
Examining and Supporting Multi-Tasking in EV3OSEK

Nils Hölscher, Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen
Department of Informatics, TU Dortmund University, Germany

{nils.hoelscher, kuan-hsun.chen, georg.von-der-brueggen, jian-jia.chen}@tu-dortmund.de

Abstract—Lego Mindstorms Robots are a popular platform for
graduate level researches and college education purposes. As a
portation of nxtOSEK, an OSEK standard compatible real-time
operation system, EV3OSEK inherits the advantages of nxtOSEK
for experiments on EV3, the latest generation of Mindstorms
robots. Unfortunately, the current version of EV3OSEK still has
some serious errors. In this work we address task preemption,
a common feature desired in every RTOS. We reveal the errors
in the current version and propose corresponding solutions for
EV3OSEK that fix the errors in the IRQ-Handler and the
task dispatching properly, thus enabling real multi-tasking on
EV3OSEK. Our verifications show that the current design flaws
are solved. Along with this work, we suggest that researchers who
performed experiments on nxtOSEK should carefully examine if
the flaws presented in this paper affect their results.

I. INTRODUCTION

Since 1998 Lego Inc. released a series of programmable
robotics kits called Mindstorms [8], which have been exten-
sively used in graduate level researches and college education.
For the Lego Mindstorms robots of the NXT series, the OSEK
standard [11] compatible real-time operating system (RTOS)
nxtOSEK [4] has been widely adopted as an experimental
platform [1, 3, 14]. However, EV3 as the latest generation of
Mindstorms robots, released in 2013, is still not popularly used
in the real-time community. One reason is that the only RTOSs
for EV3 robots, namely EV3RT [9] and EV3OSEK [12], were
release a few years after the EV3 robots, i.e., in 2016. In this
paper we only focus on EV3OSEK, since it is the only RTOS
for EV3 aiming at supporting the OSEK standard.

EV3OSEK is a porting of nxtOSEK to the EV3 plat-
form, provided by a group at Westsächsische Hochschule
Zwickau [5]. Hence, it is generally compatible to applications
for nxtOSEK. Instead of using the limited sized display to
capture the results, the output of EV3OSEK can be obtained
directly via the EV3 Console [10] on a host machine. More-
over, unlike nxtOSEK that needs to flash the ROM on the
brick, EV3OSEK can directly boot from a SD-Card.

During our experiments with EV3OSEK, we noticed that
the task preemption mechanism did not function as expected.
Gupta and Doshi [6] described similar problems after imple-
menting nested task preemption in nxtOSEK and abandoned
the project due to problems with the IRQ-Handler and dispatch
routines. This motivated us to investigate if the problems
were related. In course of this investigation, we discovered
that EV3OSEK was unable to correctly restart preempted
jobs but instead reexecuted them completely. A more detailed
description of the preemption behaviour of EV3OSEK as well
as of nxtOSEK can be found in Section III. We encourage

researchers who performed experiments on nxtOSEK to care-
fully examine if the flaws presented in this paper affect their
results.

To narrow down the source of the problem, we examined
the ARM specifications, the hardware dependent IRQ-Handler,
and the task dispatching routines. In this work, we provide the
corresponding solutions to the errors in the current EV3OSEK,
which are released on [7]. After solving these problems,
EV3OSEK is now able to provide preemptive scheduling, and
therefore multi-tasking, with all the advantages inherited from
nxtOSEK.
Our Contributions: This paper presents the errors that exist
in the current version of EV3OSEK when task preemption
takes place and provides a solution to tackle these problems.

• We detail a flawed behaviour regarding task preemption
in EV3OSEK in Section III, and explain the origin of
these problems in Section IV.

• The corresponding solutions for the IRQ-Handler and the
task dispatching routine are provided in Section V, hence
enabling multi-tasking under EV3OSEK.

• We evaluated our solutions, the results are displayed in
in Section VI, showing that the provided solutions solve
the problems and allow fully preemptive fixed-priority
scheduling, and therefore multi-tasking, in EV3OSEK.

