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Abstract—Multicore systems are increasingly utilized in real-
time systems in order to address the high computational demands.
To fully exploit the advantages of multicore processing, possi-
ble intra-task parallelism modeled as a directed acyclic graph
(DAG) must be utilized efficiently. This paper considers the
scheduling problem for parallel real-time tasks with constrained
and arbitrary deadlines. In contrast to prior work in this
area, it generalizes federated scheduling and proposes a novel
reservation-based approach. Namely, we propose a reservation-
based federated scheduling strategy that reduces the problem of
scheduling arbitrary-deadline DAG task sets to the problem of
scheduling arbitrary-deadline sequential task sets by allocating
reservation servers. We provide the general reservation design
for sporadic parallel tasks, such that any scheduling algorithm
and analysis for sequential tasks with arbitrary deadlines can be
used to execute the allocated reservation servers of parallel tasks.
Moreover, the proposed reservation-based federated scheduling
algorithms provide constant speedup factors with respect to any
optimal scheduler for arbitrary-deadline DAG task sets. We
demonstrate via numerical and empirical experiments that our
algorithms are competitive with the state of the art.

Index Terms—Parallel Real-Time Tasks, DAG, Federated
Scheduling, Partitioned Scheduling, Servers

I. INTRODUCTION

Modern real-time systems increasingly facilitate multicore
systems to account for the growing computational demands of
real-time applications. In uniprocessor platforms, the execution-
demand of sequential real-time tasks is solely modeled by
their worst-case execution times, since the processor executes
only one job at each point in time and thus there is no
need to express potential parallel execution paths. In contrast,
multicore platforms allow inter-task parallelism, i.e., to execute
sequential programs concurrently, and intra-task parallelism,
i.e., to execute a job of a parallelized task on multiple
processors (cores) at the same time. To enable intra-task
parallelism, potentially parallel execution of an application
must be considered at design time. As demonstrated by Serrano
et al. [38], the asynchronous parallel task model, represented as
a directed acyclic graph (DAG) where each thread corresponds
to a node and the edges denote precedence constraints, can be
realized using the untied task model of OpenMP. Due to this
fact and the increasing OpenMP support by newly developed
multicore processors [38], the DAG task model is a reasonable
parallel real-time task model to be used for the design of
scheduling algorithms.

A recent approach for scheduling parallel real-time DAG
tasks is federated scheduling by Li et al. [31], where heavy

tasks, i.e., tasks that need to execute on more than one processor
simultaneously in order to meet their relative deadlines, are
assigned a set of processors exclusively, whilst the light
tasks are sequentialized and scheduled on the remaining
processors. The exclusive assignment allows a simple response-
time analysis due to the absence of inter-task interference and
contiguous service provided to the DAG task by the assigned
processors. Additionally, limiting the number of processors that
a DAG task can execute on results in lower synchronization
and scheduling overheads, and the non-preemption of the heavy
tasks has potential cache advantages. On the other hand, the
exclusive granting of processors to a heavy task can potentially
waste many system resources when a job of the task completes
before the release of the next one, especially for constrained-
and arbitrary-deadline tasks (an example is provided in [16]).

To address these limitations of federated scheduling, whilst
maintaining the favorable analytical properties of absent inter-
task interference, we provide the following results:

e We propose a novel reservation-based federated
scheduling approach for scheduling sporadic DAG task
sets with arbitrary deadlines in Section IV. That is, each
DAG task is assigned a set of dedicated reservation servers
that inherit the timing models of the associated DAG
task. These reservation servers can then be scheduled
as sequential tasks by any multiprocessor scheduling
algorithm that supports such timing models.

o We provide constraints and design rules for the dimension-
ing and assignment of the reservation servers, such that
each DAG task is schedulable if all its reservation servers
are schedulable under any multiprocessor scheduling algo-
rithm that has a corresponding analysis guaranteeing the
schedulability of the aforementioned servers. Specifically,
in Section V we present provably sufficient reservations
and different reservation assignment algorithms. One of
them, to the best of our knowledge, is the first algorithm
for scheduling DAG task sets with arbitrary deadlines that
has a constant speedup factor.

o Additionally, we resolve the problem of non-constant
speedup factors for arbitrary-deadline DAG task sets under
federated scheduling with respect to any optimal DAG
task set scheduling algorithm as pointed out by Chen [16].
We show that the speedup factor of our approach is
at most 3 4+ 21/2 by the design of a specific set of
reservation servers that are scheduled under partitioned



and global multiprocessor scheduling in Sections VI and
VII, respectively. We further improve the reservation
assignment algorithm in Section VIII. Note that our
treatment for arbitrary-deadline task systems may result
in different jobs from a task being executed at the same
time since our reservation-based strategies provide the
reservation immediately when a DAG job arrives.

e Finally, we conduct various numerical and empirical
experiments in Section IX and show that our algorithms
are comparable to the state of the art for implicit-
deadline tasks. In addition, our algorithms have the
capability of handling arbitrary-deadline tasks and schedul-
ing constrained-deadlines tasks with stringent timing
requirement efficiently.

II. RELATED WORK

In this section, we review the prior work that is most related
to this research. The problem of scheduling parallel real-time
DAG tasks has been broadly researched. To the best of our
knowledge, three types of scheduling approaches exist.

Decomposition-based strategies: A DAG task is decomposed
into a set of sequential subtasks with specified relative
deadlines and offsets of their release times, where the internal
dependencies are maintained by the decomposition. These
sequential subtasks are then scheduled accordingly without
considering the DAG structure anymore, e.g., [27]-[29], [36],
[37]. Decomposition-based strategies must utilize the DAG
structure off-line in order to apply the decomposition.

Scheduling without any treatment: None of the parameters
of a task nor its DAG structure is used at all when making the
scheduling decisions. The subtasks of a job have the same static
or dynamic priority as the job. Whenever a subtask is ready to
be executed, the standard global or partitioned multiprocessor
scheduling is used to schedule the subtasks, e.g., [2], [14], [30],
[31]. Moreover, when the DAG task is further modelled with
conditional branches, global scheduling has been also studied
in [6], [34], [35].

Federated scheduling: The task set is partitioned into light
and heavy tasks based on their utilizations. Light tasks are
those that can be completely sequentialized and still meet
their deadlines on one processor. Heavy tasks are those
that need more than one processor to meet their deadlines.
In the original design of federated scheduling for implicit-
deadline task systems proposed by Li et al. [31], a light
task is solely executed sequentially without exploiting the
parallelized structure, and a heavy task is assigned to its
designated processors that exclusively execute only this heavy
task. Jiang et al. [26] extended this approach to semi-federated
scheduling, in which one or two processors, used by a heavy
task, can be shared with other tasks. Baruah [3]-[5] adopted
the concept of federated scheduling for scheduling constrained-
and arbitrary-deadline task systems. However, Chen [16] later
showed that federated scheduling does not have any constant
speedup factor with respect to the optimal scheduling algorithm
for constrained- and arbitrary-deadline tasks. As discussed
earlier, despite the advantages of federated and semi-federated
scheduling, it cannot fully utilize the processors when tasks

have constrained or arbitrary deadlines due to the dedicated
processors assigned to heavy tasks. Chen in [16] provided a
concrete task set to further explain this issue.

