
Efficiently Approximating the Probability of1

Deadline Misses in Real-Time Systems2

Georg von der Brüggen3

Department of Computer Science, TU Dortmund University, Germany4

georg.von-der-brueggen@tu-dortmund.de5

0000-0002-8137-36126

Nico Piatkowski7

Department of Computer Science, TU Dortmund University, Germany8

nico.piatkowski@uni-dortmund.de9

0000-0002-6334-804210

Kuan-Hsun Chen11

Department of Computer Science, TU Dortmund University, Germany12

kuan-hsun.chen@tu-dortmund.de13

0000-0002-7110-921X14

Jian-Jia Chen15

Department of Computer Science, TU Dortmund University, Germany16

jian-jia.chen@cs.uni-dortmund.de17

0000-0001-8114-976018

Katharina Morik19

Department of Computer Science, TU Dortmund University, Germany20

katharina.morik@tu-dortmund.de21

0000-0003-1153-598622

Abstract23

This paper explores the probability of deadline misses for a set of constrained-deadline sporadic24

soft real-time tasks on uniprocessor platforms. We explore two directions to evaluate the prob-25

ability whether a job of the task under analysis can finish its execution at (or before) a testing26

time point t. One approach is based on analytical upper bounds that can be efficiently com-27

puted in polynomial time at the price of precision loss for each testing point, derived from the28

well-known Hoeffding’s inequality and the well-known Bernstein’s inequality. Another approach29

convolutes the probability efficiently over multinomial distributions, exploiting a series of state30

space reduction techniques, i.e., pruning without any loss of precision, and approximations via31

unifying equivalent classes with a bounded loss of precision. We demonstrate the effectiveness32

of our approaches in a series of evaluations. Distinct from the convolution-based methods in the33

literature, which suffer from the high computation demand and are applicable only to task sets34

with a few tasks, our approaches can scale reasonably without losing much precision in terms of35

the derived probability of deadline misses.36

2012 ACM Subject Classification C.3[Computer Systems Organization]: Special-Purpose37

and Application-Based Systems - Real-Time and Embedded Systems; I.1.2[Computing Method-38

ologies]: Algorithms - Analysis of Algorithms39

Keywords and phrases deadline miss probability, multinomial-based approach, analytical bounds40

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.641

Related Version https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/42

downloads/2018-brueggen-ECRTS-deadline-miss-probability.pdf43

© Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katharina Morik;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georg.von-der-brueggen@tu-dortmund.de
mailto:nico.piatkowski@uni-dortmund.de
mailto:kuan-hsun.chen@tu-dortmund.de
mailto:jian-jia.chen@cs.uni-dortmund.de
mailto:katharina.morik@tu-dortmund.de
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Probability of Deadline Misses

Funding This paper is supported by DFG, as part of the Collaborative Research Center SFB87644

(http://sfb876.tu-dortmund.de/), project A1 and project B2.45

1 Introduction46

For many embedded systems, timeliness is an important feature, especially when such sys-47

tems interact with physical environments. A stronger requirement of timeliness is to provide48

hard real-time guarantees to ensure that the calculated results are not just functionally cor-49

rect but also always delivered within given timing constraints. Such hard guarantees are50

necessary if any deadline miss can lead to a catastrophe and should be avoided. By contrast,51

a weaker requirement of timeliness is to allow occasional deadline misses, called soft real-52

time systems. As long as the deadline misses can be quantified and bounded, the system53

can still function correctly. For example, the system may adopt fault tolerance techniques54

like checkpointing, redundant execution, etc. [12, 20, 21, 26, 19], to neglect transient faults55

resulting from electromagnetic interference and radiation [2]. Although the additional com-56

putation incurred by such methods may lead to deadline misses, the system may still provide57

timing guarantees even without any online adaption [24]. A second example is the safety58

standards in the industry requiring low (or very low) probability of failure (e.g., due to59

deadline misses) such as IEC-61508 [13] and ISO-26262 [14].60

Probability theory is a basic language to describe probabilistic phenomenons, e.g., oc-61

casional deadline misses. It is based on the idea that most natural phenomena are either62

too complex to construct deterministic models or simply not fully observable but can be63

described in a probabilistic way. For example, we can establish probabilistic bounds on the64

worst-case execution times (WCETs) to model the execution of a task depending on the65

occurrence of soft errors and the triggered error recovery routines. This allows the system66

designer to provide probabilistic arguments based on the occurrence of error recovery. Oth-67

erwise, only the WCET, assuming that the recovery always takes place, has to be considered68

in the response time analysis, which is very pessimistic and therefore leads to overestimating69

the necessary system resources.70

Probability of Deadline Misses: A key procedure needed for such soft real-time systems71

is the analysis of the probability of deadline misses for a real-time task. Now, we take a closer72

look of the problem by using the following example: Suppose that we have two periodic tasks73

τ1 and τ2 that release task instances, called jobs, periodically, starting from time 0. Each74

task τi ∈ {τ1, τ2} has two versions of execution times Ci,1 and Ci,2 with probability Pi(1)75

and Pi(2), respectively. The period of task τ1 is 1 and the period of task τ2 is 100. We76

assume that task τ1 always has a higher priority than task τ2 and task τ1 can always meet77

its deadline under a fixed-priority preemptive scheduling strategy in a uniprocessor system.78

In this example, the system reboots if a job of task τ2 is not finished before the next79

job of task τ2 is released. Therefore, the probability of deadline misses corresponds to the80

probability of system rebooting. Essentially, we are interested to know whether a job of τ2,81

arriving at time ta, can finish its execution before ta + 100. This can be achieved by the82

convolution of the probability density functions of the jobs’ execution times. An intuitive83

procedure is to evaluate the probability of the accumulative execution time, denoted as84

workload, of the jobs released from time ta to ta + ` − 1 (inclusive), starting from ` =85

1, 2, 3, . . . , 100. When ` is 1, we have 22 combinations of the workload of the two jobs86

released at time ta. When ` is 2, we can have up to 22 × 2 = 23 combinations of the87

workload. It is rather obvious that we can have up to 2101 combinations of the workload88

when ` is 100, which is exponential with respect to the number of jobs that may interfere89

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:3

with a job of task τ2.90

Since there are only two versions of task τ1, there are in fact only `+1 different workload91

combinations of the ` jobs released from time ta to time ta + ` − 1. As a result, there are92

only 2(`+ 1) different workload combinations of the jobs released from time ta to ta + `− 1.93

We can evaluate all of them from ` = 1, 2, . . . , 100. However, this remains inefficient as we94

are only interested in the probability of the deadline miss at time ta+100. For this example,95

we do not actually care about the individual execution versions of the 100 jobs of task τ196

released from ta to ta+99. Instead, we only care about their overall workload, which can be97

calculated by using a binomial distribution over 100 independent random variables with the98

same distribution. As a result, we only have to consider 101 different workload combinations99

for the jobs of τ1. Together with the job of task τ2, there are in fact only 2× 101 different100

workload combinations.101

These approaches are different realizations of the same concept to convolute the prob-102

ability density functions of the jobs’ execution times. However, depending on how the103

convolution is performed, the complexity can differ largely.104

Related Work: As explained above for uniprocessor systems, it is necessary to safely105

derive (an upper bound on) the probability of a desired workload constraint to analyze the106

probability of deadline misses or the probabilistic response time. Towards this, for periodic107

real-time task systems, Diaz et al. [8] developed a framework for calculating the deadline108

miss probability based on convolution. Moreover, Tanasa et al. [22] used the Weierstrass109

Approximation to approximate any arbitrary execution time distributions and applied a110

customized decomposition procedure to search all the possible combinations, in which the111

decomposition results in a list with O(4|J|) elements where |J | is the number of jobs in the112

interval of interest. These two results have exponential-time complexity with respect to the113

number of jobs in the interval of interest. Therefore, both of them suffer from the scalability114

with respect to the number of jobs. In the experimental results in [8] and [22], they can115

derive the probability of deadline misses with 7 and 25 jobs in the hyper-period, respectively.116

For sporadic real-time task systems, in which two consecutive jobs of a task do not have to117

be released periodically, Axer et al. [1] proposed to evaluate the response-time distribution118

and iterate over the activations of job releases for non-preemptive fixed-priority scheduling.119

Maxim et al. [17] provided a probabilistic response time analysis by assuming probabilistic120

minimum inter-arrival and probabilistic worst-case execution times for the fixed-priority121

scheduling policy. Ben-Amor et al. [3] extended the probabilistic response time analysis122

in [17] with precedence constrained tasks. All of them convolute the probability whenever123

a new job arrives in the interval of interest. Therefore, the convolution procedure is also124

heavily dependent on the number of jobs in the interval of interest.125

Due to the high complexity, these convolution-based approaches are not scalable with126

respect to the number of jobs in the interval of interest and, thus, infeasible. Approximation127

techniques can be used to provide an upper bound on the probability. For example, re-128

sampling [17] and dynamic-programming based on user-defined granularity can be applied to129

reduce the time complexity. Moreover, Chen and Chen [7] provided a scalable approximation130

based on the Chernoff bounds. The evaluation results in [7] confirm the applicability and the131

scalability of such approximations even when there are 20 tasks and more than thousands132

of jobs in the hyper-period.133

Our Contributions: We consider the problem of determining the deadline miss proba-134

bility of a task under uniprocessor fixed-priority preemptive scheduling when each task has135

distinct execution modes that are executed with a known probability distribution. Our main136

contributions are:137

ECRTS 2018

6:4 Probability of Deadline Misses

We provide a novel approach based on the multinomial distribution that allows to cal-138

culate the deadline miss probability with better analysis runtime and without precision139

loss, compared to the traditional convolution-based approach.140

The analysis is enhanced by a state pruning technique that significantly improves the141

runtime and scalability without any loss of precision.142

We further improve our approach by merging equivalence classes, thus further reducing143

the runtime of our analysis while the introduced precision loss can be bounded in advance.144

