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Abstract

This thesis evaluates the energy consumption of a device that executes tasks locally and

uses auxiliary resources.

Mobile embedded systems are widespread in today’s society and are used for all kinds of

purposes whatsoever. However, these embedded systems have limitations with respect to

processing power and battery life, due to the requirement of being mobile. To overcome

these limitations these systems communicate with servers to save energy and increase

computation speed. In the setup in this thesis, the remote execution of a task on a server

can theoretically reduce the consumption of energy by 99%.

But there are some challenges when communicating with a server. A network can be

overloaded and therefore have a low bandwidth or being not reachable. This thesis pro-

poses a new model that uses Nearby Resources as Auxiliary Resources. This model will

be evaluated on real hardware using different tasks as examples for real-life applications.

Using Nearby Resources can save up to 98% per task and also reduce the workload on

remote servers and the relieve the bandwidth.





1 Introduction

Mobile embedded systems are very widespread today. In the year of 2015 there were

1.86 billion smartphone users worldwide and their number is expected to reach to reach

2.87 billion by 2020.1 Furthermore, mobile embedded systems like smart watches, smart

glasses, cameras, drones, virus scanners and infrared cameras are used worldwide. These

systems are more and more capable of running a wide range of applications, which demand

increasing computational power and consume a lot of energy. Yet because they are required

to be mobile, they are limited in battery life and computational capabilities amongst other

things. To overcome those limitations they can use mobile cloud computing, as a form

of computation offloading, to offload parts of applications [8]. Computation offloading

makes it possible for mobile embedded systems to reduce energy consumption, increase

performance and even running applications while the system itself is unable to run at all

[9].

Offloading in use today is already known to reduce energy consumption and improve

performance in performing certain applications. Sometimes the offloaded data needs to

be pre-processed for offlading to be favorable. Face recognition is only one example how

mobile embedded systems benefit from computation offloading [12].

Contribution

In this thesis literature on computation offloading is reviewed. The experiment evaluates

the use of a middleware server in a real environment. For the evaluation I made experi-

ments using ODROID XU4s and wrote scripts to automate benchmarks, monitoring power

and energy consumption.

1.1 Motivation

Computation offloading allows mobile embedded systems to run an even wider range of

applications. These applications can be mathematical calculations, like a multiplication

of large matrix tables, image or video processing, for example translating a text from a

photo or transcoding video files, and artificial intelligence in games [8, 9, 10]. Running

such applications on a resource-rich mobile cloud can save energy and time on the client

1Number of smartphone users worldwide from 2014 to 2020 (in billions), Statista,
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
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system. As can be seen in figure 1.1 executing a task on a remote server can speed up the

execution and possibly also save energy.

Figure 1.1: Offloading a task to a Remote Server

To be able to run such applications, the device needs an almost constant connection to a

remote server. This connection can be through a telecommunication network or through

a WiFi Access Point. But constant communication with a remote server causes a high

bandwidthload and workload on the server [9].

In certain cases communication with the server is not possible. For example, in a foreign

country it could cost a lot of money to use roaming in a network. Or in case of a major

accident or a natural disaster a server could be overloaded, not reachable at all or not

reachable because there is no network at all. But applications that have time constraints

or cannot be executed on the client device at all need an auxiliary resource. In these

cases it is possible to use nearby resources to offload a task to carry out the calculation.

Furthermore, remote servers are utilized by multiple clients and are not dedicated to one

client. Nearby resources on the other hand, like smartphones, tablets and laptops, are

more likely to be dedicated to one single client. In some cases, this can even result in

nearby resources being more favorable than a remote server.

1.2 Background

This section explains the information and techniques used in this thesis.
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1.2.1 Literature Review

This section presents some of the recent surveys on mobile cloud computing as a form of

computation offloading. So far cloud computing has gained a lot of popularity in the past

few years [9]. A few examples are Microsoft Azure, Amazon Elastic Cloud Computing

(EC2) and Google Cloud Platform. These platforms provide a network of hardware and

software for computation and storage of data, but are mostly thought to be for non-mobile

devices. [15, 9] describe several definitions for mobile cloud computing systems in contrast

to a common cloud computing interface. While cloud computing is not very energy aware,

mobile cloud computing interfaces mainly aim at improving a mobile system in terms

of energy. This means that inputs of tasks are possibly pre-processed to be as small as

possible to the effect that overhead of communication is as low as possible.