A related but different problem that has been extensively
studied is the hierarchical scheduling for real-time tasks in
virtual machines on multiprocessors [12], [15], [33], [39],
[41]. Most of these works model this problem using the
compositional analysis framework where virtual processors
of a virtual machine are abstracted using interfaces with
certain guaranteed capacity, and the schedulability of tasks
running within each component can be analyzed independently.
Although some of these interfaces are also named as resource
reservations or servers, their focus is on first designing an
appropriate interface that can accurately describe the virtual
resources yet is simple to use and then providing schedulability
tests to tasks over that interface. In addition, none of these
works considers parallel real-time tasks.

III. PARALLEL REAL-TIME TASK MODEL

This work considers the real-time scheduling problem
on a multiprocessor system comprised of A/ homogeneous
(identical) processors. We adopt the widely used sporadic
task model to describe the real-time tasks, where a task 7; is
characterized by its relative deadline D;, its period (minimum
inter-arrival time) 77, and its worst-case execution time (WCET)
C;. A sporadic task is an infinite sequence of task instances,
referred to as jobs, where the arrival of two consecutive jobs
of a task is separated at least by its minimum inter-arrival time,
i.e., the arrival rate is limited. To fulfill its timing requirement,
a job of task 7; must finish at most C; units of computation
between the arrival of a job at ¢, and that jobs absolute deadline
at t, + D;. A sporadic task system T is called an implicit-
deadline system if D; = T; holds for each 7; in T and is called
a constrained-deadline system if D; < T; holds for each 7;
in T. Otherwise, T is an arbitrary-deadline task system.

Through out this paper, we focus on how to schedule
parallel real-time tasks that have internal parallelism and
allow subtasks to be executed simultaneously on multiple
processors. An established model for parallel tasks is the
Directed-Acyclic-Graph (DAG) model, where the execution of
task 7; is divided into subtasks and the precedence constraints
of these subtasks are defined by a DAG structure. Each node
of a DAG represents a subtask that can be executed whenever
all precedence constraints are met, i.e., all directly incident
jobs finished their executions.

Two parameters are used to characterize a DAG task 7;:

o Total execution time (or work) C;: the summation of the
worst-case execution times of all the subtasks of task 7;.

e Critical-path length L;: the length of the critical path in
the given DAG, i.e., the worst case execution time of the
task on an infinite number of processors.

By definition, C; > L; > 0 for every task 7;. Furthermore,
the utilization of T; is denoted by U; = %

The abstraction of using work and cri%ical—path length to
describe the DAG has the advantage that it is completely

agnostic of the internal parallelization structure, i.e., how many



subtasks exist and how the precedence constraints amongst
them are. Scheduling algorithms that can feasibly schedule
DAG task sets solely based on these two parameters also allow
a task to change the DAG structure during runtime as long
as those parameters persist. The apparent downside of this
abstraction is the pessimism since the worst possible structure
has to be considered regardless of the actual structure, i.e., the
scheduling algorithms have to suffice the tasks deadline for all
possible structures under given parameter constraints.

We assume that the worst-case execution time already covers
the worst-case combination of the interference in the memory
and bus contention, similar to all the approaches in this research
line to schedule DAG tasks, e.g., [26], [31], [35]. We note that
such a safe bound may introduce pessimism into the analysis.

IV. RESERVATION-BASED FEDERATED SCHEDULING

In this paper, we propose to use reservation-based allocation
instead of exclusive allocation for parallel tasks with con-
strained or arbitrary deadlines. That is, instead of dedicating a
few processors to a heavy task, we assign a few reservation
servers to a heavy task. The timing properties of a DAG task
will be guaranteed as long as the corresponding reservations
can be guaranteed to be feasibly provided. We now describe
the basic ideas behind reservation-based federated scheduling
for DAG tasks and some constraints on the reservation design.

A. Reservation Server Design

The reservation-based federated scheduling is a natural
generalization of the federated scheduling approach, where
sufficient exclusive processor time budgets (but not necessarily
entire processors) are reserved for heavy tasks to execute
potentially in parallel and to meet their deadlines. Therefore,
it is a hierarchical scheduling strategy: scheduling a DAG task
inside the reserved resources, namely reservation servers, and
scheduling the reservation servers on the multiprocessors.

In Federated Scheduling, heavy tasks are allocated to proces-
sors exclusively based on the DAG task’s density, which may
result in very low utilization of the processors in constrained-
deadline task systems due to DAG tasks with high density and
low utilization, i.e., the density C;/D; is large compared to
the utilization C;/T;. Thus, the provided 100% utilization of
each allocated processor can not be benefited from.

In consequence, speeding up processors and thus decreasing
the DAG task’s execution-time does not improve schedulability
if the system can not provide a sufficient number of processors.
This issue is further explained in [16]. Contrary, in our
reservation-based approach, we relate the number of in-parallel
required service and minimal-sequential service, and are thus
able to decouple reservation-server utilization (with a constant
inflation factor <) in trade for more in-parallel service. By
enforcing this constant inflation factor for each heavy task, we
can relate the reservation demands to constant speedup factors.

In reservation-based scheduling, each DAG task 7; gets
m; sequential reservation servers with budgets (service provi-
sioning) F; 1, .., E; ¢, .., E; . We enforce that the reservation
servers are synchronous with the release of a DAG task’s job
and the reservation servers corresponding to a DAG task 7;

have the same relative deadline and inter-arrival time as ;.
This means that the release pattern of a reservation server is
inherited from the DAG task and whenever a DAG task releases
a job at t,, the associated service is provided in the release-
and deadline-interval [t,, ¢, + D;).

We now formally define the reservation server as follows:
Definition 1: The /-th reservation server 7;, for serving a
DAG task 7; is defined by the tuple (E; ¢, D;, T;), such that
E; ¢ amount of service (computation time) is provided to the
DAG task 7; over the interval [t,, ¢, + D;) with a minimum
inter-arrival time of T;. O

In order to analytically treat a reservation server as if it is
a sporadic sequential task, we enforce the reservation to be
active, i.e., eligible for scheduling, until the whole runtime
budget is depleted. This also allows us to schedule multiple
reservation servers in parallel instead of sequencing multiple
pending servers of the same tasks in a first-in first-out manner.
However, the reservation servers that are released at time ¢, by
a task 7; are used to serve the DAG job of task 7; that arrived
at time ¢, exclusively. This implies that multiple consecutive
DAG jobs may be executing in parallel. Note that we do not
restrict any reservation server to service certain subtasks of
a task (nodes in the DAG) exclusively. Instead, reservation
servers of the same task are eligible to service any subtask as
long as they belong to the job that initiated the activation of
the reservations. Each DAG job is serviced by list scheduling
— when a reservation of a job is active, it can execute any
ready node of the DAG job. List scheduling is work-conserving
— namely, at every point in time in which the DAG job has
pending workload and the system provides service, some node
is executing.

