Implementation and Evaluation of Multi-Mode
Real-Time Tasks under Different Scheduling
Algorithms

Anas Toma, Vincent Meyers and Jian-Jia Chen
Department of Computer Science
TU Dortmund University
Dortmund, Germany
firstname.lastname @tu-dortmund.de

Abstract—Tasks in the multi-mode real-time model have
different execution modes according to an external input. Every
mode represents a level of functionality where the tasks have
different parameters. Such a model exists in automobiles where
some of the tasks that control the engine should always adapt
to its rotation speed. Many studies have evaluated the feasibility
of such a model under different scheduling algorithms, however,
only through simulation. This paper provides an empirical evalua-
tion for the schedulability of the multi-mode real-time tasks under
fixed- and dynamic-priority scheduling algorithms. Furthermore,
an evaluation for the overhead of the scheduling algorithms is pro-
vided. The implementation and the evaluation were carried out in
a real environment using Raspberry Pi hardware and FreeRTOS
real-time operating system. A simulation for a crankshaft was
performed to generate realistic tasks in addition to the synthetic
ones. Unlike expected, the results show that the Rate-Monotonic
algorithm outperforms the Earliest Deadline First algorithm in
scheduling tasks with relatively shorter periods.

I. INTRODUCTION

In modern automotive systems, Electronic Control Units
(ECUs) are used to control and improve the functionalities,
the performance and the safety of various components. These
embedded systems are in continuous interaction with various
parts of the automobile such as the doors, the wipers, the
lights and most importantly the engine [14)]. In order to
guarantee a correct behavior, the embedded system should
react within a specific amount of time, i.e. the deadline. The
timing correctness in these systems is very important, because
a delayed reaction can result in a faulty behavior and then
affect the reliability and safety of the automobile.

The software of an automotive application can be modeled
as a set of recurrent tasks with timing constraints, i.e. periodic
real-time tasks. For instance, to control the engine of an
automobile, an angular task may release jobs depending on
the engines speed. Such a task is linked to the rotation of
specific devices such as crankshaft, gears or wheels. It could be
responsible for calculating the time at which the spark signal
should be fired, adjusting the fuel flow, or minimizing fuel
consumption and emissions [9]. The period of this task, i.e. the
time between the release of two consecutive jobs, is inversely
proportional to the speed of the crankshaft. With an increasing
rotation speed, the time available for the task to execute all of
its functions may not be long enough, which results in deadline
misses. This could lead to catastrophic consequences in hard

TABLE I: An example of a multi-mode task with three
different execution modes.

Rotation Speed (rpm) | Mode Type | Executed Functions
[0, 3000] A f1, f2 and f3
(3000, 6000] B f1 and f2
(6000, 9000] C f1

real-time systems [6]].

In order to meet the timing constraints and prevent a
potential system failure, the job has to react before the next job
is released. Therefore, the task might have to drop some of its
functions, the non-critical ones, to meet its deadline. This can
be achieved by using tasks with different execution modes, i.e.
multi-mode tasks, to adapt to the changing environment [[15]]. In
some cases, tasks may react differently according to an external
input and thus switch into different modes accordingly. In our
example of the automobile’s engine, the input is the engine
speed and the functionalities of the tasks are part of the
fuel injection system. Every time the crankshaft finishes a
rotation, the tasks have to execute their respective functions.
If the engine speeds up, the tasks may need to use another
algorithm or functions to achieve their goal and avoid deadline
misses. In other cases, the engine may be more stable at
higher rotation speeds, but requires additional functions to be
executed at lower speeds to keep it stable. Consequently, these
functions are not required to be executed at higher speeds,
which can be exploited to reduce the execution time of the
tasks [[7]. Table [I| shows an example of a multi-mode task with
3 types of execution modes: A, B and C. The selection of the
mode depends on the rotation speed, where the task executes
different functions in each mode. The rotation speed of the
engine is measured in revolutions per minute (rpm).