II. SYSTEM MODEL

A. Application Model

We consider the scheduling of n independent periodic real-
time tasks Γ = {τ1, τ2, . . . , τn} in a uniprocessor system.
Each task is defined by a tuple τi = (Ci, Ti) where Ti is
an interarrival time constraint (or period) and Ci the tasks
worst-case execution time. The deadlines is assumed to be
implicit, i.e., if a task instance (job) is released at θa, it must
be finished before θa + Ti ∀τi. We consider fully preemptive
fixed-priority scheduling, i.e., each task τi is associated to a
predefined priority p(τi)

1, since the issues considered in this
work only happens under a fully preemptive scheduling policy.

B. Lego Mindstorms EV3 and EV3OSEK

In this paper, we focus on the third generation of Lego
Mindstorms robots (EV3), which are equipped with a unipro-
cessor ARM926EJ-S 300MHz and 64MB RAM on a Tex-
asInstruments AM1808, running EV3OSEK with a C/C++

1Although EV3OSEK defines the lowest priority as 0, we use the more
common notation that lower priority values indicate higher priorities.

compatible environment. EV3OSEK [12] is a real-time op-
erating system which aims for compatibility to the OSEK
standard [11]. It is a recent portation [5] of nxtOSEK [4],
which is only available for the older LEGO Mindstorms NXT
robots. EV3OSEK consists mainly of three parts:

1) Drivers for sensors and actors (leJOS)
2) API for development (ECRobot)
3) OSEK-OS for the EV3 robot

This work focuses on the OSEK-OS. To obtain the output from
the EV3 robots with our host machines the EV3 Console [10]
is used, which realizes an USB to UART bridge. It connects
with one of the Lego sensor cables and a micro-USB cable.
The suggested driver to access the device are provided by
Texas Instruments [13].

C. Preemption in the OSEK Standard

Here we briefly review the specifications for task pre-
emption defined by the OSEK standard [11]. The OSEK
standard defines two different scheduling policies: non-
preemptive scheduling and fully preemptive scheduling. In a
non-preemptive scheduling policy, a job cannot be preempted
once its execution has been started. In fully preemptive
scheduling, any task is preempted at the point in time a higher
priority task enters the system and that higher priority task is
scheduled instead. The context of the preempted task is stored
accordingly so that it can resume back later on.

III. MOTIVATIONAL EXAMPLE

To demonstrate the flaws in the current EV3OSEK, Figure 1
provides and example that detail the EV3OSEK preemption
behaviour. We consider three tasks: τ1 = (2, 9), τ2 = (2, 8),
and τ3 = (2, 7), indexed according to their priority, i.e.,
p(τ1) > p(τ2) > p(τ3).

Figure 1a shows the expected behaviour. The second job
of τ3 released at time 7 is preempted by the second job of
τ2 released at time 8, which afterwards is preempted by the
release of τ1 at time 9, and both τ2 and τ3 have one unit
of execution time left. After τ1 finishes its execution, the
remaining portions of τ2 and τ3 are executed. Note that in the
original EV3OSEK also the problem occurs that not all tasks
are activated at time 0, i.e., the first release of τ1 was missing
due to an index error. The array containing the tasks/alarms
was read starting at index 1. In our code, we ensured a start
at 0, hence the first job of τ1 is released as well.

In contrast, Figure 1b shows the execution behaviour of
EV3OSEK.2 Both the second job of τ2 and the second job
of τ3 are not resumed correctly but either resumed wrongly
or completely restarted which leads to one additional unit of
execution time for both jobs, called overrun in Figure 1b. Note
that, due to the deadline miss at 14, the third release of τ3 at
14 is skipped and the next job of τ3 will be released at 21.

Since EV3OSEK is a portation from nxtOSEK, this be-
haviour could directly be inherited. However, the flawed
behaviour in the original nxtOSEK was different and only

2The related source code is released on [2] as NestPreemption.

τ1(2, 9)

τ2(2, 8)

τ3(2, 7)

0 2 4 6 8 10 12 14 16 18 20

(a) Expected behaviour: τ2 preempts τ3 and is afterwards preempted by τ1.
The jobs of τ2 and τ3 are resumed where they were preempted.

τ1(2, 9)

τ2(2, 8)

Execution overrun of τ2 Execution overrun of τ3

τ3(2, 7)

0 2 4 6 8 10 12 14 16 18 20

(b) Observed behaviour in EV3OSEK: the jobs of τ2 and τ3 are restarted
instead of resumed after a preemption.

