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Abstract—Many practical real-time systems must be able to
sustain several reliability threats induced by their physical envi-
ronments that cause short-term abnormal system behavior, such
as transient faults. To cope with this change of system behavior,
online adaptions, which may introduce a high computation
overhead, are performed in many cases to ensure the timeliness
of the more important tasks while no guarantees are provided for
the less important tasks. In this work, we propose a system model
which does not require any online adaption, but, according to
the concept of dynamic real-time guarantees, provides full timing
guarantees as well as limited timing guarantees, depending on
the system behavior. For the normal system behavior, timeliness
is guaranteed for all tasks; otherwise, timeliness is guaranteed
only for the more important tasks while bounded tardiness is
ensured for the less important tasks. Aiming to provide such
dynamic timing guarantees, we propose a suitable system model
and discuss, how this can be established by means of partitioned
as well as semi-partitioned strategies. Moreover, we propose an
approach for handling abnormal behavior with a longer duration,
such as intermittent faults or overheating of processors, by
performing task migration in order to compensate the affected
system component and to increase the system’s reliability. We
show by comprehensive experiments that good acceptance ratios
can be achieved under partitioned scheduling, which can be
further improved under semi-partitioned strategies. In addition,
we demonstrate that the proposed migration techniques lead to a
reasonable trade-off between the decrease in schedulability and
the gain in robustness of the system. The presented approaches
can also be applied to mixed-criticality systems with two criti-
cality levels.

Index Terms—scheduling, mixed-criticality, fault tolerance,
fault recovery, multiprocessor, real-time

I. INTRODUCTION

Undeniably, the majority of practical real-time systems must
be able to sustain several reliability threats, especially if the
system is safety-critical and hard real-time characteristics must
be satisfied, as prevalent in the automotive and aerospace
sector. More precisely, the proper system functioning must
be maintained at any point in time, comprising not only
functional but also temporal correctness, i.e., a delivered
result must be correct and, moreover, be obtained previous
to a specified deadline. In order to ensure these properties,
manifold hardware as well as software techniques have been
developed so far by means of which such systems’ reliability
can be increased when so-called soft errors or transient faults
occur, e.g., spatial isolation of certain components, hardware
redundancy, remapping of logical system functionalities onto
a subset of hardware resources, monitoring, and re-execution

of erroneous software jobs [16]. However, these strategies are
not necessarily sufficient or even applicable in all cases, since
i) not every technique is fruitful with respect to each type
of faults, and ii) online adaption performed in the course of
fault-recovery may lead to uncertain execution behavior.

When addressing the issue of fault tolerance in real-time
systems, a distinction must be made between hardware and
software faults, whereat we focus on the former and do not
explicitly consider software faults in this work. Regarding
hardware faults, a distinction must be drawn de novo, namely,
between permanent, transient, and intermittent faults. While
permanent faults compromise a hardware component in such
a way that it is entirely broken and needs to be replaced, e.g.,
a blown fuse or burnt cable, transient faults typically occur as
bursts provoked, for instance, by power supply jitters or elec-
tromagnetic interference (EMI) due to atmospheric effects [17]
and therefore only affect the functionality of a component for
a limited interval of time. By way of illustration, consider a
memory cell suffering bit flips due to EMI. Following from
this, the hardware itself is not damaged but only provides
wrong data, which can be simply overwritten [19]. If a
system component is affected by an intermittent fault, its
condition steadily alternates between proper functionality and
malfunction. In contrast to permanent faults, intermittent faults
never disappear entirely, but rather switch from an active to
an inactive state and back, e.g., a loose electrical contact [19].

In this work, we focus on handling transient faults as well
as other rare events via software-based techniques in the first
place, while also considering abnormal behavior that occurs
for a limited interval of time, such as, e.g., intermittent faults or
overheating processors, later on. More precisely, considering
transient faults, we assume that, in order to overcome a tempo-
rary execution uncertainty caused by a compromised hardware
component, all instances (jobs) of related applications (tasks)
are (at least partially) re-executed. As a consequence, the
worst-case execution time (WCET) of each affected job is
prolongated by a certain amount of time depending on the
applied fault-recovery routine, e.g., complete re-execution [24]
or checkpoint-based recovery [12]. Subsequently, we term
this kind of execution behavior abnormal execution (with
abnormal WCET), in contrast to the normal execution (with
normal WCET) covering a task instance’s plain, fault-free
worst-case execution time in addition to the amount of time
required for fault-detection.



Since transient faults can be considered as rare events rather
than common cases, it is quite pessimistic to only take a
task’s abnormal WCET into account during the system design
process. Thus, a technique must be developed to allow the
sporadic occurrence of abnormal execution behavior without
leading to an over-dimension of resources and without endan-
gering the system safety. For this purpose, it seems sensible
to divide the overall set of tasks into two distinct categories,
namely, into more important and less important tasks. As
more important tasks, we denote those tasks which must not
under any circumstances miss their particular deadlines, since
a deadline miss may cause hazardous consequences. Regarding
the less important tasks, however, a small number of deadline
misses can be tolerated, subject to the condition that these
only occur in the fault case and, moreover, the amount of time
the respective tasks perform normal execution is considerably
longer than their abnormal executions.

While the origin is different, we assume that the WCETs
are also prolongated if hardware components are affected by
abnormal behavior for a limited interval of time. This is the
case when, for instance, the CPU clock speed is decreased to
reduce the temperature of an overheating processor.

