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Abstract15

The sporadic task model is often used to analyze recurrent execution of tasks in real-time systems.16

A sporadic task defines an infinite sequence of task instances, also called jobs, that arrive under17

the minimum inter-arrival time constraint. To ensure the system safety, timeliness has to be18

guaranteed in addition to functional correctness, i.e., all jobs of all tasks have to be finished19

before the job deadlines. We focus on analyzing arbitrary-deadline task sets on a homogeneous20

(identical) multiprocessor system under any given global fixed-priority scheduling approach and21

provide a series of schedulability tests with different tradeoffs between their time complexity22

and their accuracy. Under the arbitrary-deadline setting, the relative deadline of a task can23

be longer than the minimum inter-arrival time of the jobs of the task. We show that global24

deadline-monotonic (DM) scheduling has a speedup bound of 3 − 1/M against any optimal25

scheduling algorithms, where M is the number of identical processors, and prove that this bound26

is asymptotically tight.27
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1 Introduction37

The sporadic task model is the basic task model in real-time systems, where each task τi38

releases an infinite number of task instances (jobs) under its minimum inter-arrival time39

(period) Ti and is further characterized by its relative deadline Di and its worst-case ex-40

ecution time Ci. The sporadic task model has been widely adopted in real-time systems.41
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8:2 Push Forward: Arbitrary-Deadline Sporadic Task Systems

A sporadic task defines an infinite sequence of task instances, also called jobs, that arrive42

under the minimum inter-arrival time constraint, i.e., any two consecutive releases of jobs43

of task τi are temporally separated by at least Ti. When a job of task τi arrives at time t, it44

must finish no later than its absolute deadline t+Di. If all tasks release their jobs strictly45

periodically with period Ti, the task model is the well-known Liu and Layland task model46

[33]. A sporadic task set is called with 1) implicit deadlines, if the relative deadlines are equal47

to their minimum inter-arrival times, 2) constrained deadlines, if the minimum inter-arrival48

times are no less than their relative deadlines, and 3) arbitrary deadlines, otherwise.49

To schedule such task sets on a multiprocessor platform, three paradigms have been50

widely adopted: partitioned, global, and semi-partitioned multiprocessor scheduling. The51

partitioned scheduling approach partitions the tasks statically among the available proces-52

sors, i.e., a task executes all its jobs on the assigned processor. The global scheduling53

approach allows a job to migrate from one processor to another at any time. The semi-54

partitioned scheduling approach decides whether a task is divided into subtasks statically55

and how each task/subtask is then assigned to a processor. A comprehensive survey of56

multiprocessor scheduling for real-time systems can be found in [23].57

We focus on global fixed-priority preemptive scheduling on M identical processors, i.e.,58

unique fixed priority levels are statically assigned to the tasks and at any point in time the59

M highest-priority jobs in the ready queue are executed. Hence, the schedule is workload-60

conserving. The response time of a job is defined as its finish time minus its arrival time.61

The worst-case response time of a task is an upper bound on the response times of all the62

jobs of the task and can be derived by a (worst-case) response time analysis for a sporadic63

task under a given scheduling algorithm. Verifying whether a set of sporadic tasks can meet64

their deadlines by a scheduling algorithm is called a schedulability test, i.e., verifying if the65

(worst-case) response time is smaller than or equal to the relative deadline.66

1.1 Related Work67

For uniprocessor systems, i.e, M=1, the exact schedulability test and the (tight) worst-case68

response time analysis by using busy intervals were provided by Lehoczky [32]. Several69

approaches have been proposed to reduce the time complexity, e.g., [35]. Bini and Buttazzo70

[12] proposed a framework of schedulability tests that can be tuned to balance the time71

complexity and the acceptance ratio of the schedulability test for uniprocessor sporadic72

task systems. To achieve polynomial-time schedulability tests and response time analyses,73

Lehoczky [32] proposed a utilization upper bound for a set of sporadic arbitrary-deadline74

tasks under fixed-priority scheduling. The linear-time response-time bound for fixed-priority75

systems was first proposed by Davis and Burns [22], and later improved by Bini et al. [14, 15]76

and Chen et al. [18]. The computational complexity of the schedulability test problem and77

the worst-case response time analysis in uniprocessor systems for different variances can be78

found in [16, 25, 24, 27, 26].79

In this paper, we will implicitly assume multiprocessor systems, i.e.,M ≥ 2. Many results80

are known for constrained-deadline (Di ≤ Ti) and implicit-deadline task systems (Di = Ti)81

on identical multiprocessor platforms, e.g., [2, 5, 30, 1, 7, 18]. For details, please refer82

to the survey by Davis and Burns [23]. Unfortunately, deriving exact schedulability tests83

under multiprocessor global scheduling is much harder than deriving them for uniprocessor84

systems due to the lack of concrete worst-case scenarios that can be constructed efficiently.85

Most results in the literature focus on sufficient schedulability tests. Exceptions are the86

exhaustive search under discrete time parameters by Baker and Cirinei [4], finite automata87

under discrete time parameters by Geeraerts et al. [29], and hybrid finite automata by88
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Sun and Lipari [36]. Specifically, Geeraerts et al. [29] showed that the schedulability test89

formulation by Baker and Cirinei [4] is Pspace-Complete.90

Regarding global fixed-priority scheduling for arbitrary-deadline task systems, several91

sufficient schedulability tests and safe worst-case response time analyses have been pro-92

posed, e.g., [3, 4, 8, 9, 30, 37, 31]. Baker [3] designed a test based on certain properties93

to characterize a problem window. Baruah and Fisher [8, 9] used different annotations to94

extend the analysis window and derived corresponding exponential-time schedulability tests.95

The first worst-case response-time analysis for arbitrary-deadline task systems was proposed96

by Guan et al. [30], where the authors used the insight proposed by Baruah [5] to limit the97

number of carry-in jobs, and then apply the workload function proposed by Bertogna et98

al. [11] to quantify the requested demand of higher-priority tasks. Unfortunately, it has99

recently been shown by Sun et al. [37] that this analysis in [30] is optimistic. In addition,100

Sun et al. [37] derived a complex carry-in workload function for the response time analysis101

where all possible combinations of carry-in and non-carry-in functions have to be explicitly102

enumerated. However, their method is computationally intractable since the time complex-103

ity is exponential. Huang and Chen [31] proposed a more precise quantification for the104

number of carry-in jobs of a task than the bounds used in the tests provided in [3, 9]. They105

also presented a response time bound for arbitrary-deadline tasks under global scheduling106

in multiprocessor systems with linear-time complexity.107

1.2 Our Contribution108

We consider arbitrary-deadline sporadic task systems, which is the most general case of the109

sporadic real-time task model. To quantify the performance loss due to efficient schedu-110

lability tests and the non-optimality of scheduling algorithms, we will adopt the notion111

of speedup factors/bounds, also known as resource augmentation factors/bounds. Table 1112

summarizes the state-of-the-art speedup bounds for the global deadline-monotonic (DM)113

scheduling, one specific global fixed-priority scheduling algorithm. Under global DM, a task114

τi has higher priority than task τj if Di ≤ Dj , in which ties are broken arbitrarily. The115

authors note that the proof by Lundberg [34] seems incomplete. However, the concrete116

task set in [34] provides the lower bound 2.668 of the speedup factors for global DM. More-117

over, Andersson [1] showed that global slack monotonic scheduling has a speedup bound of118

3+
√

5
2 ≈ 2.6181 for implicit-deadline task systems. However, no better global fixed-priority119

scheduling algorithms with respect to speedup factors are known for constrained-deadline120

and arbitrary-deadline task systems.121

Our Contributions: Table 1 summarizes the related results and the contribution of122

this paper for multiprocessor global fixed-priority preemptive scheduling. We improve the123

best known results by Baruah and Fisher [8] with respect to the speedup bounds. Our124

contributions are:125

For any global fixed-priority preemptive scheduling, we provide a series of schedulability126

tests with different tradeoffs between time complexity and accuracy in Section 3 and127

Section 4.128

We show that the global deadline-monotonic scheduling algorithm has a speedup factor129

3−1/M with respect to the optimal multiprocessor scheduling policies when considering130

task systems with arbitrary deadlines. This improves the analyses by Fisher and Baruah131

with respect to the speedup bounds, i.e., 4− 1/M [9] and 3.73 [8].132

We show that all the schedulability tests we provide in this paper analytically dominate133

the tests by Baruah and Fisher [8] for global DM. We also show that global DM has a134