As long as the assigned server budgets are sufficient for
DAG tasks to meet their deadlines, the system can use
any scheduling algorithm and schedulability test to schedule
these sequential servers on a homogeneous multiprocessor
system with M processors. The exact time of service, i.e.,
the schedule of the reservation servers, is determined by
the applied multiprocessor scheduling algorithm. Therefore,
under reservation-based federated scheduling the problem of
scheduling DAG task sets and the analysis thereof is divided
into the following two problems:

1) Scheduling of sporadic constrained- or arbitrary-deadline
reservation servers to satisfy the budget requirement.

2) Assigning provably sufficient budget to service an arbi-
trary DAG task.

The reservation concept is illustrated in Figure 1b, where
two reservations are partitioned on two different processors
and scheduled according to an arbitrary scheduling algorithm.
The two reservation servers provide 7.5 time-units of runtime
budget (as computed by the R-MIN algorithm, explained later)
over the interval [0,9) in parallel to service the DAG task
shown in Figure la. To improve readability, higher priority
tasks or reservation servers in the system are not included in
Figure 1b. Instead, the resulting preemptions and the servicing
of the reservations are denoted by the different hatchings.

If a reservation is scheduled to execute but no subjob of the
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Fig. 1: (a) A sporadic, constrained-deadline DAG task 7; with C; =10, L, =5,D; =9,T; = 12.

(b) An arbitrary schedule of two equal reservations, as computed by the R-MIN algorithm. The DAG task shown in Figure la
is serviced according to the list-scheduling algorithm by any reservation that does not service an unfinished job at that time.
Both reservations provide 7.5 units of service over the interval [0,9) on two processors in parallel. The white areas denote that
the reservation is scheduled, i.e., serving a job of the corresponding DAG task whereas the hatching denotes the preemption of
the reservation. The reservation server may be servicing, i.e., executed by the scheduler, without serving any DAG subjob due
to unmet precedence constraints as is indicated by the empty slots during the service intervals.

served DAG task is eligible, the reservation spins. For instance
at time ¢ = 5.5 on the second processor, no subjob is eligible to
be serviced, due to unmet precedence constraints. In this case,
the associated scheduled reservation spins. Note that the total
reservation of 15 necessarily exceeds the work of the DAG job
10 since the reservation must guarantee that the job completes
regardless of how the reservation servers are scheduled by the
underlying scheduling algorithm.

B. Sufficient Conditions for Reservation Server Design

To guarantee the schedulability of a DAG task within
its reservation servers, we must quantify the processor time
budgets that are always sufficient to schedule a DAG task over
an interval. Here, we derive conditions for designing reservation
servers for DAG tasks. In particular, we will show that any
design that satisfies the two conditions in the following theorem
guarantees that the DAG job is completed by its deadline.
Theorem 1: Suppose that m; sequential reservation servers
with budgets I; 1, E; 2, .., E; m, are assigned to serve a DAG
task 7;. The job of task 7; arrived at time ¢y can be finished
no later than its absolute deadline ¢ty + D; if the two following
conditions are satisfied:

o [Schedulability Condition]: the m; reservation servers

can be guaranteed to finish no later than their absolute
deadline at tg + D;;

o [Reservation Condition]: C;+L;-(m;—1) < Z;’Zl E; ;.

Proof: We consider an arbitrary execution schedule S
of the m; servers to complete their budgets from t; to
to + D;. Suppose, for contradiction, that the schedulability
and reservation conditions hold but that the DAG job of task
7; released at time ty misses its deadline at time ¢y + D; in
the schedule S.

Since the list scheduling algorithm is applied, the DAG job
is executed within the reservation servers in a work-conserving
manner — at each time step in S each executing server will
process one ready node of the DAG job. Therefore, if there is
some server idling at a time step, all the ready nodes must be
processed by some of the executing servers.

During S, we define a time step as a complete step if the
number of servers executing is no more than the number of
ready nodes. Hence, in these complete steps all the executing
servers are processing useful work of the job. In contrast, we
define a time step is incomplete if the number of executing
servers is more than the number of ready nodes, i.e., there is
at least one executing server idling. We denote the number of
incomplete steps during the interval from ¢y to tg + D; as x.

Since the job is not finished at ¢y + D;, there is at least one
ready node at any time step. By the definition of incomplete
time steps and critical-path length, if * > L;, in these
incomplete steps the job must have finished all of its nodes,
which leads to contradiction. Thus, it must be the case that
x < L;. In the worst case, i.e., solely sequential execution, in
each of the incomplete step all the m; servers are executing
and m; — 1 servers are idling. Since = < L;, we know that the
amount of server idling time is at most (m; —1)z < (m;—1)L;.

Note that by the schedulability condition, the total amount of
execution budgets the reservation servers get in the schedule S
is Z;";l E; ;. Among them, only at most (m; — 1)L; are idle.
Therefore, the amount of useful work these servers complete

is at least 37" B j — (m; — 1) L.
By the reservation condition, we know that
Z;”:l E;; —(m; —1)L; > C;. This means that the

reservation servers process more work than the worst-
case execution time of the job, which leads to contradiction.
Therefore, the job must have completed by its deadline. M
Note that in the above theorem the reservation server design
is independent of the actual structure of the DAG job — it
depends only on the worst-case work C; and critical-path length
L; of the job. The following lemma argues that providing a
reservation server with F; ;, < L; is never useful.
Lemma 2: Let E;,,E;9,---,E;,, denote a set of
sufficient reservation budgets for a DAG task 7;, ie.,
Z;”:ll E; ; > Ci+ L;(m; — 1). If there exists a reservation
server with budget E; ;« < L;, then removing this reservation
already provides sufficient budget with one less reservation
server and less cumulative budget.



Proof: By assumption, we know that Z —FE;;
E, j+ > C;+L;(m;—1). Simple arithmetic y1e1ds Z o E i —
E, j++ > C; + Liy(m; — 1) — E; j«. By the property that
E; j« < L;, it must be that Z;”:HE” —E;,;»+ > C; +
LZ(TI’Lz -1) - Ei,j* > C; + Ll<m2 - 2). |

From now on, we will implicitly assume that F; ; > L; Vj
due to Lemma 2. In particular, we define the strech ratio
vi,; for each reservation server and let F; ; & vi,;L; with
1<y, < we have the following corollary.
Corollary 3 Suppose that m; sequential reservation servers
with budgets {~; 1L, Vi 2Li, .-, Vi,m; L; } are assigned to serve
a DAG task 7;. Task 7; is feasible if the budget assignment
satisfies:

m;

i_1)+ci§27i,j'lfi
J=1

Vi Li <D; V1< 5 <my

Vi > 1V <j<my

L (m (1a)

(1b)
(1)

Eq. (1) has the following properties. First, the equation
depends only on the task parameters C;, L;, D; as well
as the number of reservation servers m;. Second, as m;
increases, the sum of execution requirements Z;’Zl Yij - L
also increases. Therefore, there are many possible feasible
designs of reservation servers for the same DAG task. The best
reservation assignment depends on the scheduling algorithm
for the reservation servers and the corresponding analysis used
to verify schedulability of the servers.