1.2.2 Computation Offloading

Computation offloading is a technique of executing an application or tasks on another

device. For this process the data, if needed, is sent to the other device, which will then

perform the specified operations and return the results to the client. In some cases data

is pre-processed to increase the efficiency of computation offloading. The goal of this

procedure is to improve performance and reduce energy consumption. [9, 8]

1.3 Structure of Thesis

This thesis begins with introducing to the state of art of using auxiliary resources for

offloading parts of applications and explaining the basic challenges posed by this model.

It then continues with presenting a way to handle some of these challenges. Chapter

3 begins with explaining the setup of the experiment and benchmarks used. The last

chapter presents and discusses the results measured in the experiment and then evaluates

the results in terms of energy and time.
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Auxiliary resources are resources that can be used to offload parts of applications to

a different resource in order to save energy and/or overcome computational limitations

on embedded systems, e.g. through Mobile Cloud Computing. But as mentioned in

Chapter 1, in the absence of usable remote servers nearby mobile embedded systems are

possibly available as auxiliary resources. This chapter explains the concept of offloading

applications to a remote server and then propose a model of nearby resources.

2.1 System Model

The original system for computation offloading consists of a client and a remote server

where the client is connected to a server through a network. The client sends task input

data to a remote server and receives the result after the server has finished computation

as shown in figure 2.1. This is done by a simple Client-Server communication.

Figure 2.1: Offloading System Model

In this model we introduce the middleware server as a possible substitute for a remote

server. Middleware servers in this model basically act as remote servers. The difference is

the way of communication. While using Wi-Fi the middleware acts as an access point and

accepts a direct connection from the client. It can then either execute the task or offload it
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further to the remote server. Bluetooth can also be used to communicate with the client.

While Bluetooth is less power consuming, its low bandwidth makes it unsuitable for the

transfer of larger files.

Another question is whether or not offloading is favorable in terms of time or energy.

Ideally it improves both.

2.1.1 Task Model

In the following system model the client will be referred to as CL, the middleware server

as MS and the remote server as RS. CL >> RS will describe the offloading of a task from

a client to a remote server in analogy to middleware-client and middleware-remote server

offloading.

Given is a set T of n independent tasks, where each task τi ∈ T is characterized by

following average timing parameters:

• Ci: Local execution time on the client for a task τi.

• Rdevice
i : Response time of the task on the remote server. The time interval from the

arrival of the input on ”device” until CL starts receiving the output for a task τi.

•
[source]→[destination]

4ti : Transfer time of a task τi where source and destination ∈ {CL,

MS, RS}

2.1.2 Power Model

Power consumption in this thesis is always considered for the client only.

• P component
state(comp): Power consumption of the client while a certain component is in a

specific state. Where component ∈ {CPU, NIC, BT}, state(CPU) ∈ {idle, run} and

state(NIC, BT) ∈ {idle, off, trans, rec}

2.1.3 Energy Model

Energy consumption is only considered for a client. A client can execute the task inde-

pendently (figure 2.2a) which results in an energy consumption of

CL
Ei = Ci ∗ PCPU

run .

The total energy consumption of the client offloading a task to the middleware server,

figure 2.2c:

CL>>MS
Ei =

CL→MS
4ti ∗ PT +RMS

i ∗ PCPU
idle +

MS→CL
4ti ∗ PR.

Executing a task on a remote server, figure 2.2b:



2.2 Server Utilization 9

CL>>RS
Ei =

CL→RS
4ti ∗ PT +RRS

i ∗ PCPU
idle +

RS→CL
4ti ∗ PR.

Using the middleware to offload a task, figure 2.2c to the remote server results in a total

energy consumption of:

CL>>MS>>RS
Ei =

CL→MS
4ti ∗ PT + (

MS→RS
4ti +RRS

i +
RS→MS
4ti ) ∗ PCPU

idle +
MS→CL
4ti ∗ PR.

Where PT = PCPU
run +PNIC

trans and PR = PCPU
run +PNIC

rec . Based on these equations offloading a

task to a remote server is beneficial in terms of energy if
CL>>RS
Ei <

CL
Ei and an improvement

in time can be achieved if
CL→RS
4ti + RRS

i +
RS→CL
4ti < Ci. Analogical for the middleware

server. If offloading is possible, an interface can decide based on these equations if the

task is executed locally, remotely on the middleware server or on the remote server.