τ1(2, 9)

τ2(2, 8)

τ3(2, 7)

0 2 4 6 8 10 12 14 16 18 20

(c) Observed behaviour in nxtOSEK: τ3 is preempted by τ2, but τ2 cannot
be preempted by τ1.

Fig. 1: Expected behaviour compared to the actual behaviour
of EV3OSEK and nxtOSEK.

effected nested task preemption as displayed in Figure 1c.
Once τ3 is preempted by τ2 at time 8, the interrupt from the
scheduler is deactivated and hence τ1 cannot preempt τ2 at
time 9 although p(τ1) > p(τ2). Only when τ2 finishes at time
10, τ1 is allocated to the processor. However, when Gupta and
Doshi [6] tried to fix this problem, their efforts resulted in an
identical behaviour as in Figure 1b due to the already existing
problems with the IRQ-Handler and the task dispatching.

Overall, the current EV3OSEK does not match the expecta-
tion when resuming previously preempted tasks. Since the mis-
behavior is observed right after the preempting task finishes,
e.g., τ1, this motivated us to check the functions responsible
for the IRQ-Handler and the task dispatching. It turned out
that the IRQ handler, expended from TexasInstruments [13],
has critical errors that could have lead to complete corruption
of the program counter.

IV. ORIGINAL TASK PREEMPTION IN EV3OSEK

In this section, we first review the current design of the
functions that are responsible for IRQ-Handler3 and task
dispatching in EV3OSEK4. Afterwards we point out the source
of the aforementioned errors.

A. IRQ-Handler

To follow the OSEK standard, EV3OSEK has a hook
routine named user_1ms_isr_type2(), which is invoked

3IRQ stands for Interrupt ReQuest from the underlying hardware.
4The reviewed files are downloaded from

https://github.com/ev3osek/ev3osek/tree/master/OSEK EV3. The latest
update for exceptionhandler.S and cpu support.S was on 18 Sep 2016.

Fig. 2: Flowchart of the current IRQ-Handler in EV3OSEK.

from a periodic interrupt service routine in category 2 (ISR2)
every 1 ms. This hook routine can be redefined by the
programmer but it should always execute the system routine
SignalCounter() to maintain the progress of EV3OSEK.
However this design partially violates the OSEK standard.

Once an ISR occurs, the CPU loads the IRQ-Handler shown
in Figure 2. It first saves the context of the interrupted task.
Now it can handle the ISR without overriding registers of
the interrupted task. The address of the ISR that called the
interrupt is saved in the AINTC_HIPVR2 register by the
hardware interrupt handler. When the ISR has finished its
execution, it returns back to the IRQ-Handler.

If the ISR was not systick_ISR_c, i.e., the function
that handles the 1ms timer, the task context is restored
and the IRQ-Handler returns to the interrupted task. But
if the ISR was systick_ISR_c, the button-routine and
user_1ms_isr_type2() are executed. In the hook func-
tion user_1ms_isr_type2(), SignalCounter() will
set the Boolean addr_should_dispatch to TRUE if the
current running task is not the highest priority task anymore.

In case that should_dispatch is false, the task context
is restored and the IRQ-Handler returns to the interrupted task.
In the other case, when should_dispatch is set to true,
the task context is restored, i.e., all registers r0 to r12 and
the lookup register. Afterwards the IRQ-Handler loads the
dispatch routine address in the lookup register and loads it
with an offset of −4.

Within the analyses, we noticed that there are five errors in
the current implementation as shown in Listing 1:

1) The lookup register contains the return address of the
preempted task and is always overwritten.

2) The lookup register has to be saved in the stack for the
CPU User-/System-mode before jumping to the dispatch
routine, since different CPU modes may have their own
lookup registers.

3) The lookup register, which already contains the address
of the dispatch routine, loads with an offset of −4. This
is not necessary, since the address is loaded from the
memory instead of the decoder.

4) The status register also has to be saved/restored, when
interrupting a task, since it also contains information
about the interrupted task.

5) SignalCounter() in ISR2 determines whether the
task dispatching should take place or not. However, the
OSEK standard defines that scheduling should be bound
to ISR2 rather than SignalCounter().

LDMFD r13 ! , { r0−r12 , l r }

LDR l r , = d i s p a t c h
SUBS pc , l r , #4

Listing 1: Assembler code fragment responsible for the five
errors related to the IRQ-Handler.

