck ,1 +
∑

τi ∈hpa (τk )

Wi (t ) ≤ t (4)

holds, whereWi (t ) is the maximum interference of τi over
the interval [0, t ). It was shown in [32] that Wi (t ) can be
calculated as the maximum max

{
Ehi (t )

}
of the interference

patterns Ehi (t ) forh ∈ {1, 2}where Ehi (t ) =
∑h+l+1

j=h C {j mod 2}
i

and l is the mimimum integer with ∑h+l+1
j=h T {j mod 2}

i ≥ t .
Note that the interfernce from hpa(τk ) calculated above is
identical to that based on the static o�set analysis in [26].
Similarly, t∗k ,2 can be determined using Ck ,2 in Eq. (4).

If t∗k ,1 + t
∗
k ,2 < Tk − Sk , the slack can be freely distributed

when setting the deadlines Dk ,1 and Dk ,2. We used an equal
density assignment, i.e., Ck ,1

Dk ,1+Sk
=

Ck ,2
Dk ,2

, with respect to t∗k ,1
and t∗k ,2. This means, if Dk ,1 would be less than t∗k ,1 we set
Dk ,1 = t∗k ,1 and adjust Dk ,2 accordingly (similar for Dk ,2).
Fixed-priority - Execution Interval Monotonic (FP-
EIM): The only di�erence to FP-RM is that tasks are consid-
ered and prioritized in increasing order according to their
execution interval Ti − Si .
Earliest Deadline First - Fixed Relative Deadline As-
signment - EIM (EDF-EIM): The �rst DP approach we
consider is to use SEIFDA by von der Brüggen et al. [35] on
the individual processors. The renaming to EDF-EIM is to
match the terminology in this paper. For each task individual
relative deadlines are assigned for the two computation
segments using the demand-bound functions presented
in [35]. Afterwards the subjobs are scheduled accordingly
using EDF. As the deadline assignment strategy plays a big
role for EDF-EIM we use the strategy that performs the best
according to [35], i.e., Proportionally-Bounded-Min. Note
that when trying to assign the deadlines for τk we also
need to check weather the previously assigned tasks are still
schedulable under that assignment, as one of the segments
of τk could be assigned to a shorter deadline than one of
the segments of the previously assigned tasks. To reduce the
computational complexity we use approximated demand-
bound functions for the GMF tasks as proposed in [35].
EDF - FRD - RM (EDF-RM): The only di�erence to EDF-
EIM is that tasks are assigned in RM instead of EIM order.
4.3.3 Improvements for Non-Critical Sections
Allowing non-critical sections to be executed on the syn-
chronization processors may increase the schedulability as it
uses otherwise unused capacities. We let the critical sections
have higher priority than all non-critical sections and use
FP for the non-critical sections as well, even if DP is used on
the processors that are only used for non-critical sections.



4.4 Resource and Task Allocation
Suppose we use a given number ofmR ≥ 1 synchronization
processors and mC =m −mR application processors. Then,
we proceed with the following three steps, which are a
revised version of the algorithm by Huang et al. [23] as
di�erent tests and scheduling algorithms are applied:

(1) Assign tasks to synchronization processors: We
assign the resources to the given number of synchro-
nization processors using the Worst-Fit Decreasing
(WFD) algorithm based on resource utilization, i.e.,
the resources are ordered non-increasingly according
to U Rq , for q = 1, 2, . . . , r . WFD assigns the resource
onto the synchronization processor with the least
resource utilization before assigning the resource.

(2) Calculate WCRT on synchronization proces-
sors: For each task τk , we calculate WCRT (Ak ) by
using Eq. (3), considering themR processors individ-
ually. The blocking time is calculated with either
PCP (Eq. (2)) or NPP (Eq. (1)), depending on the
synchronization protocol. This is treated as the sus-
pension time Sk =WCRT (Ak ) for each task τk .

(3) Assign tasks to application processors: The tasks
are sorted increasingly according to the scheduling
approach for the application processors, i.e., either
according to their execution intervals Ti − Si if EDF-
EIM or FP-EIM is used, or according to their periods if
EDF-RM or FP-RM is used. The non-critical sections
of the tasks are then assigned to the application
processors according to the �rst-�t approach in this
order, using the related schedulability test. If the
related schedulability condition in Section 4.3.2 holds,
the deadlines are set accordingly and the non-critical
sections of the task are assigned to the processor. If a
task is not schedulable on any application processor
we try to assign it to the synchronizations processors.