2.2 Server Utilization

As a remote server may not serve just one but multiple clients, its response time may vary

depending on the number of clients served. The server should reserve a specific amount of

resources to guarantee a certain response time [16]. In addition to server utilization, the

bandwidth in a wireless network can vary depending on different factors. Low bandwidth

can result in communication becoming the leading overhead [14].

Guaranteed response time gRi can be calculated by multiplying the initial response time

Ri by the number of clients N utilizing the server.

gRi = Ri ∗N

A server utilized by 3 clients for example would reserve 1/3 of its resources for each client.

That means the server would guarantee a response time of the initial response time for

serving one client multiplied by 3. This means for an initial response time of 1 ms the

server would guarantee a response time of 3 ms as shown in figure 2.3.

Nearby resources therefore can be chosen to be dedicated to one client, that can result

in middleware servers having an even better response time than a more powerful remote

server.
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(a) Local execution

(b) Remote execution on a remote server

(c) Remote execution using a middleware server

Figure 2.2: Local execution and forms of offloading



2.3 Challenges 11

Figure 2.3: Server utilization with 3 clients for 1 ms tasks

2.3 Challenges

Using a remote server requires a constant connection to a network. Maintaining this con-

nection can be challenging especially if the client is moving. Furthermore, the bandwidth

may vary and the connection may be disrupted, causing the whole process to restart [8].

Although these problems can be handled by different applications [17], these challenges

still reduce the efficiency of the offloading process. A highly utilized server can also cause

delays which may lead to tasks missing deadlines or losing the benefit in terms of energy.

Therefore we introduced the middleware server in this thesis.

Using a middleware server as a substitute for the remote server can counteract some of

those challenges and in some cases may also improve the efficiency of offloading. Middle-

ware servers can basically be any nearby device that supports the application. We assume

that the middleware server is not utilized by different clients and is more powerful than

the client making use of it. As mentioned above, the middleware server can also be used to

as a connection to the remote server, for example in cases where the client only supports

Bluetooth.





3 Design and Implementation

This chapter describes the setup of the experiment done to measure power consumption of

the device and execution time of the tasks. At first the hardware used for this experiment

is explained, followed by an introduction into test design and benchmarks.

3.1 Setup

For the experimental evaluation in this thesis, a total of 3 ODROID XU4s were used.

One of them was configured as client, one as the middleware server and one was used to

monitor and log the power consumption of the client. We assume that the devices are

already connected when starting an offloading process.

The client was specially configured to represent a device with very limited resources and

therefore low computational power. Client and middleware Server are connected either

through a direct WiFi connection or Bluetooth. For transferring files between the middle-

ware and the client a client-server C-Program was used.

3.1.1 ODROID XU4

The ODROID XU4 is a Heterogeneous Multi-Processing Unit, running on ARM big.LITTLE

CPU. More specifically it is running on Samsung Exynos5422 CPU which consists of Cor-

tex A15 and Cortex A7 CPUs and has 2GB of RAM. The Cortex A15 provides four big

cores with up to 2GHz and the Cortex A7 provides four LITTLE cores with up to 1.4GHz.

It can run both Android and Linux [4]. The XU4s run on Ubuntu MATE. Ubuntu MATE

uses the Ubuntu OS as a base and adds the MATE desktop which is a desktop environment

with an especially user-friendly design [7].

3.1.2 ODROID SmartPower

The ODROID SmartPower is a power meter made by hardkernel. It has a USB interface

to communicate with the monitoring device. Through this interface it sends information

about voltage, current, power, and energy consumption of the measured device. This data

are then logged to a file. The power meter has a sample rate of 10 Hertz and a fault

tolerance of 2 % [3].
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3.1.3 Client-Configuration

The client device is representing a mobile embedded system with low computational power.

To simulate such a device the client is configured to run on one CPU on 3 different

frequencies:

• Low - 500 MHz

• Medium - 1 GHz

• High - 1.4 GHz

These configurations are achieved through turning off all but one CPU, by just changing

a CPU’s online state. Afterwards a simple script [1] is used to lock the frequency of the

CPU on to above frequencies.

3.1.4 Middleware Server and Remote Server

The middleware server in this experiment is a non-configured ODROID XU4. In this case

it represents a mobile embedded system more powerful than the client. It is running on

all 8 CPU cores with the 4 LITTLE cores being clocked at 1.4 GHz and the 4 big ones at

2 GHz.

To represent a resource-rich remote server a laptop with 8GB of RAM, an IntelHD GPU

and an Intel Core i5 with 2.6GHz running on Ubuntu was used.