B. Task Dispatching

Before introducing the current design of task dispatching in
EV3OSEK, we list some notations used in the implementation:

• runtsk: Address of the running task ID.
• schedtsk: Address of the highest priority task.
• tcxb_pc[]: Array for the program counters of tasks.
• tcxb_sp[]: Array for the stack addresses of tasks.

For the simplicity of the presentation, we further use τlow and
τhigh in the rest of the section to describe the scenario that
there is an executing task τlow which is going to be preempted
by a ready task τhigh with higher priority.

When τhigh is ready in EV3OSEK, the currently running
task τlow has to relinquish its right on the CPU. As shown
in Figure 3, the scheduler in EV3OSEK has three main steps:
Dispatch, Preempt and Reload, detailed as follows:

• Dispatch: To preempt a task, the IRQ-Handler calls
the dispatch routine, which saves the context of the
preempted task on the tasks stack, and stores the
stack pointer in tcxb_sp[runtsk]. The address of
dispatch_r is stored in tcxb_pc[runtsk], allow-
ing the task context to be restored when it is resumed.

• Preempt: After the dispatch step, the higher prior-
ity task is executed on the CPU. Once it finishes,
it calls TerminateTask() to trigger the scheduler
with start_dispatch to reload the lower priority
task. In start_dispatch, at first runtsk is set to

Fig. 3: Task dispatching and re-dispatching.

schedtsk, so that the scheduler knows that the current
running task is the currently highest priority task in the
system. Afterwards, the stack pointer is restored back
from tcxb_sp[runtsk] and dispatch_task is
called.

• Reload: In dispatch_task the program
counter of the preempted task is restored from
tcxb_pc[runtsk]. Instead of loading the tasks
program counter, the preempted task executes
dispatch_r to restore its context from the stack
and enable interrupts, which were disabled by
TerminateTask().

There are two errors in the current implementation:

1) In dispatch_r, the lookup register is loaded from the
stack without ˆ flag, and the status bits are not loaded as
well. See Listing 2:

d i s p a t c h e r r :
BL I n t M a s t e r I R Q E n a b l e
BL I n t M a s t e r F I Q E n a b l e
ldmfd sp ! , { r0−r12}
ldmfd sp ! , { l r }
MOV pc , l r

Listing 2: The lookup register is loaded without ˆ flag,
the status bits are not loaded at all.

Fig. 4: Enhanced version of the IRQ-Handler.

2) The status register has to be part of the save context
routine in dispatch and of the restore context routine
in dispatch_r.

V. FIXING TASK PREEMPTION IN EV3OSEK
After discussing the flaws in the current EV3OSEK, we here

present how we fix the task preemption accordingly. Please
note that EV3OSEK’s IRQ-Handler is not inherited from the
portation of nxtOSEK and hence the nested task preemption
problems in nxtOSEK are not inherited from the IRQ-Handler
but the dispatch routines.

Based on the observations in Section IV, the proposed
solutions can be summarized as follows:

• correcting the register operations in the IRQ-Handler,
• correcting the errors in dispatch_r,
• adding status register to context save/restore routines, and
• changing the trigger point of the task dispatching.

The flowcharts for the IRQ-Handler and the dispatching are
shown in Figure 4 and Figure 5, respectively, where the red
blocks are added or changed due to our solutions. In the rest
of this section, we explain more details about our solutions.
Correcting the register operations in the IRQ-Handler: In
the current EV3OSEK, the lookup register in the IRQ-Handler

contains the address of the preempted task and is overwritten.
Moreover, the lookup register has to be saved in the User-
/System-mode stack before jumping to dispatch, since IRQ-
and User-/System-mode have their own lookup registers. Note
that there are different execution modes in modern CPUs,
where some modes have their own registers called banked
registers which are not shared with other modes.

The errors can be solved by writing the lookup register in
one of the registers r0-r12, switching to System-mode in the
IRQ-Handler, pushing the register containing the lookup reg-
ister on the System-mode stack, and switching back. This so-
lution requires to remove the instruction that stores the lookup
register on the system stack in the dispatch routine. As a
result, the dispatch routine can no longer be called from User-
/System-mode. To resolve this, the branch dispatch_irq
is introduced right after the dispatch routine stores the lookup
register, as this is already done in the IRQ-Handler. Now the
IRQ-Handler calls dispatch_irq and it is still possible to
call the dispatch routine from User-/System-mode.