In the evaluation, we show that our approach is applicable for significantly larger task145

sets than the previously known convolution-based approaches by testing it for task sets146

of up to 100 tasks.147

Furthermore, we provide additional analytical bounds based on the Hoeffding’s [11] and148

Bernstein’s [10] inequalities. Our evaluations show that these inequalities lead to fast149

results and can be used if the over-approximation is acceptable.150

2 Task Model, System Model, and Notation151

We consider a given set of n independent periodic (or sporadic) tasks Γ = {τ1, τ2, · · · , τn} in152

a uniprocessor system. Each task τi releases an infinite number of task instances, called jobs,153

and is defined by a tuple ((Ci,1, ..., Ci,h), Di, Ti) where Di is the relative deadline of τi and154

Ti is its minimum interarrival time. In addition, each task has a set of h distinct execution155

modes M and each mode j with j ∈ {1, ..., h} is associated with a different worst-case156

execution time (WCET) Ci,j . We assume those execution modes to be ordered increasingly157

according to their WCETs, i.e., Ci,m ≤ Ci,m+1 ∀m ∈ {1, ..., h− 1}. Furthermore, we assume158

that each job of τi is executed in one of those distinct execution modes. To fulfill its timing159

requirements in the jth execution mode, a job of τi that is released at time ta must be able to160

execute Ci,j units of time before ta+Di. The next job of τi must be released at ta+Ti for a161

periodic task and for a sporadic task the next job is released at or after ta+Ti. In this work,162

we focus on implicit-deadline task sets, i.e., Di = Ti for all tasks, and constrained-deadline163

task sets, i.e., Di ≤ Ti for all tasks. The task set is assumed to be scheduled according164

to a preemptive fixed-priority scheduling policy, i.e., each task has a unique fixed priority,165

the priority cannot be changed during runtime, and the priority of each task instance is166

identical to the priority of the related task. At each point in time, the scheduler ensures167

that the job with the highest priority is executed among the jobs currently ready in the168

system. We assume that the tasks are indexed according to their priority, i.e., τ1 has the169

highest and τn has the lowest priority. In addition, hp(τk) denotes the set of tasks with170

higher priority than τk and hep(τk) is hp(τk) ∪ {τk}. For a task τi in hp(τk), ρi,t is the171

maximum number of jobs that are released in an interval [0, t), also called the interval of172

interest, and therefore interfere with task τk, i.e., the number of jobs released in the interval173

[0, t) under the critical instance of τk. Furthermore, ρk,t is the number of jobs of task τk in174

the analysis window. This notation implicitly assumes that the time window analyzed for175

τk starts at 0 for notational brevity. Pi(j) denotes the probability that a job of task τi is176

executed in mode j with related WCET Ci,j and we assume that each job is executed in177

exactly one of these distinct execution modes, i.e.,
∑h
j=1 Pi(j) = 1. In addition, we assume178

that these probability are independent from each other according to the following definition:179

I Definition 1 (Independent Random Variables). Two random variables are (probabilistically)180

independent if the realization of one does not have any impact on the probability of the other.181

Especially, for a newly arriving job the probability of the execution modes is independent182

from the execution mode of the jobs currently in the system or of previous jobs.183

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:5

Task-related Quantities

τi = ((Ci,1, ..., Ci,h), Di, Ti) Task τi and related WCETs (Ci,1, ..., Ci,h), deadline Di, and period Ti Sec. 2

(Ci,1, ..., Ci,h) WCET of the h different execution modes of τi Sec. 2

Pi(j) Probability that a job of τis is executed in mode j with related WCET Ci,j Sec. 2

M Set of the possible execution modes (assumed identical for all tasks). |M| = h Sec. 2

hp(τk) and hep(τk) Tasks with higher priority than τk (higher and equal priority, respectively) Sec. 2

ρi,t = dt/Tie Maximum number of jobs of τi released in an interval [0, t) under the critical instant Sec. 2

J(t) =
∑

τi∈hep(τk) dt/Tie Total number of jobs released in the interval [0, t) Sec. 5.1

St Maximum accumulated workload over an interval of length t Sec. 3.1

Probabilistic Quantities

Φk Probability of deadline miss for task τk Sec. 3.1

P(St > t) Probability of overload for an interval of length t Sec. 3.1

X̄ Arithmetic mean of a random variable X Sec. 4

E[X] Expected value of a random variable X Sec. 4

V[X] Variance of a random variable X Sec. 4

X(t) Random variable representing the possible execution modes of all jobs in [0, t) Sec. 5.1

X (t) The state space of X(t) with X (t) =MJ(t) since all jobs are considered Sec. 5.1

x ∈ X (t) One concrete variable assignment for X(t) over [0, t) Sec. 5.1

P(X(t) = x) Probability that the state space X(t) has the concrete variable assignment x Sec. 5.1

Xi(t) Subset of random variables in X(t)) that relate to τi Sec. 5.2

Ci(Xi,j(t)) WCET for the jth job of τi based on its random execution mode Xi,j(t) Sec. 5.1

Combinatorial Quantities

1{expression} Indicator function, i.e., evaluates to 1 iff the expression is true, and 0 otherwise Sec. 5.1

σ(x) A permutation of x Sec. 5.1

Sn Set of all permutations of length n Sec. 5.1

[[x]] Equivalence class of x, i.e., all x′ ∈ X (t) that can be permuted into x Sec. 5.1

Table 1 Important notation used in this work. Please note that not all explanations in this table
are precise. The precise notations can be found in the Section indicated in the table.

A list of our notation together with a brief explanation can be found in Table 1.184

3 Motivation, Problem Definition, and State-of-the-Art185

In this section, we will motivate the importance of the considered problem, i.e., the calcula-186

tion of the probability of deadline misses, and formally define it. Afterwards, the state-of-the-187

art techniques are introduced, namely the traditional convolution-based approach by Maxim188

and Cucu-Grosjean [17] as well as the approach by Chen and Chen [7] that uses Chernoff189

bounds and the moment-generating function. We use the term traditional convolution-based190

approach when referring to the approach by Maxim and Cucu-Grosjean to avoid confusion,191

since our novel approach based on multinomial distributions also uses convolution.192

3.1 Motivation and Problem Definition193

One main assumption when considering real-time systems is that a deadline miss, i.e., a job194

that does not finish its execution before its deadline, will be disastrous and thus the WCET195

of each task is always considered during the analysis. Nevertheless, if a job has multiple196

distinct execution schemes, the WCETs of those schemes may differ largely. One example197

ECRTS 2018

6:6 Probability of Deadline Misses

are software-based fault-recovery techniques as they rely on (at least partially) re-executing198

the faulty task instance. However, when such techniques are applied, the probability that199

a fault occurs and thus has to be corrected is very low; otherwise hardware-based faulty-200

recovery techniques would be applied. If such re-execution may happen multiple times, the201

resulting execution schemes have an increased related WCET while the probability decreases202

drastically. Therefore, considering solely the execution scheme with the largest WCET at203

design time would lead to largely over-designing the system resources. Furthermore, many204

real-time systems can tolerate a small number of deadline misses at runtime as long as these205

deadline misses do not happen too frequently. Hence, being able to predict the probability206

of a deadline miss is an important property when designing real-time systems. We will207

consider the probability of deadline misses for a single task here which is defined as follows:208

I Definition 2 (Probability of Deadline Misses). Let Ri,j be the response time of the jth job of209

τk. The probability of deadline misses (DMP) of task τk, denoted by Φk, is an upper bound210

on the probability that a job of task τk is not finished before its (relative) deadline Dk, i.e.,211

Φk = max
j
{P(Rk,j > Dk)} , j = 1, 2, 3, ... (1)212

It was shown in [17] that the DMP of a job is maximized when τk is released at its critical213

instant, i.e., together with a job of all higher priority tasks and all consecutive jobs of214

those higher priority tasks are released as early as possible. This implicitly assumes that215

no previous job has an overrun that interferes with the analyzed job. Hence, time-demand216

analysis (TDA) [16] can be applied to determine the worst-case response time of a task217

when the execution time of each job is known. TDA is an exact schedulability test for218

constrained and implicit deadline task sets with pseudo-polynomial runtime that, under the219

assumption that the schedulability of all higher priority tasks is already ensured, determines220

the schedulability of task τk by finding a point in time t where the total workload generated221

by tasks in hep(τk) is smaller than t. To be more precise: τk is schedulable if and only if222

∃ t with 0 < t ≤ Dk such that St = Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (2)223

Thus, if Dk ≤ Tk, task τk is schedulable if the statement St ≤ t is true. When probabilistic224

WCETs are considered, the WCET will obtain a value in (Ci,1, ..., Ci,h) with a certain225

probability Pi(j) for each job of each task τi. Therefore, for a given t we are not looking for226

a binary decision anymore. Instead, we are interested in the probability that the accumulated227

workload St over an interval of length t is at most t. The probability that τk cannot finish in228

this interval is denoted accordingly with P(St > t). We call the situation where St is larger229

than t an overload for an interval of length t and hence P(St > t) the overload probability at230

t. According to the previously introduced notation, ρi,t = dt/Tie for each task τi in hp(τk)231

and ρk,t = 1, i.e., only the first job of τk is considered here. Since TDA only needs to hold232

for one t with 0 < t ≤ Dk to ensure that τk is schedulable, the probability that the test fails233

is upper bounded by the minimum probability among all time points at which the test could234

fail. Therefore, the probability of a deadline miss Φk can be upper bounded by235

Φk = min
0<t≤Dk

P(St > t) (3)236

The number of points considered in Eq. (2) and therefore in Eq. (3) can be reduced by237

only considering the points of interest, i.e., Dk and the releases of higher priority tasks.238

Nevertheless, in the worst case this still leads to a pseudo-polynomial number of points.239

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:7

Since the minimum value among all these points is taken, an upper bound will still be240

obtained when only a subset of those points is considered. Two approaches to calculate Φk241

are known from the literature and are summarized in the following subsections.242