Such a task model was presented by Buttazzo et al.
[7]. They also provide schedulability analysis under Earliest
Deadline First (EDF) algorithm. Furthermore, another analysis
under Rate Monotonic (RM) algorithm is provided in [9], in
addition to simulation for the effectiveness of the proposed test.
However, non of the studies above performed the evaluation of
the system in a real environment. In this paper, we provide an
empirical evaluation of multi-mode tasks under EDF and RM
algorithms. The evaluation was performed on a real hardware

Published in the 14th annual workshop on Operating Systems Platforms for Embedded Real-Time applications (OSPERT 2018), Barcelona, Spain, July 2018.
1

running a real-time operating system. The contribution of this
paper can be summarized as follows:

e Modifying the FreeRTOS real-time operating system to
consider the periodic and multi-mode real-time tasks.
Furthermore, several cost functions were implemented for
a comprehensive evaluatior]'}

e Implementing the EDF and RM scheduling algorithms
in FreeRTOS which can be used in further studies and
researches!.

e Empirical evaluation for the schedulability of the multi-
mode tasks under EDF and RM algorithms in a real
environment, i.e. FreeRTOS running on Raspberry Pi.
Moreover, overhead evaluation of both algorithms is pro-
vided in this work.

II. BACKGROUND AND LITERATURE REVIEW
A. FreeRTOS

In this Subsection, we introduce the FreeRTOS and its main
components that were modified in our implementation [4].
FreeRTOS is a real-time operating system kernel that sup-
ports about 35 microcontroller architectures. It is a widely
used and relatively small application consisting of up to 6
C files [3]. FreeRTOS can be customized by modifying the
configuration file FreeRTOSConfig.h, e.g. turning preemption
on or off, setting the frequency of the system tick, etc.
Tasks in FreeRTOS execute within their own context with no
dependency on other tasks or the scheduler. Upon creation,
each task is assigned a Task Control Block (TCB) which
contains the stack pointer, two list items, the priority, and
other task attributes. Tasks can have priorities from 0 (the
lowest) to configMAX_PRIORITIES-1 (the highest), where
configMAX_PRIORITIES is defined in FreeRTOSConfig.h. A
task in FreeRTOS can be in one of the following four states:

e Running: The task is currently executing.

e Ready: The task is ready for execution but preempted by
an equal or a higher priority task.

e Blocked: The task is waiting for an event. The task will be
unblocked after the event happens or a predefined timeout.

e Suspended: The task is blocked but does not unblock after
a timeout. Instead the task enters or exits the suspended
state only using specific commands.

The following are the main functions and data structures in
FreeRTOS which will be mentioned in the following sections:

o xTaskCreate(): Creates a task and add it to the ready list.

e prvinitialiseTCBVariables(): Initialize the fields of the
TCB.

o vIaskDelayUntil(): Delays a task for a specific amount of
time starting from a specified reference of time.

o vTaskStartScheduler(): Starts the FreeRTOS scheduler.

pxReadyTasksLists: An array of doubly linked lists with

size of configMAX_PRIORITIES that contains the ready

tasks according to their priorities. Each array element and

a corresponding list represents a level of priority.

o uxTopReadyPriority: A pointer to the task with the highest
priority in the ready list.

'The implementation is available on https:/github.com/Anas-Toma/multi-
mode

The scheduler in FreeRTOS is responsible for deciding
which task executes at a specific time. It is triggered by every
system tick interrupt and schedules the task with the highest
static priority in the ready list for execution. It loops the ready
list from the pointer uxTopReadyPriority to the lowest priority
that has a non-empty list. If two tasks have the same priority,
the share the CPU and switch the execution for every system
tick.

B. Scheduling the Multi-Mode Tasks

Buttazzo et al. [7] provide analysis for the feasibility of
multi-mode tasks under the EDF algorithm. Furthermore, a
method is provided to determine the switching speed that keep
the utilization of the tasks below a predefined threshold. On
the contrary, Huang and Chen [9] present a feasibility test
for such a task model under RM algorithm. Furthermore, they
show the advantages of using the fixed-priority scheduling over
the dynamic-priority scheduling. Both of the studies above
evaluated their approaches by simulation.