A. Fault Tolerance and Mixed-Criticality

To model a system exhibiting these characteristics and
behavior, the well-known mixed-criticality model [26] can be
adopted, where a vector of possible worst-case execution times
is associated with each task, out of which the actual WCET
of a job is chosen depending on the current system mode. A
classical approach in mixed-criticality systems is to neglect or
even abort the jobs of less important tasks for the benefit of
the more important ones’ timeliness. This typically happens in
the course of a so-called mode change from a lower-priority
to a higher-priority mode, whereat the system does not return
from a higher-priority mode to a lower-priority mode in many
cases (for more details on mixed-criticality systems see [8]).
However, steadily providing limited or even no service to less
important tasks after the occurrence of a transient fault is
not desirable, owing to the fact that these tasks are of some
importance nonetheless, and their computation results can still
be useful despite their lateness (please refer to Ernst and Di
Natale [15], Esper et al. [16], and Burns and Davis [8, Section
6] for more details). Picking up this idea, new scheduling ap-
proaches for mixed-criticality systems have emerged that give
at least certain reduced timing guarantees for less important
tasks e.g., [3], [7], [14], [23], [25], [28]. Nevertheless, the
majority of publications still require to perform adaptions at
run-time as, e.g., modifying task priorities, execution times,
or deadlines, decreasing the release rate of certain tasks, etc.,
or focus on uniprocessor systems only. A detailed overview
about the state-of-the-art methods can be found in [8].

B. Dynamic Real-Time Guarantees

In order to provide a reduced level of timing guarantees for
less important tasks in case of fault occurrence, the Systems
with Dynamic Real-Time Guarantees (SDRTG) model was
proposed by von der Briiggen et al. in [28], which, unlike
other methods, does not require any online adaption. This is

motivated by the following three evident reasons: i) online
adaptions are quite costly in terms of resources, ii) online
modifications of priorities, inter-arrival times of task instances,
etc. are not supported by most systems, and iii) enabling online
adaption requires additional configuration effort during the
system design. Accordingly, in contrast to the classical mixed-
criticality model, a SDRTG does neither perform a mode
change nor modify any task properties if a fault occurs. In
fact, simply no reaction is triggered. Notwithstanding, since
one or more task instances need to be re-executed due to
the faulty system component and therefore execute for an
abnormal WCET, the system is described as abnormal in this
case, while it is indicated as normal otherwise. These terms,
however, do not denote different system modes as known from
traditional mixed-criticality systems, but rather an observed
execution behavior.

As a consequence, a SDRTG provides the following char-
acteristics (dynamic timing guarantees), which are verified
offline at system design time:

o Full timing guarantees: The system is fault-free and all
tasks are executed normally, i.e., all task instances in the
system meet their related deadlines.

o Limited timing guarantees: In case a transient fault (burst)
occurs, all more important (also denoted timing strict)
tasks meet their deadlines, while bounded tardiness is
guaranteed for all less important (also termed timing
tolerable) tasks.

e The system returns from providing limited timing guar-
antees to full timing guarantees after a certain interval of
time, i.e., once all previous faults do not have an impact
on the system anymore.

C. Multiprocessor Scheduling

As a prerequisite for providing dynamic timing guarantees
in the context of multiprocessor platforms, it is necessary
to choose a suitable scheduling paradigm. With respect to
multiprocessor systems, three approaches are commonly fol-
lowed, namely, partitioned, semi-partitioned, as well as global
scheduling. Under partitioned scheduling, each task is stati-
cally allocated to a specific processor, i.e., none of its released
instances must ever be executed elsewhere. On each processor,
the actual schedule is determined by means of a uniprocessor
scheduling policy. Global scheduling approaches, in contrast,
enable each task to migrate freely between processors, such
that the highest-priority task instances among all task instances
in the system are executed in any point in time. These
approaches are combined in the shape of semi-partitioned
scheduling algorithms, which partition the tasks and allocate
them to particular processors, but, nevertheless, allow a certain
degree of migration, e.g., in predefined time slots or depending
on specified resource constraints. A comprehensive survey on
multiprocessor scheduling can be found in [11].

The main advantage of partitioned approaches is the fact
that the multiprocessor scheduling problem is reduced to a
set of uniprocessor scheduling problems as soon as the task
partitioning is completed, while global scheduling is more
costly due to task migration and online adaptions. However,



determining an optimal task partition is NP-hard in the strong
sense, owing to the underlying bin-packing problem. It has
been shown by Brandenburg and Gul [6] that by means of
semi-partitioned strategies, the schedulability of partitioned
approaches can be surpassed at the cost of an only slightly
increased online overhead. Accordingly, we merely employ
partitioned and semi-partitioned scheduling strategies here.

D. Contributions

The approach proposed in this work aims to provide dy-
namic timing guarantees for multiprocessor systems with
mixed-criticality characteristics under transient faults without
any online adaption. Our contributions are:

e We propose the Multiprocessor Systems with Dynamic
Real-Time Guarantees (MSDRTG) model in Sec. II-A as
well as a related schedulability test in Sec. II-B.

e In Sec. Ill, we provide two scheduling approaches for
MSDRTG, namely, a partitioned (cf. Sec. I1I-A) as well
as a semi-partitioned one (cf. Sec. III-B).

e Moreover, we discuss how processors suffering from
abnormal execution behavior over a limited interval of
time, e.g., intermittent faults or processor clock speed
drops due to overheating, can be compensated by means
of task migration and introduce the concepts of full
compensation and partial compensation in Sec. IV.

« We assess the developed techniques by means of com-
prehensive evaluations in Sec. V.