3.1.5 Monitoring

Since the ODROID XU4 has no sensors for its own power consumption, an external device

is used to monitor the power consumption of the client. For this experiment an ODROID

SmartPower is used to monitor the clients power consumption, because it is capable of

monitoring the power consumption via an USB interface and logging everything to a file

on different device [3].
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Figure 3.1: Monitoring client

The logging device is another ODROID XU4. It reads the data from the power meter and

logs it to a file with the help of a C++ API [13] which reads the serial data provided by

the USB interface. In this setup the logging device is connected to the client via GPIO

pins. Through the GPIO pins the client signals what to record and when to start and

stop. The client signals the start of a certain process, for example the start of a file

transfer benchmark, and then signals the exact moments when the file transfer starts and

ends. In this way the power consumption is very precisely recorded and can be logged

automatically through a script.

Only if the defined GPIO pin is on high, the program actually writes the data to the file.

This way it is ensured that the collected data refer exclusively to the process signaled

before. As seen in Listing 3.1 the signal turns off immediately after the execution of a

benchmark. Those signals can also be implemented within any program if only part of

the whole benchmark is to be measured.

Listing 3.1: Example GPIO signal

#!/ bin / bash

. . .

gp io mode 7 out

#Signa l i n g the s t a r t o f a program

gpio wr i t e 7 1

. / prime99k

#Signa l i n g the end o f sa id program
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gpio wr i t e 7 0

. . .

3.2 Test Design

Every benchmark was run 100 times in each configuration to take an average of execution

time on each device (client, middleware, remote server). The bodytrack application was

modified to output only the coordinates of a tracked body and not the whole image.

Facedetect was tested with one image of a face and was modified to output an image with

marked face and eyes. Squeezenet accepts and classifies an image and outputs a text file

with the determined class. The inputs and outputs of each offloaded task can be seen in

Table 3.1.

Table 3.1: Benchmarks

τi Task Input Size Output Size

τ1 Bodytrack Small 2.5 MB 289 B

τ2 Bodytrack Medium 5 MB 573 B

τ4 Prime Numbers N=45.000 6 B 5 B

τ3 Prime Numbers N=99.000 6 B 5 B

τ5 Arbitrary Matrix Operations 300x300 1.4 MB 720.1 kB

τ6 Facedetection 6.7 kB 21.3 kB

τ7 Squeezenet 54.3 kB 11 B

A script then runs every benchmark 100 times, changes the frequency and executes every

benchmark again for each configuration.

3.2.1 Bandwidth

Bandwidth was analyzed by sending and receiving 10 MB packages from client to mid-

dleware and remote server to determine transfer times. Sending and receiving for the

middleware server was done with a simple client-server C program. The server accepts a

connection from the client and stays connected during the transfers. For file transfer in

this thesis C’s sendfile-function was used as shown in Listing 3.2.

In this thesis one remote server in Berlin was used to test the bandwidth between the

client and a remote server and another one was tested in Karlsruhe, by using a speedtest

[6]. Unlike the connection with the middleware, the client connected to the remote server

through a ftp connection.

Listing 3.2: C-Sending

c l o c k g e t t i m e (CLOCK MONOTONIC, &t s t a r t ) ;
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while ( ( ( s e n t b y t e s = s e n d f i l e ( s e rve r fd , fd , &o f f s e t , BUFSIZ) ) > 0)

&& remain ing data > 0) {
remain ing data −= s e n t b y t e s ;

}

c l o c k g e t t i m e (CLOCK MONOTONIC, &tend ) ;

3.2.2 Benchmarks

The benchmarks selected for this evaluation, are chosen to have different input and output

sizes. Some benchmarks were reconfigured to generate a smaller output and/or have a

smaller input set. They are also chosen to have different execution times and varying

workloads.

PARSEC Benchmark Suite: Bodytrack

”The Princeton Application Repository for Shared-Memory Computers (PARSEC) is a

benchmark suite composed of multithreaded programs. The suite focuses on emerging

workloads and was designed to be representative of next-generation shared-memory pro-

grams for chip-multiprocessors.” [5] PARSEC provides a wide range of benchmarks with

different workloads and inputs/outputs.

