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Abstract—Timeliness is an important feature for many
embedded systems. Although soft real-time embedded systems
can tolerate and allow certain deadline misses, it is still
important to quantify them to justify whether the considered
systems are acceptable. In this paper, we provide a way
to safely over-approximate the expected deadline miss rate
for a specific sporadic real-time task under fixed-priority
preemptive scheduling in uniprocessor systems. Our approach
is compatible with the existing results in the literature that
calculate the probability of deadline misses either based on the
convolution-based approaches or analytically. We demonstrate
our approach by considering randomly generated task sets with
an execution behavior that simulates jobs that are subjected to
soft errors incurred by hardware transient faults under a given
fault rate. To empirically gather the deadline miss rates, we
implemented an event-based simulator with a fault-injection
module and release the scripts. With extensive simulations
under different fault rates, we evaluate the efficiency and the
pessimism of our approach. The evaluation results show that
our approach is effective to derive an upper bound of the
expected deadline miss rate and efficient with respect to the
required computation time.

Keywords - Soft Real-Time Systems; Deadline Miss Rate

I. INTRODUCTION

Timeliness is an important feature for many embedded
systems. Specifically, for safety-critical systems, hard real-
time guarantees are of importance to ensure that the results
are not just functionally correct but also always delivered
within given timing constraints. In such hard real-time
systems, it is assumed that any deadline miss can lead
to a catastrophe and must be avoided. By contrast, soft
real-time systems can tolerate a certain amount of deadline
misses. However, intuitively, deadline misses in soft real-
time systems should still be avoided as much as possible,
and it is important to quantify the deadline misses to justify
whether the considered systems are acceptable.

The existing approaches can in general be classified into
static and statistical approaches. A static approach, e.g.,
[10], quantifies the maximum tardiness (or lateness) of a task,
defined as the difference between the worst-case response
time of the task and its relative deadline. Such a static
quantification provides a means to justify the maximum
over-run with respect to the deadline, but it does not provide
the frequency of deadline misses. Alternatively, a statistical
approach provides statistical quantification such as deadline
miss rates, e.g., [16], probabilistic response-time analyses,

e.g., [2, 3, 11, 19, 22], and the probability of deadline misses,
e.g., [8, 19, 24].

Both the deadline miss rate as well as the probability
of deadline misses are important performance indicators
to evaluate the extent of requirements compliance for soft
real-time systems. Nevertheless, existing probabilistic ap-
proaches, i.e., [2, 3, 11, 19, 22], focus on finding the proba-
bility of the first deadline miss, and it is assumed that after
a deadline miss the system either discards the job missing
its deadline or reboots itself. Therefore, the probability of
one deadline miss directly relates to the deadline miss rate
since all jobs can be considered individually. However, those
very restrictive assumptions often do not hold in practice, as
aborting jobs or rebooting the system after a deadline miss
is not always an option. If this is the case, the additional
workload due to a deadline miss may trigger further deadline
misses. Hence, the actual deadline miss rate may be greater
than the probability of the first deadline miss as shown in
the following example.

Consider two implicit-deadline periodic tasks τ1 and τ2
under fixed-priority preemptive scheduling. Task τ1 has a
worst-case execution time (WCET) of 2 and a period of
3. Task τ2 has a period of 5 and two distinct versions
identified by the different resulting WCETs, which is either
1 or 2.25. Assume that for each job of τ2 one of the two
versions is executed with 50% probability. Since the first
job of τ2 will meet its deadline if it is executed for 1 time
unit and miss the deadline if it is executed for 2.25 time
units, the probability of deadline miss for the first job is
50%. However, as shown in Figure 1, once the first job
of τ2 executes 2.25 time units, which leads to its deadline
miss, the second job definitely misses its deadline as well.
In this example, the probability that the first job of τ2
misses its deadline is 50% and therefore at least 2 of the
3 jobs of τ2 miss their deadline in this case. Obviously,
the occurrence of a pattern that leads to a greater deadline
miss rate than 50% does not mean the actual miss rate is
greater than 50% as well, since all other possible patterns
and the related possibility must be considered. Furthermore,
a deadline miss at time 15 will propagate into the next
hyper-period1, which complicates the calculation. Hence,
to estimate the actual deadline miss rate in the displayed
scenario, we deployed the aforementioned setting in our

1The hyper-period is the least common multiple of all task periods.
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τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ2

τ2 misses the deadline two times!

Figure 1: An example schedule showing that a deadline miss of the first job of τ2 (at time 5) directly leads to an additional
deadline miss of the second job of τ2 (at time 10). For τ2, same color blocks represent the same j-th job. The upward arrows
represent the arrival time for each job, whereas the next downward arrow represent the related deadline.

event-based simulator (to be detailed in Section VI). The
empirical results show that the deadline miss rate on average
was 93.04% over 100 simulations where in each simulation
five million jobs of τ2 were considered. This shows that it is
necessary to analyze more than just the first deadline miss of
a task when considering the deadline miss rate if aborting
jobs or rebooting the system after a deadline miss is not
possible.

