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Abstract—In this paper, we present a middleware to save
energy in mobile computing devices that offload tasks to a
remote server in the cloud. Saving energy in these devices is
very important to prolong the battery life and avoid overheating.
The middleware uses an available nearby device called auxiliary
server either as a surrogate for the remote one, or as a proxy
to pass the data between the mobile device and the remote
server. The main idea is to reduce the energy consumption of
the communication with the remote server by using a high-speed
or a low-power local connection with the auxiliary server instead.
The paper also analyzes when it is beneficial to use the auxiliary
server based on the response time from the remote server and the
bandwidth of the remote connection. The proposed middleware is
evaluated using different benchmarks, including commonly used
applications in mobile devices, and simulations. Furthermore,
it is compared to state-of-the art approaches in this area.
The experiments show that The middleware is energy-efficient
especially when the bandwidth of the remote communication is
relatively low or the server is overloaded.

I. INTRODUCTION

In recent years, there has been an increasing interest
in cloud computing. The public cloud market revenue has
increased by more than 5 times since 2012 [1]. The cloud
provides on-demand computing services over the Internet. It
can also be used to improve the performance by providing
more powerful computing resources for resource-constrained
devices, especially mobile systems such as wearable devices,
smartphones, portable medical devices, etc. [9]. Over 80%
of global mobile data traffic in 2014 was used for cloud
applications and it is expected to reach 90% in 2019 [1].
These applications include mathematical and imaging tools,
face and object recognition, image search, optical character
readers, games, etc [5, 23]. A mobile device can speed up the
execution of complex tasks by executing them remotely on a
powerful server in the cloud. In our experiments, it is shown
that performing inference with the SqueezeNet CNN [13] on
a powerful server (with an NVidia GTX 1080 Ti) speeds up
the execution by a factor of 560 compared to executing it on a
mobile device (an Odroid XU4 with a Mali-T628 MP6 GPU),
using the same OpenCL-based implementation. In addition, the
amount of data that needs to be transferred is relatively small,
which leads to even more efficient offloading.

However, the efficiency of the mobile cloud computing
may be affected by the bandwidth of the connection between
the mobile device and the remote server in the cloud, and
the response time from the remote server which depends on
its workload. Both the bandwidth of the connection and the
workload on the server may vary from time to time for many
reasons. For instance, there are many mobile medical devices
that adopt deep neural networks to perform detection and
recognition tasks such as the mobile PAMONO-biosensor [15],
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Fig. 1: An Example of a mobile device uses a nearby resource
as a surrogate for the remote server to overcome a problem in
the connection with the cloud.

which detects nanoparticles like viruses in liquid or air sam-
ples. These devices usually offload computation-intensive tasks
to a remote server to speed-up the execution. In emergency
situations, there will be a high demand on computational
power using many devices and the server will be overloaded.
Furthermore, the network connection may not be stable or
totally unavailable in such situations. Such conditions prolong
either the response time from the server or the data transfer
time and therefore, the total execution time. Even if this
prolongation is affordable, it will result in an additional energy
consumption which is an undesirable consequence, especially
in mobile systems.

In this work, we propose a middleware to save energy
in the mobile devices that use cloud resources to speed up
the execution of complex tasks. These tasks are executed on
the cloud are also called offloaded tasks. The middleware
exploits the available nearby resources to reduce the energy
consumed mainly during data exchange with the remote server
in the cloud. Moreover, the middleware can use the nearby
resource instead of the remote server to avoid the additional
energy consumption due to a low bandwidth connection or an
overloaded remote server. Figure 1 shows a mobile device that
offloads tasks to a nearby device instead of the server in the
cloud in order to overcome the problem of a low bandwidth
connection with the cloud. The terms client and auxiliary
server will be used solely when referring to the mobile and
the nearby devices respectively.