The key question in this algorithm is the setting ofmR . In
general, there is a trade-o� between 1) longer suspension
times ifmR is small, and 2) longer worst-case response times
of the non-critical sections if mR is big. Since the above
assignment algorithm works for any mR ≤ m, trying all
possible settings ofmR in the above algorithm only increases
the time complexity by a factor of m. This procedure is,
hence, done for all sensible numbers of synchronization
processors, i.e., mR ∈ {1, …,min(m, r )}. We show in the next
section that settingmR = max

{ ⌊
6∑

τi ∈τ U
A
i

⌋
, 1

}
can lead to

a speedup factor of 6 when FP-RM is used together with PCP
and release enforcement. However, we would like to note that
an algorithm that setsmR = max

{ ⌊
6∑

τi ∈τ U
A
i

⌋
, 1

}
greedily

results in a potential pitfall of signi�cant performance loss
since such a setting ofmR (i.e., as an enforcement technique)
is too strong and applied at an early stage, as recently pointed
out by Chen et al. [15].

5 Speedup Factors
In this section we show that using release enforcement to-
gether with resource-oriented partitioned scheduling leads to

a speedup factor of 6. We start with the necessary scheduling
conditions for a task set to be feasible by any multiprocessor
scheduling algorithm shown in Lemma 3 in [23].

Lemma 5.1 (Necessary Condition, Lemma 3 in [23]). Any
implicit-deadline task system τ that is feasible upon a platform
comprised ofm processors must satisfy the following conditions

UC +U RS ≤ m (5)
∀τi ∈ τ , Ui ≤ 1 (6)

∀τk ∈ τ max
τi ∈ldRq (τk )

Ai +Ak +
∑

τj ∈sdRq (τk )

⌊
Tk
Tj

⌋
Aj ≤ Tk (7)

where ldRq (τk ) and sdRq (τk ) are the sets of tasks that access
the same shared resource R as τk but with longer (Ti > Tk )
periods and shorter or the same (Ti ≤ Tk ) periods, respectively.

Lemma 5.2. Following the necessary condition in Eq. (7) the
blocking time Bk of a task τk derived under resource-oriented
partitioned scheduling with PCP must be upper bounded by its
period Tk when the tasks are prioritized by using RM.

Due to Eq. (7), U Rq ≤ 1 must hold ∀ Rq ∈ RS. The proof
of Lemma 5.2 was provided by Huang et. al in [23] as a part
of the proof of their Lemma 5. For the speedup analysis, we
�rst provide the following lemma regarding the worst-case
response time of a computation segment Ek if the utilization
on the related processor is low enough.

Lemma 5.3. Let hp∗ (Ek ) be the periodic computation seg-
ments with higher priority than Ek on the same processor.
Suppose the worst-case response time (WCRT) analysis for a
computation segment Ek is to �nd the minimum t > 0 where

Ek +
∑

τi ∈hp∗ (Ek )

⌈
t

Ti

⌉
Ei = t (8)

If Ti ≤ Tk∀τi ∈ hp∗ (Ek ) and( ∑
τi ∈hp∗ (τk )

Ei/Ti

)
+ Ek/Tk = Y ≤ 0.5 (9)

thenWCRT (Ek ) under Eq. (8) is at most Tk · Y .

Proof. Suppose Vi is Ei
Ti

. We consider two cases:

1)Ti ≤
Tk
2 ⇒

⌈
t

Ti

⌉
Ei ≤ TkVi ∀0 < t ≤

Tk
2 (10)

2)Tk2 < Ti ≤ Tk ⇒

⌈
t

Ti

⌉
Ei = Ei ≤ TkVi ∀0 < t ≤

Tk
2 (11)

Therefore, we know that for all t with 0 < t ≤ Tk
2 :

Ek +
∑

τi ∈hp∗ (Ek )

⌈
t

Ti

⌉
Ei ≤ Ek +

∑
τi ∈hp∗ (Ek )