Regarding the deadline miss rate, most results in this
direction, e.g., [5, 12, 13, 15, 21], consider measurement-
based evaluations. They assume fixed job arrival times and
have to run the system up to a significant number of jobs
to reach a statistically meaningful conclusion. Therefore,
such evaluations are time consuming and may be difficult
to be applied in practice. To the best of our knowledge, the
only exception is the convolution-based analysis in [16], in
which Manolache et al. quantified the deadline miss rate
analytically. However, their convolution-based analysis is
only applicable for a very restrictive model, i.e., the tasks
in the considered system are strictly periodic and sched-
uled under non-preemptive fixed-priority scheduling. Under
these restrictions, the deadline miss rate can be derived
by enumerating all possible transitions with convolution-
based analyses. However, as recently shown in [8, 24],
convolution-based analyses are computationally expensive
when determining the deadline miss probability of a task.
This implies that calculating the deadline miss rate with a
convolution based approach suffers from the high compu-
tational complexity as well. A more detailed review of the
related work can be found in Section II.

Overall, most existing approaches only focus on the
probability of one deadline miss, but do not to provide any
quantification on the deadline miss rate. An intuitive way
is to deploy a simulation to exhaustively derive a tight but
safe estimation of the deadline miss rate, i.e, close to the
real value without under estimating it. However, as Butler
and Finelli stated in [6], Life-testing of ultrareliable software
is infeasible, i.e., the amount of time needed to perform the
simulations is too large. Therefore, a statistical quantification
that can efficiently derive the deadline miss rate is desired.
To the best of our knowledge, this is the first paper providing
a safe upper bound on the expected deadline miss rate of
a specific task. Through extensive simulations, we evaluate

the analysis time and the results of our approach, compared
to our event-based simulator, under different fault rates.
Contributions: In this paper, we consider the deadline miss
rate for soft real-time task system without rebooting after
deadline misses. We demonstrate our approach considering
soft errors incurred by transient faults. Our main contribu-
tions are listed as follows:
• To analyze the deadline miss rate, we show how jobs

of a specific task in all possible schedules can be
partitioned into busy intervals with different numbers
of consecutive deadline misses in Section IV.

• In Section V we first show how this probability can
be over-approximated. Afterwards, we discuss how to
leverage on approaches in the literature that over-
approximate the deadline miss probability of individual
jobs to derive a safe upper bound on the expected
deadline miss rate.

• To empirically gather deadline miss rates, we also im-
plement an event-driven simulator with the distributed
execution times among tasks in Section VI.

• Considering randomized task sets where each task has
two distinct WCETs, we analyze the expected miss
rates derived by our approach and compare them to
the empirical deadline miss rates derived by the event-
driven simulator under different settings for the system
utilization and the fault rate in Section VII.

II. RELATED WORK

Several results that based on probabilistic response-time
analyses approximate the probability that the system has a
deadline miss can be found in the literature [2, 3, 11, 19, 22].
For periodic real-time task systems, Diaz et al. [11] provided
a framework to determine the deadline miss probability.
Tanasa et al. [22] adopted the Weierstrass Approximation
and applied a customized decomposition procedure to de-
rive the deadline miss probability among all the possible
combinations. However, both of them only work for small
examples, i.e., 7 and 25 jobs in the hyper-period, respec-
tively. For sporadic real-time task systems, Axer et al. [2]
iterated over the activations of released jobs to evaluate the
response-time distribution for non-preemptive fixed-priority
scheduling. Maxim and Cucu-Grosjean [19] proposed a
probabilistic response time analysis and probabilistic min-
imum inter-arrival times based on job-level convolution.
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Recently, von der Brüggen et al. [24] proposed an analytical
probabilistic response time analysis based on a task-level
convolution. Ben-Amor et al. [3] provided a probabilistic
response time analysis under precedence constraints. The
concept of probabilistic scheduling analysis has been further
extended to handle mixed-criticality real-time systems in
[1, 18]. Chen and Chen [8] presented probabilistic schedu-
lability tests to derive the probabilities of (`-consecutive)
deadline misses. Probabilistic methods based on the Hoeffd-
ing inequality and the Bernstein inequality were introduced
by von der Brüggen et al. in [24].

Overall, the aforementioned studies all focus on the
probability of deadline misses by finding the first deadline
miss. Manolache et al. [16] presented a stochastic approach
for obtaining the expected deadline miss rate analytically
and addressed the problem of task priority assignment and
task mapping in [17]. However, they consider only non-
preemptive scheduling to reduce the computational complex-
ity of their convolution based approach. Most studies in the
literature [5, 12, 13, 15, 21] use the deadline miss rate as the
performance metric to empirically evaluate their proposed
approaches. To the best of our knowledge, this is the first
paper analyzing the expected deadline miss rate without
convolution and without very restricted system models.

