
Shared-Resource-Centric Limited Preemptive Scheduling:
A Comprehensive Study of Suspension-based Partitioning Approaches

Zheng Dong, Cong Liu, Soroush Bateni
University of Texas at Dallas, USA

Kuan-Hsun Chen, Jian-Jia Chen, Georg von der Brüggen, Junjie Shi
Technical University of Dortmund, Germany

Abstract—This paper studies the problem of scheduling a set
of hard real-time sporadic tasks that may access CPU cores and
a shared resource. Motivated by the observation that the CPU
resource is often abundant compared to the shared resources in
multi-core and many-core systems, we propose to resolve this
problem from a counter-intuitive shared-resource-centric per-
spective, focusing on judiciously prioritizing and scheduling tasks’
requests in a limited preemptive manner on the shared resource
while viewing the worst-case latency a task may experience
on the CPU cores as suspension delays. We develop a rather
comprehensive set of task partitioning algorithms that partition
tasks onto the shared resource with the objective of guaranteeing
schedulability while minimizing the required size of the shared
resource, which plays a critical role in reducing the overall
cost and complexity of building resource-constrained embedded
systems in many application domains. A GPU-based prototype
case study and extensive simulation-based experiments have
been conducted, which validate both our shared-resource-centric
scheduling philosophy and the efficiency of our suspension-based
partitioning solutions in practice.

1 Introduction
In recent years, the microprocessor industry has turned to

multi-core processor designs for next generation embedded
systems. By increasing the number of cores, it is possible to
dramatically improve the performance as well as the energy ef-
ficiency. This trend has brought in the many-core architectures,
which incorporate a large number of cores to provide unprece-
dented advantage in terms of performance-per-watt and inter-
core communication latency over traditional microprocessor
architectures. Examples of many-core platforms include Intel
SCC [15], Godson-T [21], and STHorm [39], which have cores
organized in multiple islands sharing various shared resources,
such as DRAM modules, on-chip buses, or computing accel-
erators such as GPU and FPGA. Many-core platforms have
been widely used in real-time embedded systems and proved
to provide excellent performance for many applications such
as computer vision and image analysis workloads [33], [41].

To guarantee real-time properties in such multi-core and
many-core systems, a difficult problem is to analyze the
execution behaviors of tasks that may access both CPU cores
and shared resources. A common approach is to analyze
schedulability from a traditional core-centric view [8], [18],
[19], [36]. That is, the tasks are scheduled on CPU cores under
certain scheduling algorithms, which incorporate the latency
due to resource contention in the analysis. The idea is to focus
on judiciously allocating CPU resources while viewing shared
resources as I/O and bounding the worst-case latency a task
may experience on such resources. Then, by treating such
latency as suspension delays, we can transform the original

This work is supported by NSF grants CNS 1527727 and CNS CAREER
1750263; and DFG, as part of the Collaborative Research Center SFB876
(http://sfb876.tu-dortmund.de/), subproject B2.

multi-resource scheduling problem into single-resource (i.e.,
CPU) scheduling of suspending tasks.

For a more in-depth treatment of literature on the impact of
resource sharing on performance and worst-case timing anal-
ysis, a survey can be found in [5]. One line of work in timing
analysis for multicore systems is based on an assumption that
the CPU execution and shared-resource access patterns are
well structured, e.g., [9], [14], [22], [24], [26], [28], [29],
[32], [35], [37], [40], [42]. For example, in the superblock
execution model [35], the execution of a superblock has three
phases: data acquisition, local execution, and data replication
phases. A similar model can be found in the open international
standard IEC 61131-3. Altmeyer et. al [6] present a framework
to decouple response-time analysis in a compositional manner
based on the context independent WCET values. However,
resource partitioning and task partitioning were not discussed
in the above results.

The CPU-centric perspective is sound for traditional em-
bedded systems where computing resources may be insuf-
ficient while the contention on shared resources is often
light. However, for advanced embedded systems that employ
multi-core platforms to serve large-scale real-time workloads,
shared resources may become the actual scheduling bottleneck,
causing the worst-case latency bound on the shared resource
(thus the resulting schedulability test) to be rather pessimistic
or even impossible to derive. Motivated by this observation,
it may be much more viable to resolve this multi-resource
scheduling problem from the counter-intuitive shared-resource
centric perspective since tasks may experience much lighter
contention on CPU cores, as previously argued in [25] which
considers a simplified single-unit shared resource scenario
(equivalent to uniprocessor scheduling from a shared-resource-
centric perspective).

In this paper, we resolve the multi-resource scheduling
problem from the above-argued shared-resource-centric per-
spective. This means, our developed techniques focus on
judiciously scheduling tasks’ requests in a limited preemptive
manner1 on the shared resource (treating the shared resource
as the first-class units) and bounding the worst-case latency a
task may experience on the CPU cores (treating CPU cores
as “I/O”). The benefit is obvious, particularly on many-core
platforms, where tasks may receive rather trivial or even no
interference on CPU cores as the CPU resource is often
abundant compared to the shared resource. We seek to develop
practical solutions that may benefit embedded systems design-
ers. We develop a comprehensive set of techniques that are
based on non-trivial schedulability tests with different runtime
complexity and accuracy (w.r.t. both schedulability and the

1We focus on limited preemptive scheduling (general enough to cover non-
preemptive scheduling as well) rather than preemptive scheduling due to the
limited- or non-preemptive execution feature seen in several major shared
resources in practice such as GPU or memory.

1

needed size of the shared resource) for scheduling a set of
hard real-time (HRT) tasks that may access CPU cores and
multiple units of a shared resource in an interleaving manner.
If reasonably high runtime/analysis complexity is affordable,
then our solutions may yield a high schedulability and a
minimized required size of the shared resource, which is one
of the most critical factors that may reduce the overall cost and
complexity of the SWaP (size, weight, and power) constrained
embedded systems.

Contributions. By tackling the multi-resource scheduling
problem from a shared-resource-centric perspective, we care-
fully prioritize and schedule the shared resource requests of
tasks and view the worst-case response times of a task on CPU
cores as suspensions. We develop a set of task partitioning
algorithms, combined with a set of uniprocessor suspension-
aware schedulability tests for suspending tasks under limited-
preemptive scheduling, that yield efficient schedulability tests
and minimized required size of the shared resource. Tech-
nically speaking, two open problems are solved: (i) to the
best of our knowledge, there does not exist any solution on
dealing with the limited-preemptive suspending task partition-
ing problem, and (ii) how to design partitioning algorithms in
this problem context such that the required size of the shared
resource is minimized. For practical considerations, we present
a set of methods that exhibit different runtime complexities
and accuracy w.r.t both schedulability and the required shared
resource size. Thus, embedded systems designers may con-
sider adopting different methods according to their affordable
runtime overhead.

We have conducted a prototype case study using GPU
as the shared resource, which validates both our shared-
resource-centric scheduling philosophy and the efficiency of
our suspension-based partitioning solutions in practice. Exten-
sive simulation-based experiments have also been conducted,
showing that our proposed techniques may simultaneously
yield effective schedulability tests as well as minimized shared
resource size in many cases.

2 System Model
We assume in this paper that we have a multicore plat-

form comprised of n identical cores which share a multi-unit
resource, e.g., memory or GPU.

Task Model: we consider the problem of scheduling a set of
n HRT sporadic tasks τ = {τ1, τ2, . . . , τn} that may need to
access both CPUs and a shared resource, e.g., memory or GPU.
Each task is released repeatedly, and each such invocation is
called a job. A hard real-time task τi is characterized by a
6-tuple τi(ei, si, pi, di, σi, zi): pi denotes the minimum inter-
arrival time (also known as period) of τi; each job of τi has
a relative deadline di; ei denotes an upper bound on total
execution time of each job of τi on a computing core (ignoring
the latency due to shared resource accesses); σi denotes the
maximum number of resource access segments, each of them
may consist of several consecutive operations on the shared
resource; and each task τi may access zi units of the shared
resource concurrently for at most si time units (across all of its
phases accessing the shared resource). Note that if the platform
allows multiple operations to be directly processed without
involving CPU cores, a task can incur multiple requests to
the shared resource within a resource access segment, e.g.,
fetching (or writing back in the other direction) a collection

of data and instructions from the shared main memory to the
local scratchpad memory.

We highlight the following properties on shared resource
accesses:

• Each operation on the shared resource is atomic (non-
split operation), with a processing time upper-bounded
by B. However, a task’s execution can be preempted
at any point at which an atomic operation completes.2
This is illustrated in Fig. 1 where task τ1 has higher
priority than τ2 and requests the shared resource at t4.
Here τ1 experiences blocking from task τ2 as the resource
is granted to τ2 at time t3, and τ1 preempts τ2 at time t5
when one of τ2’s atomic operations completes.

• Each task τi may access zi units of the shared resource
concurrently. The shared resource can be partitioned into
several regions.