The main idea is to shorten the time consumed during the
data exchange with the remote server by exchanging this data
with the auxiliary server. Although this may prolong the idle
time on the client during the remote execution of the offloaded
tasks, the energy consumption can be still reduced due to
the fact that the idle power is less than the transmission and
reception power. This approach is especially beneficial when
the bandwidth of the connection with the auxiliary resources
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is higher than the one with the remote server. However, the
response time of both servers should be considered, because
usually the remote server is faster than the auxiliary one.
Therefore, we also analyze the energy consumption of each
scheme and the feasibility of using such a middleware. Our
contribution can be summarized as follows:

• A middleware is presented to save energy in mobile
devices that use resources in the cloud to improve the
performance. The middleware takes advantage of the
available nearby resources to reduce the energy consump-
tion of the remote communication by using a local one.

• A nearby resource can be used either as a surrogate for
the remote server or as a proxy to pass the data between
between the mobile device and the remote server. The
middleware selects the most energy saving scheme. More-
over, we provide analysis for the energy consumption of
the different schemes above and show when to switch
between them.

• The middleware is evaluated using different benchmarks
in addition to simulations. The benchmarks include com-
monly used applications in mobile devices such as face
detection, object recognition and body tracking.

II. LITERATURE REVIEW

The concept of executing a computation-intensive task
remotely on a powerful server has been widely adopted in the
literature under the name of computation offloading or cyber-
foraging. In this section, we provide a summary for the recent
studies in the fields of computation offloading and mobile
cloud computing. Furthermore, we discuss the limitations of
the related approaches.

Abolfazli et al. [3] improve the energy and time efficiency
of executing computation intensive mobile cloud applications
by offloading computation to cloud-based resources. The work
in [22] proposes a middleware to minimize the energy con-
sumption in portable or mobile embedded systems for real-
time applications. The tasks are offloaded to a powerful server
to reduce the workload on the embedded system which results
in a decrease in energy consumption. Most of the available
approaches rely on reducing the workload of the mobile device
by offloading tasks to powerful servers and take advantage of
the idle time during the remote processing of the offloaded
tasks to reduce energy consumption. This technique requires
a fast response from the remote server and a high-speed
connection with it. However, these conditions are not always
available, which impedes the usage of cloud services or even
makes them inefficient.

A cloud computing model is presented in [12] for mobile
devices, especially Internet of Things (IoT) devices. The clients
in this model are able to create ad hoc clouds with the help
of nearby devices and provide local computing services. The
tasks can be offloaded to the nearby devices to improve the
performance. This model is useful when the connection to the
remote server in the cloud is unavailable. The work in [7]
presents a three-layer architecture that is composed of wearable
devices, local mobile devices and a remote server in the cloud.
The wearable device offloads part of its tasks either to the
mobile device or the cloud. This approach is used to maximize
the throughput, i.e. the number of the executed tasks, on the

wearable device based on genetic algorithm. Both studies in
[12] and [7] do not consider the energy consumption of the
mobile or the wearable devices.

Zhou et al. [25] propose a framework, called mCloud, for
code offloading to improve the performance and the availability
of mobile cloud computing services in addition to reduce
the energy consumption of mobile devices. It consists of
mobile devices, nearby cloudlets and a remote server in the
cloud. The offloading decision algorithm in this framework
selects a wireless medium and appropriate cloud resources
based on a cost function. The cost function considers the
energy consumption of the wireless channel, i.e. the energy
consumption of sending the task and receiving the result, and
the task execution time. Considering the energy consumption
of just the wireless channel does not guarantee to reduce the
total energy consumption of the device, because it consumes
additional energy during the idle time spent waiting for the
result from the server. Furthermore, this approach uses the
nearby resource only as surrogate devices.