V. RESERVATION SERVER ASSIGNMENT ALGORITHMS

In this section, we describe two simple algorithms for
calculating reservation budgets for DAG tasks which both have
advantages and disadvantages. The first algorithm is the direct
generalization of federated scheduling core allocation. The
second algorithm is designed so that we can easily prove the
speedup bounds for the reservation-based federated scheduling
in Sections VI and VIIL.

In principle, from Theorem 1 and Corollary 3 we know that
the reservation servers of the same task 7; could potentially
have different budgets I; ; and stretch ratio -; ;. However,
in the two simple server assignment algorithms, we compute
the reservation budgets by enforcing equal-reservation E; and
equal stretch ratio ~; for task 7;. Therefore, the conditions
for feasible reservation servers can be solved analytically to
L;-(m; —1)4+C; < ~;-my- L;, which yields ﬁ < m;.
Note that the notation of +y; ; from now on changed to v; due
to the equality of all m; reservation servers.

Since the number of reservation servers must be a natural
number, we know that the smallest number of reservation
servers m,; required under the equal-reservation constraint given
a stretch ratio +; is

mldeflr Ci—L; —‘
' Li-(vi—1)

A. R-MIN: Minimum Reservation Budgets

The intuition behind the first algorithm, namely R-MIN, is
similar to the original federated scheduling core allocation,
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which is to assign the minimum reservation budgets that can
still guaranteed the schedulability of tasks. Specifically, R-MIN
classifies tasks into light and heavy tasks based on whether
a task requires to be serviced by more than one reservation
server or not. Based on the classification, the algorithm assigns
each light task one reservation server with a budget identical to
the work of the task. It assigns each heavy task the minimum
number of reservation servers m; = [g@ :ﬁl 1 using the equal-
reservation constraint. The servers of the same task is assigned
the minimum stretch ratio v; = 1 + %, i.e., the minimum
budget, while guaranteeing the schedulability of the task.

Therefore, the R-MIN has the following properties:
Theorem 4: The R-MIN algorithm generates a minimal number
of sporadic equal-reservation servers with minimum budgets for
a given sporadic constrained- or arbitrary-deadline DAG task
set that provide sufficient resources to service their respective
DAG tasks.

Proof: First, the minimum m; gives the minimum total
execution requirements ZT:l v; - L; in inequality (la). In
equal-reservations, the left-hand side of the above eq}uation 2)

% , and the
corresponding smallest ~; that achieves an equally minimal
number of reservations is given by 1 + C L . [ ]

The R-MIN strategy is a generalized approach of federated
scheduling in the sense that an instance of R-MIN can be
transformed into an instance of federated scheduling by inflating
the assigned reservation budgets E; to T; (for implicit-deadline
systems) such that each heavy DAG task is reserved 100%
processor utilization exclusively. One can consider R-MIN as
a resource optimized version of federated scheduling.

The R-MIN strategy assigns the minimum total budgets
to all the tasks, leaving the minimum idling time inside the
reservation servers. On the flip side, this strategy is the closest
to federated scheduling and inherits its disadvantages. First,
each task’s reservation is calculated completely independently
from all the other jobs in the system. Second, each reservation
may be “tight”, i.e., E; ; may be very close to D;. Both these
properties may make it difficult to ensure that the assigned
servers of a task set are schedulable even though individual
tasks require their minimum budgets. This strategy is unlikely
to provide a constant speedup bound for the same reason that
federated scheduling does not admit a constant speedup bound
for constrained-deadline tasks. Therefore, we will now look at
a different strategy which potentially increases the number of
reservation servers for each task, but each reservation server
may have a smaller execution requirement compared to R-MIN.

is minimized if ~; is maximized, i.e., m; = [

B. R-EQUAL: Equal Stretch Ratio for All Tasks

As mentioned above, one of the reasons R-MIN may generate
unschedulable reservation servers is that each job calculates its
own stretch ratio which can be as large as possible for that job.
Jobs that have large stretch ratio ~; have little slack, i.e., their
reservation F; = v;L; is very close to D;. We now present an
algorithm R-EQUAL that uses a single common stretch ratio ~y
across all tasks in Algorithm 1.



In algorithm R-EQUAL, all DAG tasks are classified into
heavy and light tasks based on whether C; > ~L; for a single
common stretch ratio «y , i.e., whether they require more than
one reservation (as generated by the algorithm) to be feasibly
serviceable or not based on «. Since v must be valid for all DAG
tasks, i.e., L; < v;L; < D;, we know that 1 < v < minn{%}.
Based on the classification, the algorithm assigns each light task

one reservation server with the same budget as the work of the
’—gLi(’Y—l)

task. It assigns each heavy task m; = —‘ reservation

servers given the same stretch ratio .

It turns out that R-EQUAL provides good analytical results
and allows us to prove speedup bounds. It does not, however,
lead to heuristically good reservations as will be seen in the
evaluations. Thus, in Section VIII we present an improved
server assignment algorithm that can exploit the properties of
the scheduling algorithm applied to the servers.

In the following theorem, we prove an important property of
R-EQUAL servers, which is used to prove the speedup bounds
for reservation-based federated scheduling.

Theorem 5: Suppose that v > 1 is given and there are exactlT

. def R
m; reservation servers for task 7; where m; = { Ci—Li

Li(v—-1)

with m; > 2. If ¢} =370 =C;+(m;—1)-L; and
v = Az.izilrrii-rij/]:i’ then C,Z < (1 —+ ﬁ) . CZ
Proof: By the assumption L; > 0 and ~y > 1, the setting of
m; = chgfi)—‘ implies that
Ci—L;
mi—1< —— <m; 3)
Li(v-1)
= C;i+ (m; —1)L; <myyL; < C; + (my +v —2)L; (5)

Because v > 0, Eq. (5) implies (m; —1)L; < Cit(mi=2)Li
Since C} = C; + (m; — 1)L, by definition, we know

C! < C‘+Ci+(mz_2)[/i

- Ci(W;F DI Zmiv_ 2 ((mi - lc;i(v - 1))
<2 C; (W‘Fl + 21— )
LA ]

1

where <; is due to L; < m7_1) T < _10)'(7 T by
reorganizing the condition in Eq. (4) and <5 is due to m; > 2
and Z%j < 1. [ |

VI. PARTITIONED SCHEDULING FOR RESERVATION
SERVERS

This section analyzes the theoretical properties of reservation-
based federated scheduling when the reservation servers are
scheduled under multiprocessor partitioned scheduling. Using
the R-EQUAL algorithm and Theorem 5, a worst-case setting
can be derived to prove a constant speedup factor of reservation-
based federated scheduling with respect to an optimal DAG
task scheduling algorithm.