• We consider a fixed-priority resource arbiter in this paper:
the arbiter of the shared resource always grants the request
that is assigned the highest priority.

Fact 1. Since each operation on a shared resource is assumed
to be atomic and thus non-preemptive, each shared resource
segment of task τi can be blocked by a lower priority task for
at most B time units. Therefore, we know that the maximum
blocking time experienced by any job released by task τi due
to non-preemptive blocking on the shared resource is at most
σi ×B.

The jth job of task τi, denoted by τi,j , is released at
time ri,j and has an absolute deadline at time di,j , i.e.,
di,j = ri,j + di. Successive jobs of the same task are required
to execute in sequence. The shared resource utilization of a
task τi is defined as usi = si

pi
, and the total shared resource

utilization of the task system τ is defined as Ussum =
∑n
i=1 u

s
i .

Since we do not concern the CPU utilization of a task in our
reasoning, for conciseness, let ui and Usum denote the shared
resource utilization of task τi and the total shared resource
utilization of τ , respectively. Due to space constraints, we
focus our attention on the implicit-deadline case in this paper,
i.e., di = pi for all tasks τi.

Since it is more practical to apply task-level fixed-priority
scheduling [23] to many shared resources [16], we focus
on RM scheduling on the shared resource, where tasks are
prioritized by the shortest-period-first. We assume that ties are
broken by task ID, i.e., lower IDs are favored. According to our
task indexing rule, we know that task τi has a higher priority
than any task τk when i < k.
Example illustrating limited preemptive scheduling on the
shared resource. Consider the simplest case in which two
tasks τ1 and τ2 are assigned on core 1 and core 2, respectively.
We assume that τ1 has higher priority than τ2. Furthermore,
τ1 accesses 1 unit of shared resource and τ2 accesses 2 units.
Since τ1 and τ2 are partitioned in the same shared resource
region, the minimum amount of shared resource allocated in
this region is 2. We are now analyzing task τ2 in this example.
The schedule of accessing a shared resource by these two tasks
is indicated in Fig. 1:

• At time t1, tasks τ1 and τ2 start their computation.

2Note that if a task’s segment only contains one operation, then the
execution of the entire segment becomes non-preemptive.

2

Core 1(𝜏1)

Shared

Resource

Shared

Resource

Core 2(𝜏2)

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8

Execution on CPUs 𝜏1 access shared resource 𝜏2 access shared resource

Fig. 1: An example of accessing a shared resource by two
tasks. Each task is statically assigned onto one core.

• At time t2, tasks τ1 and τ2 both attempt to access the
shared resource. The request from task τ1 is granted,
while task τ2 suspends itself on core 2.

• At time t3, task τ1 finishes its access to the shared
resource and resumes its local computation. At the same
time, task τ2 starts to access the shared resource.

• At time t4, task τ1 again attempts to access the shared
resource. Due to the minimum non-preemptive region, this
request from task τ1 is blocked by task τ2.

• At time t5, after leaving the non-preemptive region, task
τ2 on the shared resource is preempted by task τ1.

• At time t6, task τ1 finishes its access to the shared
resource and resumes its local computation. At the same
time, task τ2 continues to access the shared resource.

• At time t7, task τ2 finishes its access to the shared
resource and resumes its local computation.

• At time t8, task τ2 finishes its execution.

From the point of view of the shared resource, task τ2
suspends its resource accesses in time intervals [t1, t2) and
[t7, t8) due to local computations. Moreover, task τ2 executes
on the shared resource in time intervals [t3, t4) and [t6, t7)
and awaits (in the queue) to access the shared resource in
time intervals [t2, t3) and [t5, t6).

Note again that we focus on limited preemptive scheduling
(covering non-preemptive scenarios) on the shared resource.
This is fundamentally motivated by the limited- or non-
preemptive execution feature seen in several major shared
resources in practice such as memory [1], [3], [17] and
GPUs [2], [38].

3 Design Overview and Preliminary Results
Since the shared resource is the actual scheduling bottle-

neck, we propose to resolve this scheduling problem from a
shared-resource-centric perspective. Specifically, we view the
response time experienced by each phase of each task on the
CPU core as the suspension delay, counter-intuitively viewing
the time each task uses to access the shared resource as the
actual execution time. Thus, we transform this shared resource
scheduling and size minimization problem into a suspending
task partitioning problem, i.e., each task τi accesses the shared
resource for si time units (across all its shared resource phases)
and suspends for ei time units (across all its CPU phases).
This means that we investigate how to partition a set of HRT
sporadic tasks onto the multi-unit shared resource, assuming
that those tasks may suspend due to executing on CPU cores.
Our goal is two-fold: (i) developing HRT schedulability tests

for timing predictability, and (ii) minimizing the number of
units of the shared resource for accommodating all tasks in τ .

To reach this goal, there are two key challenges. First, to
the best of our knowledge, there does not exist any work on
real-time schedulability analysis that can deal with the limited
preemptive suspending task partition problem. Thus, we need
to first develop new schedulability analysis techniques for the
limited preemptive scheduling problem of partitioning a set
of suspending tasks (suspension due to executing on CPU
cores in our context) onto multiple processors (multiple units
of the shared resource in our context). Second, we need to
design parallelism-aware partitioning algorithms in terms of
minimizing the required size of the shared resource.

Definition 1. A Resource j has a specified size 1 and can only
accommodate sporadic tasks whose zi = 1. At any point in
time, only one task can be executed on a resource.

Definition 2. A Resource Partition j has a specified size Zj
and can only accommodate sporadic tasks whose zi ≤ Zj . At
any point in time, only one task can be executed on a resource
partition.

Our approach solves the above-mentioned two challenges
in two separate steps. In step 1 (Sec. 4), we focus on
developing schedulability tests that can guarantee real-time
constraints. Specifically, we first develop a set of uniprocessor
schedulability tests for suspending tasks scheduled under RM,
that exhibit different runtime complexities. As the problem
context is about partitioning tasks onto a multi-unit shared
resource, the term uniprocessor herein refers to a resource
partition defined above. In step 1, we assume that zi = 1 holds
for any τi in the system. Thus, each uniprocessor refers to a
unique partition containing zi = 1 unit of the shared resource.

After that, in the second step (Sec. 5), we remove the
assumption of having zi = 1 for all tasks, and design a set
of partitioning algorithms, including both efficient heuristics
and integer linear programming (ILP) based approaches, which
seek to minimize the number of units of the shared resources
needed to accommodate all tasks in the system. Note that
various schedulability conditions developed in step 1 can be
applied to the partitioning algorithms herein for checking
schedulability. We believe that developing a comprehensive set
of partitioning algorithms combined with various schedulabil-
ity tests, both exhibiting varying complexities and accuracy
(w.r.t. both schedulability and the required shared resource
size), shall yield a wide range of practical solutions that can
be adopted by embedded system designers under different
scenarios.

Before presenting our developed partitioning algorithms
and the corresponding schedulability tests, we first provide
a review on existing schedulability tests for uniprocessor
suspending task scheduling (including a set of new constant-
time schedulability tests we derive in this paper based on
existing tests as shown in Sec. 3.2), categorized by their
runtime complexity.

3.1 Pseudo-Polynomial-Time Tests
We first summarize the existing results for testing the

schedulability of a suspending task τk under fixed-priority
preemptive uniprocessor scheduling with pseudo-polynomial-
time complexity. The following tests assume that all the tasks

3

with higher-priority than τk, denoted by a set hp(k), can meet
their deadlines for a constrained-deadline suspending task set.
They all need pseudo-polynomial-time complexity.

Task τk is schedulable under the fixed-priority preemptive
scheduling if one of the following conditions in the following
four lemmas hold. The correctness of these four lemmas can
be found in the unifying analysis by Chen et. al [11].

Lemma 1 (Suspension as Carry-In).

∃t | 0 < t ≤ pk, ek + sk +
∑

τi∈hp(k)

(⌈
t

pi

⌉
+ 1

)
si ≤ t (1)

Lemma 2 (Suspension as Jitter).

∃t | 0 < t ≤ pk, ek+sk+
∑

τi∈hp(k)

⌈
t+ pi − si

pi

⌉
si ≤ t (2)

According to Fact 1, the maximum blocking time of task
τk due to non-preemptive blocking from lower priority tasks
on the shared resource is at most σk × B, then Lemma 1 to
Lemma 2 under limited preemptive task model can be rewritten
as following:

Lemma 3 (Suspension and Blocking as Carry-In).

∃t | 0 < t ≤ pk, sk + ek + σk ×B +
∑

τi∈hp(k)

(⌈
t

pi

⌉
+ 1

)
si ≤ t

(3)

Lemma 4 (Suspension and Blocking as Jitter).