III. REAL-TIME MULTI-MODE TASK MODEL

Multi-mode tasks are periodic tasks that can be executed
in several modes [9]]. Given a set 7 of n independent real
time tasks. Each task ¢ (for ¢ = 1,2,...,n) has m; execution
modes, i.e., T; = {Til, Tf, ...,7;""}. In each mode 7; , the task
has different worst-case execution time (WCET) C?, period
T! and relative deadline D]. The task consists of an infinite
sequence of identical instances, called jobs. 7} represents the
time interval between the release of two consecutive jobs of
the same task. Once a job is released, it should be executed
within the deadline D]. The mode of the task may change
based on an external interrupt or any other event, which can
be used to change the execution time of the tasks and then the
total utilization accordingly. If the mode is changed during the
runtime, it will take effect in the next period.

IV. DESIGN AND IMPLEMENTATION

This section covers the implementation of the multi-mode
task model and both scheduling algorithms in FreeRTOS (A
ported version to Raspberry Pi [1]).

A. Multi-Mode Task Model

1) Periodic Real-Time Tasks: It is necessary to have a
periodic task model in order to implement the multi-mode
tasks. Therefore, the tasks in FreeRTOS were modified by
expanding the task control block (TCB) structure with the
typical fields used in periodic real-time systems [6]. In addition
to the original TCB attributes in FreeRTOS, the following ones
with portTickType data type were added:

uxPeriod: Period.

uxWCET: Worst-case execution time.

uxDeadline: Relative deadline.

uxPreviousWakeTime: The previous wake time of the task.

The absolute deadline of a task can then be calculated
as D = uxDeadline 4+ uxPreviousW akeTime. Those at-
tributes were also added to the parameters of the xTaskGeneric-
Create(), xTaskCreate() and prvinitialiseTCBVariables() func-
tions to be initialized upon task creation. To guarantee the

periodicity of the tasks, i.e. constant execution frequency, the
viaskDelayUntil() function is used to delay the task for the
specified period of time 77 starting from the arrival time
captured by the xTaskGetTickCount() function and stored in
uxPreviousWakeTime variable.

2) Modes: Now, we have a periodic task model and it will
be modified to have different execution modes. To achieve that,
the TCB attributes described in Subsection should have
many values corresponding to the modes of the task. Since the
number of the modes are fixed and known upon system setup,
an array data structure is used to store the several values of
the same attribute. The TCB fields were modified as follows:

® portTickType *uxPeriods;
® portTickType *uxWCETs;
® portTickType xuxDeadlines;

Additional attributes were added to store the number of the
modes and determine threshold values for each mode level as
follows:

e unsigned int uxNumOfModes: The number of the
modes.
e unsigned int xuxModeBreaks: The range for each

mode.

uxModeBreaks contains the maximum value of each mode
level. For example, the first mode (indexed by 0) will be
chosen if the external input is between 0 and wuxMode-
Breaks[0]. Similarly, the range of the second mode is (ux-
ModeBreaks[0],uxModeBreaks[1]]. The parameters were also
added to the corresponding functions as described in Subsec-

tion

To switch to the corresponding mode during the runtime,
the function vUpdateMode() was implemented. It chooses
the appropriate mode based on an external input and the
defined mode ranges in the array uxModeBreaks. The value
of the external input is stored in a global variable named
externallnput with type volatile unsigned int. It is declared
as volatile, because its value might change at any moment
during the runtime. So, any application can change the mode
easily by updating this variable according to an external input
or any other event. The externallnput is initialized to 0, which
means that the first mode is the default one. According to
the definition of the multi-mode tasks in Section tasks do
not change their mode once a mode change request is arrived,
even if they are blocked. Any changes will be applied starting
from the next release. Therefore, the mode is updated in our
implementation right before the next wake-up time. This was
done by calling vUpdateMode() at the start of the function
prvAddTaskToReadyQueue().