II. SYSTEM MODEL

Consider a set of n independent sporadic (or periodic) real-
time tasks T = {7,...,7,} to be scheduled on a multiproces-
sor platform with m homogeneous processors under a (semi-)
partitioned fixed-priority preemptive scheduling policy. Each
task releases an infinite number of task instances (jobs), and
is defined by 7, = (CN ,C’ZA,Di,Ti) where D; denotes the
task’s relative deadline and 7; its inter-arrival time or period.
All deadlines are assumed to be constrained, i.e., D; < T; for
all tasks 7;. To each task 7;, two distinct worst-case execution
times are associated, namely, the normal WCET C’Z-N as well
as the abnormal WCET C*. For instance, when considering
the mitigation of transient faults, C/ is the plain worst-case
execution time and an supplementary error detection (fault-free
case), and the abnormal WCET C#! is composed of a fault-
recovery routine as well as the normal WCET. We assume
that C* > CN for all tasks 7;. To fulfill its timing require-
ments, each task 7, must be able to finish up to CN (C#)
time units previous to its deadline under normal (abnormal)
system behavior. The utilization of a task 7; under normal
system behaxior, denoted as normal utilization, is identified
by UN = CT , whereas its utilization under abnormal system
behavior, referred to as abnormal utilization, is specified as

A
Uf = CT . Accordingly, the system utilization is determined
by Usim = > riery Ul under normal behavior, i.e., in the
fault-free case, and by U2 == (rieT} U# under abnormal

behavior, i.e., if a transient fault (burst) occurs. The maximum
tardiness of 7; under normal and abnormal system behavior is
denoted as EVY and E7!, respectively.

Each task is either a timing strict task (also known as more
important or hard task) or a timing tolerable task (also referred
to as less important or soft task). The partition of the task set
T into the related subsets T;?ard and Tfoft is assumed to be
given. Regarding each processor p in the system, its allocated
tasks are identified as T, and scheduled according to a fixed-
priority order P,. For each task 7; € T, the set of higher-
priority tasks on the same processor is described by hp(7%).

A. Multiprocessor Systems with Dynamic Real-Time Guaran-
tees

Having specified the considered task model, we henceforth
define the Multiprocessor Systems with Dynamic Real-Time
Guarantees (MSDRTG) model as well as its respective prop-
erties, before establishing a suitable schedulability test.

In a system S, consider a set of n tasks T = {7y,..., 7}
with each task 7, € T being either timing strict, i.e.,
T; € T;?Md, or timing tolerable, ie., 7; € Tfoft, so that
T4 N Tfoft =0 and T, , U Tfoft = T. The task set T is
partitioned onto a set of m homogeneous processors, in such
a way that T; N Ty = 0 for all j # k with 5,k € {1,...,m}
and Ty UT,U---UT,, = T. Each set of tasks T,, allocated
to a processor p with 1 < p < m is identified as subsystem of
S and scheduled according to a fixed-priority task order P,.
For each 7; € T), it must hold that no task instance can begin
its execution before all previously arrived instances released
by the same task are completed. Moreover, no task instance
of any 7; € T, must ever be aborted.

Definition 1 (Multiprocessor System with Dynamic Real-Time
Guarantees). A system S with subsystems T,...,T,, is an
MSDRTG if and only if each subsystem T, satisfies the
characteristics of an System with Dynamic Real-Time Guaran-
tees [28], i.e., if under normal system behavior, all subsystems
provide full timing guarantees, and under abnormal system
behavior at least one affected subsystem provides limited
timing guarantees for a bounded interval of time.

A subsystem T, provides full timing guarantees if hard
real-time constraints are satisfied for each task 7; allocated to
processor p. More precisely, under normal system behavior,
all instances of each task 7; € T, meet their hard relative
deadlines, i.e., E)Y = 0Vr; € T,. In a subsystem T,, providing
limited timing guarantees, service level guarantees may be
downgraded for some timing tolerable tasks T;?,soft CT, so
that all 7; € Tﬁsoft have (at least) bounded tardiness, i.e.,
0<Ef <~ V1 € Th,yp for afixed ;. However, each
instance of each 7; € T, },,,.q meets its hard relative deadline
irregardless, ie., EA =0V 7; € T;‘,hm-d' An MSDRTG S
provides full timing guarantees if all subsystems T, provide
full timing guarantees, and limited timing guarantees if at least
one subsystem provides limited timing guarantees.

B. Schedulability Test

Owing to the fact that an MSDRTG S as defined above is
composed of a set of subsystems {Ty, ..., T,,}, each of which
comprises a set of tasks scheduled according to an individual
fixed-priority order, the schedulability test for uniprocessor



SDRTG proposed in [28] can be adapted, which is based
on Time Demand Analysis [21] (TDA). TDA is an exact
schedulability test for fixed-priority preemptive uniprocessor
scheduling of constrained-deadline task sets, by means of
which the schedulability of a task 7; is determined under a
given priority order, assuming that the schedulability of all
higher-priority tasks is already ensured.

Definition 2 (Time Demand Analysis [21]). A constrained-
deadline task T; is schedulable if and only if the following
equation holds:

Jtwith0<t<D,; and C; + Z
T ERP(Ti)

t
’VTk-‘ Ce <t (D)

A contemplated task set is schedulable under fixed-priority
preemptive scheduling according to a given priority order if
the above condition holds for each task 7; € T.

Based on the schedulability test for SDRTG in [28], the
schedulability test for MSDRTGs is given as follows:

Theorem 1 (Exact Schedulability Test for MSDRTGs with
Constrained Deadlines under Partitioned Scheduling). A task
system S with a given partition of a task set T into subsets
T,,...,Ty, a given partition of T into T;?ard and Tfoﬁ, and
a given priority order P, for each subset T, € {T1,..., Ty}
is an MSDRTG if and only if the following conditions hold:

1) Each subsystem T,, can be scheduled according to Time
Demand Analysis [21] under the given priority order P,
and normal system behavior, i.e., C; = CiN V71 € Tp.

2) All 7; € T3 prq can be scheduled according to TDA
under the given priority order P, and abnormal system
behavior, i.e., C; = C Y1, € Ty,VT, € T.