∃t | 0 < t ≤ pk, sk+ ek+σk×B+
∑

τi∈hp(k)

⌈
t+ pi − si

pi

⌉
si ≤ t

(4)

The proofs of the above two lemmas are given in an ap-
pendix. Note that there are two other strategies for preemptive
scheduling: one by Jane Liu [31, Pages 164-165] (Theorem 3
in [12]) and another by Chen et al. [11] (Theorem 5 in [12]).
Since the proof provided in [11] is heavily based on fixed-
priority preemptive scheduling, these tests are unfortunately
difficult to be extended to limited preemptive scheduling.

3.2 Constant-Time Tests
We further derive the following RM schedulability tests

exhibiting only constant-time complexity based on a recent
schedulability analysis framework k2U [10]. We will use the
following time-demand function Wi(t) for the simple sufficient
schedulability analysis:

Lemma 5. Task τk is schedulable under RM limited preemp-
tive scheduling if one of the following conditions holds:(

sk + ek + σk ×B
pk

+ 2

) ∏
τi∈hp(k)

(
si
pi

+ 1

)
≤ 3 (5a)

∑
τi∈hp(k)

si
pi
≤ ln

(
3

sk+ek+σk×B
pk

+ 2

)
(5b)

Proof: This comes from the k2U framework where αi ≤ 2
and βi ≤ 1, as explained in [10] and [30].

Lemma 6. Task τk is schedulable under RM limited preemp-
tive scheduling if

∑
τi∈hp(k)

si
pi
< 1 and

ek + sk + σk ×B
pk

+

∑
τi∈hp(k)

(
2si − s2i

pi

)
pk

+
∑

τi∈hp(k)

si
pi
≤ 1

(6)

The proof of Lemma 6 is given in the appendix. The
time complexity to evaluate the schedulability tests in Lem-
mas 5 and 6 is O(1) if

∏
τi∈hp(k)(1 + si

pi
),
∑
τi∈hp(k) si and∑

τi∈hp(k)
s2i
pi

have been calculated in the previous iterations.

3.3 Schedulability Test for A Task Set
The tests in Section 3.2 can be applied to RM scheduling

by validating whether the conditions are satisfied for each task
τk in the task set. We can also consider the schedulability of
the whole task set by using the following lemma. The proof
of Lemma 7 is given in the appendix.

Lemma 7. All the tasks in a task set τ are schedulable under
RM preemptive scheduling on a shared resource if∑

τi∈τ

si
pi
≤ ln

(
3

2 + maxτi∈τ
si+ei+σi×B

pi

)
(7)

4 Step 1: Developing Schedulability Tests for
Suspension-aware Task Partitioning

As discussed earlier, in the first step, we consider a special
case in which zi = 1 holds for any task τi in the system. With
the set of uniprocessor suspension-aware schedulability tests
presented in Sec. 3, we now present an efficient partitioning
algorithm, namely STPartition, and an ILP formulation for
scheduling suspending tasks on a multi-unit shared resource
and the corresponding schedulability conditions. STPartition
will return the number of units of the shared resource that
is needed to accommodate all tasks in the system. Note that
for implicit-deadline sporadic suspending task systems, the
feasibility-analysis for partitioning scheduling is NP-hard in
the strong sense, by transformation from the bin-packing prob-
lem [27]. Thus, designing an optimal partitioning algorithm
with acceptable time complexity is hard.

4.1 A Partitioning Heuristic and its Analysis
We develop a fast Algorithm STPartition that partitions a

set of suspending tasks in τ onto multiple shared resources.
Its pseudocode is shown in Algorithm 1. Tasks are indexed
according to RM. Then for each task τi in order, we find a
set of feasible used resources onto which τi can be assigned
(lines 4-8). We then assign τi to one of them arbitrarily
(lines 9-10). If a task cannot be assigned to any used shared
resource, then it is assigned to a new resource on which no
task has been assigned (line 12). The algorithm returns the
units of shared resources (denoted by r) needed to schedule
all tasks in τ .

Fitting algorithms with varying time complexity. In
line 12 in Algorithm 1, there are several options to choose
a resource to assign task τk, including
• First-Fit (FF): assign to the smallest index j that is

feasible.

4

Algorithm 1 STPartition pseudocode.
Input: τ ;
Output: resource allocation and resource assignment for the tasks in τ ;
1: index the tasks in the rate-monotonic order;
2: π1 ← {τ1}, r ← 1;
3: for k ← 2 to n do
4: for j ← 1 to r do
5: if τk can pass the schedulability of RM on the shared resource j

under the interference from πj then
6: mark j as a feasible resource for τk;
7: end if
8: end for
9: if the set of the feasible resources for τk is not empty then

10: assign τk to an arbitrarily feasible resource j and set πj ← πj ∪
{τk};

11: else
12: r ← r + 1 and πr ← {τk};
13: end if
14: end for

• Best-Fit (BF): assign to the index j that is feasible and
has the maximum

∑
τi∈πj

si
pi

.
• Worst-Fit (WF): assign to the smallest index j that is

feasible and has the minimum
∑
τi∈πj

si
pi

.

Except the sorting of the tasks in the RM order, STPartition
has polynomial-time complexity of O(n · r) if the tests from
Lemma 5 to Lemma 6 is used. Moreover, STPartition has
pseudo-polynomial-time complexity if the pseudo-polynomial-
time tests in Section 3.1 are used. According to the above dis-
cussions, by adopting the first-fit strategy and the STPartition
algorithm, we have formulated different strategies as follows:

• ST-FF-TDA(Baseline): adopt suspensions simply as
computation (i.e., extending the execution time parameter
of each task to accomodate its suspension length).

• ST-FF-TDA(Carry): adopt Lemma 3.
• ST-FF-TDA(Jitter): adopt Lemma 4.
• ST-FF-TDA(Mixed): adopt all the above TDA-based

tests. As long as a task can pass one of these tests, it
can be assigned to that resource.

• ST-FF-CT(Baseline): adopt suspension as computation
and use ln(2) as the utilization bound.

• ST-FF-CT(Carry): adopt Eq. (5a).
• ST-FF-CT(Jitter): adopt Eq. (6).
• ST-FF-CT(Mixed): adopt all the above CT tests. As long

as a task can pass one of these tests, it can be assigned
to that resource.

Similarly, all the methods can be combined with the other two
fitting methods BF and WF.

We conclude the STPartition algorithm with the following
worst-case analyses, which illustrate the upper bound of the
system utilization loss yielded by STPartition algorithm using
different schedulability tests. The proofs of the the following
two theorems are in Appendix.

Theorem 1. Algorithm ST-FF-CT(Carry) always successfully
partitions any sporadic suspending task system τ on m shared
resources for which

Usum ≤ m× ln

(
3

2 + umax

)
(8)

where umax = maxni=m+1
ei+si+σi×B

pi

Theorem 2. Algorithm ST-FF-CT(Jit) always successfully
partitions any sporadic suspending task system τ on m shared
resources for which

Usum ≤
m

3
(1− umax) (9)

where umax = maxni=m+1
ei+si+σi×B

pi

4.2 An ILP-based Approach
In addition to Algorithm STPartition, we also develop an

ILP-based partitioning approach. Among the schedulability
tests in Section 3.2, the conditions in Eqs. (5b) and (6)
are compatible with linear programming. Therefore, we will
explain how to design ILPs based on these three schedulability
tests. Suppose that xi,j is a binary variable in {0, 1} for
i = 1, 2, . . . , n and j = 1, 2, . . . , n and that yj is a binary
variable in {0, 1} for j = 1, 2, . . . , n. The variable xi,j is 1
if task τi is allocated to resource j; otherwise xi,j is 0. The
variable yj is 1 if shared resource j is allocated to be used;
otherwise yj is 0. We first explain the conditions that define the
number of allocated shared resources and the task partitioning:

min.
n∑
j=1

yj (10a)

s.t.
n∑
j=1

xi,j = 1 ∀i = 1, 2, . . . , n (10b)

xi,j ≤ yj ∀i, j = 1, 2, . . . , n (10c)
yj ∈ {0, 1} ∀j = 1, 2, . . . , n (10d)
xi,j ∈ {0, 1} ∀i, j = 1, 2, . . . , n (10e)

The condition in Eq. (10b) forces a task τi to be allocated
to exactly one shared resource, and the condition in Eq. (10c)
allows task τi to be allocated to a shared resource j only when
yj is 1.

We now explain how to specify a linear constraint that
describes the schedulability test in Eq. (5b). If xk,j is 1, then
task τk is assigned on shared resource j. If xk,j is 0, then
task τk is not assigned on shared resource j. Therefore, we

use (1− xk,j) + xk,j ln

(
3

sk+ek+σk×B
pk

+2

)
to define the right-

hand-side of the condition in Eq. (5b), which results in 1 if

xk,j = 0 and results in ln

(
3

sk+ek+σk×B
pk

+2

)
if xk,j = 1.