In some cases it is easier to determine P(St ≥ t) instead of P(St > t), especially when243

analytical bounds are used (see Sec. 3.3 and Sec. 4). Since P(St ≥ t) ≥ P(St > t) by244

definition, these values can be used directly when looking for an upper bound of P(St > t).245

3.2 Traditional Convolution-Based Approaches246

Each task is defined by a vector of the possible WCETs and the related probabilities, e.g.,247 (3
0.9

5
0.1
)
where 3 and 5 are the WCETs and 0.9 and 0.1 are the related probabilities (notation248

similar to the one used in [17]). The convolution of two such vectors is denoted by ⊗ and249

results in a new vector. To get this new vector, each element of the first vector is combined250

with each element of the second vector by 1) multiplying the related probabilities, and251

2) summing up the related WCETs.252

I Example 3 (Convolution).
(3

0.9
5

0.1
)
⊗
(5

0.8
6

0.2
)

=
(8

0.72
9

0.18
10

0.09
11

0.01
)

253

Note that the summation of the probabilities is 1 for each of these vectors. The general idea254

of the traditional convolution-based approach [17] is the direct enumeration of the WCET255

state space1 and the related probabilities. To this end, it considers the jobs in non-decreasing256

order of their arrival times. For each job the current state of the system, represented by a257

vector of possible states, i.e., possible total WCETs and related probability, is convoluted258

with the current job. This results in a new vector of possible states, representing the state259

space after the arrival of the job. After all jobs released before a certain time point are260

convoluted, the probability that the workload is smaller than the next arrival time of a job261

is calculated. Afterwards, the jobs arriving at that time are convoluted with the current262

states, and the probability for the next arrival time is checked etc. This process is repeated263

until t = Dk is reached. A small example explaining the approach considering two tasks264

can be found in Figure 1. The first jobs of τ1 and τ2 are both convoluted with the initial265

state and the four resulting states are each convoluted with the second release of τ1 at t = 8.266

Obviously, when all jobs that are released up to any point in time are convoluted, states that267

result in the same execution time can be combined by adding up the related probability,268

e.g., the states with WCET 13 and 14, respectively, in Figure 1.269

On one hand, applying the traditional convolution-based approach can easily lead to a270

state explosion where the number of states is exponential in the number of jobs. On the271

other hand, it calculates the exact probabilities for each t in the interval of interest in one272

iteration. To tackle the problem of state explosion, Maxim and Cucu-Grosjean introduced a273

re-sampling approach to reduce the number of states to a given threshold and thus to reduce274

the runtime while only slightly decreasing the precision as shown in [17].275

3.3 Chernoff-Bound-Based Approaches276

Chen and Chen [7] use the moment generating function (mgf) in combination with the277

Chernoff bound to over-estimate of the deadline miss probability. We only briefly introduce278

the techniques here, i.e., describe how they can be used in our setting. Details can be279

found in, e.g., [18]. The mgf of a random variable is an alternative way to specify its280

1 Please note that the approach in [17] does not only consider probabilistic WCETs but also probabilistic
periods. Since we only consider probabilistic WCETs here, the approach is summarized accordingly.

ECRTS 2018

6:8 Probability of Deadline Misses

D1 = T1 = 8

τ1
C1
P1

=
(

3
0.9

5
0.1

)

D2 = T2 = 14

τ2
C2
P2

=
(

5
0.8

6
0.2

)

(
3
0.9

5
0.1

) (
5
0.8

6
0.2

) (
3
0.9

5
0.1

)

(
0
1

)

(
3
0.9

)

(
5
0.1

)

(
8

0.72

)

(
9

0.18

)

(
10
0.08

)

(
11
0.02

)

(
11

0.648

)

(
13

0.072

)

(
12

0.162

)

(
14

0.018

)

(
13

0.072

)

(
15

0.008

)

(
14

0.018

)

(
16

0.002

)

(
13

0.144

)

(
14

0.036

)

t = 0 t = 8 t = 14 Legend:

Task

Related Job Release

Release Time

First Execution Mode

Second Execution Mode

Considered Time

Deadline Misses

State Merging

Figure 1 An example for the traditional convolution-based approach. Assume that P(S14 > 14)
should be determined for two tasks τ1 and τ2. The initial state is convoluted with the two jobs
released at t = 0 and the second job of τ1 released at t = 8. Then, P(S14) is determined by summing
up the probabilities of the states related to a workload larger than 14 (red dotted circle), leading to
P(S14 > 14) = 0.01. Note that states with the same execution time can be merged (dashed green
arrows). This usually happens when the related paths are permutations of each other, e.g., both
paths to 13 have one execution of C1,1 and one of C1,2.

probability distribution. For the specific case of the WCET distribution of a task τi the mgf281

is mgfi(s) =
∑h
j=1 exp(Ci,j ·s) ·Pi(j) where exp is the exponential function, i.e., exp(x) = ex,282

and s > 0 is a given real number.283

The Chernoff bounds can be exploited to over-approximate the probability that a random284

variable exceeds a given value. This statement is summarized in the following lemma:285

I Lemma 4 (Lemma 1 from Chen and Chen [7]). Suppose that St is the sum of the execution286

times of the ρk,t +
∑
τi∈hp(τk) ρi,t jobs in hep(τk) at time t. In this case287

P(St ≥ t) ≤ mins>0

(∏
τi∈hep(τk)(mgfi(s))ρi,t

exp(s · t)

)
(4)288

The Chernoff bound is in general pessimistic and there is no guarantee for the quality of289

the approximation, even if the optimal value for s is known, i.e., the value that minimizes290

the right-hand side in Eq. (4). However, as the condition always holds, an upper bound291

can be obtained by taking the minimum over any number of s values. In contrast to the292

convolution-based approach, the evaluation of the right hand side of Eq. (4) is linear to the293

number of jobs in the interval of interest.294

4 Analytical Upper Bounds295

Concentration inequalities have various applications in machine-learning, statistics, and296

discrete-mathematics. Here, we show how some of them can be used to derive analyti-297

cal bounds on P(St ≥ t) which are easier to compute than the Chernoff bounds. Specifically,298

we will apply the Hoeffding’s inequality [11] and Bernstein’s inequality [10].299

The Hoeffding’s inequality derives the targeted probability that the sum of independent300

random variables exceeds a given value. For completeness, we present the original theorem301

here:302

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:9

I Theorem 5 (Theorem 2 from [11]). Suppose that we are given M independent random303

variables, i.e., X1, X2, . . . , XM . Let S =
∑M
i=1 Xi, X̄ = S/M and µ = E[X̄] = E[S/M]. If304

ai ≤ Xi ≤ bi, i = 1, 2, . . . ,M , then for s > 0,305

P(X̄ − µ ≥ s) ≤ exp
(
− 2M2s2∑M

i=1 (bi − ai)2

)
(5)306

Let s′ = sM , i.e, s = s′/M . Hoeffding’s inequality can also be stated with respect to S:307

P(S − E[S] ≥ s′) ≤ exp
(
− 2s′2∑M

i=1 (bi − ai)2

)
(6)308

By adopting Theorem 5, we can derive the probability that the sum of the execution309

times of the jobs in hep(τk) from time 0 to time t is no less than t:310

I Theorem 6. Let ai be Ci,1 and bi be Ci,h. Suppose that St is the sum of the execution311

times of the ρk,t +
∑
τi∈hp(τk) ρi,t jobs in hep(τk) released from time 0 to time t. Then,312

P(St ≥ t) ≤

exp
(
− 2(t−E[St])2∑

τi∈hep(τk)
(bi−ai)2ρi,t

)
if t− E[St] > 0

1 otherwise
(7)313

where ρi,t =
⌈
t
Ti

⌉
and E[St] =

∑
τi∈hep(τk)(

∑h
j=1 Ci,jPi(j)) · ρi,t.314

Proof. Since the execution time of a job of task τi is an independent random variable,315

there are in total ρi,t independent random variables with the same distribution function316

upper bounded by Ci,h and lower bounded by Ci,1 for each τi ∈ hep(τk). With Eq. (6) and317

s′ = t− E[St], we directly get:318

P(St ≥ t) = P(St − E[St] ≥ t− E[St]) ≤ exp
(
− 2(t− E[St])2∑

τi∈hep(τk) (bi − ai)2
ρi,t

)
(8)319

when s′ > 0. When s′ ≤ 0, we use the safe bound P(St ≥ t) ≤ 1. J320

The Chernoff bound and the related inequality by Hoeffding and Azuma can be gener-321

alized by the Bernstein’s inequality. The original corollary is also stated here:322

I Theorem 7 (Corollary 7.31 from [10]). Suppose that we are given L independent random323

variables, i.e., X1, X2, . . . , XL, each with zero mean, such that |Xi| ≤ K almost surely for324

i = 1, 2, . . . , L and some constant K > 0. Let S =
∑L
i=1 Xi. Furthermore assume E[X2

i] ≤ θ2
i325

for a constant θi > 0. Then for s > 0,326

P(S ≥ s) ≤ exp
(
− s2/2∑L

i=1 θ
2
i +Ks/3

)
(9)327

The proof can be found in [10]. Note, however, that the result in [10] is stated for the328

two-sided inequality, i.e., as upper bound on P(|S| ≥ s). Here, the one-sided result, which329

is a direct consequence of the proof in [10] (page 198), is tighter.330

Hence, we can derive the following upper bound:331

ECRTS 2018

6:10 Probability of Deadline Misses

I Theorem 8. Suppose that the sum of the execution times of all L = ρk,t +
∑
τi∈hp(τk) ρi,t332

jobs is St. Let K = maxτi∈hep(τk) Ci,h − E[Ci] be the centralized WCET of any job, where333

E[Ci] =
∑h
j=1 Pi(j)Ci,j is the expected execution time of a job of task τi. Then,334