Another error in the IRQ-Handler is that the lookup register
contains the address of the dispatch routine, but it is loaded
with an offset of −4. This can be easily fixed by removing the
unnecessary offset from the branch instruction. The updated
IRQ-Handler is displayed in Figure 4.
Correcting the errors in dispatch_r: As shown in Fig-
ure 5, the lookup register is loaded from the stack without the
ˆ flag in dispatch_r, so that the status bits are not loaded
as well. This can be easily resolved by adding the ˆ flag to
the load instruction. By doing so, the program status is loaded
into the status register correctly. The enhanced dispatching is
detailed in the flowchart in Figure 5.
Save/Restore status register with context: In the IRQ-
Handler and dispatch routines, the status register is not part of
saving/restoring context. However the status register contains
information about comparing instructions for the interrupt-
ed/dispatched task. By saving and restoring the status register
together with the context of registers, the informations in r0
to r12 are not lost.
Changing the trigger point of the task dispatching:
In the original implementation, SignalCounter() must
be called by the hook routine user_1ms_isr_type2(),
which is used to manage task scheduling. As defined in
the OSEK standard, the task scheduling must be bound
to ISR2. To fix this, we moved the code setting the flag
should_dispatch to the function SetDispatch() and
call it after user_1ms_isr_type2() has finished.

VI. EVALUATION OF THE PROPOSED SOLUTION

As illustrated in Section III, the current EV3OSEK is not
able to provide task preemption correctly. With the enhance-
ment mentioned in the previous section, task preemption, and
hence multi-tasking, now should work properly. We present an
additional example with three tasks to evaluate our proposed

Fig. 5: Enhanced version of task dispatching.

solution in EV3OSEK5.
In the following experiment, we considered a task set which

is schedulable in a correct preemptive fixed-priority schedul-
ing system while in the current EV3OSEK the unexpected
additional workload due to task preemption leads to deadline
misses. Once a job misses its deadline, the next job is only
released after the current job is finished and hence the number
of releases is reduced. Therefore, by checking if the number of
jobs released in the current version of EV3OSEK and in our
enhanced version of EV3OSEK is identical, we can determine
whether our enhancement solved the discovered problem. The
related source code can be found at [7].

Tasks τ1, τ2, and τ3 all print out the following line right
after it starts/finishes: ”Task τi(l1, l2, l3) starts/ends at tms”.
tms stands for the time point when a task starts or finishes its
execution. τ1, τ2, and τ3 all run roughly 2000 ms and priority’s
are p(τ1) > p(τ2) > p(τ3). The tasks are released as follows:

• τ1 releases at 0 s with a period 5 s.
• τ2 releases at 0 s with a period 8 s.

5Please note that testing the nesting depth is not necessary. As the task
stack for context-switch is managed in the OIL file, the management of the
stack should be handled by the programmers.

• τ3 releases at 0 s with a period 10 s.
We verified that all the task preemptions behave as we expect
over a certain amount of time, checking the resulting log file,
and if the number of jobs for each task is exactly as we
predict in advance. If there is no additional execution time
after preemptions (like in the current EV3OSEK), there should
be no unexpected interference affecting the job releases. We
also intend to show that the program counter does not get
corrupted any more, even after long run times, i.e., 10 min.

We first derived an equation to predict the exact number
of jobs li after a certain amount of time that is a multiple of
10 seconds. Since the least common multiple of three tasks’
periods is 40 seconds, the so-called hyper-period, the following
equation gives us the number of jobs from τi in a 10×t second
long interval: l1l2

l3

 =

 8
4 × t
5
4 × t
4
4 × t

 =

 2t
1.25t
t

 (1)

The equation is detailed as follows:
• l1 equals 2t: τ1 is released and finishes two times in 10 s.
• l2 is 1.25t: τ2 releases and finishes 5 times in a hyper-

period of 40, every 10 s it has on average 1.25t releases.
• l3 is t: τ3 has one release every 10 seconds.