ECRTS 2018



8:4 Push Forward: Arbitrary-Deadline Sporadic Task Systems

implicit deadlines constrained deadlines arbitrary deadlines

Global DM
upper bounds

2.668 [34] (poly.-time) 3− 1/M [7] (expo.-time) 2(M−1)
4M−1−

√
12M2−8M+1

≤ 3.73 [8] (expo.-time)

2.823 [18] (poly.-time) 3− 1/M [18] (poly.-time) 3− 1
M

(this paper) (poly.-time)

lower bounds
2.668 [34] 2.668 [34] 2.668 [34]

3− 3
M+1 (this paper)

Table 1 Speedup bounds of the global deadline-monotonic (DM) scheduling algorithm for spo-
radic task systems.

speedup lower bound of 3− 3/(M + 1), which shows that our schedulability analyses are135

asymptotically tight with respect to the speedup factors.136

2 System Model, Definitions, and Assumptions137

We consider an arbitrary-deadline sporadic task set T with N tasks executed on M ≥ 2138

identical processors based on global fixed-priority preemptive scheduling. We assume that139

the priority levels of the tasks are unique (and given) and that τi has higher priority than140

task τj if i < j. When there is only one processor, i.e., M = 1, the existing results discussed141

in Section 1.1 can be adopted, and our analysis here cannot be applied. We will implicitly142

use the assumption M ≥ 2 in the paper.143

By definition, M is an integer. In addition to Ci, Ti, Di, we also define the utilization Ui144

task τi as Ci/Ti. We will implicitly assume that Di > 0, Ci > 0, Ti > 0, Ci/Di ≤ 1, and145

Ui ≤ 1 ∀τi in this paper. Moreover, intra-task parallelism is not allowed. At most one job of146

task τi can be executed on at most one processor at each instant in time, regardless of the147

number of the jobs of task τi awaiting for execution and the number of idle processors. We148

denote the set of natural numbers as N.149

2.1 Resource Augmentation150

We assume the original platform speed is 1. Therefore, running the platform at speed s151

implies that the worst-case execution time of task τi becomes Ci/s. A scheduling algorithm152

A has a speedup bound s with respect to the optimal schedule, if it guarantees to always153

produce a feasible solution when 1) each processor is sped up to run at s times of the original154

speed of the platform and 2) the task set T can be feasibly scheduled on the original M155

identical processors, i.e., running at speed 1.156

We will use the negation of the above definition to quantify the failure of algorithm A: If157

A fails to ensure that all the tasks in T meet their deadlines, then no feasible multiprocessor158

schedule exists when each processor is slowed down to run at speed 1/s.159

2.2 Definitions and Necessary Condition160

We define the following notation according to the task system and the priority assignment:161

density δi of task τi: δi = Ci/min{Di, Ti}162

maximum density δmax(k) among the first k tasks: δmax(k) = maxki=1 δi163

maximum between the utilization of the higher-priority tasks and the density of task164

τk: Umax
δ,k = max{maxk−1

i=1 Ui, δk}165

demand bound function [10] dbf(τi, t) of task τi, further explained in Definition. 2.1166

load load(k) of the first k tasks: load(k) = maxt>0

∑k

i=1
dbf(τi,t)
t167
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I Definition 2.1 (demand bound function (dbf) by Baruah [10]). For any t ≥ 0168

dbf(τi, t) = max
{

0,
(⌊

t−Di

Ti

⌋
+ 1
)
Ci

}
(1)169

The demand bound function dbf(τi, t) defines the execution time task τi must finish for any170

interval length t to ensure its timing correctness.171

Since δi ≥ Ui by definition, we know that Umax
δ,k ≤ δmax(k). As we assume Ci/Di ≤ 1172

and Ui ≤ 1 we know that δi ≤ 1. In addition to DBFs, we will heavily use the following173

workload function:174

I Definition 2.2 (Workload function). Let worki(t) be a workload function, representing175

the maximum amount of time for sequentially executing the jobs of task τi released in time176

interval [a, a+ t), i.e., jobs released before a are not considered. For any t ≥ 0177

worki(t) =
⌊
t

Ti

⌋
Ci + min

{
Ci, t−

⌊
t

Ti

⌋
Ti

}
. (2)178

For notational brevity, we set worki(t) to −∞ if t < 0.179

The workload function worki(t) defined above is a piecewise function, i.e., linear in intervals180

[`Ti, `Ti +Ci] with a slope 1 and constant, (`+ 1)Ci, in intervals [`Ti +Ci, (`+ 1)Ti] for any181

non-negative integer `. Two examples of the workload function are illustrated in Figure 2182

in Section 3. To prove the speedup bound, we will utilize the following necessary condition.183

I Lemma 2.3. A task set T with N tasks is not schedulable by any multiprocessor scheduling184

algorithm when the M processors are running at any speed s, if185

max
{

max
t>0

∑
τi∈T dbf(τi, t)

Mt
,

∑
τi∈T Ui

M
, δmax(N)

}
> s. (3)186

Proof. This is widely used based on a reformulation in the literature, e.g., [8, 9]. J187

2.3 Analysis Based on DBFs188

Baruah and Fisher in [8] provided a schedulability test for task τk under global deadline-189

monotonic (DM) scheduling that is based on the Demand Bound Functions (DBF), assuming190

that the tasks are sorted according to DM order already, i.e., D1 ≤ D2 ≤ . . . ≤ DN :191

I Theorem 2.4 (Baruah and Fisher [8], revised in [17]). Let µk be defined as M − (M −192

1)δmax(k). Task τk is schedulable under global DM if 1
193

2load(k) + (dµke − 1)δmax(k) ≤ µk. (4)194

3 Schedulability Test by Pushing Forward195

In this section, we provide several conditions for the schedulability of task τk under a given196

preemptive global fixed-priority scheduling algorithm. They lead to a sufficient schedulabil-197

ity test for τk, assuming that the schedulability of the tasks τ1, τ2, . . . , τk−1 under the given198

1 The original proof by Baruah and Fisher [8] had a mathematical flaw in their Lemma 3, i.e., setting
µk to M − (M − 1)δk. It can be fixed by setting µk to M − (M − 1)δmax(k).

ECRTS 2018



8:6 Push Forward: Arbitrary-Deadline Sporadic Task Systems

algorithm is already verified. This means that for all tasks τi with i < k the worst-case199

response time is at most Di. Therefore, the test should be applied for all tasks, i.e., from200

the highest-priority task to the lowest-priority task, to ensure the schedulability of the task201

set under the (specified/given) global fixed-priority scheduling. As the test presented here202

has a high time complexity, we provide more efficient tests in Section 4.203

3.1 Analysis Window Extension204

We analyze the schedulability of τk by looking at the intervals where τk is active in the sched-205

ule S provided by the global fixed-priority scheduling algorithm according to the following206

definition:207

I Definition 3.1 (active task). For a schedule S, a task τi is active at time t, if there is208

(at least) one job of τi that has arrived before or at t and has not finished yet at time t.209

The schedulability conditions are proved by using contrapositive. Suppose a schedule S210

produced by the given global fixed-priority scheduling algorithm and that td is the earliest211

(absolute) deadline at which a job of task τk misses its deadline. Let ta be the time instant in212

S such that τk is continuously active in the time interval [ta, td) and is not active immediately213

prior to ta. By definition, ta must be the arrival time of a job of task τk. Suppose that td214

is the absolute deadline of the `-th job of task τk that arrived in the time interval [ta, td).215

Therefore, as τk is a sporadic task, td − ta ≥ (` − 1)Tk + Dk. For notational brevity, we216

define D′k = (`− 1)Tk +Dk and C ′k = `Ck.217

We remove all the jobs of task τk that arrive before ta and all the jobs with priorities218

lower than τk from the schedule S. The schedule of task τk remains unchanged in the219

resulting (new) schedule S, due to the preemptiveness of the global fixed-priority scheduling220

algorithm. Let C∗k be the amount of time that task τk is executed from ta to td. Since the221

`-th job of task τk misses its deadline, we know that C∗k < `Ck = C ′k. We now introduce222

three functions that are defined for any t ≤ td.223

Let E(t, td) be the amount of workload (sum of the execution times) of the higher-priority224

jobs, i.e., from τ1, τ2, . . . , τk−1, executed in the time interval [t, td) in schedule S.225

Let W (t, td) be C∗k + E(t, td).226

Let Ω(t, td) be W (t,td)
td−t .227

Those definitions and the deadline miss of task τk at time td lead to the following lemma.228

I Lemma 3.2. Since τk misses its deadline at td in S, the following conditions hold:229