P(St ≥ t) ≤

exp
(
− (t−E[St])2/2∑

τi∈hep(τk)
V[Ci]ρi,t+K(t−E[St])/3

)
if t− E[St] > 0

1 otherwise
(10)335

for any t > 0, where ρi,t =
⌈
t
Ti

⌉
and E[St] =

∑
τi∈hep(τk)(

∑h
j=1 Ci,jPi(j))ρi,t.336

Proof. Since for each task τi ∈ hep(τk) the execution time of a job of task τi is an in-337

dependent random variable, there are in total ρi,t independent random variables with the338

same distribution function. Suppose that Cl is a random variable representing the execution339

time of a job of task τi and let Yl = Cl − E[Ci] = Cl −
∑h
j=1 Ci,jPi(j) denote its central-340

ized execution time. Since the expected execution time of a job is fully determined by its341

corresponding task, we have E[Cl] = E[Ci].342

We now show why we use V[Ci] instead of θ2
i as known from Theorem 7. Consider343

Eq. (9) with S =
∑M
l=1 Yl. The exact variance V[Yl] = E[Y 2

l] − E[Yl]2 = E[Y 2
l] is unknown344

and hence some loose upper bound θ2 must be considered in most applications of Bernstein’s345

inequality, like stated in Theorem 7. Here, the probabilities of the different execution modes346

are given numerically, i.e., Pi(j) for Ci,j . Hence, for an arbitrary but fixed task τi with h347

different execution modes, we have348

V[Yl] =
h∑
j=1

Pi(j) (Ci,j − E[Ci])2 =
h∑
j=1

Pi(j)
(
C2
i,j − 2Ci,jE[Ci] + E[Ci]2

)
349

=
h∑
j=1

Pi(j)C2
i,j −

h∑
j=1

Pi(j)2Ci,jE[Ci] +
h∑
j=1

Pi(j)E[Ci]2 = E[C2
i]− E[Ci]2 = V[Ci] (11)350

351

i.e., V[Yl] = V[Ci], which can be computed exactly in time O(h). Instead of imposing an352

upper bound θ2, we can invoke the tightest version of Theorem 7 by using the exact variance.353

Since E[Yl] = 0 and ∀1 ≤ l ≤M : Yl ≤ K, we can invoke Theorem 7 with s = t− E[St].354

When s ≤ 0, we use a safe bound P(St ≥ t) ≤ 1. When s > 0, Eq. (9) can be rewritten as355

P

(
M∑
l=1

Yl ≥ t− E[St]
)
≤ exp

(
− (t− E[St])2/2∑M

l=1 V[Yl] +K(t− E[St])/3

)
(12)356

Finally, observing that
∑M
l=1 Yl = St − E[St] and

∑M
l=1 V[Yl] =

∑
τi∈hep(τk) V[Ci]ρi,t (from357

Eq. (11)) completes the proof. J358

5 The Multinomial-Based Approach359

In the traditional convolution-based approach [17], the underlying random variable repre-360

sents the execution mode of each single job. First, we take a closer look on the related state361

space and show that the complexity of this approach depends on the specific definition of362

these random variables. Afterwards, we explain how this state space can be transformed363

into an equivalent space that describes the states on a task-based level by proving the in-364

variance when considering equivalence classes for each task. As a result, we introduce our365

novel approach that is based on the multinomial distribution. The section is concluded with366

a short discussion regarding the complexity of our approach compared to the traditional367

convolution-based approach presented in Section 3.2.368

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:11

5.1 The State Space of the Traditional Convolution-Based Approach369

In this approach [17], X(t) is the set of the random variables representing the individual370

jobs released in the interval [0, t) in the order of their arrival times. Note that the notion371

of X(t) instead of X is necessary since the underlying state space and thus the underlying372

set of random variables are dependent on the considered t. Let J(t) be the number of jobs373

released in [0, t) under the critical instance of τk. Hence, X(t) represents a set of J(t)374

independent random variables representing the execution modes of the individual tasks, i.e.,375

X(t) is the Cartesian product over those J(t) variables. To understand how the computation376

can be simplified, it is necessary to explicitly consider the random variables X(t), and the377

dependence between X(t) and the quantities St and Ci. To simplify notation, let us assume378

that all jobs have a common set of h execution modes M, i.e., |M| = h.2 Thus, the state379

space of the random variable X(t) is X (t) =MJ(t). A concrete assignment of these variables380

is denoted x ∈ X (t), and the portion of x that corresponds to the jobs of task τi is denoted381

xi. Each task τi releases ρi,t = dt/Tie jobs, and thus J(t) =
∑
τi∈hep(τk) dt/Tie. Hence,382

dt/Tie of the J(t) random variables in X(t) are related to the task τi. Since the execution383

time of the jth job of task τi depends on the related random variable Xi,j(t) we denote it384

Ci(Xi,j(t)). Linking the total workload St to the random variables, from Eq. (2) we get:385

St = St(X(t)) = Ck(Xk,1(t)) +
∑

τi∈hp(τk)

ρi,t∑
j=1

Ci(Xi,j(t)) (13)386

Based on this, we denote the exact expression for the probability of a overload at time t as387

P(St(X(t)) > t) =
∑

x∈X (t)

P(X(t) = x)1{St(x)>t} (14)388

Here, 1{expression} is the indicator function which evaluates to 1 if and only if the expression389

is true, and to 0 otherwise. Since the execution modes of the jobs are assumed to be390

independent, the joint probability mass P(X(t)) factorizes over the jobs. The probability of391

each execution mode per job is fully determined by its corresponding task, and hence392

P(X(t) = x) =
∏

τi∈hp(τk)

ρi,t∏
j=1

Pi(xi,j(t)) (15)393

Each factor Pi(x) is the probability mass of any job of task τi, being in some state x ∈ M.394

Note that Eq. (14) is exactly the quantity computed by the traditional convolution-based395

approach [17]. Hence, its stems from the state space X (t) =MJ(t) that is exponential in the396

total number of jobs. Nevertheless, we leverage the independence of job modes to compute397

P(St(X(t))) ≥ t) over a different state space, which is the key insight of our method.398

5.2 Invariance and Equivalence Classes399

In Eq. (15), for any fixed task τi, the expression
∏ρi,t
j=1 Pi(xi,j) is determined by the number400

of jobs for each state in M. As an example, consider an arbitrary task τi with two dis-401

tinct execution states, i.e., M = {Ci,1, Ci,2}, and suppose that xi = (Ci,1, Ci,2, Ci,1, Ci,2),402

x′i = (Ci,1, Ci,1, Ci,2, Ci,2), and x′′i = (Ci,2, Ci,1, Ci,1, Ci,2). The resulting probability is iden-403

tical in all three cases, i.e., Pi(xi) = Pi(x′i) = Pi(x′′i). We formalize this property subse-404

quently.405

2 If a task has less than h (or even only one) execution modes, dummy modes with probability 0 can
ensure this condition. Alternatively,Mi and hi can be defined based on the execution modes of τi.

ECRTS 2018

6:12 Probability of Deadline Misses

I Lemma 9 (Probability Permutation Invariance). Let τi be a task with a set of distinct406

execution modes M, let ρi,t be the number of jobs of τi released up to time t, and let407

xi ∈Mρi,t be the random vector that represents the execution mode of all jobs which belong408

to task τi. The probability mass Pi is a permutation invariant with respect to xi, i.e.,409

∀ xi ∈Mρi,t : ∀σ ∈ Sρi,t : Pi(xi) = Pi(σ(xi)) (16)410

where Sn contains all permutations of n objects.411

Proof. The lemma follows directly from the independence of job-wise execution modes, thus412

Pi(xi) =
∏ρi,t
j=1 Pi(xi,j), and from the commutativity of the multiplication. J413

Up to now, we considered just a single task τi, but the lemma indeed holds for all414

tasks simultaneously. Recall that the random modes of all tasks are represented by X(t).415

Let Xi(t) represent the random modes of the jobs of task τi, i.e., Xi(t) is the subset of416

random variables in X(t) that relate to the random modes of τi. Applying the permutation417

invariance to each Xi(t), we derive a partition on X (t) into equivalence classes.418

I Definition 10 (Execution Mode Equivalence Classes). For any x ∈ X (t), its equivalence419

class [[x]] with respect to permutation invariance is given by420

[[x]] = {x′ ∈ X (t) | ∀τi ∈ hep(τk) : ∃σ ∈ Sρi,t : xi = σ(x′i)} (17)421

Based on this definition, the statement ∀x′ ∈ [[x]] : P(x) = P(x′) is a straightforward422

corollary of Lemma 9. The equivalence relation in Lemma 10 is established by an equivalent423

occurrence of execution modes for each task. Hence, each equivalence class has a canonical424

representative, given by a tuple ` ∈ ⊗τi∈hep(τk){1, 2, . . . , ρi,t}|M|, which for each task con-425

tains the number of jobs for all execution modes. For convenience we use [[`]] to address the426

set of all x in the same equivalence class and rephrase Eq. (14) accordingly.427

I Lemma 11 (Class-based Overload Probability). For any set of execution modes M, let428

L(t) = ⊗τi∈hep(τk){0, 1, 2, . . . , ρi,t}|M|. Then,429

P(St(X(t)) ≥ t) =
∑

`∈L(t)

∏
τi∈hep(τk)

ρi,t!
∏|M|
j=1 Pi(j)`i,j∏
x∈M `i,x! 1{St([[`]])≥t} (18)430

where `i,j denotes the number of jobs of task τi which are in the j-th execution mode, and431

St([[`]]) denotes the execution time for some arbitrary x ∈ [[`]].432

Proof. For all members of the class [[x]], each task has the same number of jobs which are433

in the same state. Iterating over the set L(t) =
⊗

τi∈hep(τk){0, 1, 2, . . . , ρi,t}|M| corresponds434

to iterating over all such count vectors, which is in turn the same as iterating over all435

equivalence classes [[x]]. Each class [[`]] contains all state permutations for all jobs of each436

task. For each task τi, this is equivalent to the well-known combinatorial problem of counting437

the number of ways how ρi,t objects can be placed into |M| bins, given by the corresponding438

multinomial coefficient. Combining those for all tasks, we get439

|[[`]]| =
∏

τi∈hep(τk)