Algorithm 1 R-EQUAL Algorithm

Require: Sporadic arbitrary-deadline DAG task set and ~-value
Ensure: Set of reservations, that can provably service all DAG tasks
sufficiently
: THEAVYF{TiGT | C; >'Y'Li}
: TLIGHT<—{7'2' eT | C; S'Y'Li}
T « Tucur
. for each task 7; in Tygavy do
mi <= LG-1)
for £ < 1 to m; do
Ti0 < (vLs, Dy, Ty)
T+ TU {7}
end for
: end for
: return T

TR N AR

—_—

There have been analyses for the speedup bounds of different
scheduling algorithms for ordinary sequential real-time tasks
under partitioned scheduling. In particular, Baruah and Fisher
developed a greedy heuristic in [9].

Definition 2: Under Deadline-Monotonic Partitioning (DMP),
sequential tasks are considered in a non-decreasing order of
their relative deadlines. When a task 75, is considered in this
order, if task 7, and the other previously assigned tasks on
a processor can be feasibly scheduled under the specified
scheduling strategy, then task 7 is assigned to one of such
processors (if there are more than one). Otherwise, task 73 is
assigned to a newly allocated processor. O

This strategy is further analyzed by Chen et al. in [17], [18]
and proved to have a speedup bound of 3. Note that DMP only
specifies the order of the tasks to be considered and assigned.
The underlying uniprocessor scheduling strategy after task
partitioning can be arbitrary, e.g., EDF or deadline-monotonic
fixed-priority scheduling.

Since we consider DMP in this section, we index the
tasks such that D, < D; if + < j. Before we prove
the competitiveness of reservation-based federated scheduling
under DMP, we first briefly restate the schedulability tests used
for the partitioned scheduling of arbitrary-deadline task sets,
that are used in this paper for scheduling server tasks.

Suppose that the partitioning algorithm attempts to assign
a server task 7, with budget Ej, to a processor m and T, is
the set of higher-priority server tasks that are already assigned
on processor m. When considering arbitrary-deadline tasks
on uniprocessor, Fisher, Baruah, and Baker [22] provided the
following approximated schedulability test:

Ek+Z(

T, €T

)E < D; and (6a)

U+ > U<l (6b)

7 €T

Bini et al. [13] provided a tighter schedulability test as

follows:
Ey+Di( Y U)+ D> Ei— Y UE <Dy (Ta
Ti€Tm T €Tm T €Tm
U+ > U<l (b
T €T



With these analyses, we now prove that DMP and reservation-
based federated scheduling can yield constant speedup bounds.
To prove the speedup bound, we incorporate the over-
provisioning of the generated reservation servers with respect
to the worst-case execution time of the original DAG tasks.
Theorem 6: A system of arbitrary-deadline DAG tasks sched-
uled by reservation-based federated scheduling under DMP,
in which each processor uses deadline-monotonic fixed-priority
scheduling for the reservation servers, has a constant speedup
factor of 3 + 21/2 with respect to any optimal scheduler by
setting v to 1 + /2.

Proof: We prove this by adopting R-EQUAL (c.f. Algo-
rithm 1) with a setting of v = 1 + v/2. Suppose, for contradic-
tion, that reservation-based federated scheduling under DMP
is given a speedup of a > 3 + 21/2 compared to the optimal
scheduler but still fails to schedule the DAG tasks. By the
definition of R-EQUAL and Corollary 3 we know that it fails
to schedule the DAG tasks if and only if DMP cannot partition
all the assigned reservation servers.

Since we apply DMP, we index the tasks such that D; < D;
if 2 < j. Suppose that 7 ¢ is a reservation server assigned to
the DAG task 7 that is not able to be partitioned to any of
the given M processors, where 1 < ¢ < my. Let M; be the
set of processors in which Eq. (6a) fails. Let M5 be the set of
processors in which Eq. (6a) succeeds but Eq. (6b) fails. Since
Tk,¢ cannot be assigned on any of the M processors, we have
M| + [Ma| =M

By the violation of Eq. (6a), we know that

M [Bret+ Y, Y, (

meM; 7; ;€T

e 2 (B

meM; 7; ;€T

>E” > |M;| Dy
E
:>|M1‘ ) > |M1| (8)

By the violation of Eq. (6b), we know that

|M2E“+Z PR Ve

meMz 7; €T, l J

)

Due to the definition Z;n:l E; ; = C/, and the fact that 7; ;
is assigned either on a processor of M or on a processor of
M, if 7; ; is assigned successfully prior to 7 ¢, by taking the
summation of Egs. (8) and (9) we know that

Er C’ C;
Mmin{Tk,Dk} +Z< k >M

10)

By the reservation-budget setting Ej, = ~Lj and by
Theorem 5, the above inequality can be upper bounded by
M’yLk

win{Tr, Dr} +Z< ) (Hﬁ) >M (1)

By assumption, the reservation-based federated scheduling
under DMP is given a speedup of o > 3+2+/2 compared to the
optimal scheduler. Since the DAG task set is schedulable under
the optimal scheduler on unit speed processors, on «a-speed

processors we have aL; < min{Ty, Dy}, aZfZl % < M
and o Zle gT < M. Therefore, we have

k c k c,
IR S

l > max L
a = min{Ty, Dy}’

1 1 1
= 7—+2(1+—>7>1 (13)
«@ vy—-1/) «
S S R I N
a v+ vty 44+3v2 3+2v2

Hence, a < 3 4+ 2v/2 leads to contradiction. Therefore, the
speedup factor is at most 3 + 2/2. Note that the setting of
as 1+ /2 is in fact to maximize 72117 [ |
Corollary 7: Based on Theorem 6, the speedup factor of
reservation-based federated scheduling under DMP under a
parameter v > 1 in the R-EQUAL algorithm is %

Proof: This follows from the proof in Theorem 6. [ ]
Theorem 8: A system of arbitrary-deadline DAG tasks sched-
uled by reservation-based federated scheduling under DMP,
in which each processor uses EDF for the reservation servers,
admits a constant speedup factor of 3 + 2/2 with respect to
any optimal scheduler by setting v to 1 + /2.

Proof: Since EDF is optimal on uniprocessor and is no worse
than deadline monotonic, the task partitioning algorithm and
analysis used in Theorem 6 yields the result directly. [ ]

Note that the setting of « = 1+ V/2 is to achieve a bounded
speedup factor in the analysis. Nevertheless, while ensuring
the worst-case behaviour, such an enforcement is usually not
beneficial for the average-case performance. Details regarding
this matter can be found in a recent paper by Chen et al [19].