E(ta, td) ≥M × (td − ta − C∗k) (5)230

W (ta, td) > M × (td − ta)− (M − 1)C ′k (6)231

Ω(ta, td) > M − (M − 1)× C ′k
D′k

(7)232

233

Proof. Since task τk is active from ta to td and is only executed for exactly C∗k amount of234

time, we know that all M processors must be busy executing other higher-priority jobs for235

at least td − ta − C∗k amount of time. Therefore, the amount of workload E(ta, td) of the236

higher-priority jobs executed in the time interval [ta, td) must be at least M × (td− ta−C∗k),237
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Edeadline miss
time

tdta

≥ (`− 1)Tk +Dk = D′k

t0ti

τi is active

φi ∆

Figure 1 The notation used in Section 3: 1) task τk is continuously active from ta to td with a
deadline miss at time td; 2) time instant t0 is the smallest value of t ≤ ta such that Ω(t, td) ≥ µk;
3) time instant ti is the arrival time of a higher-priority carry-in task τi if τi is continuously active
in time interval [ti, t0 + ε], where ti < t0 and ε > 0 is an arbitrarily small number; 4) φi is t0 − ti
and ∆ is td − t0.

i.e., Eq. (5) must hold.2 Therefore, since W (ta, td) is defined as E(ta, td) + C∗k , we have238

W (ta, td) ≥M × (td − ta − C∗k) + C∗k > M × (td − ta)− (M − 1)C ′k,239

where the last inequality is due to M ≥ 2 and C ′k > C∗k . This leads to the conditions in240

Eq. (6). Since Ω(ta, td) is defined as W (ta,td)
td−ta and D′k ≤ td − ta, we have241

Ω(ta, td) ≥M − (M − 1) C ′k
td − ta

≥M − (M − 1)C
′
k

D′k
,242

i.e., the condition in Eq. (7). J243

Although the interval [ta, td) can already be used for constructing the schedulability tests,244

researchers have tried to push the interval of interest towards [t0, td) for some t0 ≤ ta based245

on certain properties, e.g., [31, 9, 8]. Such extensions have been shown to provide better246

quantifications of the interfering workload from the higher-priority tasks. In our analysis,247

we will use a similar extension strategy as suggested by Baruah and Fisher [8] based on a248

user-specified parameter ρ.249

The following definition and lemmas are from [8]. Figure 1 provides an illustration of250

our notation based on the above definitions.251

I Definition 3.3. Suppose that µk = M − (M − 1)ρ for a certain ρ with 1 ≥ ρ ≥ C′k
D′
k
. For252

the schedule S, let time instant t0 be the smallest value of t ≤ ta such that Ω(t, td) ≥ µk.253

This means, Ω(t, td) < µk for any t < t0.254

I Lemma 3.4. If τk misses its deadline at td, for any ρ with 1 ≥ ρ ≥ C′k
D′
k
, the time t0, as255

defined in Definition 3.3, always exists with Ω(t0, td) ≥ µk and t0 ≤ ta.256

Proof. By Eq. (7) from Lemma 3.2 and ρ ≥ C′k
D′
k
, we know257

Ω(ta, td) > M − (M − 1)× C ′k
D′k
≥M − (M − 1)ρ = µk.258

Therefore, such a time instant t0 ≤ ta exists, at least when the system starts. J259

I Definition 3.5 (carry-in task). A task τi is a carry-in task in the schedule S, if τi is260

continuously active in a time interval [ti, t0 + ε], for ti < t0 and an arbitrarily small ε > 0.261

262

I Lemma 3.6. For 1 ≥ ρ ≥ C′k
D′
k
, there are at most dM − (M − 1)ρe − 1 carry-in tasks at t0263

in schedule S.264

2 The condition in Eq. (5) is widely used in the form of E(ta, td) > M × (td − ta − `Ck). Here, since we
will use C∗k , the correct form is with ≥.

ECRTS 2018



8:8 Push Forward: Arbitrary-Deadline Sporadic Task Systems

3.2 Analysis Based on Workload Functions265

By extending the interval of interest to [t0, td), Baruah and Fisher provided the schedulability266

test shown in Theorem 2.4 in this paper. However, they analyzed the workload in [t0, td)267

based on the DBFs by using the function load(k) as an approximation, which will be shown268

pessimistic in Corollary 5.1 in Section 5. Moreover, their final analysis can only be applied269

for global DM. We will carefully analyze the workload executed in [t0, td) to ensure that270

the analytical accuracy is better preserved and that the analysis can be used for any global271

fixed-priority preemptive scheduling. We will demonstrate that our analysis dominates the272

analysis by Baruah and Fisher [8] in Corollary 5.1.273

For the analysis before Theorem 3.10, we will assume that ρ is given and t0 is already274

defined. According to Lemma 3.6, at time t0 at most dM − (M − 1)ρe−1 tasks are active in275

schedule S. We quantify their contribution to the executed workload in time interval [t0, td)276

with two different forms from Lemma 3.7, denoted by ωheavyi (td− t0), and from Lemma 3.8,277

denoted by ωlighti (td − t0). While Lemma 3.7 can be used in general, Lemma 3.8 only holds278

if Ui ≤ ρ. After these workload functions are detailed and explained, we will show their279

relationship in Lemma 3.9. Then, we will explain how they can be used and detail the280

constructed schedulability test in Theorem 3.10 based on the above concepts.281

I Lemma 3.7. If all jobs of a higher-priority task τi meet their deadlines, the upper bound282

ωheavyi (∆) on the workload of task τi executed from t0 to td with ∆ = td − t0 in schedule S283

is at most:284

ωheavyi (∆) = worki(∆ +Di). (8)285
286

Proof. Since all jobs of τi meet their deadlines, the jobs of τi executed in [t0, td) must arrive287

in the time interval (t0−Di, td). Therefore, the workload of task τi that can be sequentially288

executed is upper bounded by the workload function with length td−(t0−Di) = ∆+Di. J289

The key improvement achieved in this paper is due to the following Lemma 3.8 to safely290

bound the workload of a light task.291

Figure 2 demonstrates the workload function for different cases in Lemma 3.8, together292

with a linear approximation that will be presented in Lemma 4.3. For the workload function293

defined in Eq. (9), informally speaking, the workload defined by (p2 + 1)Ci + max{0, Ci −294

ρ(Ti − q2)} can be imagined as if 1) there is an offset for Ci amount of execution time295

at beginning of the interval, and 2) the workload in each period starting from Ci + p2Ti to296

Ci+(p2 +1)Ti is pushed to the end of the period with a slope ρ. For example, in Figure 2(b),297

the offset is 3, the workload increases from 3 at time 7 to 6 at time 13 with a slope ρ = 0.5,298

the workload increases from 6 at time 17 to 9 at time 23 with a slope ρ = 0.5, etc.299

I Lemma 3.8. If all jobs of a higher-priority task τi meet their deadlines and Ui ≤ ρ ≤ 1,300

the upper bound ωlighti (∆) on the workload of task τi executed from t0 to td with ∆ = td− t0301

in schedule S is:302

ωlighti (∆) =


∆ if 0 < ∆ ≤ Ci

max

{
worki(∆),
(p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)}

}
if ∆ > Ci

(9)303

304

where p2 = d(∆− Ci)/Tie − 1 and q2 is ∆− Ci − p2Ti.305

Proof. As the case when 0 < ∆ ≤ Ci is due to the definition, let ∆ > Ci for the rest of306

the proof. Based on the schedule S, let ti < t0 be the time instant such that task τi is307
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∆
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ωlighti (∆) = (p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)} (solid)
worki(∆) (dotted)

safe approximation of ωlighti (∆) in Lemma 4.3 (dashed)

(a) Ui = 0.3 and ρ = 0.3

∆
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ωlighti (∆) = (p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)} (solid)
worki(∆) (dotted)

safe approximation of ωlighti (∆) in Lemma 4.3 (dashed)

(b) Ui = 0.3 and ρ = 0.5

Figure 2 Two examples for the approximation of worki for τi with Ti = 10, Ci = 3, Di = 45:
black curves for ωlighti (∆) defined in Lemma 3.8 and the approximation in Lemma 4.3 (blue curves).

continuously active in the time interval [ti, t0] and task τi is not active immediately prior to308

ti. If ti does not exist, then task τi does not have workload released before t0 that is still309

active. Therefore, the worst-case workload is worki(∆) in this case.310

Let φi be t0 − ti. By the definition of ti, if it exists, there are at most
⌈
φi
Ti

⌉
jobs of task311

τi executed in time interval (ti, t0]. For the rest of the proof, we only consider that ti exists312

and that ∆ > Ci. By definition, ti must be the arrival time of a job of task τi. Moreover,313

due to the definition of t0 in Definition 3.3, we know that Ω(ti, td) < M − (M − 1)ρ. Since314