We can now predict l1, l2 and l3 after an interval of 10 min.

t = 600001(ms) ≈ 60× 10sec⇒

l1(60) = 120
l2(60) = 75
l3(60) = 60

 (2)

In the current version of EV3OSEK the example hangs
after 7000 ms, because the program counter is set to a random
address. With our enhancement, the aforementioned problem
does not exist anymore in the enhanced version of EV3OSEK.
The output can be found at listing 3.

Task 1 (0 , 0 , 0) s t a r t a t 1 .
Task 1 (1 , 0 , 0) end a t 2005 .
Task 2 (1 , 0 , 0) s t a r t a t 2008 .
Task 2 (1 , 1 , 0) end a t 4003 .
Task 3 (1 , 1 , 0) s t a r t a t 4005 .
Task 1 (1 , 1 , 1) s t a r t a t 5001 .
Task 1 (2 , 1 , 1) end a t 6995 .
. . .
Task 1 (1 2 0 , 75 , 60) s t a r t a t 600001 .

Listing 3: Output generated with the evaluation example using
the enhanced of EV3OSEK.

Hence, we conclude that our enhancement fixed the prob-
lems in EV3OSEK regarding task preemption which not only
resulted in unexpected execution behaviour but also in system
crashes.

VII. CONCLUSION

EV3OSEK as an OSEK inspired real-time operating sys-
tem for the third generation of LEGO Mindstorms robots
(EV3) has many benefits in graduate level researches and
college education. In this work, we explain how we have
fixed the IRQ handler and the task-dispatcher for the current

version of EV3OSEK to achieve a generally expected task
preemption feature. Consequently, the proposed solution fixes
multi-tasking in EV3OSEK. The release source code of our
enhancement can be found in [7].

ACKNOWLEDGMENTS
This paper has been supported by DFG, as part of

the Collaborative Research Center SFB876 (http://sfb876.tu-
dortmund.de/), subproject A1.

REFERENCES

[1] M. Canale and S. C. Brunet. A Lego Mindstorms NXT
experiment for Model Predictive Control education. In
2013 European Control Conference (ECC), pages 2549–
2554, July 2013.

[2] K.-H. Chen. Motivational Examples for the flaws in
EV3OSEK. https://github.com/kuanhsunchen/ev3osek/
tree/master/example, 2017.

[3] K.-H. Chen, B. Bönninghoff, J.-J. Chen, and P. Mar-
wedel. Compensate or ignore? meeting control robust-
ness requirements through adaptive soft-error handling.
In Proceedings of the 17th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, Tools, and Theory
for Embedded Systems, LCTES 2016, pages 82–91, New
York, NY, USA. ACM.

[4] T. Chikamasa. nxtOSEK. http://lejos-osek.sourceforge.
net/, 2013.

[5] F. Grimm. Portierung des nxtOSEK-Frameworks auf die
Lego EV3 Plattform, February 2016.

[6] S. Gupta and J. Doshi. Support for Nested Preemption
in nxtOSEK. http://moss.csc.ncsu.edu/∼mueller/rt/rt14/
projects/p1/report4.pdf, 2014.

[7] N. Hölscher and K.-H. Chen. Enhanced ev3osek. https:
//github.com/kuanhsunchen/ev3osek, 2018.

[8] Lego Inc. Lego mindstorms. http://www.lego.com/en-us/
mindstorms/.

[9] Y. Li, T. Ishikawa, Y. Matsubara, and H. Takada. A
Platform for LEGO Mindstorms EV3 Based on an RTOS
with MMU Support. In Operating Systems Platforms for
Embedded Real-Time Applications, OSPERT, 2014.

[10] Mindsensors. Console Adapter for EV3.
http://http://www.mindsensors.com/ev3-and-nxt/
40-console-adapter-for-ev3, 2017.

[11] OSEK. OSEK/VDX Operating System Manual.
https://www.irisa.fr/alf/downloads/puaut/TPNXT/
images/os223.pdf, February 2005.

[12] A. Stuy. EV3OSEK. https://github.com/ev3osek/ev3osek,
2017.

[13] Texas Instruments Inc. AM1808/AM1810 ARM Micro-
processor Technical Reference Manual. http://www.ti.
com/product/AM1808/technicaldocuments, 2011.

[14] X. Weber, L. Cuvillon, and J. Gangloff. Active Vibration
Canceling of a Cable-Driven Parallel Robot in Modal
Space. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 1599–1604, May
2015.