Bodytrack is a computer vision application that tracks a 3D pose of a human body with

multiple cameras. The used inputs on this benchmark were ”simsmall” and ”simmedium”

with simsmall using 4 cameras, 1 frame, 1000 particles and 5 annealing layers and simmedium

2 frames and 2000 particles [11]. Bodytrack was used in the evaluation because computer

vision applications are commonly used in a lot of mobile embedded systems.

Calculating N Prime Numbers

This benchmark is a simple mathematical calculation of the first N prime numbers. The

input in this benchmark is the number N for the first N-Prime Numbers and the output

is the count of the first N prime numbers. Calculating prime numbers was chosen in this

evaluation to represent a heavy mathematical calculation.

Arbitrary Matrix Operations

Common operations in modern programs are mathematical operations on matrices [9].

Therefore this benchmark performs a few arbitrary mathematical operations on two large

matrices. It is written in python and using the numpy package for storing data and
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performing mathematical operations. The input are two npy-files, each storing a matrix,

and the output is one npy-file storing the resulting matrix.

OpenCV Facedetect

Facedetect is an example application in the openCV library. This benchmark accepts an

image as an input or uses a camera to read an image sequence and marking the position

of a face and eyes. It was chosen as it is a commonly used feature in mobile embedded

systems with cameras.

deepRacin squeezenet

Squeezenet is an architecture of a Convolutional Neural Network. It solves a 1000-class

classification problem of ImageNet-data and was developed to use little space and be fast,

still delivering good classifications [2].



4 Results and Discussion

This Chapter presents the results of the measuring which will be evaluated in terms of

energy and time and shows whether or not offloading is favorable for the tasks mentioned

in table 3.1. Further it discusses the effect of varying bandwidths to the remote server

and the effects of server utilization.

4.1 Power Consumption

Since the XU4 does not have sensors to measure each component, like CPU and NIC1, the

power model for this evaluation was separately updated to consider the power consumption

of the whole device. In this evaluation the power consumption of one component in a

certain state should be seen as the power consumption for the whole device while that

component is in a certain state. Also when CPU was measured, NIC and Bluetooth were

turned off, when NIC was measured, Bluetooth was turned off and when Bluetooth was

measured NIC was turned off.

Figure 4.1 shows the power consumption for each component in different states for each

configuration. CPU(idle) is also the power consumption for BT(off) and NIC(off). ”NIC

DIRECT” is the power consumption during a direct connection between client and mid-

dleware. The direct connection consumes less power than a connection through a network,

especially when in the idle state. As expected Bluetooth has the lowest power consump-

tion. But in general the idle power consumption does not vary as much as running,

transmission or receiving states of the components, for the different configurations.

1Network Interface Card



20 4 Results and Discussion

Figure 4.1: Power Consumption of the XU4 for all different configurations

4.2 Execution Time

This section shows the results of the task evaluation, showing local execution times and

response times. Figure 4.2 shows the execution times of all applications tested in the

experiment. Where 4.2a shows tasks τ1 - τ4 and 4.2b shows tasks τ5 - τ7. Execution

times vary from 0.5 seconds up to 60 seconds. Tasks like τ4 that have an input as small

as 5 Byte and an execution time of up to 60 seconds, are good candidates for effective

offloading. But also other tasks, with bigger input like bodytrack can save time and energy

using computation offloading. The much improved execution time suggests that energy

consumption for local execution should be much lower for a higher frequency.

(a) Local execution time Tasks τ1 − τ4 (b) Local execution time Tasks τ5 − τ7

Figure 4.2: Local execution times on client in all configurations
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Response times are an important aspect of computation offloading. The faster the server

executes the task and starts sending the output, the better the effect of offloading. A

server’s response time varies, depending on specifications and utilization of the server.

Figure 4.3a and 4.3b show response times of all tasks. All response times are much lower

than clients execution times and remote server response times are lower than those of

middleware servers. Task τ7 is executed on a different remote server (Ubuntu, Nvidia

GTX 1080), since this tasks works mainly on the GPU. This tasks shows a very big

difference in execution times, ranging from about 2.5 seconds, for local execution, 0.7

seconds, on the middleware server, and down to 0.004 seconds, on the remote server.