Ω(ti, td) < M − (M − 1)ρ and Ω(t0, td) ≥M − (M − 1)ρ, we have315

W (t0, td) = Ω(t0, td) · (td − t0) ≥ (td − t0)µk = ∆µk (10)316

W (ti, td) = Ω(ti, td) · (td − ti) < (td − ti)µk = (∆ + φi)µk (11)317
318

Substracting Eq. (11) by Eq. (10), we have W (ti, td)−W (t0, td) < φiµk, i.e., in schedule S319

the workload executed in time interval [ti, t0) is strictly less than φiµk. Suppose that yi is320

the amount of time that task τi is executed in time interval [ti, t0), i.e., task τi is active but321

blocked by other higher-priority jobs for φi− yi amount of time in this time interval. When322

task τi is blocked in global fixed-priority scheduling, all theM processors are executing other323

jobs. The workload executed in time interval [ti, t0) is at least M(φi − yi) + yi. Therefore,324

by the above discussions, we know that325

M(φi − yi) + yi < φiµk = φi(M − (M − 1)ρ)⇒ yi > ρφi, (12)326

since M ≥ 2. At time t0, the remaining execution time of the jobs of task τi that arrived327

before t0 in schedule S is at most dφi/TieCi − ρφi. Note that the existence of ti in our328

definition means that dφi/TieCi − yi > 0, i.e., dφi/TieCi − ρφi > 0.329

The workload of task τi that is executed in the time interval [ti, td) in schedule S is at330

most worki(td − ti) = worki(∆ + φi). The workload of task τi that is executed in the time331

interval [ti, t0) is at least y > ρφi. Therefore, the workload of task τi that is executed in the332

time interval [t0, td) in schedule S is upper bounded by worki(∆ + φi)− ρφi.333

The rest of the proof is to provide an upper bound of worki(∆+φi)−ρφi for any arbitrary334

φi > 0. The proof involves some detailed manipulations of the workload function. Before335

proceeding, we explain two basic properties of the workload function here by inspecting the336

periodicity of the workload function worki(t) where p = bt/Tic, a non-negative integer:337

For t = pTi + x with 0 ≤ x, the recursion worki(pTi + x) = pCi + worki(x) holds.338

For t = pTi + x with 0 ≤ x ≤ Ci, the simplification worki(pTi + x) = pCi + x holds.339
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To identify the exact value of worki(∆ + φi), we define the following variables p1, p2, q1,340

and q2 for brevity:341

Let p1 be dφi/Tie−1 and q1 be φi−p1Ti, i.e., p1 +1 is the number of jobs of task τi that342

can be released in [ti, t0]. By definition φi > 0, which implies that p1 is a non-negative343

integer, 0 < q1 ≤ Ti, and φi = p1Ti + q1.344

Let p2 be d(∆− Ci)/Tie − 1 and q2 be ∆− Ci − p2Ti, i.e., p2 + 1 is the number of jobs345

of task τi that can be released in [t0 + Ci, td]. Due to the assumption ∆ > Ci, we know346

that p2 is a non-negative integer, 0 < q2 ≤ Ti, and ∆− Ci = p2Ti + q2.347

By the above definition, we achieve φi + ∆ = (p1 + p2)Ti + q1 + q2 + Ci, and348

worki(∆ + φi)− ρφi349

= worki((p1 + p2)Ti + q1 + q2 + Ci)− ρ(p1Ti + q1)350

= worki(p2Ti + q1 + q2 + Ci) + p1Ci − ρ(p1Ti + q1)351

= worki(p2Ti + q1 + q2 + Ci) + p1UiTi − ρ(p1Ti + q1)352

≤ worki(p2Ti + q1 + q2 + Ci)− ρq1 (13)353
354

where the inequality is due to the assumption that 0 ≤ Ui ≤ ρ. We will prove that the right-355

hand side of Eq. (9) is a safe upper bound on the condition in Eq. (13). By the definition356

of q1 and q2, we know that 0 ≤ q1 + q2 ≤ 2Ti, i.e., Ci ≤ p2Ti + q1 + q2 + Ci ≤ 2Ti + Ci.357

Depending on the value of q1 + q2, there are four cases for different (linear or constant)358

segments of worki(p2Ti + q1 + q2 + Ci) to be analyzed:359

Case 1: 0 ≤ q1 + q2 ≤ Ti − Ci: That is, p2Ti + Ci ≤ p2Ti + q1 + q2 + Ci ≤ p2Ti + Ti.360

Therefore, worki(p2Ti + Ci) ≤ worki(p2Ti + q1 + q2 + Ci) ≤ worki(p2Ti + Ti). Since361

worki(p2Ti + Ci) = worki(p2Ti + Ti) = (p2 + 1)Ci, we have362

RHS. of Eq. (13) =(p2 + 1)Ci − ρq1 ≤ worki(p2Ti + Ci + q2) = worki(∆),363
364

where ≤ is due to ρ ≥ 0 and q1 > 0.365

Case 2: Ti − Ci < q1 + q2 ≤ Ti: By definition, when p2 is a nonnegative integer and366

0 < x ≤ Ci, worki((p2+1)Ti+x) = (p2+1)Ci+x. By Ti−Ci < q1+q2 ≤ Ti, we know that367

(p2 +1)Ti < p2Ti+q1 +q2 +Ci ≤ (p2 +1)Ti+Ci. Therefore, worki(p2Ti+q1 +q2 +Ci) =368

(p2 + 1)Ci + (p2Ti + q1 + q2 +Ci − (p2 + 1)Ti) = (p2 + 1)Ci + (q1 + q2 +Ci − Ti). Let η369

be Ti − (q1 + q2). By definition η ≥ 0. Therefore,370

RHS. of Eq. (13) =(p2 + 1)Ci + (Ci − η)− ρ(Ti − q2 − η)371

=(p2 + 1)Ci + (Ci − ρ(Ti − q2)) + η(ρ− 1)372

≤(p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)},373
374

where ≤ is due to 0 ≤ ρ ≤ 1 and η ≥ 0.375

Case 3: Ti < q1 + q2 ≤ 2Ti − Ci: Thus, worki(p2Ti + q1 + q2 + Ci) = (p2 + 2)Ci, and376

RHS. of Eq. (13) = (p2 + 1)Ci + Ci − ρq1 ≤ (p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)},377

where ≤ is due to ρ ≥ 0 and q1 + q2 > Ti.378

Case 4: 2Ti − Ci < q1 + q2 ≤ 2Ti: In this case worki(p2Ti + q1 + q2 + Ci) is equal to379

(p2 +2)Ci+(q1 +q2 +Ci−2Ti), similar to the analysis in Case 2. Let η be 2Ti−(q1 +q2).380

By definition η ≥ 0. Therefore,381

RHS. of Eq. (13) =(p2 + 1)Ci + 2Ci − η − ρ(2Ti − q2 − η)382

=(p2 + 1)Ci + Ci + Ti(Ui − ρ)− η(1− ρ)− ρ(Ti − q2)383

≤(p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)},384385
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where ≤ is due to 0 < Ui ≤ C′k
D′
k
≤ ρ ≤ 1 and η ≥ 0, i.e., Ui − ρ ≤ 0 and −η(1− ρ) ≤ 0.386

Since 0 < q1 + q2 ≤ 2Ti, we know that worki(∆) is a safe upper bound for Case 1 and that387

(p2 + 1)Ci + max{0, Ci− ρ(Ti− q2)} is a safe upper bound for the other cases, and we reach388

the conclusion of this lemma. J389

I Lemma 3.9. If Ui ≤ ρ, then ωheavyi (∆) ≥ ωlighti (∆) for all ∆ > 0.390

Proof. This inequality can be proved formally, but can also be derived by following the391

definitions. When 0 < ∆ ≤ Ci, the inequality holds naturally. In the proof of Lemma 3.8,392

the workload of task τi that is executed in the time interval [ti, td) in schedule S is at most393

worki(td − ti) = worki(∆ + φi). Since φi ≤ Di, we know that ωlighti (∆) ≤ worki(∆ + φi) ≤394

worki(∆ +Di) = ωheavyi (∆). J395

Here is a short summary of the information provided by Lemmas 3.6, 3.7, and 3.8.396

According to Lemma 3.6, at time t0, there are at most dM − (M − 1)ρe − 1 = dµke − 1397

carry-in tasks.398

Among the dµke − 1 carry-in tasks, there are two types of carry-in tasks, i.e., heavy399

and light tasks. A light carry-in task τi can be described by ωlighti (∆) from Eq. (9)400

if the utilization is no more than ρ and a heavy carry-in task τi can be described by401