(
ρi,t

`i,1 `i,2 . . . `i,|M|

)
=

∏
τi∈hep(τk)

ρi,t!∏
x∈M `i,x! (19)440

Combining these facts, we get441 ∑
x∈X (t)

P(X(t) = x) =
∑

`∈L(t)

|[[`]]|P(X(t) = [[`]]) (20)442

Observing that P(X(t) = [[`]]) =
∏|M|
j=1 Pi(j)`i,j implies the lemma. J443

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:13

5.3 Detailing the Multinomial Approach444

Now, we can combine the findings of Section 5.1 and Section 5.2 into an algorithm for cal-445

culating P(St > t), i.e., the probability of an overload for a length t, more efficiently. For446

simplicity of presentation, we will also refer to the overload probability at time t and the447

state space at time t, implicitly assuming that both the probability and the state space is448

calculated considering the interval [0, t) with respect to the critical instant of τk. The tra-449

ditional convolution-based approach determines this probability by successively calculating450

the probability for all other points of interest in the interval [0, t). Nevertheless, the prob-451

ability for t is evaluated based on the resulting states after all jobs in [0, t) are convoluted.452

With respect to t, the intermediate states are not considered.453

We use this insight to calculate the vector representing the possible states at t more454

efficiently. Lemma 9 shows that the overload probability of a state given a concrete variable455

assignment x ∈ X (t) is identical to the probability of all permutations of x, i.e., the related456

equivalence class. It allows us to consider the jobs in J(t) in any order. We further know457

from Lemma 11 that all assignments that are part of the same equivalence class result in458

the same value for St. Considering only one task τi, those assignments differ regarding the459

order in which the execution modes happen but not with respect to the total number of460

executions in a given mode. However, if the jobs are convoluted in the non-decreasing order461

of their arrival times, this leads to a large number of unnecessary states that will be merged462

in the end. For example, in Figure 1 the state space could be reduced if the second job of τ1463

would be convoluted before the job of τ2 is convoluted since the resulting state space after464

the convolution of the two jobs of τ1 would only have 3 states that represent the number465

of executions in each mode. Therefore, to reduce the state space as much as possible, we466

consider the jobs ordered according to the tasks they are related to, i.e., first all ρ1,t jobs of467

τ1 are considered, then all ρ2,t jobs of τ2, etc. However, if the jobs are just reordered and468

then convoluted, this still leads to a large number states that are merged later on.469

Regardless, the number of states is already significantly lower than in the traditional470

convolution-based approach. Fortunately, if the number of jobs for a task is known, all471

possible combinations and the related probabilities can be calculated directly using the472

multinomial distribution. To be more precise, assume a given τi as well as a given number473

of releases ρi,t in an interval of length t and let `i,j be the number executions in mode474

j ∈ {1, ..., h}. We know that `i,j ∈ {0, 1, ..., ρi,t} and
∑h
j=1 `i,j = ρi,t, leading to

(
ρi,t+h−1
h−1

)
475

possible combinations of `i,1, ..., `i,h where
(
a
b

)
= a!

b!(a−b)! is the binomial coefficient. For476

each combination, we can calculate the related probability as477

ρi,t!
`i,1!`i,2!...`i,h!Pi(1)`i,1 · Pi(2)`i,2 · ... · Pi(h)`i,h (21)478

where ρi,t!
`i,1!`i,2!...`i,h! determines the number of possible paths for the related equivalence479

classes and Pi(1)`i,1 · Pi(2)`i,2 · ... · Pi(h)`i,h is the probability of one of these paths. The480

total workload of the ρi,t jobs of τi is calculated for each of these combinations based on481

the related values of `i,1 to `i,h. The
(
ρi,t+h−1
h−1

)
states represent the equivalence classes482

of τi and the related probabilities. After calculating these representatives for each task,483

the overload probability can be calculated by convoluting them and adding up the overload484

probabilities of the resulting state space. A concrete example for our approach, assuming485

that each task has two possible execution modes, is given in Figure 2. Details on how some486

equations can be simplified in this case can be found in the related full version [25]. Note487

that based on Lemma 9 the states representing the tasks can be convoluted in any order.488

ECRTS 2018

6:14 Probability of Deadline Misses

D1 = T1 = 15

τ1
C1
P1

=
(

3
0.9

5
0.1

)

D2 = T2 = 19

τ2
C1
P1

=
(

5
0.8

6
0.2

)

D3 = T3 = 24

τ3
C1
P1

=
(

3
0.7

5
0.3

)

D1 = T1 = 15

τ1
C1
P1

=
(

6
0.81

8
0.18

10
0.01

)

D2 = T2 = 19

τ2
C2
P2

=
(

10
0.64

11
0.32

12
0.04

)

D3 = T3 = 24

τ3
C1
P1

=
(

3
0.7

5
0.3

)

min = 10 + 3 = 13
max = 12 + 5 = 17

min = 3
max = 5

(
0
1

)

(
6

0.81

) (
8

0.18

) (
10

0.01

)

(
18

0.1152

) (
19

0.0576

) (
20

0.0072

) (
20

0.0064

) (
21

0.0032

) (
22

0.0004

)

(
23

0.00504

)(
25

0.00216

)(
23

0.00448

)(
25

0.00192

)(
24

0.00224

)(
27

0.00096

)

Legend:

Task

Distribution

Pruned (Definitively No Overload)

Pruned (Definitively Overload)

No Overload

Overload

Figure 2 The multinomial approach convoluting 3 tasks with two modes. The number of children
depends on the number of jobs of the related task. Note that nodes can be ignored in further steps
if they never lead to an overload (green solid circles) or if they always lead to an overload (red
solid circle). In the end, the overload probability at t = 24 is calculated by summing up the related
probabilities (dashed and solid red) which leads to deadline miss probability of 0.00574.

In fact, considering t, the job-based state space of the traditional convolution-based ap-489

proach has been transferred into a task-based space state with identical properties regarding490

the overload probability. To visualise the different approaches, the traditional convolution-491

based approach constructs a binary tree based on the jobs (see Figure 1) where each layer492

represents the state of the system after the related job is convoluted. The multinomial-based493

approach on the other hand constructs a tree based on the tasks (see Figure 2) which means494

that the number of children on each level depends on the number of jobs the related task495

releases. If the nodes on the J(t)th level of the binary tree are merged as show in Figure 1,496

the number of states on that level is identical to the number of states on the kth level of the497

tree resulting from our approach. While the state space of our reformulation is still large, it498

opens up opportunities for pruning strategies and other state reduction strategies which are499

not suitable for the traditional approach. These strategies will be explained in Section 6.500

5.4 Complexity Discussion and Comparison501

When considering the complexity of the multinomial-based approach for τk over an interval502

[0, t) (an interval of length t that ends at time t for notational brevity) under the critical503

instance of τk, both the number of tasks that are contributing to the workload in the interval,504

i.e., ρi,t for the higher priority tasks, and the total number of jobs in the interval J(t) have505

to be considered. The number of multinomial coefficients depends on ρi,t and the number of506

possible execution states h for each task and can be calculated as
(
ρi,t+h−1
h−1

)
. This is also507

called the h-simplex of the ρthi,t component. The convolution of these states over all tasks508

leads to a total number of states of
∏k
i=1

(
ρi,t+h−1
h−1

)
.509

The classical convolution-based approach considers each job individually with h possible510

outcomes and, therefore, leads to hJ(t) states, i.e., it is exponential in the number of jobs.511

Hence, without state merging, it is not feasible for input sets with a sensible cardinality.512

However, the convolution-based approach in the process also calculates the deadline miss513

probability at all possible points of interest in the interval, i.e., at each point in time a job is514

released. Furthermore, states can be merged when they have the same related workload, e.g.,515

states resulting from a permutation of the same number of abnormal executions of a given516

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:15

task. Lemma 9 directly implies that when convolution is used in combination with merging517

states, the final number of states for the convolution-based approach at time t is identical to518

the number of states created by the multinomial-distribution-based approach (assuming that519

all states created by our approach lead to pairwise different workloads). However, while our520

approach creates only necessary states, the traditional convolution-based approach not only521

creates unnecessary states but also requires additional overhead for state merging after each522

step. Therefore, when considering a single point in time our approach is significantly faster523

than the traditional convolution-based approach with task merging. On the other hand, since524

our approach needs to consider all points of interest individually, if the number of such points525

increases due to the number of tasks the traditional convolution-based approach should be526

favoured. However, we were not able to observe this behaviour in our evaluation since both527

our multinomial-based approach as well as the traditional convolution-based approach with528

state merging only rarely were able to provide results for task sets with a cardinality of 10.529

Hence, for our approach runtime optimizations are provided in the next section. Note that530

this differs depending on the actual setting and that the period range is the most important531

parameter since it relates to the number of jobs.532

6 Runtime Improvement533

Here we introduce two strategies to improve the runtime efficiency. The first one prunes the534

state space, i.e., discards states directly if the impact on the overload probability can be535

determined without considering the remaining tasks, detailed in Section 6.1. This reduces536

the runtime without sacrificing any precision. The second technique combines execution537

mode equivalence classes with very low probability when creating the task representations538

to reduce the size of the state space beforehand (Section 6.2). While this leads to an539

increase of the resulting overload probabilities, this error can be bounded for each task540

under consideration and therefore also with respect to the total error of the derived overload541

probability. Note that both techniques are combined in the evaluation.542

6.1 Pruning the State Space543

Our multinomial-based approach calculates the probabilities for each interval individually,544

a property we already used when we transferred the state space from a job-based to a545

task-based state space. For convenience, assume that in our multinomial-based approach546

the representatives of the tasks are convoluted according to the task index. Recall that the547

state space can be seen as a rooted tree where each node on the jth row represents a possible548

state after the convolution of the first j tasks and that we are only interested in the nodes549

on the kth (and last) layer, i.e., the states after all task representations are convoluted. Such550

a tree is displayed in the example in Figure 2. The general concept of pruning is to remove551

a state R if the resulting subtree, i.e., the subtree with root R, has no further impact on the552

evaluation on the kth layer, i.e., either all states on the kth layer in the subtree with root553

