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Abstract—When considering recurrent real-time tasks in mul-
tiprocessor systems, access to shared resources, via so-called
critical sections, can jeopardize the schedulability of the system.
The reason is that resource access is mutual exclusive and a task
must finish its execution of the critical section before another
task can access the same resource. Therefore, the problem of
multiprocessor synchronization has been extensively studied since
the 1990s, and a large number of multiprocessor resource sharing
protocols have been developed and analyzed. Most protocols
assume work-conserving scheduling algorithms which make it
impossible to schedule task sets where a critical section of one
task is longer than the relative deadline of another task that
accesses the same resource. The only known exception to the
work-conserving paradigm is the recently presented Dependency
Graph Approach where the order in which tasks access a shared
resource is not determined online, but based on a pre-computed
dependency graph. Since the initial work only considers frame-
based task systems, this paper extends the Dependency Graph
Approach to periodic task systems. We point out the connection
to the uniprocessor non-preemptive scheduling problem and
exploit the related algorithms to construct dependency graphs for
each resource. To schedule the derived dependency graphs, List
scheduling is combined with an earliest-deadline-first heuristic.
We evaluated the performance considering synthesized task sets
under different configurations, where a significant improvement
of the acceptance ratio compared to other resource sharing
protocols is observed. Furthermore, to show the applicability in
real-world systems, we detail the implementation in LITMUSRT

and report the resulting scheduling overheads.

I. Introduction
Multicore and multiprocessor systems have become stan-

dard commercial off-the-shelf computing platforms that en-
abled massive parallel and concurrent computing. To schedule
real-time tasks on multiprocessor platforms, three paradigms
are widely adopted: partitioned, global, and semi-partitioned
scheduling. The partitioned scheduling approach assigns the
tasks statically among the available processors, i.e., a task is
always executed on the assigned processor. The global schedu-
ling approach allows a task to migrate from one processor to
another at any time. The semi-partitioned scheduling approach
decides whether a task is divided into subtasks statically
and each task or subtask is then assigned to a processor. A
comprehensive survey of multiprocessor scheduling in real-
time systems can be found in [19].

When tasks have to synchronize or access mutually ex-
clusive shared resources, synchronization protocols ensure a
correct behaviour. Synchronization and mutual exclusion can
be achieved by using binary semaphores or mutex locks,
in which the protected sections are called critical sections.
Alternatively, one can apply transactional memory (TM), e.g.,
[45], or lock-free or wait-free algorithms, e.g., [2], which allow

accesses to a shared resource using retry loops. The critical-
section-based approaches ensure the execution correctness
whenever a critical section is started, whilst the lock-free or
wait-free algorithms ensure the correctness whenever a shared
object is successfully updated or a transaction is successfully
committed. We focus on approaches with critical sections.

Since the execution of a critical section must be finished
before another task can access the same resource, mutual-
exclusive execution can result in priority inversion, where a
higher-priority task is blocked by a lower-priority task. Direct
blocking, i.e., a higher-priority task cannot access a resource
that was previously locked by a lower-priority task, cannot
be avoided. However, high-priority tasks may also suffer from
blocking by lower-priority tasks that access critical sections
for other resources, or by medium-priority tasks that prevent
a lower-priority task that locked the resource beforehand from
executing. To prevent such unnecessary blocking in uniproces-
sor systems, resource sharing protocols have been proposed,
i.e., the Priority Inheritance Protocol (PIP) and the Priority
Ceiling Protocol (PCP) by Sha et al. [48], and the Stack
Resource Policy (SRP) by Baker [8]. The Immediate PCP, a
variant of PCP, is implemented in Ada (called Ceiling locking)
and POSIX (called Priority Protect Protocol).