III. SYSTEM MODEL AND NOTATION

In this section, we first review the task and scheduling
models considered in this paper. Next, we introduce the
distributed execution time model. Afterwards, the studied
objective, i.e., the deadline miss rate, is formally defined.

A. Task and Scheduling Models
We consider a soft real-time task system with n indepen-

dent periodic or sporadic tasks Γ = {τ1, τ2, · · · , τn} in a
uniprocessor system. We assume a preemptive fixed-priority
scheduling policy where the priority of a task cannot be
changed during runtime. The tasks are indexed from 1 to
n where τ1 has the highest priority and τn has the lowest
priority.

Each task τi releases an infinite number of task instances,
called jobs, under a minimum inter-arrival time constraint (or
period) Ti, which specifies the minimum time between two
consecutive job releases of τi. Each task is also associated
with a relative deadline Di. Therefore a job of task τi
released at time ta must be completed not later than the
absolute deadline ta +Di and the next job of task τi must
be released exactly at (or not earlier than) ta+Ti for periodic
(or sporadic) tasks. We consider: 1) Implicit-deadline task
sets, i.e., Di = Ti ∀τi ∈ Γ, and 2) Constrained-deadline task
sets, i.e., Di ≤ Ti ∀τi ∈ Γ. Let hp(τk) be the set of tasks
with higher priority than τk and let hep(τk) be hp(τk)∪{τk}.

B. Distributed Execution Time Model
We consider each task τi has several (but finite) possible

values of execution time Ci,j , and each of them is associated

to a probability Pi,j . This model is often used in the liter-
ature to formalize systems with multiple possible execution
times, e.g., [3, 8, 11, 19, 23].

For the simplicity of presentation, in this paper we only
show one of the applicable cases, i.e., that the considered
system uses software fault-tolerant techniques, where each
task has two different worst case execution times with one
given probability for each task. The proposed approaches are
still applicable for any general probabilistic distributions,
since they are not limited to the number of execution times
and corresponding probabilities. We discuss how does this
assumption affect our analyses in Section V-D.

We assume that soft errors induced by transient faults only
affect the execution time of tasks in Γ without unnoticed
faults, i.e., silent data corruption, or even system crash. Two
distinct worst case execution times (WCETs) are assumed
for each task τi. When no fault occurs during the execution
of task τi and therefore error recovery is not necessary, the
execution is considered to be a normal execution with a
smaller WCET value, denoted as CNi . If a fault is detected in
a job of task τi, the related job has a longer WCET denoted
as CAi for potential error recovery, called an abnormal
execution, i.e., CAi ≥ CNi ∀τi. The fault detection is
assumed to perform perfectly and be done at predefined
checkpoints or the end of a job execution. This additional
computation time for the fault detection is integrated into
CNi . The values of CAi and CNi depend on the adopted fault
tolerance technique.

We assume that the occurrence of soft errors can be
modeled by a given probability PAi , i.e., the probability
is PAi that τi is executed abnormally. The probability of
executing a job normally is thus PNi = 1 − PAi for
each job of τi. We assume that PAi is independent from
previous errors and executions, as similar assumptions are
used in [8, 11, 19, 23].

C. Deadline Miss Rate

For a schedule of a sequence of jobs of τk the deadline
miss rate is formally defined as follows:

Definition 1 (Miss Rate): The miss rate of a task τk ∈ Γ
for a given schedule S is the number of jobs missing their
relative deadline Dk in S divided by the number of released
jobs of task τk in S.
The expected miss rate of τk is defined as:

Definition 2 (Expected Miss Rate): The expected miss
rate of a task τk ∈ Γ, denoted by Ek, is the probability
that a job of τk misses its deadline.
Theoretically, the expected miss rate for a task τk can be
determined by counting the number of jobs of τk that miss
the deadline and the number of total releases in an infinitely
long sequence of jobs, considering all tasks in Γ under the
constraint given by Γ, the related scheduling algorithm, and
the given fault rate. We focus on calculating a safe upper
bound on the expected miss rate of a task τk, denoted as



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
8.

00
02

8

Êk. By definition, Êk ≥ Ek. This means that we show
how to over approximate the probability that a job of task
τk misses its deadline, assuming that the probability PAi
that a fault occurs during the execution of task τi is known
for all tasks τi ∈ Γ. This approximation is done based on
the assumption that the system is never restarted when a
deadline miss happens. In addition, we assume that jobs are
never aborted, i.e., if a job misses its deadline, the remaining
part of the job still has to be executed before the next job
of the task can start executing. As discussed in [23], there
are many reasons to apply this assumption in real contexts
as long as the system safety is not jeopardized.

IV. PARTITION INTO BUSY INTERVALS

To calculate the expected value of the deadline miss rate
for a specific task τk, we first partition those deadline misses
into different exclusive events for a schedule.