(a) Response time Tasks τ1 − τ4 (b) Response time Tasks τ5 − τ7

Figure 4.3: Response time middlware and remote server

4.3 Bandwidth

In order to estimate transfer times, the different bandwidths between the devices have been

measured. Figure 4.4 shows the bandwidths measured in this experiment. As expected,

bandwidth between the client, middleware and remote server varies depending on the

configuration of the client and the chosen remote server, it can be observed that the

bandwidth between client and middleware server over a direct Wi-Fi connection is much

higher than between client and the remote server in Berlin(Figure 4.4a). A remote server

that is in closer vicinity and has a higher bandwidth however surpasses the bandwidth

between middleware and client(Figure 4.4b). Also the download speed it is in general a

little higher than the upload speed. In the lowest configuration upload speed is more than 3

times as high between client and middleware server than between client and remote server,

resulting in longer transfer times for CL >> RS. Additionally to the lower bandwidth a

network connection also consumes more power than a direct connection as can be seen in

4.1.
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(a) Bandwidth MS, RSBerlin (b) Bandwidth MS, RSKarslruhe

Figure 4.4: Bandwidth Client

Figure 4.5: Bandwidth between MS and RS

4.4 Time Consumption

The time consumption for the local execution is, as before mentioned Ci. Total time for

offloading cases, OA>>B
i , for this evaluation is defined as:

• OCL>>MS
i =

CL→MS
4ti +RMS

i +
MS→CL
4ti

• OCL>>RS
i =

CL→RS
4ti +RRS

i +
RS→CL
4ti

• OCL>>MS>>RS
i =

CL→MS
4ti +

MS→RS
4ti +RRS

i +
RS→MS
4ti +

MS→CL
4ti

Since the main part in this section refers to total time consumption, offloading to the

middleware server is always done by WiFi, since it has a higher bandwidth. Most tasks
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used in the evaluation have very small inputs and outputs so that the transmission time is

not visible for every task and direction. Figure 4.6 shows local execution times, for a client

in low configuration, compared to the 3 offloading types introduced in the model. Where

A→ B means the transmission time from device A to device B for a given task. From left

to right it is local execution, remote execution on middleware server, remote execution on

remote server and remote execution on a remote server using the middleware. Task τ5 is

the only task where local execution times is not the highest of all. Mostly the main part

of offloading is the response time Rdevice
i . In some cases it is even the only relevant part.

Although the remote server’s response time is much faster than that of the middleware

servers, task τ1, τ2 and τ5 are faster when offloaded to the middleware server. These tasks

are also the tasks with highest inputs/outputs size. Due to the higher bandwidth between

middleware and client, transmission times for these tasks are much lower.
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(a) Time consumption τ1 − τ4

(b) Time consumption τ5 (c) Time consumption τ6

(d) Time consumption τ7

Figure 4.6: Time consumption local execution (lowest configuration) vs. computation offloading
(RSBerlin)

Figure 4.7 compares local execution times to offloading, when the client is configured in

a higher configuration than above. In this state the local execution on the client is more

favorable for some tasks like τ1. But even with this configuration it can be observed that

for example face detection (Figure 4.7c) takes only 50% of the time, when offloaded to the

middleware.
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(a) Time consumption τ1 − τ4

(b) Time consumption τ5 (c) Time consumption τ6

(d) Time consumption τ7

Figure 4.7: Time consumption local execution (highest configuration) vs. computation offloading
(RSBerlin)

4.5 Energy Consumption

The energy model in this experiment was adapted to the experiment due to missing sensors

for single components in the XU4.

CL
Ei = Ci ∗ PCPU

run

CL>>RS
Ei =

CL→RS
4ti ∗ PNIC

trans +RRS
i ∗ PNIC

idle +
RS→CL
4ti ∗ PNIC

rec
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CL>>MS>>RS
Ei =

CL→MS
4ti ∗ PNIC

trans + (
MS→RS
4ti +RRS

i +
RS→MS
4ti ) ∗ PNIC

idle +
MS→CL
4ti ∗ PNIC

rec

The device for transmission between client and middleware server was chosen with a view

to the total energy consumption for using that device:

CL>>MS
Ei = min


CL→MS
4ti ∗PBT

trans +RMS
i ∗ PBT

idle +
MS→CL
4ti ∗ PBT

rec
CL→MS
4ti ∗PNICDirect

trans +RMS
i ∗ PNICDirect

idle +
MS→CL
4ti ∗ PNICDirect

rec

Analogously the same decision was made for offloading to a remote server through a

middleware server. In following figures CL >> MS and CL >> MS >> RS were chosen

by lower energy consumption.