Collectively, the existing studies suffer from the following
limitations: Conventional computation offloading approaches
require relatively very short response time from the server and
a high-bandwidth remote connection which are not always
available. The approaches that take advantage of the nearby
resources consider only improving the performance and do not
consider the energy consumption, which is a very important
issue in battery-powered devices. The most related approach
to ours, i.e., mCloud, does not count the energy consumption
of the idle state on the mobile device, which may lead to
wrong offloading decisions. Finally, the existing approaches
use the nearby resources only as surrogate devices. In contrast
to previous works, our approach use the nearby resources either
as surrogate or proxy devices. Moreover, we evaluate the total
energy consumption of the complete mobile device for each
option including the energy of transfer and idle time.

III. AUXILIARY RESOURCES TO SAVE ENERGY

A. System Structure

The system originally consists of a client and a remote
server. We present another server between the client and the
remote server called auxiliary server. The structure of the
system can be described as follows:

• Client (CL): A mobile computing device with limited re-
sources such as wearable devices, smart phones, portable
sensors, or any other battery-powered computing device.
The client uses a wireless connection to communicate
with the remote server.

• Remote Server (RS): A remote virtual server that is more
powerful than the client. This server is usually hosted by
a cloud of computers or a remote computer.

• Auxiliary Server (AS): A nearby device which is con-
nected directly to the client through Bluetooth, a direct
wireless connection (Wi-Fi Direct) or a wireless local area
network (WLAN).

B. System Model

We assume that the timing and the power parameters are
given based on system setup. Table I summarizes all the
notations in this section.
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TABLE I: Denotations.
Notation Description

CL The client
RS The remote server
AS The auxiliary server
τi A task in the system which can be a program, a class, a function, etc

r
[server]
i The remote execution time of the offloaded task τi on the server
R

[server]
i The remote response time of the task τi offloaded to the server

[source]→[dest.]
∆i The transfer time of the task τi or its result from a source to a destination device
Ψk The reserved utilization or bandwidth on the server for the client k

P state
interface The power consumption of using a communication interface during a specific operating state
BT Bluetooth

WiFiD Wi-Fi Direct
CL� A, CL� A� B Offload from the client to the server A or to the server B through the server A respectively

[source]→[dest.]
D The size of the transfered data between a source and a destination

Bserver
interface The bandwidth of the connection to a server using a specific interface

1) Task Model: The task can be a complete program or a
part of it such as a function. It can be executed locally on the
client or remotely on a server. The code of the task exists on
the server or is transferred there just once a time when the
connection is established between the client and the server.
Then, just the input data of the task is sent to the server for each
execution. Therefore, when we say that the task is offloaded
to the server, we mean that the input data is sent to the server.
Each task τi is characterized by the following average timing
parameters:

• Remote execution time (r[server]
i ): The execution time of

the task on the server in the case of offloading, where the
server can be either the middleware or the remote server,
i.e., server ∈ {AS,RS}.

• Remote response time (R[server]
i ): The interval length

starting from the time when the task arrives to the
server until the time when the server starts sending back
the result. The difference between the remote execution
time and the remote response time is explained in Sec-
tion III-B2.

• Transfer time
[source]→[dest.]

∆i : The transfer time of the (data
of the) task τi or the result of its execution from a source
device to a destination device, where source and dest. ∈
{CL, AS, RS}. For example,

CL→AS

∆3 is the transfer time
of task τ3 from the client to the auxiliary server.

Figure 2 shows the timing parameters for an example of
the same task. In the first case (shown as task 1), the task
is offloaded directly to the remote server. In the second case,
(shown as task 2) the task is offloaded to the remote server
through the auxiliary server.

2) Server Model: If a server is dedicated for one client and
ready to start the execution of any offloaded task immediately,
then the remote response time is nearly equal to the remote
execution time. This is feasible for the auxiliary server. How-
ever, a powerful remote server usually serves more than one
client and it is impractical to dedicate it for just one client.
Suppose that a server is busy with an execution of a task
offloaded from a specific client. If the server receives a task
from another client, it postpones the execution of the second

RS RRS
2RRS

1

AS

RS→AS
∆2

AS→RS
∆2

Client

RS→CL
∆1

CL→RS
∆1

AS→CL
∆2

CL→AS
∆2

Power
(Client) Idle

Recv.
Trans.