Due to the development of multiprocessor platforms, mul-
tiprocessor resource sharing protocols are of significant prac-
tical interest, and multiple protocols have been designed and
analyzed in the past decades. Examples are the Distributed
Priority Ceiling Protocol (DPCP) [43], the Multiprocessor Pri-
ority Ceiling Protocol (MPCP) [42], the Multiprocessor Stack
Resource Policy (MSRP) [25], the Flexible Multiprocessor
Locking Protocol (FMLP) [10], the Multiprocessor PIP [22],
the O(m) Locking Protocol (OMLP) [13], the Multiprocessor
Bandwidth Inheritance (M-BWI) [24], gEDF-vpr [3], LP-EE-
vpr [4], and the Multiprocessor resource sharing Protocol
(MrsP) [15]. Some of these protocols have been implemented
in the real-time operating systems LITMUSRT [11], [16] and
RTEMS [1]. In addition, worst-case response time analysis
and schedulability tests for multiprocessor locking and syn-
chronization protocols have been studied in the literature,
e.g., under multiprocessor partitioned scheduling the linear-
programming (LP) based analysis [12], the suspension-aware
response time analysis [17] for suspension-based protocols,
and the blocking analysis [55] for spin-based protocols.

However, the above multiprocessor locking or synchro-
nization protocols usually assume that the tasks are already
reasonably prioritized (under global scheduling) or reasonably
partitioned (under partitioned scheduling). The performance of
these protocols highly depends on such assumptions, since a
poor task priority assignment or partitioning may lead to a sig-
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nificant performance drawback. Towards this, task partitioning
algorithms for different protocols have been developed, i.e.,
for MPCP by Lakshmanan et al. [35] and Nemati et al. [40],
for MSRP by Wieder and Brandenburg [56], and for DPCP
by Hsiu et al. [30], Huang et. al [31], and von der Brüggen
et al. [52]. Specifically, the approaches by Huang et. al [31]
and von der Brüggen et al. [52], so called resource-oriented
partitioned (ROP) scheduling, focus on the shared resources
by first assigning each resource to a designated processor
where then uniprocessor protocols like PCP can be applied,
and afterwards partitioning the non-critical sections on the
remaining processors.

Regardless, the primary focus has been the design and
analysis of resource sharing protocols. Most of these protocols
assume that the critical sections must be executed in a work-
conserving manner, i.e., whenever there is a critical section that
is ready to be executed and the corresponding processor that
is assigned to execute the critical section is idle, the critical
section has to be executed. To the best of our knowledge, the
only exception is the Dependency Graph Approaches by Chen
et al. [18] that consists of the following two steps:

• First, a dependency graph is constructed that determines
the execution order of the critical sections guarded by one
binary semaphore.

• Then, multiprocessor partitioned, semi-partitioned, or
global scheduling algorithms can be applied to schedule
the tasks by respecting the constructed dependency graph.

Due to the first step, the schedule is not necessarily work-
conserving since it is possible that a critical section is ready
to be executed but one of its predecessors in the dependency
graph is not ready yet.

However, the approaches presented in [18] can only be
applied for frame-based real-time task systems, i.e., all tasks
have the same period and release their jobs always at the same
time, and a special case of periodic real-time task systems
when a binary semaphore or a mutex lock is only shared
by tasks with the same period. Under these assumptions,
Chen et al. [18] showed that the dependency graph approach
is both theoretically and practically sound, with significant
improvement against traditional multiprocessor synchroniza-
tion and locking protocols. Furthermore, they presented a
series of analyses regarding the computational complexity and
approximation ratio for frame-based real-time task systems
when there is at most one non-nested critical section per
task. Specifically, they showed that finding a schedule to meet
the given common deadline is NP-hard in the strong sense,
regardless of the number of processors in the system.

In Sections III and IV, we will detail the connection
between uniprocessor non-preemptive scheduling and multi-
processor synchronization for periodic real-time tasks. The
problem to derive good non-preemptive schedules for a set of
periodic real-time tasks (or equivalently a set of jobs unrolled
up to the hyper-period when the release pattern repeats after
the hyper-period) is a classical scheduling problem. Exist-
ing algorithms are, for example, the extended Jackson’s rule
by Jackson [32] (i.e., non-preemptive earliest-deadline-first
(EDF)), the iterative improvement algorithm by Potts [41], an
iterative improvement algorithm by Hall and Shmoys [28], the
Precautious-RM by Nasri et al. [37], [39], and the critical time

window-based EDF scheduling policy (CW-EDF) by Nasri
and Fohler [38]. There are also scheduling algorithms and
schedulability analyses, e.g., [20], [21], [26], [33], [51], for
uniprocessor non-preemptive scheduling for sporadic real-time
task systems, in which a sporadic task does not have to release
its jobs periodically but under a bounded minimum inter-
arrival time. Since the tasks are allowed to release their jobs
sporadically, such results are pessimistic in a strictly periodic
setting and, therefore, not applied here.