Therefore, ∀j, k = 1, . . . , n

k−1∑
i=1

si

pi
xi,j ≤ (1− xk,j) + xk,j ln

 3
sk+ek+σk×B

pk
+ 2

 (11)

For notational brevity, let vi be
(

2si − s2i
pi

)
. We use

(1− xk,j)n+ xk,j , which results in n if xk,j = 0 and results
in 1 if xk,j = 1. The condition in Eq. (6) can be written as
the following linear constraint ∀j, k = 1, . . . , n:(

sk + ek + σk ×B
pk

)
xk,j +

k−1∑
i=1

(
si
pi

+
vi
pk

)
xi,j

≤ (1− xk,j)n+ xk,j

(12)

5

Since we assume that sk + ek > 0, the condition∑
τi∈hp(k)

si
pi
< 1 holds automatically when the condition in

Eq. (12) holds if xk,j is 1.
The condition in Eq. (7) can be written as follows:

n∑
i=1

si
pi
xi,j ≤ ln

 3

2 + maxτi

{
si+ei+σi×B

pi

}
 , ∀j = 1, 2, . . . , n

(13)

According to the above discussions, we have formulated
different ILPs, depending on the adopted schedulability. They
are as follows:
• ILP-Baseline: Eq. (10) with suspension as computation

under the utilization bound ln(2).
• ILP-Carry: Eq. (10) together with Eq. (11).
• ILP-Jitter: Eq. (10) together with Eq. (12).
• ILP-Inflation: Eq. (10) together with Eq. (13).
We can further improve the schedulability tests used in

the ILP by combining the tests from Eq. (11) and (12). If
one of the tests is feasible, we can safely assign task τk to
resource j. Here, we introduce binary variables ηk,j,` for k, j =
1, 2, . . . , n and ` = 1, 2. If xk,j is 1, then ηk,j,1 indicates
the case whether the test in Eq. (5b) is successful and ηk,j,2
indicates the case whether the test in Eq. (6) is successful.
Therefore, the condition in Eq. (11) is revised by replacing
xk,j with ηk,j,1 and the condition in Eq. (12) is revised by
replacing xk,j with ηk,j,2. Moreover, we need at least one of
tests is successful to set xk,j to 1. If xk,j is 0, then the solution
ηk,j,1 = ηk,j,2 = 0 indicates that there is no need to test
the schedulability of task τk on resource j. Let ∆k denote
sk+ek+σk×B

pk
. Therefore, the constraints are as follows:

∀j, k = 1, . . . , n

2∑
`=1

ηk,j,` ≥ xk,j (14a)

k−1∑
i=1

si

pi
xi,j ≤ (1− ηk,j,1) + ηk,j,1 ln

(
3

∆k + 2

)
(14b)

∆kηk,j,2 +

k−1∑
i=1

(
si

pi
+
vi

pk

)
xi,j ≤ (1− ηk,j,2)n+ ηk,j,2 (14c)

The above ILP by using Eq. (10) together with Eq. (14) is
called ILP-Combo.

5 Step 2: Shared Resource Minimization
In Sec. 4, we assumed that zi = 1 holds for all tasks

in the system, i.e., each task τi requires one unit of the
shared resource. We now remove this assumption and present
two advanced partitioning methods that may minimize the
total number of units of the shared resource required to
accommodate and successfully schedule all tasks in τ .

5.1 An Efficient Heuristic Algorithm
We now introduce an efficient partitioning heuristic algo-

rithm that can effectively reduce the required size of the shared
resources, motivated by the following observation.

Example Note again that an implicit-deadline sporadic
task that accesses both CPU cores and shared resources

Algorithm 2 PSTPartition pseudocode.
Input: τ ;
Output: resource allocation and resource assignment for the tasks in τ ;
1: sort the tasks in τ according to zi values, in which zi ≥ zi+1 and ties

are broken by preferring smaller pi for a smaller index;
2: π1 ← {τ1}, r ← 1, and Z1 ← z1;
3: for k ← 2 to n do
4: for j ← 1 to r do
5: if zk ≤ Zj then
6: if all the tasks in πj ∪ {τk} can pass the schedulability of RM

on the shared resource partition j then
7: mark j as a feasible resource for τk;
8: end if
9: end if

10: end for
11: if the set of the feasible resource partitions for τk is not empty then
12: assign τk to an arbitrarily feasible resource partition j and set πj ←

πj ∪ {τk};
13: else
14: r ← r + 1, πr ← {τk} and Zr ← zk;
15: end if
16: end for
17: return

∑r
i=1 Zi and π1, π2, . . . , πr

can be denoted as τi(ei, si, pi, di, σi, zi). Consider a
task system containing five such tasks (shown in Fig 2a),
τ1(1, 3, 10, 10, 5, 20), τ2(1, 2, 16, 16, 5, 4), τ3(2, 4, 16, 16, 5, 20),
τ4(1, 3, 16, 16, 5, 4), and τ5(1, 2, 10, 10, 5, 8). Non-preemptive
block size is 0.001. If the system grants each task its
required number of shared resources, then all tasks can be
accommodated which yields a total shared resource size of
56 units, which implies creating a new resource partition for
each task, as illustrated in in Fig. 2b.

An improved partitioning strategy (as shown in Fig. 2c)
would assign τ1 and τ2 onto a resource partition with 20 units,
assign τ3 and τ4 onto a second resource partition with 20 units,
and assign τ5 onto a third resource partition with 8 units. The
resulting resource partition would be still schedulable under
RM according to Eq. (5a), but yields a reduced shared resource
size of 48 units. This is because it is possible to schedule
multiple tasks inside one resource partition, thus reducing the
required shared resource size, i.e., the required shared resource
size equals the maximum zi value among all tasks assigned
to the corresponding resource partition. Motivated by this, we
know that a task’s zi value may decide the required shared
resource size of the resource partition to which this task is
assigned. Thus, our intuitive idea is to assign tasks with similar
zi values onto the same resource partition. For the above
example, if we assign τ1 and τ3 together to a resource partition
with 20 units of the shared resource, and assign τ2, τ4, and
τ5 onto another resource partition with 8 units of the shared
resource, then tasks in both resource partitions are schedulable
under RM according to Eq. (5a). The resulting total shared
resource size is merely 28 (as shown in Fig. 2d). This is
because if we can schedule the tasks with similar zi values
on one resource partition, the negative impact due to multiple
tasks’s parallelism can be “masked” by only one task that has
the maximum parallelism, i.e., zi value. Our parallelism-aware
partitioning heuristic, namely PSTPartition, is inspired by the
above-discussed idea, which always seeks to assign tasks with
similar zi values to the same resource partition.

Algorithm description. The pseudocode for the PSTParti-
tion algorithm is given in Algorithm 2. Tasks are ordered and

6

20

8

4

/

/

(a) 5 tasks.

Tasks Shared resource

Pa
r.

5
Pa

r.
3

Pa
r.

1

20

20

8
Pa

r.
2

Pa
r.

4

4

4

(b) Naived partitioning.

20

20

8

Pa
r.

1
Pa

r.
2

Pa
r.

3

Tasks Shared resource

(c) Improved partitioning.

20

8

Pa
r.

1
Pa

r.
2

Tasks Shared resource

(d) Parallelism-aware partitioning.

Fig. 2: Different partitioning strategies.

re-indexed according to non-increasing parallelism zi. Then
for each task τk in this order, we find a set of feasible allocated
resource partitions (a used partition is one onto which at least
one task has been assigned) onto which τk can be assigned
(lines 4-10). We then assign τk to one such partition (line 12).
If a task τk cannot be assigned to any existing partition, then
the system creates a new partition with zk units of the shared
resource and assigns τk to it (line 14). We can similarly apply
various fitting heuristics as described in Sec. 4.1.

5.2 An ILP-based Approach
To identify an optimal partition that yields a minimal

shared resource size, we further formulate this problem as an
ILP. The variable yj is 1 if zj units of the shared resources are
allocated to be used; otherwise yj is 0. The variable xi,j is 1 if
task τi is allocated to these zj shared resources; otherwise xi,j
is 0. The following ILP formulation seeks to find the partition
that yields a minimal shared resource size.

min.
n∑
j=1

yjzj (15a)

s.t.
n∑
j=1

xi,j = 1 ∀i = 1, 2, . . . , n (15b)

xi,jzi ≤ yjzj ∀i, j = 1, 2, . . . , n (15c)
xj,j = yj ∀j = 1, 2, . . . , n (15d)
yj ∈ {0, 1} ∀j = 1, 2, . . . , n (15e)
xi,j ∈ {0, 1} ∀i, j = 1, 2, . . . , n (15f)

The condition in Eq. (15b) forces a task τi to be allocated
to exactly one shared resource partition, and the condition
in Eq. (15c) allows task τi to be allocated to the zj shared
resources associated to task τj if yj is 1 and zi ≤ zj .

We can simply replace Eq. (10) with Eq. (15) in all the six
different ILPs in Section 4 when zi > 1 for a certain task τi.