ωheavyi (∆) from Eq. (8). By observing the conditions in Eqs. (8) and (9), we know that402

worki(∆) ≤ ωlighti (∆) ≤ ωheavyi (∆).403

Since ρ is a user-defined parameter, a smaller ρ implies a larger µk, i.e., potentially more404

carry-in tasks and more heavy carry-in tasks. By constrast, a larger ρ implies a smaller405

µk, i.e., potentially less carry-in tasks and more light carry-in tasks. Therefore, a larger406

ρ is better for minimizing the carry-in workload.407

However, the window of interest [t0, td) is defined by the condition Ω(t0, td) ≥ M −408

(M − 1)ρ. The window of interest is smaller when ρ is larger. As a result, there is no409

monotonicity with respect to the schedulability test for setting the value of ρ.410

I Theorem 3.10. Task τk is schedulable by the given global fixed-priority scheduling if411

∀` ∈ N, ∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), ∀∆ ≥ (`− 1)Tk +Dk412

`Ck +
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆) ≤ ∆ · µk (14)413

414

holds, where µk = M − (M − 1)ρ,415

ωdiffi (∆, ρ) =
{
ωheavyi (∆)− worki(∆) if Ui > ρ

ωlighti (∆)− worki(∆) if Ui ≤ ρ
(15)416

and Tcarry is the set of the dµke − 1 tasks among the k − 1 higher-priority tasks with the417

largest values of ωdiffi (∆, ρ). If Dk ≤ Tk, we only need to consider ` = 1.418

Proof. We prove this theorem by contrapositive, i.e., task τk misses its deadline first at419

time td in a global fixed-priority preemptive schedule S. We know that ta can be defined420

for schedule S, and t0, i.e., Ω(t0, td) ≥ M − (M − 1) × C′k
D′
k
in Definition 3.3 can be defined421

for any ρ with 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk) due to Lemma 3.4.422

By the existence of td, the choice of ρ, and the definition of t0 in Definition 3.3, we know423

that the deadline miss of task τk at time td in the schedule S implies424

∃` ∈ N,∀1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk),∃∆ = td − t0, Ω(t0, td) ≥M − (M − 1)ρ
(16)

425

426
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By the fact that C∗k < C ′k = `Ck and the definition of Ω(), we have427

Ω(t0, td) = C∗k + E(t0, td)
td − t0

<
`Ck + E(t0, td)

td − t0
(17)428

429

By Lemma 3.6, for a specific ρ, there are at most dM − (M − 1)ρe − 1 = dµke − 1430

higher-priority carry-in tasks at time t0 and the other higher-priority tasks do not have any431

unfinished job at time t0. Suppose that Theavy and Tlight are the sets of the heavy and432

light carry-in tasks at time t0, respectively. By Lemma 3.6, |Theavy| + |Tlight| ≤ dµke − 1.433

Therefore, by using Lemmas 3.7 and 3.8 and 3.9, we have434

E(t0, td) ≤
∑

τi∈Theavy

ωheavyi (∆) +
∑

τi∈Tlight

ωlighti (∆)435

=
∑

τi∈Theavy

(
ωheavyi (∆)− worki(∆)

)
+

∑
τi∈Tlight

(
ωlighti (∆)− worki(∆)

)
+
k−1∑
i=1

worki(∆) (18)436

≤
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆) (19)437

438

where ωdiffi (∆, ρ) is defined in Eq. (15), and Tcarry is defined in the statement of the439

theorem.440

By Eqs. (16), (17), and (19), and the fact td − ta ≥ D′k = (` − 1)Tk + Dk, the deadline441

miss of task τk at td implies442

∃` ∈ N,∀1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk),∃∆ ≥ (`− 1)Tk +Dk443

`Ck +
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆) > ∆ · µk (20)444

445

Therefore, the negation of the above necessary condition for the deadline miss of task τk446

at time td is a safe sufficient schedulability test. We reach the conclusion of the schedulability447

test.448

When Dk ≤ Tk, since td is the earliest moment in the schedule S with a deadline miss449

of task τk, we know that ta is by definition td −Dk and ` is 1. Therefore, we only have to450

consider ` = 1 when Dk ≤ Tk. J451

The schedulability test described in Theorem 3.10 can be informally explained as follows:452

1) it requires to test all the possible positive integers for `, like the busy-window concept, 2)453

it has to find a ρ value in the specified range, and 3) for the specified combination of ` and454

ρ, we have to test whether the condition in Eq. (14) holds for every ∆ ≥ (`− 1)Tk +Dk.455

3.3 Remarks on Implementing Theorem 3.10456

Unfortunately, due to the following issues, implementing the schedulability test in Theo-457

rem 3.10 directly would lead to a high time complexity:458

Issue 1 due to ∆: For specific ` and ρ, testing the schedulability condition in Eq. (14)459

requires to evaluate all ∆ ≥ (`− 1)Tk +Dk. Suppose that HP (k) is the hyper-period of460

{τ1, τ2, . . . , τk−1}, i.e., the least common multiple of the periods of τ1, τ2, . . . , τk−1. Since461

worki(∆) +HP (k)Ui = worki(∆ +HP (k)), ωlighti (∆) +HP (k)Ui = ωlighti (∆ +HP (k)),462

and ωheavyi (∆) +HP (k)Ui = ωheavyi (∆ +HP (k)), we only have to test ∆ ∈ [(`− 1)Tk +463

Dk, (` − 1)Tk + Dk + HP (k)], as long as
∑k−1
i=1 Ui ≤ µk. However, the time complexity464

can still be exponential. We will explain how to reduce this complexity by using safe465

upper bounds in Section 4.466
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Issue 2 due to ρ: For a specific `, the schedulability condition in Eq. (14) is dependent467

on the selection of ρ. If ρ is smaller, then µk is larger, and vice versa. A smaller ρ increases468

the right-hand side in the schedulability test in Eq. (14), but it also increases the left-469

hand side, since there are potentially more carry-in tasks. One simple strategy to find a470

suitable ρ instead of searching for all values of ρ is to start from ρ = `Ck/((`−1)Tk+Dk471

and increase ρ to the next (higher) Ui for certain higher-priority task τi if necessary.472

Therefore, in the worst case, we only have to consider k different ρ values. We will deal473

with this in Theorems 4.4 and 4.5 in Section 4.474

Issue 3 due to `: We need to consider all positive integer values of ` in the schedulability475

condition in Eq. (14), as the test is only valid when the condition holds for all ` ∈ N.476

Therefore, if we only test some `, it is necessary to prove that the other ` configurations477

are also covered even though they are not tested. We will explain how to deal with this478

in Theorems 4.6 and 4.7 in Section 4.479

4 Efficient Schedulability Tests480

In this section we provide several schedulability tests based on approximate workload func-481

tions to test the schedulability of task τk more efficiently. The following three lemmas482

approximate the piecewise linear workload function worki(∆), ωheavyi (∆) and ωlighti (∆) by483

linear functions with respect to ∆ for any ∆ ≥ 0.484

I Lemma 4.1. When 0 ≤ Ui ≤ 1, for any ∆ ≥ 0,485

worki(∆) ≤ Ci − CiUi + Ui∆. (21)486

Proof. This inequality was already stated in Eq. (5) by Bini et al. [14] as a fact. Here, we487

provide the proof for completeness. Suppose that ∆ is p3Ti + q3, where p3 is
⌊

∆
Ti

⌋
and q3 is488

∆ −
⌊

∆
Ti

⌋
Ti. Therefore, we know Ui∆ = p3Ci + q3Ui and worki(∆) = p3Ci + min{Ci, q3}.489

We have to consider two cases:490

If q3 ≤ Ci: we have491

worki(∆) = p3Ci + q3 ≤ p3Ci + Ci − (Ci − q3)492

≤1 p3Ci + Ci − (Ci − q3)Ui = Ci − CiUi + Ui∆,493494

where ≤1 is due to 0 ≤ Ui ≤ 1 and Ci − q3 ≥ 0.495

If q3 > Ci: we have496

worki(∆) = p3Ci + Ci ≤ p3Ci + Ci + (q3 − Ci)Ui = Ci − CiUi + Ui∆,497498

where ≤ is due to 0 ≤ Ui ≤ 1 and q3 − Ci > 0.499

J500

I Lemma 4.2. For any ∆ ≥ 0,501

ωheavyi (∆) ≤ Ci + UiDi − CiUi + Ui∆. (22)502

Proof. Due to Lemma 3.7 and Lemma 4.1, the inequality holds. J503

I Lemma 4.3. If Ui ≤ ρ ≤ 1, for any ∆ ≥ 0,504

ωlighti (∆) ≤ Ci − CiUi + Ui∆. (23)505
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Proof. We consider the three upper bounds in Lemma 3.8 individually. When ∆ ≤ Ci, this506

follows from Lemma 4.1 directly. When ∆ > Ci and ωlighti (∆) = worki(∆), it holds due to507