Contributions: In this paper, we increase the applicability of
the dependency graph approaches by handling multiprocessor
synchronization for periodic real-time task systems. We focus
on a fundamental setting, in which each job has only one non-
nested critical section, motivated in Section II. In Section IX,
we explain possible solutions for jobs with multiple critical
sections. Our contributions are as follows:

• We motivate the use of the dependency graph approach
in [18] to construct non-work-conserving schedules for
periodic tasks. Specifically, in Section III, we present a
task set that is not schedulable by any work-conserving
algorithm but for a non-work-conserving schedule.

• We develop a framework to construct independent de-
pendency graphs for periodic tasks that access the same
shared resource by reducing the problem to a uniproces-
sor non-preemptive scheduling problem over one hyper-
period in Section IV. In this framework, any algorithm
for uniprocessor non-preemptive scheduling problem is
applicable, including [28], [32], [37]–[39], [41]. In our
implementation, we adopted the method by Potts [41] and
the extended Jackson’s rule [32].

• To schedule a set of dependency graphs for the given
binary semaphores on M processors, we combine List
scheduling with an earliest-deadline-first (EDF) heuristic,
denoted as List-EDF, in Section V. A detailed example is
provided in Section VI to illustrate the procedure.

• Section VII explains how we implemented the List-EDF
algorithm in LITMUSRT and reports the overheads.

• We further evaluate the performance by applying numer-
ical evaluations under different configurations in Sec-
tion VIII and observe significant improvement of the
acceptance ratios compared to state-of-the-art techniques
for multiprocessor resource sharing.

To the best of our knowledge, we present the first non-
work-conserving approach for multiprocessor resource syn-
chronization of periodic real-time tasks.

II. System Model
We consider a set of n real-time tasks T ={τ1, . . . , τn}

that is scheduled on M identical (homogeneous) processors.
Each task is described by τi = ((Ci,1, Ai,1, Ci,2), Ti, Di).
We assume that all tasks release an infinite number of task
instances, called jobs, strictly periodically, i.e., if a job of τi
is released at time t the subsequent job is released exactly at
time t+Ti, and that the first instance of all tasks is released at
time 0. The relative deadline of the task is denoted by Di and
to fulfill its timing requirements a job of τi released at time t
must finish its execution before its absolute deadline t + Di.
We consider constrained-deadline task systems which means
that Di ≤ Ti for every task τi ∈ T.
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The hyper-period H of the task set T is defined as the
least common multiple (LCM) of the periods of the tasks in T.
In our approach, we unroll the jobs in one hyper-period and
design a schedule for all of them. To make sure that the time
and space complexity is affordable, we assume that the task
set has one of the following properties:

• Harmonic Periods: Ti is an integer multiple of Tj if
Ti ≥ Tj for any two tasks τi and τj in T.

• Semi-Harmonic Periods: We call a task set semi-harmonic
if Ti ·ni = H ∀τi ∈ T where ni is a small integer value.

One prime example for task sets with semi-harmonic periods
are automotive applications where the periods of the tasks are
in {1, 2, 5, 10, 20, 50, 100, 200, 1000} ms [29], [34], [44], [50],
[54]. Note that our methods can still be applied to any periodic
real-time task systems at the cost of higher complexity if the
hyper-period is large compared to the task periods.

Each task τi is assumed to have exactly one (non-nested)
critical section, which leads to three subtasks with the follow-
ing properties:

• Ci,1 ≥ 0 is the worst-case execution time (WCET) of the
first non-critical section.

• Ai,1 ≥ 0 is the WCET of the critical section, where a bi-
nary semaphore σ(τi) is applied to prevent the concurrent
accesses of the shared resource.