B. Rate-Monotonic Scheduler

According to the RM algorithm, the priorities of the tasks
are assigned statically before the execution according to their
periods, i.e., the tasks with a shorter period has a higher priority
[12]. We reserve the priority level 1 in FreeRTOS and the
corresponding ready list pxReadyTasksLists[1] for the tasks
to be scheduled under RM algorithm. All of these tasks are
assigned to priority 1 upon creation temporarily. Then, their
priorities are assigned according to RM algorithm before the
scheduler is started. A new function named vAssignPriorities()

was implemented and is called in vIaskStartScheduler() func-
tion after the creation of the idle task to assign those priorities.
Another attribute, unsigned int *uxPriorities, was added to
the TCB to store the priorities of the same task for all the
corresponding modes. Moreover, the following doubly linked
list was created to sort the tasks according to their periods in
all of their modes:

I struct doublylLinkedListNode {

2 unsigned int value;

3 void xtask;

4 int mode;

5 volatile struct doublylLinkedListNode %<
prev;

6 volatile struct doublylLinkedListNode %<
next;

7}

Where value and task store the period of each mode and
a pointer to the corresponding task’s TCB respectively. The
tasks in pxReadyTasksLists[1] are inserted into the doubly
linked list and sorted according to their periods. Then, the
priorities are assigned for each task for all the modes by
filling the wuxPriorities array. Finally, the tasks are moved to
their corresponding ready lists according to the new assigned
priorities.

C. Earliest Deadline First Algorithm

The EDF algorithm assigns the highest priority to the job
with the earliest absolute deadline among of the ready jobs
[13]. Before implementing the EDF algorithm, task creation
functions were modified, so the tasks can be scheduled dy-
namically. The static priority parameter in the xTaskCreate()
function is discarded by setting it always to 1. The FreeRTOS
uses an array of linked lists to store the ready tasks according
to their priorities. The array size can be defined by the variable
configMAX_PRIORITIES. However, it is not suitable to use an
array with a fixed size for dynamic priority assignment. Of
course this array can still be used, but either it should be big
enough for any eventual number of tasks, or its size should be
always reallocated. To avoid such an overhead, we replaced
the the ready list pxReadyTasksLists with a doubly linked list
that has the same name to maintain all the ready tasks. We
apply a binary heap on the ready tasks to find the one with
the highest priority. Every time a task is added to the ready
list by calling the prvAddTaskToReadyQueue() function, the
absolute deadline is calculated, as shown in Subsection [V-AT]
and the task with the earliest absolute deadline is scheduled
for execution.

D. Additional Modifications

1) Shared Processor Behavior: In this subsection, we
present the additional modifications to the system in order
to improve the overall performance and make our EDF im-
plementation work appropriately. In the FreeRTOS, the tasks
share the processor equally if they have the same priority. The
processor executes the tasks in a round-robin behavior, which
results in a context switching for every system tick and then
additional overhead. The actual cost of switching between two
tasks is approximately 4ps per every context switch according
to our measurements. Even if the ready list has just one task or
only one task has the highest priority, the FreeRTOS performs

context switching on the same task for every system tick. This
includes saving the state of the task and restoring it every
system tick which results in a high overhead. We solved such
a problem by performing context switching only if we have
a new task with a higher priority or if the current task under
execution is moved to the blocked state. Context switching
is then only conducted when necessary. Tasks with the same
priority are scheduled according to their insertion order in the
ready list.

2) Performance and Evaluation metrics: For system evalu-
ation, we implemented the following cost functions to measure
the performance of the implemented schedulers [6]:

e System overhead: The time required to handle all mech-
anisms other than executing jobs such as scheduling
decisions, context switching and system tick interrupts.

e Success ratio: The percentage of the schedulable task sets
among the total number of the task sets.

e Average response time:

n

1
th=" > (fi—ai)
i=1
where a; and f; are the arrival time and the finishing time
of task execution respectively.

e Maximum lateness:
Lmaz - m?X(fz - d’L)

3) Configurations and Definitions: Several configuration
parameters were added to the system which are required for
the evaluation or visualization of the scheduling. The following
definitions were added to the file FreeRTOSConfig.h:

o configANALYSE_METRICS: Trace the data of the tasks
for the evaluation metrics (1: Enabled, 0: Disabled).

e configANALYSE_OVERHEAD: Measure the total time
consumed by the tick interrupts (1: Enabled, 0: Disabled).

o configPLOTTING_MODE: Trace tasks at the context
switches (1: Enabled, 0: Disabled).

e configTICKS_TO_EVAL: The period time in milliseconds
for any of above modes to run.

e configEVAL_THRESHOLD: The time between evaluation
rounds. It must be long enough for tasks to delete them-
selves.

e configUSE_TASK_SETS: Consider more than one task set
for evaluation. (1: Multiple task sets, 0: Only one task set).

o configSET_SIZE: The number of the task sets used in the
evaluation.

o configNUMBER_OF_TASKS: The number of the tasks per
a task set.