ViTk = YTk (12)

This means that Eq (8) holds when t = YTk . �

Note that we will apply Lemma 5.3 for analyzing
WCRT (Ck ,1), Sk =WCRT (Ak ), andWCRT (Ck ,2) by putting
di�erent formula in Eqs. (8) and (9). For the simplicity of
presentation in the following statements, we will implicitly
assume that the task set can be feasibly scheduled on the



original platform and therefore the necessary conditions
in Lemmas 5.1 and 5.2 hold. Moreover, our goal here is to
prove that a speci�c setting when the platform speed is 6.
For the rest of the proofs in this section, all the execution times,
blocking times, utilization values, and analyses are based on
the platform after speeding up by 6.

Lemma 5.4. If Sk + Tk (UC
k + 2∑

τi ∈hpa (τk )U
C
i ) ≤ Tk and

UC
k +

∑
τi ∈hpa (τk )U

C
i ≤ 0.5, the worst-case response time of

task τk (under release enforcement, RM preemptive scheduling,
and resource-oriented partitioned scheduling) is

WCRT (τk ) ≤ Sk +Tk
(
UC
k + 2

∑
τi ∈hpa (τk )

UC
i

)
(13)

Proof. Under RM preemptive scheduling and release en-
forcement, WCRT (Ck ,1), i.e., the o�set to release the criti-
cal section to its synchronization processor, is to �nd the
minimum t > 0 such that Eq. (4) holds. SinceWi (t ) de�ned
for Eq. (4) is ≤

⌈
t
Ti

⌉
(Ci ,1 + Ci ,2) for task τi , we can safely

approximate WCRT (Ck ,1) by �nding the minimum t > 0
with Ck ,1 +

∑
τi ∈hpa (τk )

⌈
t
Ti

⌉
Ci = t . Due to the assumption

Ck ,1
Tk
+
∑
τi ∈hpa (τk )U

C
i ≤ UC

k +
∑
τi ∈hpa (τk )U

C
i ≤ 0.5, we know

that the condition in Eq. (9) is met with Ek = Ck ,1 for τk and
Ei = Ci for τi ∈ hpa(τk ). Therefore, by applying Lemma 5.3,

WCRT (Ck ,1) ≤ Ck ,1 +Tk
∑

τi ∈hpa (τk )

UC
i = Dk ,1 (14)

Similarly, WCRT (Ck ,2) ≤ Ck ,2 + Tk
∑
τi ∈hpa (τk )U

C
i = Dk ,2.

Therefore, WCRT (τk ) ≤ Sk + Tk (U
C
k + 2

∑
τi ∈hpa (τk )U

C
i ) if

Sk +Tk (U
C
k + 2

∑
τi ∈hpa (τk )U

C
i ) ≤ Tk . �

Lemma 5.5. Under FP-RM-PCP with release enforcement
on a platform with m homogeneous processors of speed
6 and the number of synchronization processors set to
mR = max

{ ⌊
6∑

τi ∈τ U
A
i

⌋
, 1

}
, the maximum response time

Sk of a task on a synchronization processor is at most

Sk ≤



(1/6 +∑
τi ∈τ U

A
i )Tk ifmR = 1

0.5Tk ifmR ≥ 2
(15)

when the resources are packed according to the worst �t.

Proof. By Lemma 5.2, when RM is used together with PCP
for scheduling we know that Bk/Tk ≤ 1/6 after speeding up.

When mR is 1, we know that ∑
τi ∈τ U

A
i < 1/3 and all

critical sections in τ are assigned to one processor. Due to
the release enforcement, the worst-case response time Sk of
the critical section of task τk is to �nd the minimum t such
that Eq. (3) holds, i.e., Bk +Ak +

∑
τi ∈hps (τk )

⌈
t
Ti

⌉
Ai = t . Since

Bk/Tk ≤ 1/6 andAk/Tk +
∑
τi ∈hps (τk )U

A
i ≤

∑
τi ∈τ U

A
i ≤ 1/3,

we know that Y = Bk+Ak
Tk

+
∑
τi ∈hps (τk )U

A
i ≤ 0.5, i.e., the

condition in Eq. (9) holds when RM is used for prioritizing
the critical sections, Ek = Ak + Bk for task τk , and Ei = Ai
for task τi in hps (τk ). Therefore, whenmR is 1, we know that
Sk ≤ YTk ≤ (1/6 +∑

τi ∈τ U
A
i )Tk due to Lemma 5.3.