• Ci,2 ≥ 0 is the WCET of the second non-critical section.

For the rest of this paper, we will use a binary semaphore
for a mutex lock. In this context, we will implicitly use
synchronization (which also implies locking/unlocking) in this
paper. In addition, we assume that there are in total z binary
semaphores (shared resources), and that the critical sections
guarded by one binary semaphore s must be sequentially
executed and is mutually exclusive, i.e., if two jobs share
the same resource, their critical sections have to be executed
without any overlap. However, a critical section guarded by a
binary semaphore can be preempted by another critical section
guarded by another binary semaphore or by a non-critical
section arbitrarily.

The problem studied in this paper is to find a schedule for a
given task set T on M homogeneous processors that can meet
all timing constraints. A schedule Sm(t) on a processor m
is a function of time that determines for each time t which
task is executed on processor m, i.e., if Sm(t) is i, then
task τi is executed on processor m at time t and if Sm(t)
is Ω, then processor m idles at time t. For a partitioned
schedule, the execution of each task is tied to one processor,
i.e., all executions related to a task are done on the same
processor, while under global or semi-partitioned scheduling
the processor where a task (or job) is executed may change
over time. We assume that the execution of a task cannot be
parallelized, i.e., Sm(t) = i for at most one processor m at any
time t. Suppose that a job of task τi starts to hold (successfully
locks) the binary semaphore s at time t. Then any other critical
section that is guarded by s cannot be executed until the job
of task τi releases (unlocks) the semaphore s.

When analyzing the schedulability, we assume that all
subjobs of all tasks always are executed according to their
worst-case execution time. To be schedulable, the `-th job

of task τi must finish not later than (` − 1)Ti + Di, i.e.,∫ (`−1)Ti+Di

(`−1)Ti

(∑M
m=1[Sm(t) is i]

)
dt = Ci,1 + Ai,1 + Ci,2

where [condition] is the Iverson bracket, i.e., it is 1 if the
condition holds, and 0 otherwise. A task is schedulable if all
jobs are schedulable, and a task set is schedulable if all tasks
are schedulable.

The studied task and system model is applicable if a shared
resource is used at most once during the execution of a job.
For example, when a shared GPU is used for accelerating the
execution of a job, the execution behavior is usually divided
into three segments: pre-processing, GPU execution, and post-
processing. The pre-processing and post-processing phases do
not access the shared GPU, whilst the GPU execution needs
to lock the GPU exclusively. Similarly, shared memory access
should be aggregated instead of having multiple individual
access to the memory variables. Such a concept is also used in
the AER superblock model by Schranzhofer et al. [46], [47],
the PREM model by Bak et al. [6], and the memory-processor
co-scheduling by Melani et al. [36].

Since this setting is the most fundamental problem in
multiprocessor resource sharing, basic understanding and good
solutions for this model will be a cornerstone in future design
of multiprocessor resource sharing protocols, and we focus on
it in this paper from Section III to Section VIII. However, since
creating only one critical section per job requires engineering
efforts and may not always be achievable, we provide some
ideas how the proposed methods can be extended to deal with
periodic real-time tasks where a job may have multiple non-
nested critical sections in Section IX.

III. Motivational Example and Preliminaries
As described in Section I, existing multiprocessor resource

sharing protocols are work-conserving for the critical sections.
In this section, we will demonstrate the benefits of non-work-
conserving synchronization mechanisms when periodic real-
time tasks are considered and explain how dependency graphs
can be applied.

A. Motivational Example
The computational complexity analysis by Chen et al. [18]

concludes that the multiprocessor synchronization problem
is NP-hard in the strong sense even for frame-based tasks
systems with one shared resource, independent from the
number of processors in the system. The proof was based
on a reduction from a strongly NP-hard uniprocessor non-
preemptive scheduling problem to the multiprocessor resource
sharing problem. Since the case that all tasks have the same
period is a special case of periodic task systems, the result still
holds if tasks with different periods are allowed.