6 Case Study using a GPU-based Prototype
We have fully implemented our shared-resource-centric

partitioning framework on a GPU-enabled platform, where
GPU is viewed as the shared resource that serves multiple
tasks. The motivation behind choosing such a GPU-based
case study is that GPU-based embedded systems are now
pervasively used in several cyber-physical embedded systems
such as autonomous driving. For example, Volvo has recently

Task Para. Period GPU CPU Res. Time Warps
τ1 12 6.40 0.80 1.00 N/A 30
τ2 12 25.58 1.60 3.00 20.5
τ3 2 12.79 1.00 2.00 N/A
τ4 2 12.79 0.90 2.50 N/A
τ5 4 19.19 1.80 2.00 17.70
τ6 6 7.99 1.00 1.00 N/A
τ7 6 8.99 0.80 2.00 N/A
τ8 1 11.19 0.50 2.50 N/A

TABLE I: CPU-centric scheduling.

announced using the latest NVIDIA DRIVE PX2 computing
engine to power a fleet of 100 Volvo XC90 SUVs starting
to hit the road in 2017 year [7], [34]. In such systems,
multiple real-time tasks may need to actively compete for the
limited GPU resources to execute their computation-intensive
components (e.g., object recognition with deep learning). GPU
is suitable for our purpose because it has multiple computing
units, namely stream multiprocessors (SM), while each GPU-
accelerated task implemented under CUDA (a GPGPU pro-
gramming model) exhibit parallelism in terms of the number
of needed SMs.

Through conducting this case study, we would like to
answer the following research questions: (i) is it practically
feasible to resolve the problem of real-time scheduling with
shared resources from our counter-intuitive shared-resource-
centric angle, (ii) whether solving this scheduling issue from
the shared-resource-centric view is more effective than the tra-
ditional CPU-centric view, (iii) whether our proposed schedu-
lability tests can provide reliable predictability for given task
systems according to the tasks’ runtime response time, and (i-
iii) whether our proposed partitioning approach can efficiently
reduce the required size of the shared resource compared to
the best practice approach.

Prototype implementation and experimental setup. We
implement our prototype system in an Ubuntu Liunx system
with a 4-core Intel i7-4770 CPU and an NVIDIA ”Fermi” GTX
480 GPU. The GPU has 15 SMs, each containing 32 shader
cores. Under the Fermi architecture, each 16 shader cores share
the same pipeline and memory bandwidth and are collectively
called a warp. Thus, we set our smallest computation unit to
be a single warp containing 16 threads. In our case study,
we target at a multi-tasking environment where we have in
total eight real-time periodic tasks performing matrix-based
computations. Each task has an individual thread on CPU.
The GPU kernel code is only written for one thread. For
each kernel, a configuration is created that indicates how many

7

Task Part. Para. Period GPU CPU Res. Time Carry Jitter Mixed Warps
τ1 1 12 6.40 0.80 1.00 5.8 Pass Pass Pass 12
τ6 6 7.99 1.00 1.00 6.7 Pass Pass Pass
τ7 6 8.99 0.80 2.00 8.0 Pass Pass Pass
τ8 2 1 11.19 0.50 2.50 10.1 Pass Pass Pass 6
τ4 2 12.79 0.90 2.50 11.2 Fail Pass Pass
τ3 2 12.79 1.00 2.00 11.9 Pass Pass Pass
τ5 3 4 19.19 1.80 2.00 14 Pass Pass Pass 12
τ2 12 25.58 1.60 3.00 18.3 Pass Fail Pass

TABLE II: Shared-resource-centric scheduling with first-fit partitioning using constant-time (CT) schedulability tests.

Task Part. Para. Period GPU CPU Res. Time Carry Jitter Mixed Warps
τ1 12 6.40 0.80 1.00 6.13 Pass Pass Pass
τ6 1 6 7.99 1.00 1.00 7.5 Pass Pass Pass 12
τ7 6 8.99 0.80 2.00 8.64 Pass Fail Pass
τ8 1 11.19 0.50 2.50 10.5 Pass Pass Pass
τ4 2 2 12.79 0.90 2.50 12.2 Pass Pass Pass 2
τ3 2 12.79 1.00 2.00 12.6 Fail Pass Pass
τ5 3 4 19.19 1.80 2.00 10.1 Pass Pass Pass 12
τ2 12 25.58 1.60 3.00 11.8 Pass Pass Pass

TABLE III: Shared-resource-centric scheduling with first-fit partitioning using TDA-based schedulability tests.

Task Part. Para. Period GPU CPU Res. Time Carry Jitter Mixed Warps
τ1 12 6.40 0.80 1.00 6.03 Pass Pass Pass
τ2 1 12 25.58 1.60 3.00 17.71 Fail Pass Pass 12
τ7 6 8.99 0.80 2.00 8.32 Pass Pass Pass
τ6 2 6 7.99 1.00 1.00 7.45 Pass Pass Pass 6
τ5 4 19.19 1.80 2.00 16.6 Pass Pass Pass
τ3 2 12.79 2.00 2.00 12.6 Pass Pass Pass
τ4 3 2 12.79 0.90 2.50 12.2 Fail Pass Pass 2
τ8 1 11.19 0.50 2.50 10.5 Pass Pass Pass

TABLE IV: Shared-resource-centric scheduling with Algorithm 2 using CT schedulability tests.

Task Part. Para. Period GPU CPU Res. Time Carry Jitter Mixed Warps
τ1 12 6.40 0.80 1.00 6.03 Pass Pass Pass
τ2 1 12 25.58 1.60 3.00 17.71 Pass Pass Pass 12
τ7 6 8.99 0.80 2.00 8.32 Pass Pass Pass
τ6 2 6 7.99 1.00 1.00 7.45 Pass Pass Pass 6
τ5 4 19.19 1.80 2.00 16.6 Pass Pass Pass
τ3 2 12.79 2.00 2.00 12.6 Pass Pass Pass
τ4 3 2 12.79 0.90 2.50 12.2 Fail Pass Pass 2
τ8 1 11.19 0.50 2.50 10.5 Pass Pass Pass

TABLE V: Shared-resource-centric scheduling with Algorithm 2 using TDA-based schedulability tests.

threads should be grouped together in a so-called thread block.
This configuration also specifies the total number of thread
blocks for the kernel. One thread block is assigned to one
SM if there is enough space on that SM. In this case study,
we set the thread block size to be 16, so that only one warp
per thread block is used. The scheduler is written from the
ground up according to the RM method. Since threads run
independently, each thread contains it’s own scheduler. The
scheduler operates on ticks, which are approximately 0.713ns
each. Although the latest GPU architectures such as Pascal
enables limited preemptive execution on GPU, the GPU used
in our case study is of the Fermi architecture with a non-
preemptive GPU execution model. To enable limited preemp-
tive scheduling on GPU, we leverage our previously developed
GPGPU runtime module GPES [43], which indirectly enables
limited preemptive GPGPU execution through breaking both
computation and data into fine-grained sub-chunks. Thus, a
higher-priority task can almost immediately preempt a lower-
priority task on GPU through waiting for a rather small non-

preemptive period.

Scheduling algorithms. Given the relatively high complexity
of the ILP-based solutions, we choose to evaluate the practical
efficacy of the fastest partitioning algorithm we develop,
i.e., first-fit partitioning and Algorithm 2, combined with
the constant-time efficient schedulability tests and TDA-based
tests. We evaluate these two partitioning solutions also because
the main goal of conducting this case study is to validate
the practicality and efficiency of our shared-resource-centric
scheduling methodology, but not to compare the performance
of every single individual partitioning solutions (e.g., best-
fit and worst-fit) we develop that exhibit different runtime
complexity (instead we achieve this evaluation goal in Sec. 7
through conducting extensive sets of simulations). We use RM
to prioritize and schedule tasks on GPU. Moreover, since the
Intel i7 CPU has four physical cores, each supporting two
threads, each of the eight tasks does not interfere with each
other (significantly) while executing on logical CPU in our
settings. This can be seen in the experimental results shown in

8

Tables I- V, where the execution time of each task on CPU is
identical. The time unit in the tables is Millisecond (ms). For
the traditional CPU-centric scheduling approach, since there
is no contention on CPU for each task, we directly run the
eight tasks on CPU without implementing any prioritization
or partitioning strategy to control their execution, and simply
let these tasks compete for GPU resources at runtime. For
the shared-resource-centric scheduling approach, we evaluate
our proposed partitioning algorithm (Algorithm 2) that seeks
to minimize the units of shared resource required to schedule
all eight tasks, and the first-fit partitioning algorithm (tasks
indexed according to RM). Under these two shared-resource-
centric partitioning approaches, the number of warps granted
to execute tasks assigned to each partition equals the largest
number of warps requested by any task in that partition.
Schedulability tests. We seek to validate the predictability
of the schedulability tests provided in Sec. 4.1. Under first-
fit partitioning (results are shown in Table II and Table III)
and PSTPartition (results are shown in Table IV and Table V),
we perform both constant-time schedulability tests and TDA-
based test in each partition to validate the schedulability for
each task. Constant-time schedulability tests under first-fit par-
titioning include ST-FF-CT(Carry), ST-FF-CT(Jitter), and
ST-FF-CT(Mixed); while TDA-based tests include ST-FF-
TDA(Carry), ST-FF-TDA(Jitter), and ST-FF-TDA(Mixed).
For PSTPartition, we adopt Lemma 3 (Carry), Lemma 4
(Jitter), and both (Mixed) as constant-time schedulability
tests, and adopt Eq. 5a (Carry), Eq. 6 (Jitter) and both
(Mixed) as TDA-based schedulability tests.
Results. The results are collected and shown in Tables I- V.
For the five tables, the “part.” column denotes task partitions
given by the corresponding partition algorithm, the “Para.”
column denotes the number of warps required by each task; the
“Period” column denotes the task period; the “GPU” column
denotes the execution time on GPU of each task; the “CPU”
column denotes the execution time on CPU of each task; the
“Res. Time” column denotes the longest runtime response time
of each task; the “Carry”, “Jitter”, “Mixed” columns denote
the corresponding schedulability tests as described above; the
“Warps” column denotes the number of warps needed by each
task under the corresponding approach. Note that the GPU
used in this case study has 30 warps in total.