R evaluate to an overload or for all states on the kth layer in the subtree with root R the554

resulting workload is less than the interval length. In the first case, the state is discarded555

and the related probability is added to the overload probability considering t. In the second556

case, the state is directly discarded. This is done by checking the boundary conditions. To557

this end, for each task we determine the minimum and maximum execution time it can558

contribute to the total workload up to time t respectively, which can be easily done while559

calculating the vectors that represent the task. On the ith layer, the minimum and maximum560

workload that can be contributed by the remaining tasks, denoted as Cmini and Cmaxi , is the561

ECRTS 2018

6:16 Probability of Deadline Misses

sum of the minimum and maximum values related to the remaining tasks. Let P(discard)562

be a variable accounting for the overload probability of discarded states, initialized with 0.563

For each state Q created by the convolution of τi with the previous state space let C(Q) be564

the related total workload. We check the two following conditions:565

1. C(Q) +Cmaxi ≤ t: In this case the subtree rooted at Q only leads to states that will not566

lead to an overload at t, since the branch related to the maximum cumulative workload567

in this subtree does not. Therefore, Q can directly be discarded. In the example in568

Figure 2 those states are marked with a solid green circle.569

2. C(Q) + Cmini > t: Here, all paths in the subtree rooted at Q result in an overload at570

t, since the branch related to the minimum cumulative workload in this subtree does.571

Therefore, Q can directly be discarded and P(discard) is increased by the probability of572

Q. In the example in Figure 2 those states are marked with a solid red circle.573

Obviously all created states can only fulfill one of these two conditions but not both due to574

C(Q) + Cmini ≤ C(Q) + Cmaxi . If Q fulfills none, the state is added to the representation575

of τ1, ..., τi. The correctness of this pruning approach follows directly from the observations576

that the total probability of a subtree on each level is equal to the probability of the root and577

from the fact that the total workload of each branch is always smaller than the maximum578

workload (larger than the minimum workload, respectively). A proof is therefore omitted.579

Note that the order in which the tasks are considered has no impact on the applicability of580

the pruning technique.581

When considering a similar technique for the traditional convolution-based approach, one582

major difference is that the overload probability of all values is calculated successively. To be583

more precise, it considers the critical instant of τk at time 0 and the deadline miss probability584

for all intervals [0, t), where t is the release time of a higher priority task. The interval [0, Dk)585

is calculated successively and the result at time tb depends on the result at time ta if ta < tb.586

We visualize this by a rooted directed binary tree where each layer represents an arriving587

job and the layers are created according to the jobs arrival time, i.e., the height of the tree588

depends on the number of considered jobs (see Figure 1). The nodes on each layer represent589

the state space after the convolution of the related job. One important property of this590

approach is that the probability of deadline miss is calculated on each layer. Hence, pruning591

a state, i.e., removing a state and the branches resulting from it, can only be done if those592

branches have no impact on the probability on all following layers, i.e, a state R at time ta593

can only be pruned if all branches of the subtree with root R will for all tb ∈ (ta, Dk] either594

lead to an overload at tb or to no overload at tb. This cannot be determined by evaluating595

the overload condition for any single time point tb ∈ (ta, Dk]. Assume, for instance, for a596

tb ∈ (ta, Dk] that C(Q) + Cmintb > tb where Cmintb is the minimum workload created by597

jobs released in the interval [ta, tb). Let tb−1 and tb+1 be the previous and next considered598

points with respect to tb in the convolution based approach. We observe that τk may have599

no overload at tb−1, if the minimum workload of the job released at tb−1 is smaller than600

tb − tb−1. Similar arguments can be taken to create a case with no overload at tb+1 and for601

the cases where τk has no overload at tb if Cmaxtb is considered.602

6.2 Union of Execution Mode Equivalence Classes603

The general concept of the presented runtime improvement technique is to reduce the state604

space by unifying equivalence classes with low probability when creating the representation605

for the individual tasks. In contrast to the pruning technique, this obviously results in a606

loss of precision when approximating the deadline miss probability for a given point in time.607

However, if done carefully, the precision loss can be upper bounded by a constant. We will608

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:17

Ci,2 jobs 0 1 2 3 4 5 6 7 8 9 10

Total Ci 10 11 12 13 14 15 16 17 18 19 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.63 · 10−08 6.8 · 10−10 6.53 · 10−12 3.72 · 10−14 9.5 · 10−17

Ci,2 jobs 0 1 2 3 4 5 6 or 7 8, 9, or 10

Total Ci 10 11 12 13 14 15 17 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.701 · 10−08 6.564711 · 10−12

Table 2 Distribution for 10 releases of τi with Ci,1 = 1, Ci,2 = 2, Pi(1) = 0.975, Pi(2) = 0.025.
The upper part details the distribution before and the lower part after merging equivalence classes.

introduce the concept based on the example in Table 2. Therein, we detail the release of 10609

jobs in the interval of interest for a task τi with two execution modes that have a WCET610

of Ci,1 = 1 and Ci,2 = 2, with related probabilities Pi(1) = 0.975 and Pi(2) = 0.025. In the611

upper half, the original equivalence classes are displayed, i.e., one for each possible number612

of jobs (0 to 10), together with their total WCET and their (rounded) related probability.613

We will explain afterwards how the approach can be generalized.614

The probability decreases rapidly with respect to the number of executions in the mode615

related to Ci,2. Such distributions are common when considering probabilistic execution616

times for real-time systems. The reason is that if the execution mode with larger WCET617

has a comparatively high probability, classical non-probabilistic worst-case response time618

analysis considering the larger WCET should be used to ensure timeliness for relatively619

common cases. Since the probability of the equivalence classes decreases, the impact of620

those classes on the overload probability over the given interval decreases as well. There-621

fore, the number of states that are created in our approach, and thus the runtime, can be622

reduced by unifying some of these highly unlikely equivalence classes. To guarantee a safe623

approximation, i.e., the resulting overload probability is only increased, we define the merge624

of a set of equivalence class as follows:625

I Definition 12 (Union of Task Equivalence Classes). Let C = {[[xi]], [[x′i]], [[x′′i]], . . .} be a set626

of |C| = q equivalence classes of task τi in a given interval of interest [0, t). For each class627

[[xi]] ∈ C, let Pi([[xi]]) and Ci([[xi]]) denote its probability and the related total worst-case628

execution time, respectively. Furthermore, let [[xmax
i]] ∈ C be the equivalence class with the629

highest total WCET, i.e., [[xmax
i]] = arg max[[xi]]∈C Ci([[xi]]).630

When we union all classes in C = {[[x1]], ..., [[xq]]}, the classes in C are replaced by a a631

new class [[xCi]] =
⋃

[[xi]]∈C [[xi]] that has the following characteristics:632

1. Ci([[xCi]]) = Ci([[xmax
i]])633

2. Pi([[xCi]]) =
∑

[[xi]]∈C Pi([[xi]])634

As shown in Table 2, merging the equivalence classes for 6 and 7 executions of mode 2,635

the probability of the newly created class is the summation of their probabilities and the636

related WCET is the maximum among those two classes, i.e., the WCET of the class with 7637

executions. We now show that merging a set of equivalence classes leads to a bounded error638

with respect to the overload probability.639

I Lemma 13 (Unifying Equivalence Classes Leads to a Bounded Maximum Error). For task640

τi let C = {[[x′i]], [[x′′i]], . . .} be a set of |C| = q equivalence classes for the interval of interest641

[0, t). If C is merged into [[xCi]] according to Definition 12, the probability of overload can642

only increase and the error is bounded by (
∑

[[xi]]∈C |[[xi]]|Pi([[xi]]))− |[[x
max
i]]|Pi([[xmax

i]]).643

This follows from Eq. (18), Eq. (20), and the fact that any C in which no class [[xi]] triggers the644

indicator function 1{St([[x]])>t} does not introduce any error. Hence, if at least [[xmax
i]] triggers645

ECRTS 2018

6:18 Probability of Deadline Misses

1{St([[x]])>t} the maximum probability increase happens if all other classes did not trigger646

1{St([[x]])>t} before the unification but do afterwards. Since the process can be repeated for647

all tasks this directly leads to:648

I Theorem 14 (Bounded For The Overall Increase On The Overload Probability). If equivalence649

classes of tasks with respect to the interval [0, t) are merged, the total increase of the overload650

probability for this interval is increased by the sum of the individual overload probability651

increase of the individually tasks.652

Now we can calculate the overloaded probability over [0, t) with a bounded total error653

while reducing the states that have to be considered. Assume a value b for the allowed654

maximum error to be given and a set of n tasks. The maximum error is bounded by b if655

for each task the error is bounded by b/n. This can be achieved by ordering the related656

states in decreasing order of probability, traversing them in this order while summing up the657

probabilities of each state and keeping all states until the summation is larger than 1− b/n.658

Afterwards the remaining states are unified into one.659

So far we considered a setting similar to the one displayed in Table 2, i.e., the workload660

increases as the probability decreases. However, this is not necessarily the case, e.g., when a661

task has two execution modes with an equal probability or when a task has three execution662

modes and Ci,2 has the lowest probability. Nevertheless, in such cases the approach based on663

Theorem 14 can still directly be exploited since the union of equivalence classes is agnostic664

to the workloads and related probabilities as long as the total probability of the combined665

equivalence classes is less than b/n and thus the approach can directly be used. Hence,666

for a given task properties of the related distribution can be exploited in the process. For667

example, for two execution modes with identical probability the symmetry of the resulting668

distribution can be used if modes with a total probability of b/2n at both ends are unified.669

7 Evaluation670

The main focus of our evaluation was to determine if our novel multinomial-based approach671

can provide good results in reasonable analysis runtime, especially considering the scalability672

with respect to the number of tasks for reasonable settings. To this end, for a given utilization673