We now explain how the multiprocessor resource sharing
problem is connected to the uniprocessor non-preemptive
scheduling problem. Consider a set of periodic real-time tasks
in a uniprocessor system, in which each task τi is described
by its worst-case execution time Ci, its period Ti, its relative
deadline Di = Ti, and its phase φi, i.e., φi is the release time
of the first job of the task. It has been demonstrated by Nasri
and Fohler [38] that work-conserving uniprocessor schedules
are not optimal based on the following example:
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• τ1 = {C1 = 1, T1 = D1 = 5, φ1 = 0},
• τ2 = {C2 = 1, T2 = D2 = 10, φ2 = 0}, and
• τ3 = {C3 = 8, T3 = D3 = 20, φ3 = 0}.

The analysis in Theorem 4 in [38] shows that (at least) one of
the three tasks misses its deadline under any work-conserving
schedule. On the other hand, a feasible non-work-conserving
uniprocessor schedule is to run the first job of τ1 from 0 to
1, the first job of τ2 from 1 to 2, the second job of τ1 from
5 to 6, and let the first job of task τ3 start at time 6, i.e., by
inserting an idle interval from 2 to 5 instead of running the
available job of τ3. Details can be found in Section 3 in [38].

We extend the above task set to the studied multiprocessor
synchronization problem. Specifically, we consider the three
tasks listed in Table I which access the same resource in their
critical section, where 0 < ε < 0.5. Fig. 1 presents two
multiprocessor partitioned schedules, which execute tasks τ1
and τ2 on one processor, denoted as Proc. 1, and task τ3 on
another processor, denoted as Proc. 2. Here, and for the rest
of this paper, whenever we refer to the above example, ε is
set to 0.2. The schedule in Fig. 1(a) is a work-conserving
schedule with respect to the critical sections, which leads to
a deadline miss. However, the schedule in Fig. 1(b) is a non-
work-conserving schedule with respect to the critical sections,
which meets all the deadlines.

If the execution of the critical sections is work-conserving,
the above task set cannot be feasibly scheduled, since, when
ε is arbitrarily small, the execution of the critical sections of
the three tasks is identical to the uniprocessor non-preemptive
scheduling problem described by Nasri and Fohler [38]. This
immediately results in a deadline miss of task τ1 in any mul-
tiprocessor synchronization protocols in the literature because
A3,1 = 8 must be considered as blocking time of task τ1.

Moreover, the gap between work-conserving and non-
work-conserving schedules already exists in “uniprocessor
scenarios”. That is, if the non-critical sections are negligible,
then the task set in the above example provided by Nasri
and Fohler [38] demonstrates the reasons why non-work-
conserving schedules can be beneficial.

B. The Dependency Graph Approach
Therefore, there is a need to examine how non-work-

conserving synchronization schedules can be designed. One
possible solution is the Dependency Graph Approach by Chen
et al. [18] that first constructs a dependency graph for each
resource and afterwards schedules these graphs based on any
scheduler for directed acyclic graphs. However, their approach
is limited to scenarios when the real-time tasks that share the
same resource have the same period.

Specifically, a dependency graph in [18] is a directed
acyclic graph G = (V,E), where a vertex vi,j ∈ V represents
either a critical section or a non-critical section of a job and
a directed edge e ∈ E represents the precedence constraint
between two vertices. By definition, for each job of τi, the
vertex representing Ci,1 is an immediate predecessor of Ai,1
and Ai,1 is an immediate predecessor of Ci,2. The critical
sections of one shared resource are chained as they have
to be executed sequentially. To construct the graph, existing
algorithms for uniprocessor non-preemptive scheduling for

Task Ci,1 Ai,1 Ci,2 Ti = Di φi σ(τi)

τ1 ε 1−2ε ε 5 0 1
τ2 ε 1−2ε 3 + ε 10 0 1
τ3 4 8 6 20 0 1

TABLE I. An example task set that will be used in this paper
for demonstration, where 0 < ε < 0.5.

non-critical section critical section

P
ro
c.

1

τ1

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Deadline miss

P
ro
c.

2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) A work-conserving schedule.

P
ro
c.

1

τ1

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro
c.

2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) A non-work-conserving schedule.