As seen in Table I, under the traditional CPU-centric
scheduling approach, even if we use all the 30 warps, there are
still six tasks that cannot meet their deadlines, implying that
the GPU resource is far from sufficient to feasibly schedule
this task set. On the other hand, under shared-resource-centric
first-fit partitioning, as seen in Table II and Table III, we
performed the constant-time schedulability tests and TDA-
based tests to validate whether each task is schedulable or not
in a partition. As seen in Table II, three partitions are created
(shown by the divider line) under constant-time schedulability
tests, each requiring a total number of wraps of 12, 6, and
12, respectively. Thus, this approach requires the entire GPU
resource and can successfully schedule all eight tasks with
their deadlines being met at runtime (i.e., tasks’ response time
is smaller than their periods). Note that τ4 is not schedulable
in partition 2 when we test τ4 using Carry. However, if τ4 is
tested by Jitter, τ4 becomes schedulable. A similar observation
is shown in partition 3. τ2 passes the schedulability test under
Carry but fails under Jitter. This implies that there does not

exist a domination relationship between the Carry and the
Jitter tests. As seen in Table III, three partitions are created
under TDA-based schedulability tests, each requiring a total
number of wraps of 12, 2, and 12, respectively. This approach
requires 26 warps and successfully schedule all eight tasks with
their deadlines being met at runtime, which requires 4 warps
less than the previous approach. This implies that, under the
same partitioning method, TDA-based schedulability tests may
admit more tasks than constant-time schedulability tests, yet
at the cost of exhibiting higher time complexity.

Table IV and Table V show the results under our developed
partitioning algorithm, which create three partitions but with
different task assignments. Note that in our case study the
partitions under constant-time schedulability tests and TDA-
based schedulability tests are the same using PSTPartition.
Our partitioning algorithm successfully schedules all eight
tasks with their deadlines being met. As seen, the three
partitions require a total number of warps of 12, 6 and 2,
respectively, thus resulting in a significantly reduced number
of total required units of the shared resource, i.e., merely 20
warps. As discussed in Sec. 5.1, this is because PSTPartition
seeks to minimize the required units of the shared resource
through considering tasks’ parallelism parameters. As seen in
Table IV and V, PSTPartition seeks to assign tasks with the
same parallelism (starting from the task with the maximum
parallelism) into the same partition as long as the schedula-
bility of tasks in that partition can be maintained. Doing so
masks the negative impact due to accommodating other tasks
in that partition which exhibit same or smaller parallelism.

Our GPU-based case study answers the four early-raised
research questions: the shared-resource-centric scheduling
methodology can be practically and efficiently implemented
in practice, which is superior to the CPU-centric scheduling
view. Through incoporating carefully designed schedulability
tests and parallelism-aware partitioning algorithms, we achieve
much better performance in terms of both schedulability and
minimum required size of the shared resource.

7 Simulations
We have conducted extensive simulations using synthesized

task sets to evaluate our proposed approaches. We analyze
the gathered results which are classified into three groups:
1) ILP-based approaches (ILP-Carry, ILP-Jitter, ILP-Inflation,
ILP-Combo) 2) PSTPartition with TDA-based Tests, and
3) PSTPartition with Constant Time Tests. We consider first-
fit strategies here due to the space limitation. Extensive results
for other fitting strategies can be found in [13]. A comparison
on different fitting strategies is given in the appendix.

The compared results are based on the normalization on the
geometric mean of the required number of shared resource size
derived by the aforementioned 13 approaches, respectively,
with respect to a given goal of task set utilization. The
normalized geometric mean is calculated as the geometric
mean on the required number of shared resource size of the
resulting partition divided by the maximum required number
of shared resource size, i.e.,

∑n
i=1 zi.

7.1 Simulation Setup
We generated synthesized implicit-deadline sporadic task

sets, analyzing task sets of 4 different cardinalities, i.e.,

9

200 300 400 500 600 700 800 900
Utilization (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Limited-Gmeanratio-20Tasks-e(L)-b(L)

ILP-Carry
ILP-Jit
ILP-Inflation
ILP-Baseline
ILP-Combo

(a) ILP

200 300 400 500 600 700 800 900
Utilization (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Limited-Gmeanratio-20Tasks-e(L)-b(L)-First-Fit

PST-FF-TDA(Baseline)
PST-FF-TDA(Carry)
PST-FF-TDA(Jit)
PST-FF-TDA(Mixed)

(b) TDA

200 300 400 500 600 700 800 900
Utilization (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Limited-Gmeanratio-20Tasks-e(L)-b(L)-First-Fit

PST-FF-CT(Baseline)
PST-FF-CT(Carry)
PST-FF-CT(Jit)
PST-FF-CT(Mixed)

(c) Constant Time
Fig. 3: Different approaches for 20 tasks with etype=L and btype=L.

10, 20, 30, and 40 tasks. The UUnifast-Discard method pro-
posed by Emberson et al. [20] was applied to generate a
set of utilization values with the given utilization, where ui
was defined as si/pi. Let Bi = σi × B and . For each
task τi, zi was randomly drawn from {1, 2, 4, 6, 8, 10} and
ei was set to one of three ranges depending upon the given
type (etype): [0.01(pi − si − Bi), 0.1(pi − si − Bi)] (etype
= S), [0.1(pi − si − Bi), 0.3(pi − si − Bi)] (etype = M),
and [0.3(pi − si − Bi), 0.45(pi − si − Bi)] (etype = L). The
task periods were randomly distributed over two orders of
magnitude. For each of these in total 3 · 3 · 4 · 13 = 468
settings, e.g., etypes, btypes, cardinalities, and approaches,
we recorded 100 synthesized task sets for each utilization
Ussum ∈ [10 · n%, 45 · n%] (step size 5 · n%). We used
the Gurobi library [4] to implement the proposed ILPs. We
adopted six machines in our local cluster which has eight 64-
bit Intel processors running at 2.0 GHz with 16GB DDR3
RAM. For the 468 settings, it required seven hours to derive
the results per machine.

7.2 Results and Discussions
Due to the high complexity of the ILP approaches, we can

only get very few results with ILP-based approaches when the
cardinalities of the task set were 30 and 40 within the limited
amount of time. For the sake of fairness, we uniformly present
the case that the cardinality of task sets is 20 with etype = L,
btype = L, and zi ≥ 1 in the following comparisons. Due to
the page limitation, all the other cases are presented in [13].

Comparison among different ILP-based approaches.
Fig. 3a shows the normalized geometric means of five different
ILP-based approaches , i.e, ILP-Carry, ILP-Jit, ILP-Inflation,
ILP-Baseline, and ILP-Combo. When the total utilization
Ussum becomes larger, the differences among all the ILP-
based approaches become smaller. We can see that ILP-Combo
outperforms the other ILP approaches and the normalized
geometric mean of ILP-Jit is exactly the same as ILP-Combo
in this case. Interestingly, we can see that ILP-Inflation is even
worse than ILP-Baseline which directly considers ei as a part
of si. In this group, we choose the two extreme cases, i.e., ILP-
Inflation and ILP-Combo, as the representative approaches.

Comparison with PSTPartition using TDA-based Tests.
Fig. 3b shows the normalized geometric means of PSTPartition
with four different TDA-based schedulability tests, i.e, TDA-
Baseline, TDA-Carry, TDA-Jit, and TDA-Mix. The results
are very similar for all TDA-based schedulability tests. S-
ince ST+TDA(Mix) is the mixture approach which checks
Lemmas 1, and 2, it always outperforms the others. In this

200 300 400 500 600 700 800 900
Utilization (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Limited-Gmeanratio-20Tasks-e(L)-b(L)-First-Fit

ILP-Inflation
ILP-Combo
PST-FF-TDA(Baseline)
PST-FF-TDA(Mixed)
PST-FF-CT(Baseline)
PST-FF-CT(Mixed)

Fig. 4: Representative approaches for 20 tasks with etype=L
and btype=L.

group, we pick ST+TDA(Baseline) and ST+TDA(mix) as the
representative approaches.