Definition 3 (Busy Interval of τk): An interval [ta, tb] is
a busy interval of task τk, if no job of τk is present in the
system right before ta, a job of τk arrives at ta, a job of τk
finishes at time tb, no further job of τk or a task in hp(τk)
is in the system right before tb, and between ta and tb only
jobs of τk or of jobs in hp(τk) are executed.
Please note that a busy interval for τk also ends at time tb
if a job of τk finishes at time tb and one (or more) job of
tasks in hp(τk) and/or of τk itself arrive at tb, if no job of
τk beside the one finishing at tb is in the system right before
tb.

Considering constrained- and implicit-deadline task sets,
a busy interval of τk can end due to different cases that are
illustrated in Fig. 2. Let τ1 be defined by CN1 = CA1 = 1,
T1 = 2, and D1 = 2. Red boxes represent the execution of
τ1. For τ2 assume CN2 = 1, CA2 = 3, T2 = 5, and D2 = 5
if it is not declared differently. Blue boxes with crosshatch
patterns represent abnormal execution before the deadline
of the related job, orange boxes with dot patterns represent
abnormal execution after the deadline, and green boxes with
slash patterns represent normal execution.
(1) Periodic tasks, implicit-deadline (Figure 2a): Busy in-

tervals of τ2 must always end with a job of τ2 meeting
its deadline. The first two jobs miss their deadline, the
third job meets its deadline at 14.

(2) Sporadic tasks, implicit-deadlines (Figure 2b): In this
case busy intervals can also end by the processor
running idle with respect to hep(τ2) as happening at
time 6.

(3) Periodic tasks, constrained-deadline (Figure 2c): Let
CA2 = 5, T2 = 8, D2 = 5. Similar to the previous
case, a busy interval for sporadic tasks with constrained
deadlines can finish with a job meeting its deadline as
happening at t = 12.

We partition the busy intervals of τk, depending on the
number of jobs of τk that miss their deadlines:

Definition 4 (Ij Busy Interval of τk): A busy interval of
τk is an Ij busy interval, if the first j jobs of τk in the busy
interval miss their deadlines.
For this definition it does not matter, if the busy interval ends
with a job of τk meeting its deadline or by the processor
running idle with respect to tasks in hep(τk). Note that an
I0 busy interval does not contain any deadline misses. The
probability of the occurrence for Ij is denoted as ψ(Ij).

Theorem 1: For a given sequence of a sufficiently large
number of jobs of τk, the jobs can be partitioned into busy
intervals of τk with at most J jobs missing their deadline
consecutively. All these busy intervals are independent from
each other. Therefore,

∑J
j=0 ψ(Ij) = 1.

Proof: As each busy interval either ends with a job
of τk meeting its deadline or the processor running idle
with respect to tasks in hep(τk), all the busy intervals are
independent. If a job misses its deadline, it must be part
of a busy interval of type Ij with at least one deadline
miss, i.e., j ≥ 1, with a known probability ψ(Ij), since
Dk ≤ Tk. Otherwise, the probability that a job is meeting
its deadline is ψ(I0). Since the intervals are independent,
they are the probabilities for their occurrences. Therefore,∑J
j=0 ψ(Ij) = 1.

V. DEADLINE MISS RATE

In this section, we first show how an upper bound on the
expected deadline miss rate of task τk in a sporadic task set
can be obtained based on the busy intervals of τk. While we
explicitly analyze the miss rate for one task τk, the proposed
approaches can be applied to each task in any given task sets.

According to Definition 2, the expected deadline miss rate
Ek can be obtained by the following equation:

Ek =

∑J
j=1 ψ(Ij) · j∑J

j=1 ψ(Ij) · j + ψ(I0)
(1)

where ψ(Ij) is the probability of the occurrence for Ij for
task τk for any possible schedule. However, calculating the
probability ψ(Ij) precisely is an open problem. In this paper,
we adopt an upper bound of ψ(Ij) to over approximate
Eq. (1).

A. Upper Bound of ψ(Ij)

Let Φk,j be a safe upper bound on the probability that
j (or more) consecutive jobs of τk miss their deadline. By
definition, for j ≥ 1, the probability ψ(Ij) for an interval Ij
with exactly j-consecutive deadline misses must be upper
bounded by Φk,j , i.e., ψ(Ij) ≤ Φk,j . Moreover, as the
sequence of Φk,j is non-increasing for j ≥ 1, Φk,l must be
larger than or equal to the probability ψ(Ij) for an interval
Ij with exactly j-consecutive deadline misses if l < j. For
instance, Φk,1 ≥ ψ(I2).

Several general approaches to calculate Φk,j are known
from the literature. Job-level Convolution-based methods
like in [16, 19] directly enumerate the WCET state space
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τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ2

(a) Periodic, implicit-deadline task sets: An I2 interval of τ2 with two consecutive deadline misses (at t = 5 and t = 10), followed
by a job meeting its deadline at t = 14. At t = 15, a new busy interval of τ2 starts.

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ2

(b) Sporadic, implicit-deadline task sets: Two I1 intervals of τ2, both ending with idle time at t = 6 and t = 15, respectively. While
the first busy interval finishes with idle time, the second finishes with a job of τ2 meeting its deadline.