Fig. 2: Timing and power parameters for two offloading cases
of the same task.

task until it finishes the execution of the first task. In this case,
the remote response time of the second task is longer than its
remote execution time and not predictable. Therefore, we need
to reserve part of the server’s resources (e.g. CPU, GPU, etc.)
for each client. In this paper, we adopt the total bandwidth
server (TBS) [19] as a resource reservation technique on the
server side.

The TBS has been adopted in the literature to manage
the sharing of server’s processor by providing a virtual server
for each client [21]. Then, the server will be able to serve
multiple clients at the same time and prevent the domination
of its processor by one client. The server assigns a TBS for
each requesting client k with a specific utilization Ψk, if
possible, where the total given utilization for all the clients
should not exceed 100% to preserve the system feasibility [20].
The assigned TBS represents a virtual dedicated server for the
client k with a speed equals to 1

Ψk
of the original speed of the

server. In this case, the remote response time can be calculated
as follows:
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R
[server]
i =

r
[server]
i

Ψk
(1)

3) Power Model: Let P state
interface denotes the average total

power consumption of the client during the usage of a spe-
cific communication interface and an operating state. In this
research, we consider WiFi and Bluetooth as communication
interfaces. Their operating states are idle, transmit and re-
ceive. However, any other interface can be used such as LTE,
5G, Zigbee, etc. P idle and P exc denote the average total power
consumption of the client during the idle and the execution
states respectively, without using any communication interface.
Execution state means the state when the client executes a
task locally at a given frequency and all the communication
interfaces are disabled. That is to say, interface ∈ {WiFi, BT,
∅}, state ∈ {idle, trans, recv, exc}. Figure 2 shows the power
consumption of the client for two different offloading schemes.

C. Problem Definition

In this paper, we target the client-server systems, where
the client is a mobile, resource-constrained device. It sends
the computation-intensive tasks to a powerful remote server
through a wireless connection over the Internet in order to
be executed remotely. The remote server can be hosted by
a remote computer or a cloud of computers. The objective
of this research is to reduce the energy consumption of the
client device to prolong its battery life by exploiting nearby
resources. The problem is to find a suitable configuration, a
nearby resource and a communication medium, that consumes
less energy than the direct communication with the remote
server.

D. Auxiliary Server

We provide a middleware for the mobile computing devices
that offload tasks to a remote server in the cloud over the
Internet using a wireless connection as shown in Figure 3. The
tasks are offloaded to the remote server in order to speed up the
execution. In some cases, the client may not be able to benefit
from the service provided by the remote server efficiently for
many reasons as described below:

• Low battery: The battery of the client device may not be
powerful enough to use the wireless connection continu-
ously for a long time.

• Low bandwidth: In some places or because of unusual
environmental conditions (e.g. Bad weather, earthquakes,
etc.), the bandwidth of the connection between the client
and the remote server may be low or not available at all.
This prolongs data transfer time and then increases the
energy consumption on the client.

• Long response time: The remote server may be over-
loaded or even unreachable due to the very high number
of requests, which prolongs the response time. This results
in additional energy consumption because of the longer
waiting time on the client.

To overcome such problems, the proposed middleware uses
a nearby resource as an auxiliary server. The client is connected
to the auxiliary server directly through a relatively high-speed
connection such as Wi-Fi Direct, or a low-power connection

Client RS

AS

τ3

τ2

τ2
Low bandwidth

Low
battery

} Long
response
time

{Result of τ1

τ1

Fig. 3: The usage of the auxiliary server.

such as Bluetooth. Figure 3 shows two schemes to use the
auxiliary server:

1) The auxiliary server works as a proxy. It passes the
offloaded tasks from the client to the remote server and
the results inversely.