Figure 4.8 shows energy consumption of the client, in low configuration, for each task and

offloading type compared to local execution. For offloading to the middleware server the

better option between using Bluetooth and Wi-Fi was chosen. Bluetooth is more efficient

especially for very small inputs and outputs. In this experiment it was for τ3 and τ4 where

Bluetooth was more energy saving than WiFi.

Tasks τ1, τ2 and τ5(Figure 4.8a and 4.8b) save the most energy using a middleware server,

due to big input and output. Server utilization will cause the middleware to be even more

efficient, but a higher bandwidth of the remote server may change the effect of offloading.

For task τ7(Figure 4.8d), the use of a remote server reduces energy consumption by 99.4%

compared to local execution and by 86.3% compared to offloading to a middleware server.

But a higher utilized server and a low bandwidth can change the advantage of a remote

server even for a so much improved task compared to middleware.

Generally every task can be improved in terms of energy consumption using remote servers.

Considering the measured bandwidths in this experiment, using nearby resources is even

more favorable than using a remote server either remotely executing them on the middle-

ware or using the middleware to offload it to the remote server. This is due to the much

higher bandwidth of the direct connection between the client and middleware server which

saves time int the transfer of inputs and outputs.
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(a) Energy consumption τ1 − τ4

(b) Energy consumption τ5 (c) Energy consumption τ6

(d) Energy consumption τ7

Figure 4.8: Energy consumption local execution (lowest configuration) vs. computation offload-
ing (RSBerlin)

On the other hand if the client has more resources, like the highest configuration in the

experiment, some tasks are not favorable, in terms of energy, for offloading. This is due

to much better local execution time and therefore lower energy consumption. Although

power consumption for file transmission also rises, the energy consumption for offloading

stays nearly the same because of a higher bandwidth that comes along with higher CPU

frequency.
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Figure 4.9 shows energy consumption for a client configured with a higher frequency. It

can be observed that task τ1 and τ5 (Figure 4.9a and 4.9b) are more energy saving if ran on

the client than when offloaded. The other tasks still consume less energy when offloaded

to a remote or middleware server.

(a) Energy consumption τ1 − τ4

(b) Energy consumption τ5 (c) Energy consumption τ6

(d) Energy consumption τ7

Figure 4.9: Energy consumption local execution (highest configuration) vs. computation offload-
ing (RSBerlin)

4.6 Bandwidth Variation

Bandwidth varies depending on the server used and the location of the client. This section

shows the effect on offloading time and energy consumption for a range of bandwidths for
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every task. The bandwidth between CL and MS was fixed at the value measured in the

experiment, while the bandwidth between CL and RS and MS and RS was ranged between

1 and 60 Mbps. Figure 4.10 and 4.11 show how bandwidth affects the quality of effect

for tasks where remote servers were less efficient when using a remote server compared to

a middleware with a fixed bandwidth. For nearly every task the remote servers surpass

the middleware before reaching 10 Mbps in terms of time and energy by about half the

bandwidth of the middleware used in the experiment. Task τ5 is the only task in this

experiment where the remote server surpasses the middleware server just at above 15

Mbps.

It is also interesting to note that in all cases in which the middleware was used for offloading

to a remote server, more energy was very early consumed than with direct offloading to a

remote server. Most of the times only bandwidths below 5 Mbps allow CL >> MS >> RS

to be useful.

(a) Time consumption τ1 (b) Energy consumption τ1

(c) Time consumption τ2 (d) Energy consumption τ2

Figure 4.10: Time and energy consumption with applied bandwidth variation between RS and
CL and RS and MS (τ1 and τ2)
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(a) Time consumption τ5 (b) Energy consumption τ5

(c) Time consumption τ6 (d) Energy consumption τ6

Figure 4.11: Time and energy consumption with applied bandwidth variation between RS and
CL and RS and MS (τ5 and τ6)

4.7 Remote Server Utilization

Remote servers are rarely dedicated to just one client. In this section server utilization

is applied to CL >> RS and CL >> MS >> RS in order to determine the number

of clients utilizing one server where the remote server becomes unsuitable. Values for

the middleware server are also fixed in this case. Figures 4.12, 4.13 and 4.14 compare

offloading execution times with local execution times and CL >> MS for two different

bandwidths.