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ2

(c) Periodic, constrained-deadline task sets: One I1 interval ending at t = 12. It ends after the second job of τ2 finishes at t = 12,
meeting its deadline.

Figure 2: The possible scenarios for busy intervals. Red boxes represent the execution of τ1. For τ2, blue boxes with
crosshatch patterns represent abnormal execution before the deadline of the related job, orange boxes with dot patterns
represent abnormal execution after the deadline, and green boxes with slash patterns represent normal executions. The
upward arrows represent the arrival time for each job, whereas the downward arrows represent the deadline for each job.

with the associated probabilities. Considering the jobs in
non-decreasing order of arrival time, they convolute the cur-
rent state of the system associated with a vector of possible
states, i.e., possible total WCETs and related probability,
with the current release jobs. By repeating this procedure
until Dk is reached, all released jobs are convoluted, and the
probability that the worst case response time is greater than
Dk (at least one deadline miss) can be derived accordingly.
In [24] a task-level convolution was proposed that evaluates
the resulting deadline miss probability for a set of time
points individually. Although these approaches focus on
the probability of one deadline miss, i.e., Φk,1, they can
be extended to multiple deadline misses. For `-consecutive
deadline misses, instead of repeating until Dk, the procedure
is repeated until (` − 1)Tk + Dk is reached. Chen and
Chen [8] provided an approach that can over-approximate
the probability for `-consecutive deadline misses and is
based on the Chernoff bound and the moment generating
function (mgf ).

The approaches presented in [8, 16, 19, 24] all calculate
the probability of deadline misses based on the probability
that the workload St over a given interval of length t is
larger than t. To be more precise, they evaluate if P (St ≥
t) for certain t values of interest, i.e., the deadline of τk
and the release times of all jobs of higher priority tasks.
If these probabilities are known for some or all of these
values of interest, a safe upper bound on the probability
for `-consecutive deadline misses can be obtained by the

following lemma:

Lemma 1: (Theorem 3 from Chen and Chen [8]) Given
a set of constrained-deadline (or implicit-deadline) sporadic
tasks Γ. Suppose that

Φθk,w = min
0<t≤(w−1)Tk+Dk

P (St ≥ t) (2)

For notational brevity, let Φk,0 be 1. The probability for
`-consecutive deadline misses of τk is upper bounded by

Φk,` = max
{

Φθk,w · Φk,`−w|w ∈ {1, 2, . . . `}
}

(3)

Here we adopt the approach in [8] to demonstrate how to
derive P (St ≥ t) and calculate Eq. (2). The approach in [8]
uses the mgf [20] to express the probability distribution. For
each task τi, its mgf with respect to a given real number s
is

mgfi(s) =

vi∑
j=1

exp(Cji · s) · P
j
i (4)

Based on the assumption that all jobs are independent, the
probability distribution over the sum of the execution times
of these jobs can be defined as the multiplication of their
mgfs

mgfhep(τk)(s) =
∏

τi∈hep(τk)

(mgfi(s))
ρi,t (5)

where ρi,t is the number of jobs from τi released in the
interval from 0 to t. By definition, the workload St is the
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sum of the execution times from the jobs released by the
tasks in hep(τk) from 0 to t. Hence, P (St ≥ t) can be
calculated by

P (St ≥ t) ≤ min
s>0

(mgfhep(τk)(s)

exp(s · t)

)
(6)

Eventually, testing over (0, (w − 1)Tk + Dk] with Eq.(6),
Eq.(2) can be calculated accordingly.

Please note that while Φk,` as the upper bound of ψ(Ij)
can be calculated by all methods mentioned above, the job-
level convolution-based analyses suffers from state explosion
due to the large number of jobs and hence are not practicably
applicable as shown in [8, 24]. Hence, either the task-level
convolution presented by von der Brüggen et al. in [24] or
the approach by Chen and Chen [8] should be applied.

B. Approximation of the Expected Miss Rate

To approximate Eq. (1), we assume that the safe bound
on the probability for one deadline miss is greater than 0,
i.e., Φk,1 > 0. Otherwise, the expected deadline miss rate is
0 trivially, i.e., Ek = 0. A safe upper bound on the expected
miss rate Êk can be obtained by the following theorem:

Theorem 2 (Approximation of the Deadline Miss Rate):
Suppose that we are given a schedule of a set of constrained-
deadline (or implicit-deadline) sporadic tasks Γ where the
largest number of consecutive deadline misses of τk in this
schedule is J. An upper bound on the expected deadline
miss rate of task τk can be calculated as

Êk =
1

1 +
1−Φk,1∑J
j=1 Φk,j ·j

(7)

where Φk,1 and Φk,j are derived by Lemma 1.
Proof: By the above arguments for ψ(Ij), we know

ψ(Ij) ≤ Φk,j . For any possible schedule, the probability
ψ(I0) that there is no job missing its deadline must be at
least 1−Φk,1, i.e., ψ(I0) ≥ 1−Φk,1, and

∑J
j=1 ψ(Ij)·j > 0,

which means that
ψ(I0)∑J

j=1 ψ(Ij) · j
≥ 1− Φk,1∑J

j=1 Φk,j · j
(8)

Therefore,

Ek =

∑J
j=1 ψ(Ij) · j∑J

j=1 ψ(Ij) · j + ψ(I0)

=
1

1 + ψ(I0)∑J
j=1 ψ(Ij)·j

≤ 1

1 +
1−Φk,1∑J
j=1 Φk,j ·j

≤ Êk (9)

This concludes that Ek must be upper bounded by Êk, i.e.,
Ek ≤ Êk.