For the rest of the proof, we focus on mR ≥ 2. We only
need to prove the total resource utilization of the critical
sections on any of the mR synchronization processors is

≤ 1/3. Then, since Bk+Ak
Tk
+

∑
τi ∈hps (τk )U

A
i ≤ 1/6+ 1/3 = 0.5

the same response time analysis used above whenmR is 1 can
be directly applied to conclude Sk ≤ 0.5Tk . We �rst consider
how the resources are packed to the mR synchronization
processors at the platform with a speed of 6. Suppose that we
are now assigning the q-th resource Rq . By de�nition, q ≤ r .
Let the resource utilization on a synchronization processor
℘` be denoted as U ℘` . Before assigning Rq to any of the mR

synchronization processors, there is one synchronization
processor with the minimum utilization so far. We denote
this processor as ℘j . Due to the worst-�t strategy,U ℘` ≥ U ℘j

for any synchronization processor ℘` .
We show that the utilization of the resources assigned

to ℘j (after assigning Rq to ℘j ) is always ≤ 2
6 =

1
3 ,

i.e., U ℘j +U Rq ≤ 1
3 , at a platform with a speed 6. Assume for

contradiction thatU ℘j +U Rq > 1
3 . Therefore,U ℘` +U Rq > 1

3 ,
i.e., U ℘` > 1

3 −U
Rq for any ℘` in the mR synchronization

processors. Putting the above information together, we have
q∑
i=1

U Ri = U Rq +

q−1∑
i=1

U Ri = U Rq +
∑
`

U ℘`

> U Rq +mR
( 1
3 −U

Rq
)
=

1
3 + (mR − 1)

( 1
3 −U

Rq
)

≥†
1
3 + (mR − 1) 16 =

mR + 1
6

=
1
6 ×

(⌊
6

∑
τi ∈τ

U A
i

⌋
+ 1

)
>∗

∑
τi ∈τ

U A
i =

r∑
i=1

U Ri ≥

q∑
i=1

U Ri

where ≥† is due to mR ≥ 2 and U Rq ≤ 1/6 as the
platform speed is 6, and >∗ is due to the fact bxc > x − 1.
Therefore, we reach a contradiction. As a result, the total
resource utilization of the critical sections on any of themR

synchronization processors is ≤ 1/3, and Sk ≤ 0.5Tk for any
task τk whenmR ≥ 2. �

Theorem 5.6. The speedup factor of the proposed resource-
oriented partitioned scheduling algorithm is 6 if PCP is used to
schedule the critical sections on the synchronization processors
when m ≥ 2, and the worst-�t approach is used to assign
the critical sections to the synchronization processors and the
non-critical sections are assigned in rate-monotonic order.

Proof. Suppose that the input task set τ can be feasibly
scheduled onm uni-speed processors. We need to show that
in this case the task set is also schedulable by the resource-
oriented partitioned scheduling onm processors with speed
s = 6. For the analysis, we consider a special setting of
mR with mR = max

{ ⌊
6∑

τi ∈τ U
A
i

⌋
, 1

}
and mC = m −mR .

We have to show that WCRT (τk ) ≤ Tk for any task τk
in τ . Since RM is used for the priority assignment on the
synchronization processors and the tasks are assigned to the
application processors in RM order, Lemmas 5.4 and 5.5 can
be implicitly applied if the required utilization condition can
be satis�ed. Two cases are considered:

Case 1:mR ≥ 2. That is, ∑τi ∈τ U
A
i ≥

2
6 . Moreover, the nec-

essary condition in Eq. (5) leads to the following inequality
after speeding up with a factor of 6:∑
τi ∈τ

(6UC
i +6U

A
i ) ≤ m ⇒mR+

∑
τi ∈τ

6UC
i ≤ m

C+mR ⇒
∑
τi ∈τ

UC
i ≤

mC

6



Therefore, when we consider to assign task τk to an ap-
plication processor, there must be an application processor
with utilization ≤ 1

6 due to the pigeon hole principle. Let
this processor be ℘j and the set of the tasks that are already
assigned on this processor be hpaj (τk ). Therefore, we know
that ∑

τi ∈hpa j (τk )U
C
i ≤ 1/6 and UC

k +
∑
τi ∈hpa j (τk )U

C
i ≤ 1/3.