Comparison with PSTPartition with Constant Time Tests.
Fig. 3c shows the normalized geometric means of PSTPartition
with four different constant time schedulability tests, i.e, CT-
Baseline, CT-Carry, CT-Jit, and CT-Mix. The trends are in
general similar to the previous comparisons. PSTPartition
using CT(Jit) has the results closest to PSTPartition using
CT(mix). Again, since ST+CT(Mix) is the mixture approach
with the advantage of three constant time tests, it can always
outperform the others. In this group, we pick ST+CT(Baseline)
and ST+CT(mix) as the representative approaches.

Representative Approaches Comparison. In Fig. 4, six
different approaches are compared, but three of them are
identical, including ILP-Inflation and PSTPartition with T-
DA(Baseline) and CT(Baseline) approaches, which are the
maximum required number of shared resource size. Although
ILP-Combo outperforms the others, it suffers from its com-
putationally expensive overhead. When the number of tasks
becomes 30, it is not available to use ILP to obtain the resource
partition. We notice that the trade-off between the time com-
plexity of schedulability tests and the minimization of required
shared resource sizes are clear, while the derived results of
TDA(mix) and CT(mix) are really close. We can conclude that
the proposed heuristic PSTPartition with CT(mix) can provide
the significant results in an efficient manner.

According to the above-discussed experimental results, we
believe that a representative set of our developed partitioning
algorithms and the corresponding schedulability tests can be
efficiently applied in various practical scenarios with varying
affordable runtime overhead. With different btypes or different
etypes, we observe that the results are just slightly different to
the presented results in the paper with the similar trends.

10

8 Conclusion
In this paper, we study the problem of scheduling HRT

sporadic tasks that may access CPU cores and a shared
resource. We resolve this problem from a counter-intuitive
shared-resource-centric perspective, and develop a rather com-
prehensive set of suspending task partitioning algorithms that
partition tasks onto the shared resource with the objective
of guaranteeing schedulability while minimizing the required
size of the shared resource. A GPU-based prototype case
study and extensive simulation-based experiments have been
conducted, which validate both our shared-resource-centric
scheduling philosophy and the efficiency of our suspension-
based partitioning solutions in practice.

Appendix
Proof of Lemma 3.

Proof: Under limited preemptive task scheduling, the
execution of τk may be delayed by two sets of tasks:(i) higher
priority tasks that may preempt τk; (ii) lower priority tasks
that may block τk. Similar to the proof of Lemma 1 given
in [11], the carry-in workload of a higher-priority task τi can
be safely upper bounded by

(⌈
t
pi

⌉
+ 1
)
si. And according to

Fact 1, the blocking time due to lower priority tasks is at most
σk×B. Thus, a task τk with a implicit deadline can be feasibly
scheduled under fixed-priority if the following equation holds:

∃t | 0 < t ≤ pk, sk+ek+σk×B+
∑

τi∈hp(k)

(⌈
t

pi

⌉
+ 1

)
si ≤ t.

Inuitively, we simply add the extra blocking time σk ×B due
to the limited preemptive model into the original schedulability
test designed for the fully preemptive fixed-priority schedula-
bility test [11].

Proof of Lemma 4.
Proof: Under limited preemptive task scheduling, the

execution of τk may be delayed by two sets of tasks:(i) higher
priority tasks that may preempt τk; (ii) lower priority tasks
that may block τk. Similar to the proof of Lemma 2 in
the document [11], the carry-in workload of a higher-priority
task τi can be safely upper bounded by

⌈
t+pi−si

pi

⌉
si. And

according to Fact 1, the blocking time from lower priority
tasks is at most σk ×B. Thus, it results that a task τk with a
implicit deadline can be feasibly scheduled under fixed-priority
if the following equation holds:

∃t | 0 < t ≤ pk, sk+ek+σk×B+
∑

τi∈hp(k)

⌈
t+ pi − si

pi

⌉
si ≤ t.

Inuitively, we simply add the extra blocking time σk ×B due
to the limited preemptive model into the original schedulability
test designed for the fully preemptive fixed-priority schedula-
bility test [11].

Proof of Lemma 6.
Proof: This is based on a safe linear approximation of the

schedulability test in Lemma 4 as follows:⌈
t+ pi − si

pi

⌉
si ≤

(
t+ pi − si

pi
+ 1

)
si

By solving ek+sk+σk×B+
∑
τi∈hp(k)

(
t+pi−si

pi
+ 1
)
si = t

under the condition
∑
τi∈hp(k)

si
pi
< 1, we know that task τk

can meet its deadline if

t =
ek + sk + σk ×B +

∑
τi∈hp(k)

(
2si − s2i

pi

)
1−

∑
τi∈hp(k)

si
pi

≤ pk (16)

The condition in Eq. (16) can be rewritten as in Eq. (6).
Proof of Lemma 7.

Proof: This comes from the test in Eq. (5b). The left-hand
side of Eq. (5b) is maximized when we consider the whole task
set, and the right-hand side of Eq. (5b) is minimized when we

take ln

(
3

2+maxτi∈τ
si+ei+σi×B

pi

)
.

Proof of Theorem 1.
Proof: We prove this theorem by contradiction. Suppose

that Algorithm STPartition fails to assign task τk to the first
m resources for contradiction. By the assumption that a single
task is always schedulable on one shared resource, we know
that k > m. Since the test in Eq. (5a) is adopted, we know that
(sk+ek+σk×Bpk

+ 2)
∏
τi∈πj (1 + usi) > 3 for j = 1, 2, . . . ,m

before task τk is allocated. Since ∪mj=1πj is equal to hp(k),
we have(

sk + ek + σk ×B
pk

+ 2

)m ∏
τi∈hp(k)

(1 + usi) > 3m

⇒
∏

τi∈hp(k)

(1 + usi) >

(
3

sk+ek+σk×B
pk

+ 2

)m

⇒ e
∑
τi∈hp(k)

usi >

(
3

sk+ek+σk×B
pk

+ 2

)m

⇒ Usum ≥
k−1∑
i=1

usi > m ln
3

2 + sk+ek+σk×B
pk

Hence, we reach the contradiction.

Proof of Theorem 2.
Proof: We prove this theorem by contradiction. Suppose

that Algorithm STPartition fails to assign task τk to the first
m resources for contradiction. By the assumption that a single
task is always schedulable on one shared resource, we know
that k > m. Since the test in Eq. (6) is adopted, we know

that ek+sk+σk×B
pk

+

∑
τi∈πj

(
2si−

s2i
pi

)
pk

+
∑
τi∈πj

si
pi

> 1 for
j = 1, 2, . . . ,m before task τk is allocated. Since ∪mj=1πj is
equal to hp(k), we have

m

(
ek + sk + σk ×B

pk

)
+

∑
τi∈hp(k)

(
2si − s2i

pi

)
pk

+
∑

τi∈hp(k)

si
pi
> m

Due to the RM ordering of the tasks, we then have

m

(
ek + sk + σk ×B

pk

)
+

∑
τi∈hp(k)

2si
pi

+
∑

τi∈hp(k)

si
pi
> m

11

Hence, we reach the contradiction.

Comparisons of Fitting Strategies on ST/PSTPartition.
When adopting Algorithm 1 and 2, the fitting strategies may
affect the performance of the partition algorithms. As presented
in Section 4.1, there are several fitting strategies, i.e., First-
Fit (FF), Best-Fit (BF), and Worst-Fit (WF). For First-Fit, the
feasible resource j with the smallest index will be chosen.
For Best-Fit, the feasible resource j with the maximum total
utilization of tasks in πj will be chosen, whereas the feasible
resource j with the minimum total utilization of tasks in πj
will be chosen for Worst-Fit. Since the results derived by both
algorithms are similar, we only present the impact of different
fitting strategies on PSTPartition.

As shown in Fig 5, the derived results by using Best-
Fit outperforms using Worst-Fit. Comparing to First-Fit, the
derived normalized geometric mean by using Worst-Fit strat-
egy is also worse. However, the trends among three different
strategies are similar and the results are still close. Overall, we
can conclude that Best-Fit is the most suitable strategy to use
when we adopt Algorithms 1 and 2.

References
[1] Memory preemption. https://www.ibm.com/support/knowledgecenter/

SSETD4 9.1.2/lsf admin/resource preemption memory example.
html.

[2] Nvidia tesla p100 whitepaper. https://images.nvidia.com/content/pdf/
tesla/whitepaper/pascal-architecture-whitepaper.pdf.

[3] Preemptable and nonpreemptable resource - OS. http://maulik245.
blogspot.com/2010/12/preemptable-and-nonpreemptable-resource.
html.