VII. GLOBAL SCHEDULING FOR RESERVATION SERVERS

In contrast to partitioned scheduling, global scheduling
schemes employ a single ready queue and allow arbitrary task
migrations. Analogously to the problem of computing reserva-
tion servers for partitioned scheduling, no single best server
assignment algorithm exists for global scheduling. Instead,
it depends on the analysis used to verify the schedulability
of server tasks, since different schedulability analyses may
be sensitive to different parameters. For example, if the
schedulability test only considers the cumulative demands of
the generated reservation servers, then the individual settings
of the reservations become irrelevant and we should thus
choose the one with minimal reservation demands as in R-MIN.
Otherwise, optimization techniques that are suitable to optimize
the parameters relevant for the schedulability analysis may be
used, e.g., linear- or quadratic-programming in conjunction
with the constraints for feasible reservation systems.

Global scheduling algorithms for constrained- and arbitrary-
deadline sequential tasks have been extensively studied, e.g.,
[8], [10], [11], [23], [24], [40]. In general, any of these
schedulability tests can be applied for validating the underlying
global scheduling algorithm.

To prove that the speedup factor of global deadline-
monotonic (DM) scheduling for arbitrary-deadline DAG task
sets is the same as in partitioned deadline-monotonic schedul-
ing, namely 3 + 2v/2, we adopt the following definitions.



The load of the server tasks T is defined as LOAD(T) &f

maxys {ZWGT M}, where DBF(7y, 1) is the demand-
bound function of server task 7 during interval length ¢ as
introduced by Baruah [7]. Further, the maximum density of the
server tasks is defined as &4 (T) def maxr, et {m}

We use the following sufficient (but more pessimistic)
schedulability test derived by Chen et al. (Theorem 4.7 in [20])
for scheduling reservation servers under global DM scheduling.
Theorem 9: A sequential arbitrary-deadline task set T is
schedulable by global deadline-monotonic scheduling on
M > 1 processors if

2-LOAD(T) + (M — 1) - 6maa(T) < M (15)

Proof: By Theorem 4.7 in Chen et al. [20], a task set of
sporadic arbitrary-deadline tasks that is indexed according to
global deadline-monotonic priority assignment is schedulable
on M processors if for all tasks 7y

k=l Ci — CiUi k—1
5k+z T+Ui SM—(M—l)'maX{I}ljl)‘Uz‘ﬁk} (16)
i=1

Further, by Corollary 5.1 [20]
k—1
S + Zl <C;fU + Ul-) <2.LoaAD(k)  (17)

and due to the fact that max{maxi-“:_l1 Ui, 06t < Omax(k)
(since 0; > U;), we obtain the over-approximated sufficient
schedulability test stated in Theorem 9. ]

This sufficient condition is used to prove the following

theorem:
Theorem 10: A system of arbitrary-deadline DAG tasks sched-
uled by reservation-based federated scheduling using global
deadline-monotonic scheduling to schedule the generated
reservation servers has a constant speedup factor of 3 + 2v/2
with respect to any optimal scheduler.

Proof: We prove this by adopting the R-EQUAL algorithm
(Alg. 1) with v =1+ v/2. Similar to the proof of Theorem 6,
for contradiction we assume that the algorithm is given a
speedup of o > 3 + 2v/2 compared to the optimal scheduler
but still fails to schedule the DAG tasks, which is because

global DM cannot schedule all the assigned reservation servers.

Let T denote the original set of arbitrary-deadline DAG tasks
and let T/ denote the set of associated reservation servers that
are generated by R-EQUAL. Since T’ fail to suffice theorem
Thm. 10, we have

2 LOAD(T') 4+ (M — 1) - dmae(T') > M = (18)
DBE(73,t) (M -1) E;

2max ; Mt AT TS

(19)

Since F; = «vL; and by theorem Thm. 5, it follows that

DBEF(7;3,t)

1
201+ ——
(1+ ) max Mt

vy—1"t>0

(M —1)
M

T; €

L;
L - 1
+ v I‘Bg?l’({mln{D“Tz} } >

(20)

Again, by assumption the reservation-based federated
scheduling under global DM is given a speedup of a > 3+2+/2
compared to the optimal scheduler. Since the DAG task set
is schedulable under the optimal scheduler on unit speed pro-
cessors, on a-speed processors we have aL; < min{T}, Dy}

and o - maxssq {Z M} < M. Therefore, we have

€T
2
¥4y 1 1
3+2vV2> >2(1 4+ —— (11— —) >
+2v2 > o aE Ch e VR R il vO R
Hence, a < 3 + 2v/2 leads to contradiction. As a result, the
speedup factor is at most 3 + 2+/2. [ |

VIII. IMPROVED ALGORITHMS FOR RESERVATION SERVERS

Algorithm 2 The SOF algorithm yields feasible partitions and
associated reservations.

Require: An arbitrary-deadline DAG task set T, processors M,
boundaries b1, b2, .., bn.
Ensure: Feasible partition and reservations, that can service T
provably (if one could be found).
1: Ty, Ty, « R-MIN(T) or R-EQUAL(T)
2: re-index Ty U Ty, such that D; < Dj for i < j
3: for each 7; ; in Ty U Ty do

4: if 7; ; in T, then

5: if partition by preference failed then

6: return Partition Failure

7: end if

8: else

9: Failure < True

10: while ¢; is no more than max { [%—‘ , (Lcj(;fb—‘ ,bi} do

11: if partition by preference failed then

12: revoke all already partitioned 7;,1, 74,2, .-, T;,j belonging to
DAG task 7;

13: ¢; < £; + 1 {increment the number of reservation servers
and re-try}

14: for each j in {1,2,..,¢;} do

15: E;; + % +(1— %) - L; {compute evolved reservation

budgets} )

16: end for

17: continue

18: else

19: Partition 7; ; to processor as chosen by preference

20: Failure < False

21: break

22: end if

23: end while

24: if Failure is True then

25: return Partition Failure

26: end if

27: end if

28: end for

29: return Partition and Reservations

In this section, we consider a class of algorithms where
reservation server assignment is adapted based on whether
the initially assigned servers are schedulable by an applied
scheduling algorithm. In principle, reservation-based federated
scheduling under any suitable multiprocessor scheduling algo-
rithm for servers can be improved using this strategy. Here, we
take DMP as an example, highlight one such adaptive approach
and analyze its speedup bound.