By Lemma 5.5, Sk ≤ 0.5Tk , and by Lemma 5.4, we know that

WCRT (τk ) ≤ Sk +
(
UC
k + 2

∑
τ∈hpa j (τk )

UC
i

)
Tk ≤ Tk (16)

Case 2: mR = 1. That is, ∑τi ∈τ U
A
i <

2
6 . By Lemma 5.5,

Sk ≤ (1/6+∑τi ∈τ U
A
i )Tk . We consider two subcases 1)m = 2

and 2)m ≥ 3. Whenm is 2, we know that one processor is
used for synchronization and another processor is used for
non-critical sections. The necessary condition in Eq. (5) after
speeding up with a factor of 6 form = 2 leads to:

UC
k +

∑
τi ∈hpa (τk )

UC
i ≤

∑
τi ∈τ

UC
i ≤

m
6 −

∑
τi ∈τ

U A
i =

1
3 −

∑
τi ∈τ

U A
i (17)

Therefore, using Lemma 5.4 due to UC
k +

∑
τi ∈hpa (τk )U

C
i ≤

1/3 < 0.5 whenm = 2, results in
WCRT (τk ) ≤Sk +

(
UC
k + 2

∑
τ∈hpa (τk )

UC
i

)
Tk

≤

( 1
6 +

∑
τi ∈τ

U A
i +

2
3 − 2

∑
τi ∈τ

U A
i

)
Tk ≤ Tk (18)

When m is at least 3, due to the pigeon hole principle,
before assigning τk , there exists an application processor ℘j
in the mC = m − 1 application processors with utilization
≤ (

∑k−1
i=1 U

C
i )/(m−1) ≤ (−UC

k +
∑
τi ∈τ U

C
i )/(m−1). Let such

a processor be ℘j and the set of the tasks that are already
assigned on this processor be hpaj (τk ). Hence,

UC
k + 2

∑
τi ∈hpa j (τk )

UC
i ≤ U

C
k +

−2UC
k +

∑
τi ∈τ 2UC

i

m − 1

∗
≤ UC

k

(
1 − 2

m − 1

)
+

2m
6 − 2

∑
τi ∈τ U

A
i

m − 1
†
≤

1
2 −

2∑
τi ∈τ U

A
i

m − 1 (19)

where
∗

≤ is due to ∑
τi ∈τ U

C
i +U

A
i ≤

m
6 after speeding up

and
†

≤ is due to 0 < UC
k ≤

1
6 andm ≥ 3. Similarly,

UC
k +

∑
τi ∈hpa j (τk )

UC
i ≤ U

C
k +

−UC
k +

∑
τi ∈τ U

C
i

m − 1

≤ UC
k

(
1 − 1

m − 1

)
+

m
6 −

∑
τi ∈τ U

A
i

m − 1 ≤1
4
12 =

1
3 < 0.5 (20)

where ≤1 is due to the fact that the function is monotonically
decreasing with respect to m. Therefore, using Lemma 5.4
due to UC

k +
∑
τi ∈hpa j (τk )U

C
i < 0.5 in Eq. (20), when m ≥ 3,

the condition in Eq. (19) leads to

WCRT (τk ) ≤ Sk +
(
UC
k + 2

∑
τ∈hpa j (τk )

UC
i

)
Tk

≤

( 1
6 +

∑
τi ∈τ

U A
i +

1
2 −

2∑
τi ∈τ U

A
i

m − 1

)
Tk

≤

( 2
3 +

1
m − 1

(
(m − 3)

∑
τi ∈τ

U A
i

))
Tk ≤

( 2
3 +

(m − 3) 26
m − 1

)
Tk ≤ Tk (21)

Therefore, we can always �nd an application processor to
assign task τk to meet its deadline at a speed of 6. �

6 Evaluations
We conduct evaluations with m = 4, 8, and 16 processors.
Depending onm, we generate 100 task sets for each utiliza-
tion level, from 5% ·m to 100% ·m, in steps of 5% ·m. The
cardinality of each task set is 10 ×m. We use the approach
suggested by Emberson et al. [20] to generate the task periods
according to a log-uniform distribution. The distribution of
periods is within one order of magnitude, i.e., from 1ms to
10ms. All tasks have implicit deadlines, i.e., Di = Ti . The
overall ratio of non-critical to critical-sections depends on
α ∈ {5, 10, 20}. For example, if α = 5 and UΣ = 120%, we get
U RS = 120% × 1

5+1 = 20% and UC = 120% × 5
5+1 = 100%,

i.e., the larger α is, the smaller is the critical section. In each
utilization step, the Randfixedsum method [20] is adopted
twice to generate two sets of utilization values with the given
goals of critical-sections and non-critical-sections utilization.
Those values are combined ensuring that U A

i +U
C
i ≤ 1 for

every task τi . The WCETs of the non-critical-sections and
critical-section of task τi are set accordingly, i.e., Ci = TiU

C
i

and Ai = TiU
A
i , and Ci ,1 is drawn uniformly from [0,Ci ],

setting Ci ,2 = Ci −Ci ,1. Each critical section was assigned to
one of the r resources according to a uniform distribution.

We compare the protocols by the acceptance ratio. Due to
the space limitation, only a subset of the results is presented.
We evaluated the following approaches, using the RM order
and priority assignment if not mentioned otherwise, where
the color and linestyle are related to the curve in Figure 1.

• LP-GFP-FMLP [6] (black, dashed): a linear-programming-
based (LP) analysis for global FP scheduling using the
Flexible Multiprocessor Locking Protocol (FMLP) [6].

• LP-PFP-DPCP [7] (red, dashed): LP based analysis for
partitioned FP and DPCP [29]. Tasks are assigned using
WFD as proposed in [7].

• LP-PFP-MPCP [7] (magenta, dashed): LP based analysis
for partitioned FP using MPCP [27]. Tasks are partitioned
according to WFD as proposed in [7].

• GS-MSRP (blue, dashed) [36]: the Greedy Slacker (GS)
partitioning heuristic with the spin-based locking protocol
MSRP [21] under Audsley’s Optimal Priority Assignment.

• LP-EE-vpr (NC) [2] (cyan, dashed): A necessary scheduling
condition for LP-EE-vpr.

• gEDF-vpr (NC) [1] (green, dashed): A necessary scheduling
condition for gEDF-vpr.

• LP-GFP-PIP (cyan, solid): LP based global FP scheduling
using the Priority Inheritance Protocol (PIP) [19].

• MrsP (magenta, solid): the Multiprocessor resource shar-
ing Protocol (MrsP) [12] with the Synchronization-Aware
Partitioning Algorithm [24].

• ROP-PCP (black, solid): the ROP in [23] using PCP.
• FP-RM-PCP (blue, solid): this paper.
• FP-EIM-PCP (red, solid): this paper.
• EDF-EIM-PCP (green, solid): this paper.

We evaluated our proposed approaches in all 8 combina-
tions, i.e., FP or EDF, RM or EIM, and PCP or NPP. We only
present the FP and the EDF approach that (in general) leads
to the best performance, i.e., FP-EIM-PCP and EDF-EIM-PCP,
together with the approach that provides a speedup factor of
6, i.e., FP-RM-PCP. In all cases the approaches using the PCP
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Figure 1. Comparison of di�erent approaches under di�erent parameter settings.

and NPP performed similarly. For our approaches and ROP-
PCP we used approximated demand bound functions, where
the linear approximation starts from the third period [35].