2) The auxiliary server acts as a surrogate for the remote
server. It executes the offloaded tasks and returns back
the result to the client without passing anything to the
server. This scheme is preferable, when the bandwidth
of the connection with the server is relatively low or the
server is overloaded.

E. Energy Estimation and Decision Making

There are many factors that have influence on the energy
consumption of each scheme above. They mainly include the
response time of the offloaded task on the server, the bandwidth
of the connection, and the power of the communication inter-
face. We provide analysis for the energy consumption of each
scheme and discuss the effect of those factors. The following
equations estimate the total energy consumption on the client
for offloading a given task τi according to the two schemes
above, in addition to the energy consumption of offloading the
task directly to the remote server:

• Total energy consumption by offloading the task to the
remote server:

CL�RS

Ei =
CL→RS

∆i P trans
WiFi +RRS

i · P idle
WiFi+

RS→CL

∆i P recv
WiFi (2)

• Total energy consumption by offloading the task to the
remote server through the auxiliary one:

CL�AS�RS

Ei =
CL→AS

∆i P trans
WiFi + (

AS→RS

∆i +RRS
i +

RS→AS

∆i )P idle
WiFi

+
AS→CL

∆i P recv
WiFi (3)

• Total energy consumption by offloading the task to the
auxiliary server:
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CL�AS

Ei =
CL→AS

∆i ·P trans
WiFi +RAS

i · P idle
WiFi+

AS→CL

∆i ·P recv
WiFi (4)

Where
[source]→[dest.]

∆i =
[source]→[dest.]

D /Bserver
interface, D is the size of

the transfered data, and B is the bandwidth of the connection
using a communication interface during a specific operating
state as shown in Subsection III-B3. Please note that all
other parameters are already presented in Section III-B and
summarized in Table I. The Bluetooth connection can be
considered as well in Equations (3) and (4) instead of the
Wi-Fi connection.

The estimated energy consumption for each scheme in
Equations (2), (3) and (4) is composed of three main parts: (a)
The energy of transmitting the task, (b) the energy consumed
during the idle time while the client is waiting for the result
from the server, and (c) the energy of receiving the result. As
energy is the integration of power through time, the usage of
the auxiliary server may save energy by shortening the time
(using WiFiD) or reducing the power (using Bluetooth) of
sending and receiving the data. Although this may prolong
the idle time on the client, we can still get benefit from the
difference between the idle and the sending/receiving power
as shown in Figure 2. It shows the power consumption on the
client for two offloading schemes using the same task. In the
first scheme (related to Equation (2)), the task is offloaded
directly to the remote server. In the second scheme (related
to Equation (3)), the task is offloaded through the auxiliary
server. The middleware evaluates the energy consumption
based on Equations (2), (3) and (4) and selects the scheme
and the communication interface with the minimum energy
consumption for each task τi.

Now, we want to find thresholds based on the bandwidth
of the connection to the remote server and its response time
in order to switch between the three offloading schemes. For

notational brevity, let D =
CL→RS

Di +
RS→CL

Di , which is also

equal to both
CL→AS

Di +
AS→CL

Di and
AS→RS

Di +
RS→AS

Di .
Suppose that the WiFi communication interface is used and
P = P trans

WiFi = P recv
WiFi. Moreover, we omit the subscript WiFi

in Bserver
WiFi . The usage of the auxiliary server as a proxy saves

more energy than offloading directly to the remote server if
CL�AS�RS

Ei <
CL�RS

Ei , which implies that BRS <
P−P idle

WiFi
P ·BAS.

Therefore, the auxiliary middleware can be chosen to work as
a proxy instead of offloading directly to the remote server if
BRS < α · BAS, where α =

P−P idle
WiFi

P , no matter how much the
response time on the remote server changes. Similarly, from
Equations (3) and (4), using the auxiliary server as a surrogate
saves more energy than using it as a proxy if BRS < D

RAS
i −RRS

i

or RAS
i < β + RRS

i , where β = D
BRS . Correspondingly,

it is more energy-efficient to use the auxiliary server as a

surrogate for the remote server when
CL�AS

Ei <
CL�RS

Ei . From
Equations (4) and (2), this implies that BRS < PD/( PD

BAS +
(RAS

i −RAS
i ) · P idle

WiFi) or RRS
i > PD

P idle
WiFi
· ( 1

BAS − 1
BRS )−RAS

i .