3) For each subsystem T,, it holds that U, A

p,sum

<L

Since the timing requirements of all timing strict tasks must
be satisfied at any point in time and since C¥ < CA Vr; € T
by definition, only their abnormal WCET must be taken
into account when testing the schedulability of an MSDRTG.
Moreover, a subsystem utilization of U;fsum > 1 may be per-
mitted in case of abnormal behavior, provided that U;\fsum <1
and that the system exhibits normal behavior for a considerably
longer amount of time than abnormal behavior. Hence, we
omit the condition that U;fsum < 1 in our further discussions
as well as in the evaluation.

Note that if the probability of abnormal execution behavior
is independent for each job, the probability that a deadline is
missed can be upper bounded using the approaches in [10],
[29], while in [9] an over-approximation of the deadline miss
rate is presented.

III. MULTIPROCESSOR SCHEDULING

Having provided the formal specifications of an MSDRTG
as well as a suitable schedulability test, we henceforth elu-
cidate, how to obtain the actual task partition and priority
assignment. Furthermore, we discuss, how to increase the
number of tasks that are feasibly schedulable as an MSDRTG,
namely, by means of task migration (cf. Sec. III-B).

A. Partitioned Scheduling

Adopting the partitioned scheduling paradigm, two distinct
problems must be considered: In a first step, the overall task
set T must be partitioned so that each task 7; € T is statically
allocated to a specific processor. Thereon, a priority order must
be specified for each subsystem T),,.

An intuitive solution to the first subproblem is to apply
the deadline-monotonic partitioning algorithm by Baruah and
Fisher [2], in the course of which all 7; € T are initially pre-
ordered increasingly with respect to their relative deadline,
ie., D; < D,y ;. Thereafter, each task is assigned to the
first processor that satisfies the scheduling condition, i.e.,
Theorem 1 for an MSDRTG. This algorithm can be easily
modified using other heuristics, such as arbitrary-fit (AF),
worst-fit (WF), best-fit (BF), etc., and other task set pre-orders.

In order to address the second subproblem, namely, the
establishment of a priority order, the Feasible Priority Assign-
ment Algorithm for (uniprocessor) System with Dynamic Real-
Time Guarantees [28] can be adopted for each subsystem T,
which is based on Audsley’s Optimal Priority Assignment [1].
Owing to the fact that if a feasible priority assignment exists,
a feasible priority assignment in which the tasks in T, j4rq
and T, sof; are internally arranged according to a deadline-
monotonic order exists as well (as shown in [28]), only two
tasks must be considered on each priority level, namely, the
one (among the tasks that have not yet been assigned a
priority) with the longest relative deadline in T) qrq and
the one (among the tasks that have not yet been assigned a
priority) with the longest relative deadline in T, s, 7;. Resulting
from this, the time required to retrieve a feasible priority
order is decreased substantially. Nevertheless, this implies that
for each attempt of allocating a new task 7; to a particular
processor, the priority assignment algorithm must be executed
once again, since even if 7, cannot be scheduled together with
all 7, € T, under the priority order P,, the set P, U {r;}
may be schedulable under another priority order. Hence, the
priority assignment on each processor may change whenever
a new task is allocated to that processor.

B. Task Migration

When following a partitioned scheduling approach, it may
be the case that no further tasks can be joined with a
subsystem T, but, notwithstanding, some spare capacity is
left on the respective processor p. In this event, it seems
sensible to allow the not yet allocated tasks to split into
so-called subtasks, which are executed on more than one
processor. More precisely, we attempt to fill each processor
to the maximum by assigning the largest possible task shares.
As a consequence, task sets can be scheduled as an MSDRTG
exhibiting a higher system utilization than feasible under
merely partitioned techniques.

Nonetheless, this idea entails additional challenges. In par-
ticular, it is necessary to decide which tasks to share, how to
compute the spare capacity of a processor, i.e., how to derive
the largest possible worst-case execution time of a subtask, and
how to specify its deadline. In addition, it must be determined,



which priority to assign to each individual subtask and how to
ensure the correct execution order of a sequence of subtasks.

Contemplate a task 7, € T that cannot be allocated to any
processor under a given partitioned technique. In this case, a
certain task 7,, which can be either the task 7; that could not
be assigned successfully or a task that is already part of the
considered subsystem, i.e., a 7, € T;, may be shared between
at least two processors such that 75 is not executed by more
than one processor at the same time. As a consequence of
this sequential execution, a release of a subtask of the so-
called shared task 15 on a processor p+ 1 must not take place
any earlier than the respective subtask executed on processor
p is finished. To ensure this property, it seems reasonable to
execute each subtask as early as possible, i.e., as soon as it is
released. For this reason, we always assign the highest priority
in the subsytem to each subtask of 75. Owing to the fact that
the remaining capacity on each processor does not suffice to
execute 75 completely, all processors maintaining one share of
T, are filled to maximum capacity after the splitting operation,
except presumably the one covering the last subtask which
indeed represents a special case. In contrast to the remaining
processors, this particular one can still affiliate a subtask of
another shared task. Since the next task instance cannot be
released before the previous one is finished, the execution
order of the first shared task cannot be perturbated anyway.
Hence, we endow the latter one with the highest priority in
the respective subsystem. Subsuming the aforesaid, a precise
definition of the term shared task shall be given.

Definition 3 (Shared Task). A task 7, € T is a shared task
if its execution is not restricted to one processor and if the
following conditions hold:

e A shared task is never executed by more than one
processor at the same time, but is successively passed
on to the next processor as soon as its execution budget
on the considered one is exhausted.

o A shared task is always scheduled under the highest
priority on each processor, except another shared task
has already been assigned to the respective one. In this
case, the later allocated subtask is preferred in terms of
priority, since the previously assigned task segment is the
last segment of the related task.

o Concerning all calculations involving the shared task’s
worst-execution time, C2 is considered regardless of the
actual system behavior.

Each share of 15, denoted as subtask, is treated as an individ-
ual task 75, = (CN  C2 Dy, Ty).

$,p? 7 8,p?