The following example illustrates how Eq. (1) and Eq. (7)
can be used to calculate the expected miss rate.

Example 1: Suppose that the probabilities of Ij are given
as: ψ(I0) = 0.99, ψ(I1) = 0, and ψ(I2) = 0.01. With
Eq. (1), we get the expected miss rate:

0.01 · 2
0.01 · 2 + 0.99

= 0.0198

Let the safe bounds of them be given as follows: Φk,1 =
0.05, Φk,2 = 0.02, and Φk,3 = 0. With Eq. (7), a safe upper
bound on the expected miss rate can be derived as:

1

1 + 0.95
0.05+0.02·2

= 0.0865

C. Threshold J′ and Time Complexity

Since in Eq. (7) the maximum number of jobs with
consecutive deadline misses J could be extremely large or
even infinite, an additional approximation is required to
bound the summation in Eq. (7). Let S =

∑∞
j=1 Φk,j · j.

We can use a threshold J′ to simplify the procedure. Let
rj =

(j+1)Φk,j+1

jΦk,j
. Assume there is a J′, such that rJ′

is always larger than the other rj , where J′ < j and
0 < rJ′ < 1. A safe upper bound on Êk can be obtained by
the following theorem:

Theorem 3: Suppose that we are given an index J′ such
that rJ′ is always larger than any other rj if 0 < J′ < j.
Let Ŝ =

∑(J′−1)
j=1 jΦk,j +

Φk,J′

1−rJ′
. An upper bound on the

expected deadline miss rate of task τk can be calculated as

Ê∗k =
1

1 +
1−Φk,1

Ŝ

(10)

Proof: Comparing to Eq. (7), Eq. (10) only replaces S
with Ŝ. Therefore we prove Ŝ ≥ S as follows:

S =

∞∑
j=1

Φk,j · j

=

(J′−1)∑
j=1

jΦk,j +

∞∑
z=J′

zΦk,z

=

(J′−1)∑
j=1

jΦk,j + Φk,J′ + r1Φk,J′ + r1r2Φk,J′ . . .

≤
(J′−1)∑
j=1

jΦk,j +

∞∑
z=0

(rJ′)
zΦk,J′ (11)

As
∑∞
z=0(rJ′)

zΦk,J′ is an infinite series with a common
ratio rJ′ , in which 0 < rJ′ < 1, we can calculate Eq. (11)
from the finite sum formula:

Ŝ =

(J′−1)∑
j=1

jΦk,j +
Φk,J′

1− rJ′

Since Ŝ ≥ S, it follows directly that Ê∗k ≥ Êk.



Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.1
10

9/
R

T
C

SA
.2

01
8.

00
02

8

Task 

Generator
Dispatcher

Event-Driven Simulator

Get_event(e)

Update(t)
Add_event(e)Task i 

Status

Status Table

Release Event

Deadline Event

Check if the targeted task is missing its deadline

1)Follow the distribution to set up the execution time

2)Find the highest priority task with none-zero workload

Task Set

Event List

Figure 3: Overview of the event-driven simulator released on [7].

The complexity of this approximation mainly comes from
Ŝ, which is dominated by the calculation of j · Φk,j for
j = 1, 2, . . . , J′. According to Eq. (3), we need to calculate
Φθk,w in every iteration and use the derived Φk,`−w from
the previous iterations. The space complexity to record all
values Φθk,w for w = 1, 2, . . . , J′ is O(J′). Suppose that the
time complexity to determine if P (St ≥ t) for a given single
time point t is O(L). For each Φθk,w, the time complexity is
O(Dk ·L) with discretized time points t from 0 to Dk. Since
Φk,` can be calculated by the derived Φθk,w immediately,
thus, the time complexity of Ŝ is O(J′ ·Dk ·L) (if we only
look at Φk,J′ ).

D. General Execution Time Distribution

In Section III-B we assume that each task has two
distinct WCETs, i.e., CAi and CNi with their corresponding
probability PAi and PNi . However, throughout this paper,
this assumption is only used in the example in Section IV
(as shown in Fig. 2) and the evaluation in Section VII. There-
fore, there is in fact no impact on the proposed analyses if
we relax this assumption since our method is agnostic to
the method that is used to calculate the Φk,` values. We
note, however, that the method chosen to calculate these
values must be able to work with more general probability
distributions to be applied, which, for instance, is the case
for the methods proposed in [8, 24] that we consider in the
evaluation.