IV. EXPERIMENTAL EVALUATIONS AND SIMULATIONS

The proposed middleware was evaluated using different
benchmarks and simulations. We use the abbreviation AuRes
to denote our proposed middleware that uses the Auxiliary

Resources. The energy consumption after using AuRes was
evaluated and compared to the case in which the client offloads
the tasks directly to the remote server. It was also compared to
the state-of-the art approach mCloud presented in Section II
by considering the energy part of the cost function.

A. Setup

Our approach was evaluated using ODROID-XU4 and a
remote server [10]. This device has a Samsung Exynos-5422
processor (Coretex-A15 Quad-Core 2 GHz and Cortex-A7
Quad-core 1.4 GHz), 2GB of RAM and a Mali-T628 MP6
GPU. The same processor is used in Samsung Galaxy S5
mobile device as well [17]. A total of 3 ODROID devices
were used as a client, an auxiliary server and a monitoring
device to record the power consumption of the client. The
client was configured to work as a resource-constrained device
by using one CPU running at 500 MHz. The Odroid Smart
Power meter [11] was used to measure the total energy
consumption of the client device. An external monitoring
device was used to read the power consumption from the power
meter. To obtain precise measurements, the client sends start
and stop signals to the monitoring device before and after the
execution of the evaluated benchmark, respectively. through
the General-Purpose Input/Output (GPIO) pins in order to
avoid any additional overhead during reading. The bandwidth
was analyzed by sending and receiving 10 MB packages from
the client to the auxiliary and remote servers. Furthermore,
simulations were performed to analyze the energy consumption
for different bandwidths (1 to 20 Mbps) and response times.
The response time on the remote server depends on the
number of the served clients and was calculated according to
Equation 1.

The benchmarks used in this evaluation are chosen and
configured to have different sizes for the exchanged data
between the client and the remote server. They are also chosen
to have different execution times and varying workloads. These
benchmarks are described below:

• Bodytrack: Bodytrack is a computer vision application
from PARSEC Benchmark Suite [2]. It tracks a 3D pose
of a human body with multiple cameras. The used inputs
on this benchmark were simsmall and simmedium with
4 cameras. The simsmall input includes 1 frame and
1000 particles, and the simmedium includes 2 frames and
2000 particles [8]. The output of this benchmark are the
coordinates of a tracked body. Bodytrack is commonly
used in computer vision applications for mobile devices.

• Calculating N Prime Numbers: This benchmark is a
simple mathematical calculation that takes a number N
as an input and calculates the first N prime numbers.
Calculating prime numbers was chosen in this evaluation
to represent a heavy mathematical calculation.

• Arbitrary Matrix Operations: Mathematical operations
on matrices are common operations in modern programs.
Therefore, this benchmark performs few arbitrary math-
ematical operations on two large input matrices. It was
written in python using the numpy package.

• Face detection: This application takes an image or video
stream from a camera as an input. It marks the position
of the faces and the eyes in the input image and produces
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TABLE II: Benchmarks.

Benchmark Demand Description Data Size (KB) AuRes Decision
Computation Communication Input Output (Offloading Decision, Interface)

MM Middle Middle Bodytrack Small 2500 0.289 CL� AS, WiFiD
HH High High Bodytrack Medium 5000 0.573 CL� AS, WiFiD
ML Middle Low Prime Numbers N=45.000 0.006 0.005 CL� AS � RS, BT
HL High Low Prime Numbers N=99.000 0.006 0.005 CL� AS � RS, BT
LM Low Middle Arbitrary Matrix Operations 300x300 1400 720.1 CL� AS, WiFiD
LL1 Low Low Face detection 6.7 21.3 CL� AS � RS, WiFiD
LL2 Low Low Squeezenet 54.3 0.011 CL� AS � RS, WiFiD

TABLE III: Power consumption of the ODROID-XU4 running
at 500 MHz and using different communication interfaces.