Lemma 4.1 as well.508

For the last case we have to bound (p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)}, as defined509

in Lemma 3.8. By the definition of p2 and q2, i.e., ∆ − Ci = p2Ti + q2, in the statement510

of Lemma 3.8, we have p2 + 1 = d(∆− Ci)/Tie and (p2 + 1)Ci = worki(p2Ti + Ci) =511

worki(∆− q2). Therefore, for any ∆ > Ci, if Ci − ρ(Ti − q2) ≥ 0, we get512

ωlighti (∆) = (p2 + 1)Ci + Ci − ρ(Ti − q2)513

= worki(∆− q2) + Ci − ρ(Ti − q2)514

≤1 Ci − CiUi + Ui(∆− q2) + Ci − ρ(Ti − q2)515

= Ci − CiUi + Ui∆− q2(Ui − ρ)− Ti(ρ− Ui)516

= Ci − CiUi + Ui∆ + (Ti − q2)(Ui − ρ)517

≤2 Ci − CiUi + Ui∆,518
519

where ≤1 is due to Lemma 4.1 and ≤2 is due to q2 ≤ Ti and Ui ≤ ρ. For any ∆ > Ci, if520

Ci − ρ(Ti − q2) < 0, similarly, we have521

ωlighti (∆) =(p2 + 1)Ci = worki(p2Ti + Ci) ≤ worki(p2Ti + Ci + q2) = worki(∆)522

≤Ci − CiUi + Ui∆.523
524

Therefore, we reach the conclusion. J525

With the help of the above lemmas for safe approximations, we can now safely and526

efficiently handle the schedulability test for specific ` and ρ in the following theorem. This527

handles Issue 1 explained at the end of Section 3.528

I Theorem 4.4. Task τk is schedulable by the given global fixed-priority scheduling if529

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk)530

`Ck
D′k

+
∑

τi∈Tcarry−approx

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk, (24)531

532

where µk = M − (M − 1)ρ with 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), D′k is (`− 1)Tk +Dk,533

γi =
{

1 if Ui > ρ

0 if Ui ≤ ρ
(25)534

and Tcarry−approx is the set of the dµke− 1 tasks among the k− 1 higher-priority tasks with535

the largest values of γiUiDi. Note that |Tcarry−approx| can be smaller than dµke − 1 if the536

number of tasks with Ui > ρ is less than dµke − 1. If Dk ≤ Tk, we only need to consider537

` = 1.538

Proof. We prove that the condition in this theorem is a safe upper bound of that in The-539

orem 3.10. For specific `, ρ,∆, we can find Tcarry as defined in Theorem 3.10. By Lem-540

mas 4.1, 4.2, and 4.3 and the assumptions ∆ ≥ (`− 1)Tk +Dk = D′k and 0 < Ui ≤ 1∀τi, we541
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have542

`Ck +
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆)543

≤`Ck +
∑

τi∈Tcarry
γiUiDi +

k−1∑
i=1

(Ci − CiUi + Ui∆) (26)544

≤`Ck +
∑

τi∈Tcarry−approx
γiUiDi +

k−1∑
i=1

(Ci − CiUi + Ui∆) (27)545

≤∆ ·

`Ck
D′k

+
∑

τi∈Tcarry−approx

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

) (28)546

547

Therefore, the test in Theorem 3.10 can be safely over-approximated as follows:548

∀` ∈ N, ∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk)Tk +Dk549

`Ck
D′k

+

 ∑
τi∈Tcarry−approx

γiUiDi
D′k

+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk (29)550

551

J552

Theorem 4.4 provides two interesting implications to handle Issue 2. Firstly, if Ui ≤553

ρ, the linear approximation of worki(∆) by considering task τi as a non-carry-in task in554

Lemma 4.1 is the same as the linear approximation of ωlighti (∆) by considering task τi as a555

carry-in task in Lemma 4.3. Therefore, the carry-in tasks are only effective for those tasks556

τi with Ui > ρ. Secondly, for a specific `, deciding whether a specific ρ exists to pass the557

test in Eq. (24) can be done by only testing a finite number of ρ values, i.e. by starting from558

ρ = `Ck/((`− 1)Tk + Dk and increasing ρ to the next (higher) values where Tcarry−approx
559

changes. This means either 1) ρ = Ui for certain higher-priority task τi, i.e., the summation560

can be larger with the same number of summands; or 2) µk = M−(M−1)ρ is an integer, i.e.,561

the number of summands increases. This only has time complexity O((k+M) log(k+M)),562

mainly due to the sorting, when proper data structures are used. Details can be found in563

Appendix of the full version [21].564

4.1 Linear-Time Schedulability Tests565

The time complexity of Theorem 4.4 is due to the search of possible ρ values. Nevertheless,566

we can directly set ρ to Umax
δ,k which implies that there is no carry-in task in the linear-567

approximation form. With this simplification, we can conclude different schedulability tests568

in Theorems 4.5, 4.6, and 4.7. Although these tests are not superior to Theorem 4.4, our569

main target is the test in Theorem 4.7, which will be used mainly to derive the speedup570

bounds later in Theorem 5.2.571

I Theorem 4.5. Task τk is schedulable by the given global fixed-priority scheduling if ∀` ∈ N572

573

`Ck
D′k

+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ (M − (M − 1)Umax

δ,k ) (30)574

holds, where D′k is (`− 1)Tk +Dk.575
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Proof. This comes directly from Theorem 4.4 by setting ρ to Umax
δ,k and the facts that576

Umax
δ,k ≥ Ui for i = 1, 2, . . . , k − 1 and Umax

δ,k ≥ δk ≥ `Ck/((`− 1)Tk +Dk) by definition. J577

I Theorem 4.6. Suppose that Dk > Tk. Let b be Dk−Tk
Tk

. Task τk is schedulable by the given578

global fixed-priority scheduling algorithm if:579

k∑
i=1

Ui ≤ (M − (M − 1)Umax
δ,k ), when bUk −

k−1∑
i=1

Ci − CiUi
Tk

> 0 (31)580

Ck
Dk

+
k−1∑
i=1

(Ci − CiUi
Dk

+ Ui) ≤ (M − (M − 1)Umax
δ,k ), otherwise (32)581

582

Proof. For a given `, the left-hand side in Eq. (30) can be rephrased as:583

F (`) = `Ck
D′k

+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
=
`Uk +

∑k−1
i=1

Ci−CiUi
Tk

`+ b
+
k−1∑
i=1

Ui (33)584

585
586

The first order derivative of F (`) with respect to ` is:587

∂F (`)
∂`

=
bUk −

∑k−1
i=1

Ci−CiUi
Tk

(`+ b)2 . (34)588

We have to consider two cases:589

Case 1: if bUk −
∑k−1
i=1

Ci−CiUi
Tk

> 0, then F (`) is an increasing function with respect to590

`. Therefore, F (`) is maximized when `→∞, i.e., F (`) ≤
∑k
i=1 Ui.591

Case 2: if bUk −
∑k−1
i=1

Ci−CiUi
Tk

≤ 0, then F (`) is a non-increasing function with respect592

to `. Therefore, F (`) is maximized when `→ 1, i.e., F (`) ≤ Ck
Dk

+
∑k−1
i=1 (Ci−CiUiDk

+ Ui).593

J594

I Theorem 4.7. Task τk is schedulable by the given global fixed-priority scheduling if595

δk +
k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
≤M − (M − 1)Umax

δ,k (35)596

597

Proof. Based on Theorem 4.5 and the two facts that D′k = (` − 1)Tk + Dk ≥ Dk and598

δk ≥ `Ck/((`− 1)Tk +Dk) for all ` ∈ N, we reach the conclusion. J599

4.2 Dominance600

We now show analytical dominance among the tests presented above and in Theorem 3.10 in601

the following corollary. A test B1 analytically dominates another test B2 if the schedulability602

condition in B1 always dominates that in B2. This means, if task τk is deemed schedulable603

by B2, task τk is also deemed schedulable by B1.604

I Corollary 4.8. For arbitrary-deadline sporadic real-time systems under global fixed-priority605

scheduling, the schedulability tests have the following dominance relations.606

Theorem 3.10 analytically dominates Theorem 4.4.607

Theorem 4.4 analytically dominates Theorem 4.5.608

Theorem 4.5 is equivalent to the test in Theorem 4.6.609

Theorem 4.6 analytically dominates Theorem 4.7.610
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Proof. They follow directly from the above analyses. The reason why Theorems 4.5 and 4.6611

are equivalent is because the conditions in Theorem 4.6 represent exactly the worst-case `612

selection in Theorem 4.6. The other cases are obvious. J613

Although we will show in Theorem 5.3 that all the above schedulability tests have the614

same speedup bound for global DM, the performance of the schedulability tests in this section615

can be very different in practice. Chen et al. [19] have recently shown that “Speedup factors616