Python scripts for the evaluation metrics, the overhead and
the plotting were also implemented.

V. EXPERIMENTAL EVALUATIONS

Two evaluation methods were conducted in our work. In
the first one, we implemented a python script to generate tasks
synthetically. In the second evaluation method, we generated
task sets with timing characteristics similar to the tasks in
a real-world automotive software system. The first and the
second types of tasks are called synthetic and realistic task
sets respectively.

Period Share
1 ms 3%
2 ms 2 %
5 ms 2 %
10 ms 25 %
20 ms 25 %
50 ms 3%
100 ms 20 %
200 ms 1 %
1000 ms 4 %
angle-synchronous ms | 15 %

TABLE II: Task distribution among periods

Mode 0 1 2 3 4 5
Min. 0 1001 | 2001 | 3001 | 4001 | 5001
Max 1000 | 2000 | 3000 | 4000 | 5000 | 6000
Period 30 15 10 7.5 6 5

TABLE III: 6 modes ranging from 0 to 6000 rpm with their
periods in milliseconds.

A. Setup

The FreeRTOS was used as a real-time operating system
to implement the multi-mode tasks and both scheduling al-
gorithms on Raspberry Pi B+ board [1, 2]]. The hardware
board has ARM1176JZF-S 700 MHz processor and 512 MB
of RAM. The UART interface of the Raspberry was used
to generate an external interrupt. The corresponding interrupt
service routine sets the global variable externallnput to the
number of the mode determined by the evaluation script used
in each respective evaluation method. The function setup UAR-
TInterrupt() was implemented in the file uart.c located in the
drivers directory in order to set up the UART interface.

Two types of task sets were generated: (1) synthetic and
(2) realistic. For the synthetic tasks, a set of utilization values
were generated in the range of 10% to 100% with a step size
of 10 according to the UUniFast algorithm [5]]. The approach
in [8] was used to generate periods in the range of 1 to
100 ms with an exponential distribution. The WCET C{ of
each task was calculated by T} *U,. The deadlines are implicit,
i.e. equal to the period. A proportion p of those tasks were
converted to multi-mode tasks with M modes. Note that the
normal periodic tasks are multi-mode tasks with only one mode
M = 1. The generated values above were assigned for the first
mode of all the tasks. For the multi-mode tasks, the values for
the remaining modes were scaled by the factor of 1.5, i.e.,
Ctl = 1.5% C, T = 1.5 % T/™. For each multi-mode
task, one of the modes was then chosen to have the highest
utilization while the WCETsS of the other modes were reduced
by multiplying them with random values between 0.75 and
1. According to the configurations above, 100 task sets were
generated with 50% multi-mode tasks and cardinality of 10,
i.e. the number of the tasks per a task set. The number of
modes used in the evaluation are 5, 8 and 10. Each task set
was assigned 10 seconds for execution and 5800 ms to delete
itself.

Furthermore, realistic tasks that share the characteristics of

60

Time (us)
B
(=)
[

[N~}
o
T

——RM
—e— EDF

10 20 30 40 50 60 70 80
Cardinality

I
90 100

Fig. 1: The overhead of RM and EDF scheduling algorithms.

an automotive software system were generated as presented by
Kramer et al. [[10]. These characteristics cover the distribution
of the tasks among the periods, the typical number of the
tasks, the average execution time of the tasks and factors for
determining the best- and worst-case execution times. Table
shows the distribution of the tasks among the periods [10]. The
angle-synchronous tasks, which take 15% of all the tasks, are
converted to multi-mode tasks as their worst-case execution
time needs to adapt to their reduced period. In our case, the
maximum engine speed is 6000 rpm with 4 available cylinders.
For the conversion to multi-mode tasks, the engine speed
was divided into 6 intervals and the periods were calculated
by the upper bound of each mode as shown in Table [I
The WCET of the tasks was assigned to the lowest mode.
For the remaining modes, it was calculated based on the
utilization of the first mode, i.e. C; = T; * U; and Uy = %1
Moreover, we implemented a crankshaft simulation that starts
at an angular speed of 1 rpm and increases by 1000 rpm over
500 ms, and sends a signal every time the piston reaches the
maximum position. This happens every one full rotation of the
crankshaft. Once the simulated crankshaft reaches its highest
speed of 6000 rpm, it will slow back down to 1 rpm. The
acceleration/deceleration is steady during the whole execution.
100 task sets were generated per each utilization level from
10% to 100% with a step size of 10.