Usum and a number of tasks, we generated random implicit-deadline task sets with one674

execution mode according to the UUniFast method [5]. As suggested by Emberson et al. [9],675

the periods of those tasks were generated according to a log-uniform distribution with two676

orders of magnitude, i.e., 10ms − 1000ms. We only considered tasks with two distinct677

execution modes in the evaluation, called normal and abnormal execution mode and hence678

M = {N,A}. The normal execution mode is considered to have a (much) higher probability.679

The WCET in the normal mode was set according to the utilization, i.e., Ci,N = Ui · Ti and680

the WCET in abnormal mode was calculated as Ci,A = f · Ci,N for all tasks in the set.681

We used a fixed setting, defined by Usum, f , and Pi(A), tracking the resulting dead-682

line miss probability and runtime related parameters. In each setting, the deadline miss683

probability for the lowest-priority task under the rate-monotonic scheduling approach was684

determined. In our evaluations, we considered the following approaches where the bold685

name indicates how the approach is referred to:686

1. Convolution: The traditional convolution-based approach by Maxim and Cucu-Grosjean [17].687

2. Conv. Merge: The traditional convolution-based approach [17] with state merging.688

3. Multinomial: Our novel multinomial-based approach from Sec. 5.3.689

4. Pruning: The approach in Sec. 5.3 combined with the pruning technique in Sec. 6.1.690

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:19

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35

Number of Tasks
(a) Runtime Comparison

10−2

10−1

100

101

102

103

104

A
ve

ra
ge

A
na

ly
si

s
R

un
ti

m
e

(s
ec

on
ds

)
Pruning Unify Approx Chernoff Hoeffding Bernstein

Set 1 Set 2 Set 3 Set 4 Set 5

Sets with 15 Tasks
(b) Approximation Quality

10−6

10−5

10−4

10−3

10−2

10−1

C
al

cu
la

te
d

P
ro

ba
bi

lit
y

Set 2 Set 4 Set 5

Sets with 15 Tasks
(c) Detailed Approximation Quality

10−5

10−4

C
al

cu
la

te
d

P
ro

ba
bi

lit
y

2
.4

9
·1

0
−

0
5

6
.1

0
·1

0
−

0
5

1
.3

5
·1

0
−

0
5

2
.4

9
·1

0
−

0
5

6
.1

0
·1

0
−

0
5

1
.3

5
·1

0
−

0
5

2
.4

9
·1

0
−

0
5

8
.2

9
·1

0
−

0
5

1
.3

8
·1

0
−

0
5

Figure 3 (a) Average runtime with respect to task set cardinality. (b) Approximation quality
for 5 sets with 15 tasks. (c) Detailed approximation quality for the multinomial-based approaches.

5. Unify: The approach in Sec. 5.3 combined with the pruning technique in Sec. 6.1 and691

reducing the complexity with the union of equivalence classes presented in Sec. 6.2.692

6. Approx: Approximation of Pruning by only considering the deadline of τk and the693

last releases of higher-priority tasks, inspired from the literature, e.g., [6, 4, 23, 7].694

7. Chernoff: The analytical approach using Chernoff bounds by Chen and Chen [7].695

8. Hoeffding: The analytical approach using Hoeffding’s inequality (Sec. 4).696

9. Bernstein: The analytical approach using Bernstein inequalities (Sec. 4).697

To allow runtime comparisons, all approaches were implemented in the same programming698

language, i.e., Python, and executed on the same machine, i.e., a 12 core IntelXeon X5650699

with 2.67GHz and 20GB RAM. For the analytical bounds, in contrast to the work by Chen700

and Chen [7], all releases of higher-priority tasks were considered since the bounds have a701

lower runtime than our novel approach.702

Figure 3 shows the results for randomly generated tasks sets with a normal-mode uti-703

lization of Usum = 70, and for all tasks f = 2 and Pi(A) = 0.025 were assumed. Hence,704

Pi(N) = 0.975. To analyze the scalability, the cardinality of the task sets ranged from 5705

to 35 in steps of 5. In Figure 3(a) the average runtime of the analysis is displayed with706

respect to the cardinality. For a cardinality from 5 to 20 tasks, we evaluated 20 task sets707

while a cardinality from 25 to 35 tasks, due to the high runtime, 5 task sets were ana-708

lyzed. For Convolution usually no result was delivered for a cardinality of 5, i.e., a crash709

due to an out of memory error occurred. Even for 3 tasks no result could be provided in710

some cases since, for instance, 38 jobs already leads to 238 = 274877906944 states for Dk711

in Convolution. For Conv. Merge and Multinomial a setting with 10 tasks often lead712

to no results. Hence, those three approaches are not displayed. However, the results for713

Conv. Merge, Multinomial, and Pruning were always identical (if Conv Merg and714

Multinomial derived results), showing that our pruning technique drastically decreases the715

runtime of the analysis and increases the scalability without any precision loss. We see that716

Bernstein and Hoeffding are orders of magnitude faster than the other approaches which717

are compatible with respect to the related runtime. The large runtime of Chernoff yields718

from finding a good s value in Eq. (4) which may differ for each point in time. The difference719

between Approx and Pruning stems from a different number of tested time points, i.e.,720

for Approx this number depends on the number of tasks while for Pruning it is related to721

the number of jobs, while the calculation for one time point does not differ largely.722

ECRTS 2018

6:20 Probability of Deadline Misses

The statistical information of the derived deadline miss probabilities is unfortunately not723

meaningful. For example, for task sets with 15 tasks, the derived deadline miss probability724

in our evaluations under Pruning ranged from 3.0·10−39 to 6.1·10−5. Therefore, comparing725

the average values or other statistical means does not yield much information. In addition,726

comparing relative values is problematic if the probability gets low. Hence, we show a small727

sample of 5 task sets with roughly similar probabilities in Figure 3(b). These are the first 5728

randomly generated task sets with deadline miss probability larger than 10−6. This selection729

is only done to increase the readability of the figure. We observed in general similar relative730

behaviour among (nearly) all the evaluated task sets. We see that the error of Bernstein731

and Hoeffding is large compared to Chernoff, i.e., by several orders of magnitude, while732

the three approaches based on the multinomial distribution result in similar values, roughly733

one order of magnitude better thanChernoff. We also conducted experiments with different734

probabilistic distributions which in general lead to identical results.735

In Figure 3(c), we compare the deadline miss probability of the three multinomial-736

distribution based approaches more closely. We can see that Unify performs very simi-737

lar to Pruning, i.e., the error is in the magnitude of 10−9. This is significantly smaller738

than the predefined allowed error of 10−6 for Unify in the experiments since: 1) execution739

mode equivalences classes are only merged for some of the tasks and the maximum error740

for each task may already be significantly smaller than 10−6, and 2) the worst-case analysis741

in Sec. 6.2 is pessimistic. For Approx the error for Set 4 and Set 5 is in the magnitude of742

10−5 and 10−7, respectively, since only a subset of the points of interest is considered. In743

some rare cases even a larger relative different could be observed.744

Most importantly, all approaches we provide are able to deliver results even for large745

task sets since the time needed to evaluate a single point in time remains still in the scale746

of minutes, i.e., in runs with 75 and 100 tasks one time point was evaluated on average in747

621.6 and 791.1 seconds, respectively. Therefore, when a given task set needs to be analyzed,748

the approach can be used directly, especially since it is highly parallelizable due to the fact749

that different points in time can be analyzed completely individually. Hence, we suggest to750

first run Hoeffding’s as well as Bernstein’s bounds since they have a small runtime even for751

large task sets. If sufficiently low deadline miss probability cannot be guaranteed from these752

bounds, we propose to run the multinomial-based approach with equivalence class union in753

parallel on multiple machines by partitioning the time points equally. We point out that754

it is especially helpful to use the union of equivalence classes if the periods of tasks differ755

largely, e.g., in automotive applications where periods often range from 1 to 1000 ms [15].756

8 Conclusion757

We provide a novel way to analyze the deadline miss probability of constrained-deadline758

sporadic soft real-time tasks on uniprocessor platforms where points in time are considered759

individually. Our main approach convolutes the equivalence classes of a task represented by760

the values of the multinomial distribution. The runtime of this approach can be improved761

by the detailed pruning technique without any precision loss. Furthermore, we present an762

approximation via unifying equivalent classes with a bounded loss of precision. In addition,763

we provide two analytical bounds based on the well-known Hoeffding’s and Bernstein’s764

inequalities which have polynomial runtime with respect to the number of considered time765

points. We demonstrate the effectiveness in the evaluations, specifically showing that our766

approaches scale reasonably even for large task sets.767

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:21

References768

1 Philip Axer and Rolf Ernst. Stochastic response-time guarantee for non-preemptive, fixed-769

priority scheduling under errors. In The 50th Annual Design Automation Conference 2013,770

DAC ’13, Austin, TX, USA, May 29 - June 07, 2013, pages 172:1–172:7, 2013. URL:771

http://doi.acm.org/10.1145/2463209.2488946, doi:10.1145/2463209.2488946.772

2 Robert C. Baumann. Radiation-induced soft errors in advanced semiconductor technologies.773

IEEE Transactions on Device and Materials Reliability, 5(3):305–316, Sept 2005. doi:774

10.1109/TDMR.2005.853449.775

3 Slim Ben-Amor, Dorin Maxim, and Liliana Cucu-Grosjean. Schedulability analysis of776

dependent probabilistic real-time tasks. In Proceedings of the 24th International Con-777

ference on Real-Time Networks and Systems, RTNS 2016, Brest, France, October 19-778

21, 2016, pages 99–107, 2016. URL: http://doi.acm.org/10.1145/2997465.2997499,779

doi:10.1145/2997465.2997499.780

4 Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of periodic fixed priority781

systems. IEEE Trans. Computers, 53(11):1462–1473, 2004. URL: https://doi.org/10.782