... often lack the power to discriminate between the performance of different scheduling617

algorithms and schedulability tests even though the performance of these algorithms and tests618

may be very different when viewed from the perspective of empirical evaluation.” To avoid619

concluding an algorithm with a reasonable speedup bound but practically not useful, we620

performed a series of experiments and present the results in Section 6. Moreover, according621

to the experimental results, the domination relations among Theorems 4.4, 4.5, and 4.7 are622

strict, i.e., there is a concrete input instance that is deemed schedulable by a dominating623

schedulability test but is not deemed schedulable by a dominated schedulability test.624

5 Global Deadline-Monotonic (DM) Scheduling625

After presenting the schedulability tests for any global fixed-priority scheduling algorithms,626

we focus ourselves on global DM in this section. We will discuss the speedup upper bound627

and the speedup lower bound. Baruah and Fisher [8] showed that global DM has a speedup628

upper bound of 2 +
√

3 ≈ 3.73 compared to the optimal schedules, based on the test restated629

in Theorem 2.4. This is the best known upper bound on speedup factors for arbitrary-630

deadline sporadic task systems under global fixed-priority scheduling. Evaluating load(k)631

in Theorem 2.4 requires to calculate
∑k
i=1 dbf(τi, t)/t at all time points t. This means, the632

naïve implementation has an exponential-time complexity. There are more efficient methods,633

as discussed by Baruah and Bini [6], but the time complexity remains exponential. Although634

it is possible to approximate load(k) by using approximate demand bound functions in635

polynomial time, this is at a price of higher load(k). We show that the test in Theorem 2.4636

is over-pessimistic and is analytically dominated by our linear-time schedulability test in637

Theorem 4.7 under global DM.638

I Corollary 5.1. For global DM, the schedulability test in Theorem 4.7 analytically dominates639

the schedulability test in Theorem 2.4 proposed by Baruah and Fisher [8].640

Proof. This is due to the following facts:641

By definition, load(k) ≥ limitt→∞
∑k
i=1 dbf(τi, t)/t =

∑k
i=1 Ui.642

Since Di ≤ Dk in global DM for i = 1, 2, . . . , k − 1, we know that
∑k

i=1
dbf(τi,Dk)
Dk

≥643 ∑k
i=1

Ci
Dk

. Therefore, load(k) ≥
∑k
i=1

Ci
Dk

.644

Combining these facts, we get645

δk +
k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
≤

k∑
i=1

Ci
Dk

+ Ui ≤ 2load(k). (36)646

647

Since we know that the right-hand side in Eq. (4), i.e., M − (M − 1)δmax(k), is less than or648

equal to M − (M − 1)Umax
δ,k in Eq. (35), we reach the conclusion. J649

I Theorem 5.2. Global DM has a speedup bound of 3 − 1
M , with respect to the optimal650

schedule, when M ≥ 2.651
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Proof. We only prove the speedup bound by using the schedulability test in Theorem 4.7.652

Due to the dominance properties in Corollary 4.8, such a bound also holds for the schedu-653

lability tests from Theorems 3.10, 4.4, 4.5, and 4.6.654

Suppose that task τk is not schedulable by global DM. Since Di ≤ Dk for any i =655

1, 2, . . . , k − 1 under global DM, we know dbf(τi, Dk) ≥ Ci. Therefore, under global DM,656 ∑k
i=1

Ci
MDk

≤
∑k
i=1

dbf(τi,Dk)
MDk

≤
∑

τi∈T
dbf(τi,Dk)
MDk

≤ maxt>0

∑
τi∈T

dbf(τi,t)
Mt .657

By the assumption that task τk is also deemed not schedulable by Theorem 4.7, we have658

δk +
k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
> M − (M − 1)Umax

δ,k659

⇒
k∑
i=1

Ci
MDk

+
k∑
i=1

Ui
M

> 1−
(

1− 1
M

)
Umax
δ,k660

⇒
k∑
i=1

Ci
MDk

+
k∑
i=1

Ui
M

+
(

1− 1
M

)
Umax
δ,k > 1661

x+ x+ (1− 1/M)x > 1⇒ max
{

k∑
i=1

Ci
MDk

,

k∑
i=1

Ui
M
,Umax

δ,k

}
>

1
3− 1/M (37)662

663

Therefore, either maxt>0

∑
τi∈T

dbf(τi,t)
Mt ≥

∑k
i=1

Ci
MDk

> 1
3−1/M , or

∑k
i=1

Ui
M > 1

3−1/M ,664

or δmax(k) ≥ Umax
δ,k > 1

3−1/M . By Lemma 2.3, we reach the conclusion of the speedup bound665

for global DM with respect to the optimal schedule. J666

I Theorem 5.3. For global DM, the schedulability tests in Theorems 3.10, 4.4, 4.5, 4.6, and 4.7667

have a speedup bound of 3− 1
M , with respect to the optimal schedule, when M ≥ 2.668

Proof. This is due to Theorem 5.2 and Corollary 4.8, because all of the tests in Theo-669

rems 3.10, 4.4, 4.5, 4.6 dominate the test in Theorem 4.7 as presented in Corollary 4.8. J670

I Theorem 5.4. The speedup bound of global DM for arbitrary-deadline task systems is at671

least 3− 3
M+1 .672

Proof. The proof is based on a concrete task set. We specifically use the following task set673

Tad with N = 2M + 1 tasks. Let ε be an arbitrarily small positive real number such that674

1/ε is an integer. Let η � ε be an arbitrarily small positive number, that is used to enforce675

the priority assignment under global DM:676

Ci = ε
3 , Ti = ε, Di = 1, for i = 1, 2, . . . ,M .677

Ci = 1
3 , Ti =∞, Di = 1 + η, for i = M + 1,M + 2, . . . , 2M .678

Ci = 1+ε
3 , Ti =∞, Di = 1 + 2η, for i = 2M + 1679

As the setting of η � ε is just to enforce the indexing, we will directly take η → 0 here. In the680

Appendix, we prove two properties: 1) Tad is not schedulable by global DM under a concrete681

instance which releases all the tasks at time 0 and the subsequent jobs periodically. 2) There682

exists a feasible schedule for task set Tad at any speed no lower than 1+ε
3 + 1+ε

3M under a683

concrete semi-partitioned multiprocessor schedule, i.e., {τm, τm+M} assigned to processor684

m for m = 1, 2, . . . ,M and task τ2M+1 executed partially on each of the M processors.685

Therefore, a lower bound on the speedup bound of global DM is:686

lim
ε→0

1
1+ε

3 + 1+ε
3M

= lim
ε→0

3M
(1 + ε)× (M + 1) = 3M

M + 1 = 3− 3
M + 1 .687

J688
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By Theorems 5.2 and 5.4, we can reach the conclusion that all the schedulability tests689

from Theorems 3.10, 4.4, 4.5, 4.6, and 4.7 are asymptotically tight with respect to speedup690

bounds. However, these tests have different performance with respect to the schedulability.691

6 Evaluation692

We evaluated the scheduling tests provided in this paper by comparing their acceptance693

ratio to the acceptance ratio of other algorithms, i.e., comparing the percentage of task694

sets accepted for the different schedulability tests, using different settings for the number of695

processors, the scheduling policy, and the ratio of the relative deadline to the period.696

Evaluation Setup: We conducted evaluations for homogeneous multiprocessor systems697

with M = 4, M = 8, and M = 16 processors. We generated 100 task sets with cardinality698

of both N = 5×M and N = 10×M , and utilization ranging from M × 5% to M × 100% in699

steps ofM×5%. The UUniFast-Discard method [13] was adopted to generate the utilization700

values of a set of N tasks under the target utilization. As suggested by Emberson et al. [28],701

the periods were generated according to a log-uniform distribution, with 1, 2, and 3 orders702

of magnitude, i.e., [1ms − 10ms], [1ms − 100ms], and [1ms − 1000ms]. For each task,703

the relative deadline was set to the period multiplied with a value randomly drawn under704

a uniform distribution from a given interval I. We conducted evaluations using different705

interval, i.e., I was [0.8, 2], [0.8, 5], [0.8, 10], [1, 2], [1, 5], or [1, 10]. To schedule the task sets,706

we applied global deadline-monotonic (DM) and global slack-monotonic (SM) [1] scheduling.707