Figure 4.12a shows that at a bandwidth of 10 Mbps CL >> RS exceeds CL >> MS at

just 2 clients and CL at 19 clients utilizing the remote server considering overall execu-

tion time or offloading time. Whereas CL >> MS >> RS has an overall higher time

consumption than CL >> RS. With a bandwidth of 80 Mbps (Figure 4.12b) CL >> RS

consumes more time than CL >> MS only after 6 or 7 clients utilizing the server.
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Figure 4.12c and 4.12d show energy consumption for the same bandwidths as above. For

B=10 Mbps CL >> MS consumes less energy, no matter how many clients utilize the

remote server. CL >> RS consumes more energy than CL and also CL >> MS >> RS

from 14 clients utilizing it. A bandwidth of 80 Mbps shifts the critical utilization, where

CL >> RS becomes more energy consuming than CL >> MS, to 6 clients. CL consumes

less energy than CL >> RS at 19 clients.

(a) B=10Mbps, Time consumption τ2 (b) B=80Mbps, Time consumption τ2

(c) B=10Mbps, Energy consumption τ2 (d) B=80Mbps, Energy consumption τ2

Figure 4.12: Server Utilization: Task τ2 time and energy consumption. Bandwidth: 10 and 80
Mbps

In case of task τ6 energy consumption for CL >> MS >> RS, as shown in Figures 4.13c

and 4.13d, is generally lower than CL >> RS and exceeds energy consumption for local

execution at 13 clients utilizing RS or at 15 clients for CL >> MS >> RS at B=10 Mbps.

In terms of time consumption CL >> MS >> RS takes more time than CL >> RS at

every point. Both surpass client execution time with 17 clients utilizing RS at 10 Mbps

and with 19 clients at 80 Mbps. The middleware, in this case, is more energy saving at 3

clients utilizing the remote server.
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(a) B=10Mbps, Time consumption τ6 (b) B=80Mbps, Time consumption τ6

(c) B=10Mbps, Energy consumption τ6 (d) B=80Mbps, Energy consumption τ6

Figure 4.13: Server Utilization: Task τ6 time and energy consumption. Bandwidth: 10 and 80
Mbps

Task τ7 is a task where remote execution on a remote server is almost always favorable.

This is primarily due to the extremely low response time of 4 ms, which is a speedup of

99.5% compared to the response time of the middleware. Only with about 165 clients

utilizing the remote server the middleware needs less time than the remote server, with

a bandwidth of 5 Mbps (Figure 4.14a), and with about 180 clients, with a bandwidth

of 80 Mbps (Figure 4.14b). Energy consumption for CL >> RS exceeds the middleware

with about 160 clients utilizing the remote server for both bandwidths, B=5 Mbps (Figure

4.14c) and B=80 Mbps (Figure 4.14d). Local execution would only be more favorable with

more than 400 clients utilizing the server.
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(a) B=5Mbps, Time consumption τ7 (b) B=80Mbps, Time consumption τ7

(c) B=5Mbps, Energy consumption τ7 (d) B=80Mbps, Energy consumption τ7

Figure 4.14: Server Utilization: Task τ7 time and energy consumption. Bandwidth: 5 and 80
Mbps





5 Conclusion

This thesis evaluated the energy consumption of a mobile embedded system with limited

resources performing different benchmarks with varying workloads. The client system was

monitored in its power and time consumption during different states of the components

and for several benchmarks. In addition to standard computation offloading using a remote

server, a nearby resource can be used as a middleware server. It has two advantages over

a remote server, which are way of communication and availability. In the experiment

performed in this thesis, it has shown that a middleware server can also save time and

energy. In some cases it even saves more energy than using a remote server, especially on

larger inputs and outputs. But also when a server is utilized and the bandwidth between

client and server is low, a middleware becomes more favorable than a remote server. For

the face detection task a middleware server could save approximately 75% compared to

a remote server with a bandwidth of 5 Mbps and a utilization of 10%. In practice that

would mean if the client in this experiment would run on a battery with a capacity of

2,000 mAh at 5V, face detect could be executed on 34,538 images, before the client ran

out of battery, if executed locally on the client. If offloaded to the middleware it could be

ran on 171,939 images.

To make the right offloading decision the client would need to scan the environment for

nearby resources and remote servers it could connect to. It could then make a decision

based on known data on execution, response and transfer times of the task that is to

be executed. Nearby resources can for example be mobile embedded systems that are

significantly more powerful than the client.

In conclusion this thesis showed that a client can benefit from offloading tasks to a nearby

resource, especially for clients with very limited resources.
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