We present the Split-On-Fail (SOF) algorithm in Alg. 2. The
SOF algorithm attempts to partition all generated reservation
servers according to a schedulability test for arbitrary-deadline



tasks by preference, e.g., worst-fit, first-fit, and best-fit. In
order to reduce the algorithmic complexity, the partitioning of
each group of servers that belong to the same DAG task is
done on the premise that all previously partitioned groups are
already feasibly partitioned and their settings do not change.
Additionally, light tasks are excluded from the adaptation
process. Whenever a reservation server cannot be partitioned,
an additional reservation server is added to the group and the
individual reservation-budgets are decreased appropriately.

By the improved algorithm, the set of all possible reser-
vation budgets is reduced from a theoretical feasible interval
L; < F; < D;. The feasible budget sizes can be calculated
given the number of servers ¢; using E; = 7+ + (1 — —) L;.

The intention is to improve schedulablhty by increasing
the number of reservation servers, whilst decreasing their
individual budgets. Note that any priority policy that assigns
equal priorities to all reservations belonging to the same group
results in non-equal reservations. This is due to the fact that
if multiple reservations with the same priority are partitioned
onto the same processor, this behaves as if there was only one
reservation with the individual reservation budgets accumulated
on that processor. Furthermore, note that since the reservation-
budgets are determined upon partitioning, different partitioning
strategies, i.e., best-fit, worst-fit, and first-fit, result in different
reservation-budgets effectively.

By using R-EQUAL with v = min,, {%
initial reservations and for any b; > 1 € N, we prove the
following theorem assuming that v > 1.

Theorem 11: The speedup factor of SOF under Deadline-
Monotonic Partitioning (DMP), in which each proces-

} to generate the

sor uses EDF or DM for the reservation servers,
2

H I e il 0 4 _ : Ly yLik—Lyg 1

is at most min{ = ,4 MINY &5 "G =Ly b1 +

%, Gl b~ 1},

i’ Yl i

Proof: If SOF cannot find a feasible partition and reserva-
tions, then the initial reservation-budgets cannot be partitioned
feasibly either. Due to Corollary 7 and Theorem 8, this yields
that the speedup factor is at most ':Y We use the same
arguments as in Theorem 6, including the definition of 75, and
the index of the tasks according to DMP, i.e., D; < Dy, for

2max;« {max {

i=1,2,...,k — 1. For this case, we have
1 Lk 1 CZ
2 ).
( ck) min{Tk,Dk}Jr;MTiJrMDk

+Zk:(cf1) Lo L)y
£ MT; ~ MD,

Where due to the definition of the boundaries c¢;

max { [%—‘ ) LCE;Li) bl}, it must be that ¢; > [C —‘ > Cz
= C;
Let o = max m EZ 1 MT b a5, b denote

a necessary condition for schedulability. Then, the ollowing
inequality holds:

1 1
4——+2. max{czfl}>—
ck

2y

Since,

Ci Ci—L;
i — 1= — —— | b —1
oot [ 2] 2 e
C; Ci—1L;
<o { Do no
holds, the equation can be reformulated to

A mi Ly vLp—L; 1
— min § —
C,’ Cy— Ly ’bk—l

C; C;—
—|—2-Ig1<a’§<{max{L WL —L , b, 1}}
This proves the theorem. [ ]

IX. EXPERIMENTAL EVALUATION

This section presents the evaluation results. We first nu-
merically evaluate the reservation-based federated scheduling
under partitioned schedulers (as our optimization for reservation
server allocation is mainly for partitioned schedulers) using
synthetic task sets. We then empirically evaluate the reservation-
based federated scheduling under the global DM scheduler (as
there is no budget-based partitioned scheduler in the RTCG
framework [32]) implemented on a real multicore platform.

A. Evaluations Based on Synthetic Task Sets

Task Set Generation: We used the Randfixedsum algo-
rithm [21] to generate utilizations for task sets of fixed size with
individual task utilizations 0 < U; < M, where M denotes
the number of processors. Each task was characterized by
7 = (Cy, L;, D;, T;), where the periods were drawn uniformly
from (0, 100] to cover a wide range of characteristics. The range
of the parameters o = ’ L and B = ’ for generating deadline
and critical-path length is changed for different settings.

We evaluate task sets with implicit, constrained, and arbitrary
deadlines. For each setting, task sets for 8, 16, and 32 processor
systems were generated. For each normalized utilization (in five
percent steps), 100 task sets were generated, where each task
set consists of 20 DAG tasks. This task set size was selected to
be large enough to allow smaller individual utilization and thus
more options for the partitioning, whilst being small enough
to still be difficult to partition.

In the following, the proposed reservation-based feder-
ated scheduling algorithms, namely SOF in the R-MIN and
R-EQUAL variants as wells as the different partitioning heuris-
tics first-fit, best-fit, and worst-fit were compared against
the semi-federated scheduling approach by Jiang et al. [26].
Since the evaluations of Jiang et al. in [26] did not suggest
a notable difference between the performance of their two
proposed algorithms, only the algorithm SF[X + 1] was
adopted and is referred to as S-FED. In semi-federated
scheduling, the resource waste of federated scheduling is
addressed by computing the required processors more tightly.
That is, if federated scheduling requires at least m; > x many
processors with m; € N, then federated scheduling will allocate
[2] = (x+¢€)-many processors for this task. This may lead to at
most 200% of the required resources since 2 > Z+L 2 > 1 for

+ )
lime — 0. Conversely, the proposed improvements decrease
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Fig. 2: Acceptance ratio for implicit-deadline DAG task sets with normalized utilizations in five percent steps on 8, 16, and 32
processors, respectively. The periods are drawn uniformly from (0, 100] and the critical-path length is drawn uniformly from

(0.6T;,0.9T3).
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Fig. 3: Acceptance ratio for constrained-deadline DAG task sets on 8, 16, and 32 processors, respectively. The periods are
drawn uniformly from (0, 100], the deadline is drawn uniformly in (0.17},T;], and the critical-path length is drawn uniformly

from (0.4D;,0.7D;].
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Fig. 4: Acceptance ratio for constrained-deadline DAG task sets on 8, 16, and 32 processors respectively. The periods are drawn
uniformly from (0, 100], the deadline is drawn uniformly in (0,0.57;], and the critical-path length is drawn uniformly from

(0,0.5D;].

with the number of required processors. To allow a fair
evaluation and to make use of the advantage of the sporadic
task model for the reservations, a SOF variant with partitioned
EDF for arbitrary-deadlines using the linear demand-bound

function approximation as proposed by Baruah [3] was adopted.

Consequently, a scheduling test consisting of the reservation
initialization method R-MIN or R-EQUAL, the uniprocessor
scheduling algorithm EDF or DM, and a packing heuristic,

results in 12 variants. Due to similar performance in the
evaluations, only a subset of the variants that are representative
of the group’s performance is illustrated.