Average total power consumption (W)
Interface Idle Transmit Receive Execute
Wi-Fi (5 GHz) 2.624 3.015 2.974 -
Wi-Fi (2.4 GHz) 2.31 2.807 2.769 -
Bluetooth 2.043 2.273 2.241 -
Disabled (∅) 1.985 - - 2.037

it as an output. It was chosen as it is a commonly used
feature in mobile devices equipped with cameras.

• SqueezeNet: One evaluated task is convolutional neural
network inference using the SqueezeNet architecture [13].
It performs image classification into the 1000 classes of
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [16]. We implemented inference with a trained
version of that network in our own OpenCL deep learning
inference framework. Therefore, we can evaluate and
compare the task on all OpenCL-capable GPUs, which
includes several mobile, desktop and server systems.

Every benchmark was run 100 times and the average execution
time was recorded for each device, client, auxiliary server and
remote server. Table II shows the sizes of the input and output
of these benchmarks. The benchmarks are classified and named
according to different offloading scenarios. L, M and H letters
denote to low, middle and high, respectively. The first and the
second positions of the letter represent the computation and
the communication demands of the benchmark, respectively.
For instance, ML denotes to the benchmark or scenario that
requires relatively middle computation and low communica-
tion.

B. Results

Table III shows the results of power measurements for
the complete ODROID-XU4 board running at 500MHz and
using different communication interfaces. As the 5 GHz band
consists of up to 25 channels, it is usually used for the
normal Wi-Fi connections to avoid the interference with other
channels. However, all the Wi-Fi direct devices use the 2.4
GHz band [24]. Table II shows the decision of the AuRes
middleware and the selected communication medium between
the client and the auxiliary server. The normalized energy
and time saving using AuRes is equal to 1− (energy and
time consumption of using AuRes divided by the energy
consumption of offloading directly to the RS). The normalized
data size of a task is the total size of the exchanged data
normalized into the range of [1,20]. This range is just used for
representation purposes. The total Offloading time of a task is
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Fig. 4: Average normalized energy and time savings for
different benchmarks using AuRes middleware compared to
offloading to the RS.
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Fig. 5: Sending, idle and receiving time for the benchmarks
on the client side by offloading to the RS and using AuRes

the total time consumed during sending, waiting for the result,
and receiving it from the server.

Figure 4 presents the average normalized energy and
time savings using AuRes for all the considered benchmarks.
Although improving the performance is not an objective in
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this work, we show time savings to evaluate the effect of
using the proposed middleware on the total offloading time.
Please also note the corresponding Figure 5 which shows
sending, idle and receiving time on the client side for all
the benchmarks by offloading tasks directly to the server and
by using AuRes. It also shows the normalized size of the
exchanged data for each benchmark. AuRes is able to save
up to 65% of energy and 60% of time for benchmark LM.
High energy saving can be achieved for the applications with
relatively big size of exchanged data (i.e., the tasks with middle
and high communication demands), because AuRes choses the
scheme that reduces the transfer time of the data in order to get
benefit from the low power consumption during the idle time
compared to the relatively high power consumption during
data transfer as shown for benchmarks MM, HH and LM in
Figure 5. As expected and discussed before, the usage of the
auxiliary server may prolong the total offloading time, but it
reduces the total energy consumption as shown for benchmarks
ML, HL and LL1.