Having clarified how to specify the deadlines of each sub-
task, how to assign its priority, and how to ensure the correct
execution order of a sequence of subtasks, we henceforth
discuss how to compute the maximum amount of time a
subtask can execute on a particular processor p, i.e., its worst-
case execution time, which was assumed to be given up to now.
Consider a task 7, to be assigned to processor p as well as
the set of previously allocated tasks T, with a priority order
P,. Availing the method proposed in [18], it is possible to
compute the maximum amount of time 75 can be executed

Processor 1
= (2,55 N

21 =(1,2,7,7), T

Processor 2
T2,2 = (2,47 7, 7) t

5 = (9,18,14,14) |

T T L Tt

0 5 10 15
Fig. 1: Task 73 misses its deadline due to the release jitter
of subjob 73 5 on processor 2 resulting from the execution of
subjob 72 1 on processor 1.

on the respective processor without causing a task 7; € T}, to
miss its deadline. The minimum value derived for any 7; € T),
determines the worst-case execution time C ,, of subtask 7 ,
on p. Accordingly, a subtask of length C; , is split off and
the worst-case execution time budget of 75, i.e., the remaining
workload to be distributed to processors with spare capacity,
is reduced by C ,. This operation is repeated until either
no further workload needs to be distributed or the system is
deemed to be unschedulable. Please note that we always refer
to the abnormal WCET C# throughout the task splitting.

When a shared task 75 is migrated from processor p to
processor p + 1, the so-called release jitter of each subtask
must be investigated as well, i.e., the difference between its
best- and worst-case response time. An example is given in
Fig. 1, outlining 3 tasks being distributed to two processors,
where task 7 and 73 are statically allocated to processor 1 and
2, respectively. Here, the first subtask 75 ; of the shared task
To is always executed on processor 1, while its second subtask
is always executed on processor 2. Due to the additional
workload produced by the higher-priority task 7; in the interval
[0;2], the first instance of 721 has a larger response time
than its second and third instance. Resulting from this, 752
is not released exactly periodically on processor 2, but with a
release jitter of 2 time units, which, in turn, leads to a deadline
miss of 73, indicated by the cross. This can be avoided by
releasing 7 o exactly periodically or sporadically, such that its
maximum workload in any interval of length 14 comprises 4
time units and, as a consequence, 73 always meets its deadline.
Owing to the fact that each subtask (except possibly the last
one) of a shared task is always executed under the highest
priority in the respective subsystem, its best- and worst-case
response time do not differ. Other factors potentially inducing
jitters - although on a smaller scale - are the time required
for task preemption as well as the migration time. However,
we assume the preemption time to be sufficiently small to be
neglected, whereas we assume that for a given subtask the
related migration time is always constant. Accordingly, we
can consider all subtasks as periodic tasks without any release
jitter in our analysis. In a conflicting case, release enforcement
techniques can be used as, e.g., explained in [4], [27].

As our subject of discussion, the question remains, which
task to choose as a shared task. In fact, two diverging strategies
can be pursued: either the task 7; which could not be allocated
under a partitioned approach without making the system
unschedulable as an MSDRTG, or an already assigned task
7; € T,. While the first case can be handled as elucidated



above, the latter one can be dealt with as proposed in [20].
More precisely, the highest-priority task in T), is chosen to be
shared between processors, owing to the fact that the highest-
priority task on each processor typically has a short relative
deadline, whereas the task 7, to be assigned usually has a
larger deadline! as well as a larger WCET. Moreover, it is
well known that assigning a higher priority to a task with a
shorter period or deadline is in general favorable [22].

Accordingly, after applying a task allocation strategy of
choice until its point of failure, we attempt to assign each
remaining task 7, € T by identifying a processor p on which
7; can be scheduled along with Tp\ {Tg}, where 7' is the
highest-priority task on processor p. Thereon, 7, = 7, is
divided into multiple subtasks and shared across a number
of processors applying the previously explained method until
the workload of 7, is completely distributed. As soon as each
7; € T is assigned to one (or more) processor(s), the algorithm
terminates successfully. Otherwise, the task set T is declared
to be unschedulable as an MSDRTG.

Further strategies for increasing the number of schedulable
task sets can be applied as well, such as, e.g., removing
previously assigned tasks 7, from a subsystem in order to
allow a feasible allocation of the currently considered task
7y, while reconsidering 7, later on. A comprehensive survey
including conceivable approaches can be found in in [11]. We
renounce further discussion due to space limitations.

IV. COMPENSATING FAULTY PROCESSORS

So far, we proposed a system model by means of which dy-
namic timing guarantees, i.e., full timing guarantees for timing
strict tasks and limited timing guarantees for timing tolerable
tasks, can be given without any online adaption in case one
or more system components are affected by a transient fault.
Moreover, we suggested a number of scheduling strategies by
means of which such an MSDRTG can be established.

Henceforth, we introduce a compensation technique for
components evincing abnormal behavior for a limited interval
of time, aiming to achieve additional tolerance with respect
to, for instance, intermittent faults or a decreased CPU clock
frequency. We term a system component, i.e., a subsystem T,
corrupted if it exhibits abnormal execution behavior.

If this is the case, a certain subset of tasks scheduled on the
corrupted subsystem T,, must be migrated to other processors
to satisfy their timing requirements. Since timeliness is guar-
anteed for all tasks 7; € T, pqrq under abnormal system be-
havior by definition, these tasks may remain on the corrupted
processor even if the subsystem exhibits abnormal behavior for
a longer interval of time, as long as for each 7; € T, a correct
result can be obtained within the respective abnormal WCET
C#. For all tasks 7; € Tsoft, bounded tardiness is already
guaranteed if Up sum < 1 holds, but, anyhow, we remove this
condition, assuming that the intervals in which the system
exhibits abnormal behavior are significantly shorter than those
under normal behavior. As a consequence, neither timeliness

IThis depends on the order in which the tasks are partitioned. Nevertheless,
even for an inverted deadline-monotonic order, the unassigned task 7¢ most
commonly has a relative deadline that is not considerably shorter than the one
of the highest-priority task T;L € Tp.

nor bounded tardiness can be ensured for any 7; € Tfo £t5
hence their migration would be beneficial.