The results of our evaluations are shown in Figure 1. We
analyzed the e�ect of the three parameters individually by
changing: 1)m = r ∈ {4, 8, 16} in Fig. 1 (a)-(c), 2) r for a �xed
m, i.e., r ∈ {4, 8, 16} and m = 8, in Fig. 1 (d)-(f), and 3)
α ∈ {5, 10, 20} in Fig. 1 (g)-(i). In general, we can see that
ROP-RM-PCP (black, solid) is outperformed by both FP-EIM-
PCP (red, solid) and EDF-EIM-PCP (green, solid). While for
most settings EDF-EIM-PCP clearly outperforms FP-EIM-
PCP, there are some settings where FP-EIM-PCP and EDF-
EIM-PCP are really close and there are even cases where RM-
EIM-PCP deems more task sets schedulable than EDF-EIM-
PCP. In general LP-GFP-PIP (cyan, solid), FP-RM-PCP (blue,
solid), and LP-GFP-FMLP (black, dashed) behave similarly
and mostly outperform all other approaches beside ROP-RM-
PCP, FP-EIM-PCP and EDF-EIM-PCP. This behaviour was
expected, as the empirical results in [39] showed that LP-GFP-
FMLP and LP-GFP-PIP are the best locking protocols under
global scheduling. RM-EIM-PCP performs much better than
FP-RM-PCP because tasks with shorter execution intervals
(EIs) are normally harder to schedule than a task with a
longer EI. MrsP (magenta, solid) and LP-PFP-DPCP (red,
dashed) have a very wide range regarding their acceptance
ratio and no general trend can be determined. LP-PFP-
MPCP (magenta, dashed), LP-EE-vpr (cyan, dashed), gEDF-
vpr (green, dashed), and GS-MSRP (blue, dashed) are clearly
outperformed and therefore not further discussed.
Fig. 1 (a)-(c), m = r ∈ {4, 8, 16}: For LP-GFP-PIP, LP-GPF-
FMLP, ROP-RM-PCP, and FP-EIM-PCP m does not have
much impact. MrsP and LP-PFP-DPCP perform better ifm =
4. While MrsP has similar performance for 8 and 16 cores,
the acceptance ratio of LP-PFP-DPCP drops signi�cantly for

m = 16. EDF-EIM-PCP performs compatible with FP-EIM-
PCP form = 4 but has a better acceptance ratio form = 16
while the gap is even larger form = 8.
Fig. 1 (d)-(f), r ∈ {4, 8, 16} and m = 8: The ratio of r to m
seems to not have much e�ect on LP-GFP-PIP, LP-GFP-FMLP,
and FP-EIM-PCP while ROP-RM-PCP performs worse for
r = 4. For EDF-EIM-PCP the acceptance ratio is similar for
r = 4 and r = 16 and better for r = 8. The most interesting
observation here is the acceptance ratio of MrsP, which is
worse than LP-GFP-PIP for r = 4 and r = 8 but for r = 16
performs nearly as good as EDF-EIM-PCP. LP-PFP-DPCP
performs better if the number of resources is larger.
Fig. 1 (g)-(i), α ∈ {5, 10, 20}: A higher value of α , and
therefore a smaller percentage of critical section utilization,
leads to a larger acceptance ratio. For α = 5 and α = 10
FP-EIM-PCP and EDF-EIM-PCP perform similar, for α = 20
EDF-EIM-PCP clearly outperforms FP-EIM-PCP. This is most
likely due to the fact that EDF-EIM-PCP only performs better
than FP-EIM-PCP on the application processors and that
when the critical section utilization is high the critical section
has an even higher impact on the schedulability.

7 Conclusion
We provide several resource-oriented partitioned (ROP)
scheduling strategies to tackle the problem of resource shar-
ing for multiprocessor partitioned scheduling, using both
�xed-priority and dynamic-priority scheduling. Compared
to the initial work by Huang et al. [23], our approaches use
release enforcement to ensure that release jitter does not
have to be considered when analyzing the schedulability. We
model the non-critical sections as segmented self-suspending
tasks and apply the related state-of-the-art uniprocessor
techniques to �nd a feasible partition. We show that one
of our approaches, namely FP-RM-PCP, has a speedup factor
of 6 compared to the optimal schedule, improving previously
known results with respect to the speedup factor.



In the evaluations, two of our approaches, namely FP-
EIM-PCP and EDF-EIM-PCP, are shown to outperform all
previously known approaches, showing the e�ectiveness
of our approaches and the resource-oriented partitioned
scheduling approach in general. As both FP-EIM-PCP and
EDF-EIM-PCP clearly outperform FP-RM-PCP we hope to
prove a speedup factor of 6 for those approaches in the future.
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