VI. EVENT-DRIVEN SIMULATOR

To estimate the deadline miss rate empirically, we also
implemented an event-driven simulator written in Python
2.7 to simulate the rate-monotonic scheduling policy. The
complete scripts are available at [7]. An overview of the
simulator is shown in Figure 3. For each task τi, there are
only two type of events in the simulator, either release or
deadline. A release event of τi adds its new workload
to the entry of τi in the status table, and places a deadline
event of τi into the event list. The deadline event of τi
will check if the remaining workload of τi is zero in the
status table (meet its deadline) or not (missing one deadline).
The main components in the simulator are listed as follows:

• Task Generator: By applying the well-known UUni-
Fast method [4] and the suggestion from Davis et al. in
[9], the task generator outputs a set of generated tasks
under a given utilization value (see Section VII-A).

• Dispatcher: It checks if the number of released jobs
from the targeted task (by default is the lowest priority
task) is equal to the targeted number. If not, it continues
to dispatch the next event from the event list.

• Event List: This linked list keeps track of the following
events in the simulated task system. When a new event
is inserted by another release event, the events in
the list are sorted by their future occurring time.

• Status Table: It records the number of deadline misses,
the number of released jobs, and the remaining work-
load for each unfinished job of a task.

According to the considered model, jobs are never aborted
in the simulator. If a job misses its deadline, the remaining
portion of execution time is still executed at the same priority
level before the next job of the task can start executing.
Whenever the dispatcher gets a new event, the workloads
of the tasks in the status table are updated by the elapsed
time from the previous event to the current event and the
processor is assigned to the highest priority task under a
fixed-priority scheduling policy (if any ready task is in the
system; otherwise the processors runs idle until the next job
is released).

We implemented the task release to suit the evaluation
performed in this paper by releasing tasks in two execution
modes, either related to CNi with high probability PNi ,
or related to CAi with low probability PAi . This can be
easily revised to fit any execution time distributions. We
considered a preemptive fixed-priority scheduling policy in
the dispatcher, i.e., the task with the highest priority with
has non-zero workload will be executed. This dispatcher can
also be extended to non-preemptive and dynamic-priority
scheduling policies.

VII. EVALUATION AND DISCUSSION

To evaluate the efficiency and the pessimism of our analy-
sis, this section presents the derived bounds of the expected
miss rates for different synthesized task sets. To analyze our
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(a) Φk,j derived by CON method
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(b) Φk,j derived by EMR method

Figure 4: Trends of Φk,j from five different task sets with respect to different j.

j 1 2 3 4 5
CON 0.02 0.36 2.58 11.15 36.26
EMR 0.91 3.50 8.45 18.50 39.33

j 6 7 8 9 10
CON 94.36 220.34 (Set 1:3276.27) - -
EMR 81.86 167.27 338.48 680.98 1366.56

Table I: Average time (sec) need for deriving Φk,j .

approach, we used two different ways to determine Φk,j ,
namely the analytical bounds from Chen and Chen [8]2,
denoted as EMR, and the tighter task-level convolution-
based approach presented by von der Brüggen et al. in [24],
denoted as CON. Please note that the convolution-based
approach in [19] leads to identical results as the task-level
convolution-based method presented in [24] while it has (in
general) a larger runtime than [24] and is therefore omitted.
Moreover, we compared to the results derived from an event-
driven simulator, introduced in Section VI, labeled as SIM.

A. Simulation Setup

We synthesized randomized implicit-deadline task sets
with a given utilization value UNsum according to the UU-
niFast method [4] where UNsum =

∑
τi∈Γ U

N
i and UNi =

CNi /Ti. To evaluate the impact of abnormal executions, we
adopted time-demand analysis [14] to ensure the schedu-
lability when all tasks are always executed normally, and
discarded those task sets that were anyway not schedulable.
To simulate a recovery mechanism, we set the error detection
costs to 20% of the task execution time and assumed a
complete re-execution if a fault is detected, i.e., CAi was
set to 2.2

1.2 ≈ 1.83 · CNi for all tasks τi ∈ Γ (similar to
[23]). For each task set, the task periods were generated

2We adopt the original scripts from
https://github.com/kuanhsunchen/EPST/ on March. 23 in 2018.

by a log-uniform distribution with two orders of magnitude,
i.e., [1-100], according to the suggestion from Davis and
Burns [9]. For each task, the normal execution time CNi
was set to UNi · Ti. Task sets with a cardinality of 2, 5 and
10 were considered. We used an identical fault rate PAi for
all tasks. Due to space limitation, we only present the miss
rates of the lowest-priority tasks.