1109/TC.2004.103, doi:10.1109/TC.2004.103.783

5 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability784

tests. Real-Time Systems, 30(1-2):129–154, 2005. URL: https://doi.org/10.1007/785

s11241-005-0507-9, doi:10.1007/s11241-005-0507-9.786

6 Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. k2u: A general framework from k-point787

effective schedulability analysis to utilization-based tests. In 2015 IEEE Real-Time Systems788

Symposium, RTSS 2015, San Antonio, Texas, USA, December 1-4, 2015, pages 107–118,789

2015. URL: https://doi.org/10.1109/RTSS.2015.18, doi:10.1109/RTSS.2015.18.790

7 Kuan-Hsun Chen and Jian-Jia Chen. Probabilistic schedulability tests for uniprocessor791

fixed-priority scheduling under soft errors. In 12th IEEE International Symposium on792

Industrial Embedded Systems, SIES 2017, Toulouse, France, June 14-16, 2017, pages 1–8,793

2017. URL: https://doi.org/10.1109/SIES.2017.7993392, doi:10.1109/SIES.2017.794

7993392.795

8 José Luis Díaz, Daniel F. García, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello,796

José María López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of pe-797

riodic real-time systems. In Proceedings of the 23rd IEEE Real-Time Systems Sympo-798

sium (RTSS’02), Austin, Texas, USA, December 3-5, 2002, pages 289–300, 2002. URL:799

https://doi.org/10.1109/REAL.2002.1181583, doi:10.1109/REAL.2002.1181583.800

9 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of801

multiprocessor tasksets. In International Workshop on Analysis Tools and Methodologies802

for Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010.803

10 Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.804

Springer New York, 2013. URL: https://doi.org/10.1007/978-0-8176-4948-7, doi:805

10.1007/978-0-8176-4948-7.806

11 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal807

of the American Statistical Association, 58(301):13–30, 1963. URL: http://www.jstor.808

org/stable/2282952.809

12 Jie S. Hu, Feihui Li, Vijay Degalahal, Mahmut T. Kandemir, Narayanan Vijaykrishnan,810

and Mary Jane Irwin. Compiler-directed instruction duplication for soft error detection.811

In 2005 Design, Automation and Test in Europe Conference and Exposition (DATE 2005),812

7-11 March 2005, Munich, Germany, pages 1056–1057, 2005. URL: https://doi.org/10.813

1109/DATE.2005.98, doi:10.1109/DATE.2005.98.814

13 International Electrotechnical Commission (IEC). Functional safety of electrical / electronic815

/ programmable electronic safety-related systems ed2.0. 2010.816

ECRTS 2018

http://doi.acm.org/10.1145/2463209.2488946
http://dx.doi.org/10.1145/2463209.2488946
http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/TDMR.2005.853449
http://doi.acm.org/10.1145/2997465.2997499
http://dx.doi.org/10.1145/2997465.2997499
https://doi.org/10.1109/TC.2004.103
https://doi.org/10.1109/TC.2004.103
https://doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1109/TC.2004.103
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/RTSS.2015.18
http://dx.doi.org/10.1109/RTSS.2015.18
https://doi.org/10.1109/SIES.2017.7993392
http://dx.doi.org/10.1109/SIES.2017.7993392
http://dx.doi.org/10.1109/SIES.2017.7993392
http://dx.doi.org/10.1109/SIES.2017.7993392
https://doi.org/10.1109/REAL.2002.1181583
http://dx.doi.org/10.1109/REAL.2002.1181583
https://doi.org/10.1007/978-0-8176-4948-7
http://dx.doi.org/10.1007/978-0-8176-4948-7
http://dx.doi.org/10.1007/978-0-8176-4948-7
http://dx.doi.org/10.1007/978-0-8176-4948-7
http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
https://doi.org/10.1109/DATE.2005.98
https://doi.org/10.1109/DATE.2005.98
https://doi.org/10.1109/DATE.2005.98
http://dx.doi.org/10.1109/DATE.2005.98

6:22 Probability of Deadline Misses

14 International Organization for Standardization (ISO). Iso/fdis26262: Road vehicles - func-817

tional safety. 2000.818

15 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks819

for free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded820

and Real-time Systems (WATERS), 2015.821

16 John P. Lehoczky, Lui Sha, and Yuqin Ding. The rate monotonic scheduling algorithm:822

Exact characterization and average case behavior. In Proceedings of the Real-Time Systems823

Symposium - 1989, Santa Monica, California, USA, December 1989, pages 166–171, 1989.824

URL: https://doi.org/10.1109/REAL.1989.63567, doi:10.1109/REAL.1989.63567.825

17 Dorin Maxim and Liliana Cucu-Grosjean. Response time analysis for fixed-priority tasks826

with multiple probabilistic parameters. In Proceedings of the IEEE 34th Real-Time Systems827

Symposium, RTSS 2013, Vancouver, BC, Canada, December 3-6, 2013, pages 224–235,828

2013. URL: https://doi.org/10.1109/RTSS.2013.30, doi:10.1109/RTSS.2013.30.829

18 Michael Mitzenmacher and Eli Upfal. Probability and Computing - Randomized Algorithms830

and Probabilistic Analysis. Cambridge University Press, 2005.831

19 Bogdan Nicolescu, Raoul Velazco, Matteo Sonza-Reorda, Maurizio Rebaudengo, and Mas-832

simo Violante. A software fault tolerance method for safety-critical systems: effectiveness833

and drawbacks. In Integrated Circuits and Systems Design, pages 101–106, 2002.834

20 Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detection by duplicated835

instructions in super-scalar processors. IEEE Trans. Reliability, 51(1):63–75, 2002. URL:836

https://doi.org/10.1109/24.994913, doi:10.1109/24.994913.837

21 Semeen Rehman, Muhammad Shafique, Pau Vilimelis Aceituno, Florian Kriebel, Jian-838

Jia Chen, and Jörg Henkel. Leveraging variable function resilience for selective software839

reliability on unreliable hardware. In Design, Automation and Test in Europe, DATE 13,840

Grenoble, France, March 18-22, 2013, pages 1759–1764, 2013. URL: https://doi.org/841

10.7873/DATE.2013.354, doi:10.7873/DATE.2013.354.842

22 Bogdan Tanasa, Unmesh D. Bordoloi, Petru Eles, and Zebo Peng. Probabilistic response843

time and joint analysis of periodic tasks. In 27th Euromicro Conference on Real-Time844

Systems, ECRTS 2015, Lund, Sweden, July 8-10, 2015, pages 235–246, 2015. URL: https:845

//doi.org/10.1109/ECRTS.2015.28, doi:10.1109/ECRTS.2015.28.846

23 Georg von der Brüggen, Jian-Jia Chen, and Wen-Hung Huang. Schedulability and opti-847

mization analysis for non-preemptive static priority scheduling based on task utilization and848

blocking factors. In Euromicro Conference on Real-Time Systems, ECRTS, pages 90–101,849

2015. doi:10.1109/ECRTS.2015.16.850

24 Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang, and Jian-Jia Chen. Systems851

with dynamic real-time guarantees in uncertain and faulty execution environments. In852

2016 IEEE Real-Time Systems Symposium, RTSS 2016, Porto, Portugal, November 29 -853

December 2, 2016, pages 303–314, 2016. URL: https://doi.org/10.1109/RTSS.2016.854

037, doi:10.1109/RTSS.2016.037.855

25 Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katha-856

rina Morik. Efficiently approximating the probability of deadline misses in real-time857

systems. Technical report, Department of Computer Science, TU Dortmund University,858

Germany, 2018. URL: https://ls12-www.cs.tu-dortmund.de/daes/media/documents/859

publications/downloads/2018-brueggen-ECRTS-deadline-miss-probability.pdf.860

26 Dakai Zhu, Hakan Aydin, and Jian-Jia Chen. Optimistic reliability aware energy man-861

agement for real-time tasks with probabilistic execution times. In Proceedings of the 29th862

IEEE Real-Time Systems Symposium, RTSS 2008, Barcelona, Spain, 30 November - 3863

December 2008, pages 313–322, 2008. URL: https://doi.org/10.1109/RTSS.2008.37,864

doi:10.1109/RTSS.2008.37.865

https://doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1109/RTSS.2013.30
http://dx.doi.org/10.1109/RTSS.2013.30
https://doi.org/10.1109/24.994913
http://dx.doi.org/10.1109/24.994913
https://doi.org/10.7873/DATE.2013.354
https://doi.org/10.7873/DATE.2013.354
https://doi.org/10.7873/DATE.2013.354
http://dx.doi.org/10.7873/DATE.2013.354
https://doi.org/10.1109/ECRTS.2015.28
https://doi.org/10.1109/ECRTS.2015.28
https://doi.org/10.1109/ECRTS.2015.28
http://dx.doi.org/10.1109/ECRTS.2015.28
http://dx.doi.org/10.1109/ECRTS.2015.16
https://doi.org/10.1109/RTSS.2016.037
https://doi.org/10.1109/RTSS.2016.037
https://doi.org/10.1109/RTSS.2016.037
http://dx.doi.org/10.1109/RTSS.2016.037
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/ downloads/2018-brueggen-ECRTS-deadline-miss-probability.pdf
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/ downloads/2018-brueggen-ECRTS-deadline-miss-probability.pdf
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/ downloads/2018-brueggen-ECRTS-deadline-miss-probability.pdf
https://doi.org/10.1109/RTSS.2008.37
http://dx.doi.org/10.1109/RTSS.2008.37

	Introduction
	Task Model, System Model, and Notation
	Motivation, Problem Definition, and State-of-the-Art
	Motivation and Problem Definition
	Traditional Convolution-Based Approaches
	Chernoff-Bound-Based Approaches

	Analytical Upper Bounds
	The Multinomial-Based Approach
	The State Space of the Traditional Convolution-Based Approach
	Invariance and Equivalence Classes
	Detailing the Multinomial Approach
	Complexity Discussion and Comparison

	Runtime Improvement
	Pruning the State Space
	Union of Execution Mode Equivalence Classes

	Evaluation
	Conclusion