For this migration process, it is necessary to determine a
specific order in which the tasks are migrated away from T,,.
However, we cannot decide which tasks to favor by means of
their particular function or purpose, owing to the fact that all
timing tolerable tasks are considered as equally important in
a SDRTG. Nevertheless, it is rather appropriate to factor in
another property when taking this decision. More precisely,
we classify the tasks in T sof; into three categories:

o Tasks that anyway meet their hard deadline under abnor-
mal system behavior, denoted as Tzus‘g}t These can be
neglected within the migration process.

o Tasks for which no timeliness but at least bounded tardi-
ness can be guaranteed under abnormal system behavior,
identified as Tp soft-

o Tasks for which no guarantees can be given under abnor-

s 2 unbd
mal system behavior”, referred to as T,’( 7.

Depending on the number of corrupted subsystems as well
as on their particular task sets, two levels of compensations
may be possible. Actually, a corrupted processor can be fully
compensated if the system maintains the characteristics of
an MSDRTG after the migration process. Otherwise, it can
be partially compensated if all T; € Tfmd meet their hard
deadlines under abnormal system behavior, whereas at least
bounded tardiness can be guaranteed for each 7, € Tgoft,
provided that the destination processor(s) of the task migration
are not affected by an intermittent fault.

Regarding the migration process, we begin with the tasks in
T;j’sg‘jet, for which guarantees can be provided neither under
full nor under partial compensation. Concerning this subset,
we make the following observations: Since the task utilization
is an increasing function with respect to the priority, only tasks
with a priority lower than any 7; € T}, pqrq can be in T’;:;l:)?ct.
Moreover, if a task 7; is in T}f’zl(’)ft, all tasks having lower
priority than 7; are in ngg‘}t as well, while each 7; € Tp soft
has a higher priority than each 7; € T;f”;l;”}t. Accordingly,
TZZ,ZCJI% can be computed easily. As soon as TZZZ?% has
been determined, we try to assign each 7; Tuﬁi‘jct to a
non-corrupted processor.’ If 7; cannot be allocated to such
a processor or no such processor exists, we search for a
processor ¢ where timeliness can still be guaranteed for all
tasks 7; € Ty nhard, While bounded tardiness is ensured for all
tasks 7; € T sop+ U 7;. If at least one task in T;”io‘ﬁct cannot
be assigned either way, the corrupted processor(s) cannot be
compensated. If, in contrast, migration of at least one task

nglg}t leads to bounded tardiness for some of the tasks
in Ty 505t U 7; the corrupted processor(s) can be partially
compensated. Otherwise, if all non-corrupted subsystems ex-
hibit the characteristics of an System with Dynamic Real-
Time Guarantees after the migration of T;ZZ% we continue
to migrate the tasks in Tp soft In deadline-monotonic until
either the characteristics of an MSDRTG are restored for

2This is only possible since we dropped the condition that Up sum < 1.

3Tasks in Tz”;o sy are considered in deadline-monotonic order during the
migration process.
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Fig. 2: Migration example for T, with T}, para = {71, 73}, Tp.soft = {72,71,75}, and U4 > 1. First, 75 € T

T

resulting in U A < 1. Thereon, 7 is migrated since 75,74 € T

the system S (in this case, the corrupted processor(s) can
be fully compensated) or one task 7; € Tgflsoft cannot be
assigned to any processor g in such a way that the System
with Dynamic Real-Time Guarantees property is maintained
for T}, UT;. Please note that migrating a small number of tasks
T; € Tg‘fsoﬂ from a corrupted subsystem T,, to another one,
may already reduce the workload on T, sufficiently to provide

full compensation, so that further migration is unnecessary.

Concerning the actual migration, we assume that all in-
stances of a task 7; that is migrated from a subsystem T, to a
subsystem T, are terminated on T, previous to the migration
and restarted on T, afterwards. More precisely, the release of
the first instance of 7; on T, occurs in the same moment in
which its next release on T, would have taken place. This
indeed implies that all jobs terminated on T, are lost, but
since it can be assumed that abnormal behavior over a longer
interval of time is rare compared to transient faults, this can
be tolerated for the benefit of the system robustness.

By way of illustration, consider Figure 2 which portrays
a corrupted subsystem under abnormal behavior comprising
5 distinct tasks. Under abnormal system behavior, it holds
for the system utilization that U2, ~ 1.036 > 1, for
which reason we are able to categorize the tasks as follows:
Ts € Tg’zlgjrt, To, T4 € TZflsoft’ and 7,73 € Tﬁard' If
75 can be successfully migrated to another processor, the
corrupted processor is partially compensated. If, moreover, T
can be migrated, 74 meets its deadline under abnormal system
behavior and the System with Dynamic Real-Time Guarantees
property is restored for T,. Finally, the corrupted subsystem is
fully compensated if 15 and 79 can be migrated, such that the

system S exhibits the characteristics of an MSDRTG thereafter.

Although enabling full or partial compensation increases the
robustness and thus the safety of an MSDRTG, a compromise
must be made, since this leads to a smaller number of
schedulable task sets. In the course of our evaluations in
Sec. V, we will examine this trade-off more thoroughly.

Unfortunately, our proposed method is not applicable to
recover from permanent faults. This follows from the fact that
a system component affected by a permanent fault is entirely
inoperable, for which reason not only all timing tolerable tasks
but, in addition, all timing strict tasks need to be migrated to
another subsystem. In this event, the migration itself leads
to manifold problems for timing strict tasks, e.g., regarding
the problem of ensuring their timeliness during the migration
process. Therefore, addressing this issue is beyond the scope
of this work.

p,soft

—t

20 25 30 35 40
unbd :
posoft 1S migrated,

and 79 has higher priority. Hence, 74 meets its deadline.