[4] Gurobi 7.0. https://www.gurobi.com/, 2017.

[5] A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal,
M. Jacobs, A. H. Moin, J. Reineke, B. Schommer, and R. Wilhelm.
Impact of resource sharing on performance and performance prediction:
A survey. In P. R. D’Argenio and H. Melgratti, editors, CONCUR 2013
– Concurrency Theory, volume 8052 of Lecture Notes in Computer
Science, pages 25–43. 2013.

[6] S. Altmeyer, R. I. Davis, L. S. Indrusiak, C. Maiza, V. Nélis, and
J. Reineke. A generic and compositional framework for multicore
response time analysis. In Proceedings of the 23rd International
Conference on Real Time Networks and Systems, RTNS 2015, Lille,
France, November 4-6, 2015, pages 129–138, 2015.

[7] Autonews. Carmakers tap nvidia’s supercomputer to self-driving, 2016.
http://europe.autonews.com/article/20160607/ANE/160609921/carmak-
ers-tap-nvidias-supercomputer-to-make-leap-toward-self-driving.

[8] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo. A framework for supporting real-time applications on dynamic
reconfigurable fpgas. In Real-Time Systems Symposium (RTSS), 2016
IEEE, pages 1–12. IEEE, 2016.

[9] J.-J. Chen, W.-H. Huang, Z. Dong, and C. Liu. Fixed-priority scheduling
of mixed soft and hare real-time tasks on multiprocessors. In Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2017
IEEE 23rd International Conference on, pages 1–10. IEEE, 2017.

[10] J.-J. Chen, W.-H. Huang, and C. Liu. k2u: A general framework from k-
point effective schedulability analysis to utilization-based tests. In Real-
Time Systems Symposium, 2015 IEEE, pages 107–118. IEEE, 2015.

[11] J.-J. Chen, G. Nelissen, and W.-H. Huang. A unifying response time
analysis framework for dynamic self-suspending tasks. In Euromicro
Conference on Real-Time Systems (ECRTS), 2016.

[12] J.-J. Chen, G. von der Bruggen, W.-H. Huang, and C. Liu. State of
the art for scheduling and analyzing self-suspending sporadic real-time
tasks. In 23rd IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA, pages 1–10, 2017.

200 300 400 500 600 700 800 900
Utilization (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Limited-Gmeanratio-20Tasks-e(L)-b(L)-Best-Fit

ILP-Inflation
ILP-Combo
PST-BF-TDA(Baseline)
PST-BF-TDA(Mixed)
PST-BF-CT(Baseline)
PST-BF-CT(Mixed)

(a) Best-Fit

200 300 400 500 600 700 800 900
Utilization (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Limited-Gmeanratio-20Tasks-e(L)-b(L)-Worst-Fit

ILP-Inflation
ILP-Combo
PST-WF-TDA(Baseline)
PST-WF-TDA(Mixed)
PST-WF-CT(Baseline)
PST-WF-CT(Mixed)

(b) Worst-Fit

200 300 400 500 600 700 800 900
Utilization (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Limited-Gmeanratio-20Tasks-e(L)-b(L)-First-Fit

ILP-Inflation
ILP-Combo
PST-FF-TDA(Baseline)
PST-FF-TDA(Mixed)
PST-FF-CT(Baseline)
PST-FF-CT(Mixed)

(c) First-Fit

Fig. 5: Different fitting strategies for 20 tasks with etype=L
and btype=L.

[13] K.-H. Chen, J. Shi, and J.-J. Chen. Comparision with
different approaches, cardinalities, btype, and etype . http:
//ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/
downloads/results.tar.gz, 2017.

[14] S.-W. Cheng, J.-J. Chen, J. Reineke, and T.-W. Kuo. Memory bank
partitioning for fixed-priority tasks in a multi-core system. In RTSS,
December 2017.

[15] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and
improvements of programming models for the intel scc many-core
processor. In High Performance Computing and Simulation (HPCS),
2011 International Conference on, pages 525–532. IEEE, 2011.

[16] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In Real-Time Systems Symposium, 2006. RTSS’06.
27th IEEE International, pages 257–270. IEEE, 2006.

12

[17] D. M. Dhamdhere. Systems Programming and Operating Systems. Tata
McGraw-Hill, 1999.

[18] Z. Dong and C. Liu. Closing the loop for the selective conversion
approach: A utilization-based test for hard real-time suspending task
systems. In Real-Time Systems Symposium (RTSS), 2016 IEEE, pages
339–350. IEEE, 2016.

[19] Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson.
Optimal dataflow scheduling on a heterogeneous multiprocessor with
reduced response time bounds. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[20] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS
2010), pages 6–11, 2010.

[21] D.-R. Fan, N. Yuan, J.-C. Zhang, Y.-B. Zhou, W. Lin, F.-L. Song, X.-C.
Ye, H. Huang, L. Yu, G.-P. Long, et al. Godson-t: An efficient many-
core architecture for parallel program executions. Journal of Computer
Science and Technology, 24(6):1061, 2009.

[22] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Resource sharing protocols
for real-time task graph systems. In Real-Time Systems (ECRTS), 2011
23rd Euromicro Conference on, pages 272–281. IEEE, 2011.

[23] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds
for fixed priority multiprocessor scheduling. In Real-Time Systems
Symposium, 2009, RTSS 2009. 30th IEEE, pages 387–397. IEEE, 2009.

[24] J.-J. Han, D. Zhu, X. Wu, L. T. Yang, and H. Jin. Multiprocessor real-
time systems with shared resources: Utilization bound and mapping.
IEEE Transactions on Parallel and Distributed Systems, 25(11):2981–
2991, 2014.

[25] W.-H. Huang, J.-J. Chen, and J. Reineke. MIRROR: symmetric
timing analysis for real-time tasks on multicore platforms with shared
resources. In Proceedings of the 53rd Annual Design Automation
Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages 158:1–
158:6, 2016.

[26] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. Pass: Priority as-
signment of real-time tasks with dynamic suspending behavior under
fixed-priority scheduling. In Proceedings of the 52nd Annual Design
Automation Conference, page 154. ACM, 2015.

[27] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis,
Massachusetts Institute of Technology, 1973.

[28] H. Kim and R. Rajkumar. Real-time cache management for multi-core
virtualization. In Embedded Software (EMSOFT), 2016 International
Conference on, pages 1–10. IEEE, 2016.

[29] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and N. Stoimenov.
A formal approach to the wcrt analysis of multicore systems with mem-
ory contention under phase-structured task sets. Real-Time Systems,
50(5-6):736–773, Nov. 2014.

[30] C. Liu and J.-J. Chen. Bursty-interference analysis techniques for
analyzing complex real-time task models. In Real-Time Systems
Symposium (RTSS), 2014 IEEE, pages 173–183. IEEE, 2014.

[31] J. W. S. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition, 2000.
[32] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and

G. C. Buttazzo. Memory-processor co-scheduling in fixed priority
systems. In Proceedings of the 23rd International Conference on Real
Time Networks and Systems, RTNS 2015, Lille, France, November 4-6,
2015, pages 87–96, 2015.

[33] NASA. The altair lunar lander. In Fact sheet FS-2008-09-007-JSC,
National Aeronautics and Space Administration, 2008.

[34] NVIDIA. Nvidia accelerates race to autonomous driving at ces, 2016.
https://blogs.nvidia.com/blog/2016/01/04/drive-px-ces-recap/.

[35] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore systems.
In DATE, pages 741–746, March 2010.

[36] R. Pellizzoni and H. Yun. Memory servers for multicore systems.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2016 IEEE, pages 1–12. IEEE, 2016.

[37] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo.
Timing analysis for resource access interference on adaptive resource
arbiters. In RTAS, pages 213–222, April 2011.

[38] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and
M. Valero. Enabling preemptive multiprogramming on GPUs, 2014.

[39] F. Thabet, Y. Lhuillier, C. Andriamisaina, J.-M. Philippe, and R. David.
An efficient and flexible hardware support for accelerating synchroniza-
tion operations on the sthorm many-core architecture. In Proceedings
of the Conference on Design, Automation and Test in Europe, pages
531–534. EDA Consortium, 2013.

[40] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches
to improve isolation in multicore real-time systems. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2016
IEEE, pages 1–12. IEEE, 2016.

[41] C. Y. Villalpando, A. E. Johnson, R. Some, J. Oberlin, and S. Goldberg.
Investigation of the tilera processor for real time hazard detection and
avoidance on the altair lunar lander. In Aerospace Conference, 2010
IEEE, pages 1–9. IEEE, 2010.

[42] H. Zhou and C. Liu. Task mapping in heterogeneous embedded systems
for fast completion time. In Proceedings of the 14th International
Conference on Embedded Software, page 22. ACM, 2014.

[43] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution system
for gpgpu computing. In RTAS, pages 87–97, 2015.

13