Fig. 1. Work-conserving multiprocessor synchronization versus non-work-
conserving multiprocessor synchronization for the tasks defined in Table I.

aperiodic real-time tasks were applied in [18], i.e., Potts
algorithm [41] and the Extended-Jackson’s Rule [32].

One possible way to extend their approach is to build
a dependency graph for the tasks with the same period.
If a resource is shared by tasks with ` different periods,
then ` dependency graphs are constructed individually, and,
afterwards, the ` dependency graphs are scheduled. However,
the scheduler has to decide which dependency graph has
a higher priority than other dependency graphs. Moreover,
the scheduler has to decide whether the dependency graphs
should be scheduled in the work-conserving manner. However,
such an extension does not necessarily result in any benefits.
For instance, when considering the example in Table I no
additional information is gained, since the three tasks are
represented by three dependency graphs.

Another possibility is to build a dependency graph for
each shared resource s over one hyper-period. The dependency
graph for the shared resource s is denoted as Gs, in which the
vertices in Gs represent all the critical sections and non-critical
sections of the jobs that are released in the hyper-period of
the corresponding tasks. The edges in graph Gs represent the
precedence constraints of these subjobs.

Fig. 2 shows a possible dependency graph for the three
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C1
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1,1

C2
1,2

C3
1,1

A3
1,1

C3
1,2

C4
1,1

A4
1,1

C4
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C2
2,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C1
3,1

A1
3,1

C1
3,2

Fig. 2. The dependency graph resulting from Fig. 1(b) for the three tasks
in Table 1 over one hyper-period. The precedence constraints for the critical
sections are detailed by the blue dashed line.

tasks used in Table I over one hyper-period. For notational
brevity, we denote the `-th job of task τi in as J`i and
the vertices of the three subjobs of J`i are J`i,1, J

`
i,2, J

`
i,3,

representing C`i,1, A
`
i,1, and C`i,2. In the detailed graph, J2

1,2

is an immediate predecessor of J1
3,2. Hence, it forces J1

3,2 to
start after J2

1,2 finishes, independent from the time J1
3,2 is ready

to be executed.

IV. Dependency Graph for Periodic Tasks
The idea of the dependency graph approach for periodic

tasks is to reduce the multiprocessor resource sharing problem
to the uniprocessor non-preemptive scheduling problem. We
extend this approach by unrolling all jobs in one hyper-period
and create the related dependency graphs. Afterwards, the
graphs can be used for the scheduling of each hyper-period.

Suppose that Hs is the least common multiple (LCM) of
the periods of the tasks that share semaphore s. For each task
τi that requests semaphore s, we create Hs/Ti jobs of task
τi.1 For the `-th job J`i of task τi, the earliest time that the
critical section can be executed is r`i = (` − 1)Ti + Ci,1
and the absolute deadline to finish the critical section must
be no later than d`i = (` − 1)Ti + Di − Ci,2. Furthermore,
the processing time of the job is p`i is Ai,1. The set of the
jobs that have to be scheduled over one hyper-period Hs for
a semaphore s after the above reduction is hence defined as
Js =

{
J`i | σ(τi) is s and 1 ≤ ` ≤ Hs/Ti

}
.

1Since H is an integer multiple of Hs by definition, one can also create a
dependency graph for H/Ti jobs of task τi at cost of higher complexity.

Algorithm 1 Dependency graph construction for periodic tasks
Input: Union of task graphs that share a common semaphore

G1,G2, . . . ,Gz;
Output: Dependency graphs for all jobs in a hyper-period for each

semaphore G′
1, G′

2, . . . , G′
z;

1: for each Gs ← G1,Gs ← G2, . . . ,Gs ← Gz do
2: Hs ← LCM(Gs)
3: unroll all jobs that are released in the hyper-period for the

tasks in Gs;
4: for the `-th job of task τi in Gs with 1 ≤ ` ≤ dHs/Tie do
5: r`i ← (`− 1) · Ti + Ci,1;
6: p`i ← Aj,1;
7: d`i ← (`− 1) · Ti +Di − Ci,2;
8: end for
9: G′

s ← calculate the precedence constraints for the critical
sections;

10: for the `-th job of task τi in Gs with 1 ≤ ` ≤ dHs/Tie do
11: add the precedence constraints C`

i,1 → A`
i,1 → C`

i,2 to G′
s;

12: end for
13: end for
14: return G′

1, G′
2, . . . , G′

z;

Note, that we only consider the construction of the depen-
dency graph for the critical sections at this moment and assume
sufficient resources for the non-critical sections, i.e., all critical
sections are executed sequentially on one processor and each
task has an exclusively assigned processor for the execution
of non-critical sections. Therefore, the execution of the non-
critical sections is not considered but the related WCET is used
for setting up the release time and the absolute deadline.