V. EVALUATION

In the following, we discuss the results of our compre-
hensive evaluations, in the course of which we analyzed the
schedulability of randomized synthetic task sets as MSDRTGs
under different processor assignment, task splitting, and com-
pensation techniques. The evaluation setup is described in
Section V-A while the results are presented in Section V-B.

A. Experiment Setup

We randomly generated implicit-deadline task sets, i.e.,
D; =T, V7;. The number of processors m and the number of
tasks n in the set differs depending on the analyzed setting,
ie., m 4, 8, or 16, and n = 40, 80, or 160. For a
given m, n, and total utilization U SIXm, we generated tasks
according to the UUniFast method [5]. For m processors,
the values of UZX = ranged from 2% x m to 100% x m
with steps of 2% X m. For each setting and each utilization
value, 1000 randomly generated task sets were evaluated under
16 scheduling strategies. We also evaluated if full or partial
compensation was possible for each task set, assuming that
one processor was corrupted. The task periods were drawn
randomly according to a log-uniform distribution with two
orders of magnitude as suggested by Emberson et al. [13],
i.e., logyo T; was a uniform distribution over [1ms — 100ms].
The WCET under normal system behavior was set according
to the utilization, i.e., CiN =U;-T;, and 50% of the tasks
were randomly chosen to be in Tj., ;; the remaining tasks
were part of Tfo i

In terms of fault-recovery, we considered one re-execution,
two re-executions, and checkpointing of a task, leading to the
following ratios between CV and C:

« Re-Execution: C* ~ 1.83- C¥ as 22 ~ 1.83. One fault
detection with an assumed overhead of 20% is performed
at the end of the normal execution. If a fault is detected,
the task is completely re-executed.

« Two Re-Executions: C{* ~ 2.83 - C}N as 21 ~ 2.83.
Two re-executions and two fault detections, one after the
normal execution and one after the first re-execution.

o Checkpointing: Cf' ~ 1.14 - CN as 8 ~ 1.14. The
occurrence of a fault is tested at multiple checkpoints
during the normal execution. We assumed a total over-
head of 40% for the detection and that 20% of the task
have to be re-executed.

We used the same ratio values, denoted WCET-factors, for both
T4, and T2 f¢- Since tasks with an abnormal utilization over
100% cannot be scheduled on one processor by default, such

~
~
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Fig. 3: (a)-(d) Comparison of different partitioning strategies. The best and the worst strategy (RM-BF ans RM-WF) are further

compared to (e) our semi-partitioned approach with highest-priority task splitting, and (f) our compensation techniques.

tasks were discarded during the random generation and a new
task was drawn instead.

B. Results

In our evaluations, we tried to allocate tasks to processors
for different combinations of task pre-orders and partitioning
strategies. During the task pre-ordering, T;?Md and Tfo e Were
not sorted separately. We considered the following pre-orders:

1) Rate-Monotonic Order (RM): The tasks were sorted in-

creasingly with respect to their period 7;.

2) Inverted Rate-Monotonic Order (IRM): Tasks with longer

period T; were allocated first.

3) Utilization-Monotonic Order (UM): Tasks with higher

utilization U} were allocated first.
We considered four well-known assignment strategies for
partitioned task scheduling:

1) First-Fit (FF): Testing order based on the processor ID.

2) Best-Fit (BF): Processors are considered in decreasing

order with respect to their utilization.

3) Worst-Fit (BF): Processors are tested in increasing order

with respect to their utilization.

4) Arbitrary-Fit (AF): Processors are tested in random order.
Under these assignment strategies, all tasks are always al-
located to the first possible processor. The three pre-orders
combined with the four assignment strategies led to a total
of 12 basic partitioned scheduling approaches. The results for
a setup with 8 processors, 80 tasks, and a WCET-factor of
1.83, i.e., one re-execution, can be found in Figure 3(a)-(c).
The labels indicate the considered pre-order and the applied
assignment strategy, e.g., RM-FF for rate-monotonic pre-order
with first-fit assignment strategy.

In Figure 3(a), the assignment strategies are compared under
a rate-monotonic preorder. RM-FF and RM-BF performed

nearly identical with a slight advantage for RM-BF. Both
acceptance ratios start dropping noticeably at 80% X m,
whereas RM-WF performed worst and the acceptance ratio
breaks down 25% x m earlier than for RM-BF and RM-FF.
The reason is that under a worst-fit approach the utilization
is distributed equally while under the first-fit and best-fit
strategies the processors are filled as densely as possible.
Therefore, a single task with a long period and high utilization
can easily lead to a case in which no processor has sufficient
remaining capacity when the worst-fit strategy is combined
with a rate-monotonic preorder. RM-AF performs slightly
better than RM-WF because the randomness of the approach
sometimes prevented the aforementioned worst-case scenario.
Since RM-BF and RM-WF performed best and worst, they
serve as reference values for all other approaches in the
following subfigures of Figure 3.

With respect to the inverted rate-monotonic (IRM) order,
IRM-FF and IRM-BF as well as IRM-WF and IRM-AF
performed similar, as shown in Figure 3(b). While IRM-FF
and IRM-BF were slightly worse than RM-BF, IRM-WF
and IRM-AF accepted more task sets than RM-WF. With a
utilization-monotonic (UM) pre-order, all strategies led to a
nearly identical acceptance ratio, especially between RM-BF
and RM-WF, as portrayed in Figure 3(c).

Furthermore, we tested three partitioned approaches where
the tasks in wad and Tfo ¢ Were assigned separately, namely:

1) RM-BF+RM-BF: Initially, the tasks in Ti , and,
thereon, the tasks in Tfoft were partitioned using the
RM-BF approach.