For the configuration of the simulator, since we consider
tasks with their specified minimum inter-arrival times (i.e.,
they are sporadic), it is unnecessary to release a higher-
priority job if there is no unfinished job of a task under
analysis. In order to fairly compare with our analytical
approach considering the worst case, we enforced a worse
release pattern in the simulator so that the estimated miss
rate is closer to the worst case. Namely, if the lowest-priority
task does not have any unfinished job at time t, a higher-
priority task does not release any job even if its minimum
inter-arrival time allows it to release a job at time t already.
Instead, the next release of those higher-priority tasks is
postponed to the point in time when the next job of τk is
released.

Please note that our analyses should be carefully imple-
mented, as the considered probabilistic values are very small.
Due to the lack of precision in floating-point calculation, the
terms in the commutative operations should be pre-sorted to
avoid inconsistent results.

B. Trends of Φk,j from CON and EMR

Considering CON and EMR, we reported values of Φk,j
for j = 1, 2, . . . , 10. In all the generated task sets, the values
of Φk,j decrease significantly with respect to j. The resulting
values for 5 different task sets are presented in Figure 4.
The average analysis time needed to gather Φk,j for these
5 task sets over different j by CON and EMR is presented
in Table I. A timeout threshold of 30 minutes was used
during the evaluation. Unfortunately, CON was not able to
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derive Φk,j for any task set with j > 7 before this threshold.
When ignoring the threshold, CON needed around 55 mins
to derive Φk,8 for Set 1. This is due to the large number
of jobs involved in the interval of analysis since the time
complexity of CON is roughly the number of jobs of a task
to the power of the number of tasks.

Generally, when j increases, Φk,j decreases drastically.
When we consider the calculation of S, we can expect that
the value contributed from j · Φk,j for bigger j becomes
negligible very soon. This observation supports our approx-
imation in Section V-C. Since the derived upper bound of
the expected miss rate is mainly dominated by those Φk,j
with small j, such insignificant Φk,j values resulting from a
large j and, hence, requiring significant analysis time can be
sensibly ignored. We can observe that EMR needs a larger
runtime for small j-values since the runtime in this case
is dominated by finding a good internal parameter of the
Chernoff bound, but the runtime increase with respect to j
is not as significant as for CON. We set J′ to 4 for Ŝ in
the rest of evaluations to efficiently over-approximate the
expected deadline miss rate Êk for all the given task sets.

C. Comparison among SIM, CON and EMR
To evaluate the efficiency of our analysis, we compared

the derived upper bounds from CON and EMR to the
estimated deadline miss rate from an event-driven simulator
SIM. The cardinality of the task sets is 2, since deriving Φk,j
using SIM to simulate the miss rates is really time consum-
ing. The simulator stopped its simulation when two-million
jobs from the lowest priority task finished their executions.
We show the results for 20 different task sets where the
expected miss rate derived from SIM was greater than 10−5

in Figure 5. The restriction regarding the displayed task sets
is taken to increase the readability of the figure.

In Figure 5, the bounds derived from CON and EMR
are all higher than the miss rates of SIM. This empirically
shows that the derived upper bound from our analysis is
safe. Although the bounds derived from CON in our setting
are relatively close to the simulated miss rate from SIM,
CON does not scale well with respect to the number of tasks
in the system, especially when calculating Ŝ. The bounds
derived from EMR are generally greater than the estimated
bound from CON by two orders of magnitude. However, it
is more scalable than CON and SIM. Hence, this tradeoff
has to be considered when applying our approach. If the
error resulting from the pessimism of the Chernoff bounds
is acceptable, EMR is still a good choice.

D. Expected Miss Rate with More Tasks

Since the variation of the derived miss rates is significant
even under the same utilization setting and fault rate, we
choose box plots to present the results, i.e., shwoing the
medians (red lines), the interquartile range of the sample
(the width of the boxes), the maximums (top lines), and the

minimums (bottom lines). We recorded the miss rates of 100
synthesized task sets for each configuration. Unfortunately,
CON could not obtain Êk in an acceptable amount of time
even with J′ = 4, i.e., 30 minutes per task set, whereas
EMR could obtain the result for each task set in, on average,
2 minutes. Therefore, we only present the results Ê∗k while
Φk,j are derived by EMR, i.e., Chen and Chen’s method [8],
for the cardinality with 10 tasks. As shown in Fig. 6,
naturally the derived bounds are less if the fault rates are
lower; the derived bounds are higher if UNsum is higher. The
trends of results derived using different values of UNSUM are
similar to the results presented in Fig. 6.

VIII. CONCLUSION

As soft real-time systems tolerate and allow certain
deadline misses, the deadline miss rate is an important
performance indicator to evaluate the proposed analyses,
scheduling algorithms, etc. In this paper, we propose ap-
proaches to safely approximate the deadline miss rates. To
the best of our knowledge, this is the first paper analyzing the
expected deadline miss rate in general task and scheduling
models.

Although we only show one applicable case in the eval-
uation, i.e., tasks with two distinct execution times in the
evaluation, the analyses in this paper can be applied for any
execution time distributions as long as Φk,j can be derived.
In future work, we plan to mitigate the pessimism of our
approximations, and extend the applicability of our analyses
for more general real-time task models.
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