B. Results

The success ratio of the tasks and the overhead of the
algorithms used in this subsection are defined in Subsec-
tion Figure [[| provides an evaluation for the overhead of
both scheduling algorithms. As expected, the EDF algorithm
has a higher overhead than the RM algorithm due to the
dynamic priority assignment, where the priority of the jobs
may change during the runtime. The EDF algorithm should
always keep tracking of the absolute deadlines of the jobs,
whilst the priorities according to RM algorithm are fixed prior
to the execution, and the algorithm should just pick the next
task in the ready list. We also observe that the overhead of
both algorithms increases as the cardinality (i.e. the number of
the tasks per a task set) increases. The increase of cardinality
results in a longer ready list, which explains the growth in the
overhead.

1001L » = »

Q0
(e}
T

Success ratio (%)
D
(en)
I

40 +
20 |-
——RM
—e— EDF
0 [T | | | | | | | 1
10 20 30 40 50 60 70 80 90 100
Total utilization (%)
(ayM=5

100

= oY
o o O

Success ratio (%)

[\~
S

——RM
|-|—e— EDF
I |

20 30

o

|
40 50 60 70 &0 90 100
Total utilization (%)

—
o

() M = 10

Fig. 2: Percentage of the schedulable task sets for 5 and 10
modes using the synthetic tasks.

Figures [2] and [3] show the impact of task utilization on the
success ratio of the synthetic and realistic tasks respectively.
They also compare between RM and EDF algorithms. What
can be clearly seen in Figure [2]is that the EDF algorithm was
able to find more feasible schedules than the RM algorithm.
All the task sets with a utilization of up to 100% and up to
10 modes were feasibly scheduled under EDF. However, the
RM algorithm could only achieve that for a utilization of up
to 50% and 40%, and for a configuration of 5 and 10 modes
respectively. After those levels of utilization, the success ratio
of the RM algorithm decreases significantly. This is due to the
fact that the EDF algorithm has a higher utilization bound than
the RM algorithm.

If we now turn to the realistic tasks, we observe that the
EDF algorithm performs worse than the RM algorithm, which
is unexpected. It was able to schedule all the task sets with a
total utilization of only 10%. It failed to schedule any task set
with a total utilization of more than 50%. However, the RM
algorithm could schedule all the task sets with a total utilization
of up to 40% and was still able to find feasible schedules for
some of the task sets with a total utilization of up to 60%. This
behavior is due to the high overhead of the EDF algorithm and
the distribution of the tasks among the periods in this data set.
The realistic data set has more tasks with shorter periods than

100 =
< 80 s
o
2 40 .
3
a 20 |

—%—RM
0 | |—e— EDF
T | | | | | | |
10 20 30 40 50 60 70 80 90 100

Total utilization (%)

Fig. 3: Percentage of the schedulable task sets using the
realistic tasks.

the synthetic one. For high workloads, the sum of the time
required for the scheduling decision and the execution time
of the job exceeds the relative deadline and then results in
unschedulable task sets.

VI. CONCLUSION

In this paper, we evaluate the multi-mode tasks under the
EDF and the RM scheduling algorithms in a real environment.
To achieve that, the FreeRTOS real-time operating system was
modified to implement this task model and both scheduling al-
gorithms. Moreover, additional modifications were performed
to provide configurable evaluation metrics. The experiments
were performed on Raspberry Pi B+ board. Synthetic and
realistic data sets were used in the evaluation. For the realistic
data set, we generated angular tasks with periods tied to the
rotation of a simulated crankshaft. The experiments confirmed
that the EDF algorithm was in general able to find more
feasible schedules than the RM algorithm for the synthetic task
sets with high utilization values. However, it performed poorly
when the realistic data set with relatively shorter periods was
used, although a binary heap was used in the implementation to
reduce the overhead of the scheduling decision. More feasible
schedules were derived under the RM algorithm for this data
set due to the low scheduling overhead.