The energy consumption for different benchmarks using
AuRes and mCloud is shown in Figure 6. Both approaches
have the same energy consumption for the benchmarks MM,
HH and LM. The total energy consumption of these bench-
marks is dominated by the energy consumption of the com-
munication. However, the energy consumption using AuRes is
less than in using mCloud for the remaining four benchmarks.
mCloud always prefers to offload the tasks to the auxiliary
server through Wi-Fi Direct, because the energy consumption
using this communication interface is the minimum over
other interfaces for all the benchmarks. This decision may
increase the total energy consumption of the tasks with low
communication demand (i.e., benchmarks ML, HL and LL1
and LL2), because the energy consumption during the idle
time is relatively considerable and the communication energy
is not dominant. As discussed in Section II, the selection
of the offloading scheme based only on the energy of the
communication does not guarantee to achieve the minimum
total energy consumption.

To evaluate the effect of the bandwidth of the remote
connection on the offloading decision, we fixed the bandwidth
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Fig. 7: Average energy consumption of the client by executing
the face detection benchmark for different bandwidth values.

of the connection between the client and the auxiliary server to
16 Mbps, and performed the simulation for different bandwidth
values for the connection between the client and the remote
server. Figure 7 shows the average energy consumption of the
face detection benchmark using the three offloading schemes.
This task has been chosen because the energy consumption of
each offloading scheme has a minimum energy consumption
in a different bandwidth range. The energy consumption of
offloading to the auxiliary server is constant because we fixed
the bandwidth of the local connection. Offloading directly to
the remote server has the minimum energy consumption for
a relatively high-bandwidth connection (more than 7 Mbps),
because the remote response time their is much shorter than
on the auxiliary server. As the remote bandwidth decreases,
the time and the energy of data transfer increases, which also
increases the total energy consumption. For the bandwidth
between nearly 4.8 and 7 Mbps, it is more energy-efficient to
use the auxiliary server as a proxy, because the client consumes
less time and energy by exchanging data with the auxiliary
server than with the remote one. The additional energy due
to the degradation of the bandwidth will be consumed on the
auxiliary server, because it manages the remote data exchange.
Although, the idle time on the client may become longer,
the total energy consumption usually decreases because the
idle power is less than the communication power. For low
bandwidth values (less than 4.8 Mbps), it is more beneficial to
use the auxiliary server as a surrogate due to the high energy
consumption of the remote communication.

To simulate different response times on the remote server,
we increased the workload on the server by increasing the
number of the served clients. As the number of client increases,
the response time on the remote server is also increases.
Figures 8 presents the average total energy consumption of
the client for the bodytrack medium benchmark and different
workloads. This simulation was performed for a high band-
width of 80 Mbps for the connection to the remote server.
Offloading directly to the remote server has the minimum
energy consumption for relatively shorter remote response time
(i.e. when the number of the tasks executed on the remote
server is up to 6). For longer response time, offloading to
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Fig. 8: Average energy consumption of the client by executing
the bodytrack medium benchmark for different workloads on
the server (i.e., the number of the served clients).

the auxiliary server consumes less energy in total because the
idle energy becomes dominant. Therefore, using the auxiliary
server as a surrogate is beneficial when the remote server is
overloaded.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a middleware that uses the
nearby devices to reduce the energy consumption in mobile
cloud computing. The middleware can be used as a proxy
to pass the data between the mobile device and the remote
server in the cloud. It also can be used as a surrogate to for
the remote server. The middleware tries to reduce the energy
consumed during the remote communication and to overcome
the problems of low bandwidth and long response time from
the remote server. The proposed approach was evaluated using
different applications that are widely used in mobile systems
in addition to simulations. The experiments confirmed that the
usage of the auxiliary server saves energy compared to the
direct offloading to the remote server and a state-of-the art
similar approach. They also show that energy saving depends
on different factors such as the bandwidth of the connection,
the response time from the server and the size of the transfered
data. Further research could usefully explore how to exploit the
idle time on the client during the waiting of the result of the
offloaded tasks. Moreover, it would be interesting to consider
the energy consumption of the auxiliary server as well if it
was powered by a battery.
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