2) RM-WF+RM-BF: First, RM-WF was applied for T;?Md,
then RM-BF for T{, .

3) UM-WF+RM-BF: The tasks in Tfard were assigned



Base Values: Processors: 8, Tasks: 80, Hard Tasks: 50.0%, WCET-Factor: 1.83, Runs: 1000

IV—V RM - Best-Fit %=X RM - Worst-Fit ©—@ RM - Semi Partitioned First-Fit

4—& RM - First-Fit - Partial Compensation *—# RM - First-Fit - Full Compensationl

(a)-(c) Number of Cores
(b) m=8,n=280

looooo.. [ 1% 0

(c) m =16, n = 160

100
g0l -
60 |-
10 f:-

20 |

0 20 40

Acceptance Ratio (%)

(d)-(f) Number of Tasks
(e) m=8,n=280

..... LSl ' ok

doooo.o L-

60 80

100 [
g0l
60 |-
10 f-

20 |- -

80

40
(g)-(i) WCET Factor
(h) WCET-Factor: 1.83

80

60 80

100 [
8ol
60 |-
a0 f-

20 |

\e-a! ol

40

60 80 100 100

Utilization (%) / m
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according to UM-WF, thereafter Tfo £+ via RM-BE.
The results are shown in Figure 3(d). RM-BF+RM-BF sur-
passes the other two approaches but is still outperformed by
RM-BF. The two other approaches performed slightly better
than RM-WF.

Combining Figures 3(a)-(d), we conclude that RM-BF is
superior among the considered partitioned scheduling ap-
proaches, while RM-WF performed worst. All other applied
preorders and partitioned strategies as well as assigning T,
and Tfo ¢ separately led to an acceptance rate higher than of
RM-WF and a lower than of RM-BF.

Aiming to analyze the benefit of semi-partitioned scheduling
with respect to the schedulability, we implemented a rate-
monotonic first-fit strategy with highest-priority task splitting,
denoted as RM-FF-TS. It can be seen in Figure 3(e) that
RM-FF-TS was superior to RM-FF in the evaluation, i.e., the
acceptance ratio of RM-FF-TS drops roughly 6% x m later
than for RM-BF. Even for a utilization of 98% x m, some
task sets were still schedulable as an MSDRTG.

Finally, we assess how providing full or partial compensa-
tion of one corrupted processor affects the schedulability. To
be more precise, we considered all cases individually, in which
one processor was corrupted, and determined if the respective
processor could be compensated. If full (partial) compensation
was possible for all processors, the system provided full

(partial) compensation. In Figure 3(f), the resulting detriment
can be observed for a setting in which we applied a RM-
FF for both the initial partition and the compensation. While
for full compensation the loss was nearly 20% x m, the loss
for partial compensation was 10% X m. This means, full and
partial compensation are often achieved for the expense of
60% x m and 70% x m system utilization in this setting.

Since the relation between the considered scheduling ap-
proaches was similar in all settings, we focused on analyzing
the impact of the different parameters on the schedulability.
We show the acceptance ratio for the RM-BF and RM-WF ap-
proach as well as for the semi-partitioned scheduling approach
and the compensation techniques in Figure 4. We analyzed the
effect of three different parameters:

1) Number of processors in Figure 4(a)-(c): The acceptance
ratio increased, when a larger number of processors is
considered. This result was not unexpected, since for
a constant average processor utilization and a constant
average number of tasks per processor, a larger number
of processors results in more possibilities to allocate
the tasks. Only for RM-WE, increasing the number of
processors had no positive effect.

Number of tasks in Figure 4(d)-(f): Increasing the
number of tasks in the systems for a constant number
of processors increased the acceptance ratio as well,

2)



since the average task utilization is decreased and smaller
tasks can usually be easier allocated. The gap between
the acceptance ratios for systems with full and partial
compensation became larger for a larger number of tasks.
3) WCET-Factor in Figure 4(g)-(i): As expected, increasing
the WCET-factor led to a decrease in schedulability.
Summarizing the aforementioned evaluation results, it be-
comes evident that a rate-monotonic best-fit approach leads
to a good acceptance ratio under partitioned scheduling when
designing Multiprocessor Systems with Dynamic Real-Time
Guarantees. If semi-partitioned scheduling techniques are
considered, namely, an approach with highest priority task
splitting, this acceptance ratio can be further increased. The
analysis of the presented compensation techniques showed a
decreased acceptance ratio, compared to the best partitioned
strategy. Nevertheless, the trade-off between acceptance ratio
and reliability seems reasonable, which means that intermittent
faults can be compensated for MSDRTGs.

VI. CONCLUSIONS

In this paper, we addressed the problem of multiprocessor
real-time scheduling under uncertain execution behavior which
may occur with low probability, due to, for instance, transient
faults, as well as within intervals of bounded length, e.g.,
owing to intermittent faults or decreasing CPU clock speed.
We introduced the Multiprocessor Systems with Dynamic
Real-Time Guarantees model, which provides dynamic tim-
ing guarantees, i.e., full timing guarantees for timing strict
tasks and limited timing guarantees for timing tolerable tasks,
without the necessity of any online adaption in case of fault-
occurrence. We clarified how such a system can be established
under partitioned scheduling and exploited semi-partitioned
scheduling techniques to further increase the schedulability.
Moreover, we introduced the concept of full and partial
compensation to enhance the system reliability in the case
that one or more processors suffer from abnormal execution
behavior during a longer interval of time. Our evaluations
show that reasonable acceptance ratios can be achieved for
partitioned and semi-partitioned scheduling. Not least, we
unveiled that improving the system robustness by applying the
proposed compensation techniques entails a tolerable trade-off
between acceptance ratio and reliability.
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