Experimental Results on Implicit-Deadline Task Sets: The
first set of experiments is shown in Fig. 2. It can be seen
that for tasks with implicit deadlines S-FED and the best
performing variant SOF-EDF-BF-MIN behave similarly up
to a cutoff utilization of 60%, 45%, and 35% for 8, 16, and
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Fig. 5: Acceptance ratio for arbitrary-deadline DAG task sets on 8, 16, and 32 processors respectively. The periods are drawn
uniformly from (0, 100], the deadline is drawn uniformly in (0.17;,107;], and the critical-path length is drawn uniformly from

(0.4D;,0.7D;].

32 processors. In general, S-FED declines slightly later than
the best SOF variants, but the performance gap decreases
with the number of processors. It can also be observed that
the R-EQUAL variant compared to the best performing SOF-
EDF-BF-MIN algorithm exhibits a substantially lowered cutoff
utilization. This is due to the fact that R-EQUAL generates
more reservations initially in comparison to R-MIN variants
and thus decreases schedulability.

Experimental Results on Constrained-Deadline Task Sets:
In Fig. 3, the deadlines of constrained-deadline tasks were
chosen uniformly from (0.17;,T;]. Here the variants SOF-DM-
BF-MIN and SOF-EDF-BF-MIN slightly outperform S-FED
for 8, 16, and 32 processors, whereas the gap decreases with
the number of processors. The S-FED is especially sensitive
to small L;/D; and D, /T; ratios, and performs much worse,
which is demonstrated in an extreme-case shown in Fig. 4.

Experimental Results on Arbitrary-Deadline Task Sets:
Finally, Fig. 5 presents arbitrary-deadline task sets where
the deadline was chosen uniformly from (0.17;, 107;]. Since
semi-federated scheduling does not support arbitrary-deadline
DAG task sets, only SOF variants are evaluated. All SOF
variants accept all task sets until 50%, 20%, and 10% cutoff
utilizations in 8, 16, and 32 processor platforms, respectively.
The variants SOF-DM-BF-MIN and SOF-EDF-BF-EQ exhibit
the best performance and behave identically. Additionally,
we observe that SOF-DM-WF-MIN demonstrates the worst
performance.

B. Empirical Evaluation

We now describe our empirical results of reservation-based
federated scheduling using it with DM scheduling for servers.

Platform Implementation: We implement a prototype plat-
form that supports reservation-based federated scheduling under
global DM by modifying an existing federated scheduling
platform for OpenMP programs, namely RTCG in [32]. The
main differences between the reservation-based federated
scheduling under the global DM and the original federated
scheduling include: (1) deadline monotonic priorities to the
parallel threads of a task, (2) different numbers of threads

generated for a task, where each thread corresponds to one
reservation server in reservation-based federated scheduling
in contrast to one dedicated core in the original federated
scheduling, and (3) global execution of the threads of a task,
instead of dedicated core assignment using federated scheduling.
We modify RTCG correspondingly to address these differences.

Experiments were conducted on a 48-core machine composed
of 4 AMD Opteron 6168 processors. We reserved one processor,
i.e., 12 cores, for system tasks, leaving 36 experimental
processing cores. Based on this hardware specification, we ran
the single socket 12-core experiments and multi-socket 36-core
experiments. Linux with the PREEMPT_RT kernel patch was
used as the underlying RTOS.

Task Set Generation: We use the similar approach as
in Section IX-A to randomly generate synthetic task
sets. In these experiments, all units are expressed in
millisecond (ms). In addition, we randomly selected task period
from {4ms,8ms, 16ms, 32ms, 64ms, 128ms} to form task
sets with harmonic periods. For all the experiments, each task
set was run for 100 hyper-periods.

We compare reservation-based federated scheduling under
global DM in the R-MIN and R-EQUAL variants (namely
GDM-MIN and GDM-EQ, respectively) against our imple-
mentation of global DM without any reservation (GDM-ALL).
In addition, for experiments with implicit deadlines, we also
compare against the original federated scheduling, i.e., RTCG
platform (FS). To have a fair comparison, for experiments with
constrained and arbitrary deadlines we modify the federated
scheduling to use the min {D;, T;} instead of D; to calculate
the core allocation for each task.

Experimental Results: The experiments on 12 cores are
shown in Fig. 6. In all settings, GDM-MIN outperforms FS
and FS is comparable or better than GDM-EQ. As discussed
in Section VII, reservation-based federated scheduling under
global DM should choose reservation servers with the minimum
reservation demands, i.e., GDM-MIN, instead of other alterna-
tives such as GDM-EQ. Additionally, GDM-MIN outperforms
FS since without the dedicated core allocation a core will
not idle as long as there are some unfinished jobs. Therefore,
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Fig. 6: Acceptance ratio under normalized utilization for task sets on 12 cores with implicit, constrained, and arbitrary deadlines.
For each normalized utilization, 100 task sets each with 10 tasks are generated. The maximum critical-path length for each task
is drawn uniformly from (0.67;,0.97;] for implicit and arbitrary deadlines, and is drawn from (0.4D;,0.7D;] for constrained
deadlines. The deadline is drawn uniformly in (0.17;,107;] for arbitrary deadlines and in (0.17;, 17;] for constrained deadlines.
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Fig. 7: Acceptance ratio displaying normalized utilizations for task sets on 36 cores with implicit, constrained, and arbitrary
deadlines, respectively. For each normalized utilization, 100 task sets each with 20 tasks are generated. The maximum critical-path
length for each task is drawn uniformly from (0.67;,0.97;] for implicit and arbitrary deadlines, and is drawn from (0.4D;, 0.7D;]
for constrained deadlines. The deadline is drawn uniformly in (0.17;,107;] for arbitrary deadlines and in (0.57;,1T;] for

constrained deadlines.

GDM-MIN can more efficiently utilize the multicore platform.

Finally, GDM-ALL performs significantly worse, which shows
the necessity of calculating the proper reservation demands.
In addition to the experiments on 12 cores, the results for

the same experimental settings on 36 cores are shown in Fig. 7.

The performance trends of different scheduling algorithms on
36 cores are similar to those on 12 cores. It can be seen
that GDM-MIN outperforms all other scheduling algorithms in
terms of acceptance ratios.

X. CONCLUSION AND FUTURE RESEARCH

In this work, we show that reservation-based federated
scheduling is competitive with the state-of-the-art of sporadic
DAG task scheduling for the parametric model. Especially
in the constrained-deadline and arbitrary-deadline cases, the
reservation-based federated scheduling demonstrates good
performance as well as robustness with respect to varying
parameters. Since reservation-based federated scheduling can be
used in conjunction with any pre-existing scheduling algorithm

that supports sporadic sequential tasks, we believe that it has a
great potential to be applied in practical systems even though
it has a slight performance loss for certain scenarios.

For future work, we will consider the memory and bus con-
tention, as this has been either ignored or pessimistically over-
estimated in the literature. For constrained-deadline sporadic
task systems (without DAG) under fixed-priority scheduling,
there have been a few recent research results, e.g., [1], [25].
We plan to explore the impact of such resource contention
when designing reservation-based federated scheduling.
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