VII. FUTURE WORK

Further work could usefully improve the implementation
of the EDF algorithm by using a hardware accelerated bi-
nary heap to reduce the overhead caused by the dynamic
scheduling [[L1]. However, such an implementation requires
a special or additional hardware. Moreover, the system could
be modified to handle task overruns.

VIII. ACKNOWLEDGEMENTS

This work is supported by the German Research Foun-
dation (DFG) as part of the Collaborative Research Center
SFB876 (http://stb876.tu-dortmund.de/) and as part of the
Transregional Collaborative Research Centre Invasive Comput-
ing [SFB/TR 89].

REFERENCES

[1] Freertos ported to raspberry pi. URL https://github.com/
jameswalmsley/RaspberryPi-FreeRTOS.

[2] Raspberry Pi 1 Model B+. URL https://www.raspberrypi.
org/documentation/hardware/,

[3] The FreeRTOS Kernel. URL http://www.freertos.org.

[4] An implementation of multi-mode real-time tasks, rate
monotonic algorithm and earliest deadline first algo-
rithm in FreeRTOS. URL https://github.com/Anas-Toma/
multi-mode.

[5] E. Bini and G. C. Buttazzo. Measuring the performance
of schedulability tests. Real-Time Systems, 30(1):129—
154, 2005.

[6] G. C. Buttazzo. @ Hard Real-Time Computing Sys-
tems: Predictable Scheduling Algorithms and Applica-
tions. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 2004.

[7]1 G. C. Buttazzo, E. Bini, and D. Buttle. Rate-adaptive
tasks: Model, analysis, and design issues. In Design, Au-
tomation and Test in Europe Conference and Exhibition
(DATE), 2014, pages 1-6. IEEE, 2014.

[8] R. I. Davis, A. Zabos, and A. Burns. Efficient ex-
act schedulability tests for fixed priority real-time sys-
tems. [EEE Transactions on Computers, 57(9):1261—
1276, 2008.

[9] W.-H. Huang and J.-J. Chen. Techniques for schedu-
lability analysis in mode change systems under fixed-
priority scheduling. 2015 IEEE 21st International Con-
ference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 00:176-186, 2015. doi:
doi.ieeecomputersociety.org/10.1109/RTCSA.2015.36.

[10] S. Kramer, D. Ziegenbein, and A. Hamann. Real world
automotive benchmarks for free.

[11] N. C. Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zam-
breno, and P. H. Jones. Hardware-software architecture
for priority queue management in real-time and embed-
ded systems. International Journal of Embedded Systems,
6(4):319-334, 2014.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment.
Journal of the ACM (JACM), 20(1):46-61, 1973.

[13] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[14] N. Navet and F. Simonot-Lion. Automotive embedded
systems handbook. CRC press, 2008.

[15] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham.
Mode change protocols for priority-driven preemptive
scheduling. Real-Time Systems, 1(3):243-264, 1989.

https://github.com/jameswalmsley/RaspberryPi-FreeRTOS
https://github.com/jameswalmsley/RaspberryPi-FreeRTOS
https://www.raspberrypi.org/documentation/hardware/
https://www.raspberrypi.org/documentation/hardware/
http://www.freertos.org
https://github.com/Anas-Toma/multi-mode
https://github.com/Anas-Toma/multi-mode

	Introduction
	Background and Literature Review
	FreeRTOS
	Scheduling the Multi-Mode Tasks

	Real-Time Multi-Mode Task Model
	Design and implementation
	Multi-Mode Task Model
	Periodic Real-Time Tasks
	Modes

	Rate-Monotonic Scheduler
	Earliest Deadline First Algorithm
	Additional Modifications
	Shared Processor Behavior
	Performance and Evaluation metrics
	Configurations and Definitions

	Experimental Evaluations
	Setup
	Results

	Conclusion
	Future Work
	Acknowledgements