Whether the task set is schedulable under the given scheduling approach or not was708

tested using the following schedulability tests:709

LOAD: The load-based analysis by Baruah and Fisher in [9], only for DM scheduling.710

BAK: The test by Baker in Theorem 11 in [3].711

HC: The sufficient test in Corollary 2 by Huang and Chen in [31].712

OUR-4.4: The sufficient test in Theorem 4.4 in this paper.713

OUR-4.6: The sufficient test in Theorem 4.6 in this paper.714

OUR-4.7: The sufficient test in Theorem 4.7 in this paper.715

We also checked if a task set was schedulable according to at least one of the tests, denoted as716

ALL. We only present a small set of the conducted tests here. The diagrams of all conducted717

evaluations can be found in [20].718

Evaluation Results: Figure 3 shows the evaluations under the setting used in the719

paper by Huang and Chen [31]. They used DM scheduling on M = 8 processors, a task720

set containing 40 tasks and ratios of Di
Ti
∈ [0.8, 2] and analyzed the schedulability for Ti721

values that differ up to 1, 2, and 3 orders of magnitude, i.e., Ti in a range of [1ms, 10ms],722

[1ms, 100ms], or [1ms, 1000ms]. The test by Baruah and Fisher [9] is clearly outperformed723

by Theorem 4.6, Theorem 4.7, and Baker’s test [3], which provide similar acceptance ratios.724

The test by Huang and Chen [31] outperforms those three tests and is worse than the test in725

Theorem 4.4 in these settings. However, there is no dominance relation between Theorem 4.4726

and the test by Huang and Chen [31], as some task sets are schedulable under the test by727

Huang and Chen [31] but not schedulable under Theorem 4.4 and vise versa.728

There are other configurations where the test by Huang and Chen [31] performs better729

than Theorem 4.4. One example is shown in Figure 4, analyzing the impact of the number730

of processors. Here Theorem 4.4 performs compatible to Theorem 4.6, Theorem 4.7, and731

Baker’s test [3] for M = 4. When the number of processors increases, Theorem 4.4 performs732

better. The gap to Huang and Chen [31] is smaller for 8 processors and Theorem 4.4 has733

a higher acceptance rate when the utilization level is 80% ×M . For M = 16 processors734
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Figure 3 Comparison of the tests presented in Theorem 4.4, 4.6, and 4.7 with the methods from
Baruah and Fisher (LOAD) [9], Baker [3], and Huang and Chen [31] for different ranges of period.
The evaluation setup is the same as in [31], i.e., DM, M = 8, N = 40, Di

Ti
∈ [0.8, 2].
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Figure 4 Comparison of the tests presented in Theorem 4.4, 4.6, and 4.7 with the methods from
Baruah and Fisher (LOAD) [9], Baker [3], and Huang and Chen [31] for different M values. The
other parameters are fixed, i.e., DM, N = 5×M , Ti ∈ [1ms, 10ms], and Di

Ti
∈ [0.8, 10].

Theorem 4.4 accepts more task sets than Huang and Chen [31] when the utilization level is735

≥ 65%×M . In addition, it is possible that the number of task sets that is accepted by at736

least one algorithm is not close to the number of task sets accepted by Huang and Chen [31]737

or Theorem 4.4 as can be seen for the utilization level 75%×M in the case where M = 8.738

Furthermore, we tracked if the test by Baker [3] accepted some task sets that were not739

accepted by Huang and Chen [31] or Theorem 4.4, which happened occasionally. Therefore,740

we conclude that there is no dominance relation between any of those three tests, i.e.,741

Theorem 4.4, and the tests by Baker [3] and by Huang and Chen [31]. As these tests can742

all be implemented with polynomial-time complexity, all three should be applied.743

7 Conclusion744

We present a series of schedulability tests for multiprocessor systems under any given fixed-745

priority scheduling approach. Those schedulability tests have different tradeoffs between746

their accuracy and their time complexity. All those schedulability tests dominate the ap-747

proach by Baruah and Fisher [9], both with respect to speedup bounds and schedulability748

analysis. Theorem 3.10 is the most powerful schedulability test in this paper. However, we749

do not reach any concrete implementation with affordable time complexity. In the future750

work, we will seek for efficient methods to implement the schedulability test in Theorem 3.10.751
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8 Appendix: Additional Proofs868

8.1 Proof of Theorem 5.4: Speedup lower bound of global DM for869

arbitrary-deadline task systems870

We will specifically use the following task set Tad with N = 2M + 1 tasks. Let ε be an871

arbitrarily small positive real number such that 1/ε is an integer. Let η � ε be an arbitrarily872

small positive number, that is used to enforce the priority assignment under global DM:873

Ci = ε
3 , Ti = ε, Di = 1, for i = 1, 2, . . . ,M .874

Ci = 1
3 , Ti =∞, Di = 1 + η, for i = M + 1,M + 2, . . . , 2M .875

Ci = 1+ε
3 , Ti =∞, Di = 1 + 2η, for i = 2M + 1876

As the setting of η � ε is just to enforce the indexing, we will directly take η → 0 here.877

I Lemma 8.1. Tad is not schedulable by global DM.878

Proof. This can be proved by showing that task τN misses its deadline in the following879

concrete arrival pattern: all tasks release their first jobs at time 0 and the subsequent jobs880

arrive as early as possible while respecting their minimum inter-arrival times. For this881

arrival pattern, the jobs of tasks τ1, τ2, . . . , τM are executed from time iε to time iε + ε
3882

for i = 0, 1, 2, . . . , 1/ε. Therefore, these M tasks are executed for in total 1/3 time units883

from time 0 to time 1. For tasks τ1+M , τ2+M , . . . , τ2M , each of them is executed for 1/3884

time units from time 0 to time 1 when the processors do not execute τ1, τ2, . . . , τM . Task885

τ2M+1 is executed alone without any overlap with the executions of the higher-priority tasks.886

Therefore task τ2M+1 misses its deadline since it needs 1+ε
3 time units, but only 1

3 time units887

are available before its deadline. J888

I Lemma 8.2. There exists a feasible schedule for task set Tad at any speed no lower than889

1+ε
3 + 1+ε

3M .890
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Proof. We apply multiprocessor semi-partitioned scheduling, in which tasks in {τm, τm+M}891

are assigned to processor m for m = 1, 2, . . . ,M . In our designed semi-partitioned schedule,892

a job of task τ2M+1, i.e., a part of τN , is executed partially on each of the M processors as893

follows: it runs on processor m for CN/M amount of time, and then migrates to processor894

m+ 1 to continue its execution, for m = 1, 2, . . . ,M − 1. To ensure that the migration can895

be served immediately, τN is given the the highest-priority in this schedule. Therefore, a896

subtask of task τN on processor m, denoted as τN,m, has a relative deadline CN/M . As long897

as the speed of the processors is greater than or equal to 1+ε
3 , task τN can meet its deadline.898

Therefore, in our designed semi-partitioned schedule, each processor m has a task set Tm899

that consists of three tasks: τm and τm+M from Tad and a subtask τN,m of task τN with900

execution time CN/M . We assign the second priority to task τm+M and the lowest priority901

to task τm on processor m.902

We utilize the worst-case response time analysis by Bini et al. [14]. They showed that903

if 1−
∑
τi∈hp(τk,m) Ui ≤ 1, then the worst-case response time of a task τk in a task set Tm904

under fixed-priority scheduling on a processor is at most905

Ck +
∑
τi∈hp(τk,m) Ci −

∑
τi∈hp(τk,m) UiCi

1−
∑
τi∈hp(τk,m) Ui

, (38)906

where hp(τk,m) is the set of the tasks in Tm that have a higher priorities than task τk. Note907

that the precondition 1−
∑
τi∈hp(τk,m) Ui ≤ 1 for the test in Eq. (38) to be applicable always908

holds at any arbitrarily speed since we assign τm as the lower-priority task on processor m909

and Um+M → 0, and UN,m = CN,m/TN → 0.910

By Eq. (38), if the speed of processorm is greater than or equal to CN
M +Cm+M = 1+ε

3M + 1
3 ,911

task τm+M can still meet its deadline in this schedule. By Eq. (38), task τm can meet its912

deadline at speed s in this schedule if913

1 ≥
Cm/s+

∑
τi∈hp(τk,m) Ci/s−

∑
τi∈hp(τk,m)

Ui
s
Ci
s

1−
∑
τi∈hp(τk,m) Ui/s

= ε

3s + 1
3s + 1 + ε

3sM (39)914

915

Therefore, as long as s ≥ 1+ε
3 + 1+ε

3M , task τm meets its deadline under our designed schedule.916

J917
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