After this reduction, we can apply any existing algorithm
for non-preemptive uniprocessor scheduling to construct the
precedence constraints for the critical sections in Js, i.e., the
execution order for the critical sections. Moreover, since the
execution of a job has to follow the execution order of Ci,1,
Ai,1, and Ci,2, we include these precedence constrains to get
the complete dependency graph for semaphore s.

Algo. 1 shows the pseudo-code of our approach and Fig. 2
displays an example for a resulting dependency graph. When
constructing the precedence constraints for Js (Line 9 in
Algo. 1), any algorithm for non-preemptive uniprocessor sche-
duling can be exploited. For example, when considering the
literature of the real-time systems community, Precautious-RM
by Nasri et al. [37], [39] and the critical time window-based
EDF scheduling policy (CW-EDF) by Nasri and Fohler [38]
can be applied.

Alternatively, classical results for the machine scheduling
problem of independent jobs under non-preemptive schedu-
ling can be considered, e.g., the algorithms by Hall and
Shmoys [28], Potts [41], and Jackson [32]. These algorithms
assume knowledge about the release times, processing times,
and deadlines of all jobs that have to be considered in the
schedule. Note, that the classical scheduling problem assumes
a delivery time that a job needs after it finishes its execution
instead of a deadline and minimizes the length of the schedule.
However, our studied problem can directly be transferred
by setting the delivery time as Hs − d`i for each job and
checking whether the schedule is shorter than Hs. In this
work, we consider Potts algorithm [41] and the extended
Jackson’s rule [32] for the construction. While the extended
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Jackson’s rule [32] is similar to non-preemptive EDF, Potts
algorithm [41] starts with a non-preemptive EDF schedule that
is updated over a (fixed) number of iterations by defining a
critical job Jc, i.e., a job that misses the deadline, and forcing
a job with a later absolute deadline than Jc that is executed
before Jc (do to an earlier release time than Jc) to execute
after Jc. This procedure may lead to idle time and therefore
to a non-work-conserving schedule.

V. List-EDF Scheduling
Here, we show how to schedule the unrolled dependency

graphs over the hyper-period H = LCM(H1, H2, . . . ,Hz).
According to our notation, each job J`i has three subjobs
J`i,1, J

`
i,2, J

`
i,3 that represent the related subjobs Ci,1, Ai,1, Ci,2,

respectively, the release time of the first subjob is J`i,1 is
(` − 1)Ti, and the absolute deadline of the last subjob J`i,3
is (` − 1)Ti + Di. Regarding the release times of the second
and third subjob, we initially set the earliest possible time the
job may be released based on the WCETs of the other subjobs,
and regarding the deadline of the first and second subjob, we
initially assign the latest possible time the subjob can finish
while still allowing schedulability. To be precise, the release
time of J`i,2 is set to (`− 1)Ti +Ci,1, the release time of J`i,3
is set to (`− 1)Ti +Ci,1 +Ai,1, the absolute deadline of J`i,2
is set to (`− 1)Ti +Di − Ci,2, and the absolute time of J`i,1
is set to (`− 1)Ti +Di − Ci,2 −Ai,1.

We assume that each dependency graph Gs for a binary
semaphore s is constructed for the corresponding jobs released
(strictly) within one hyper-period H . If Hs < H , then H

Hs

copies of Gs are applied in a consecutive order to represent the
precedence constraints of the critical sections. For notational
brevity, we denote r`i,j as the release time of the subjob J`i,j and
d`i,j as the absolute deadline of J`i,j . If the absolute deadline
of an immediate predecessor of J`i,j , denoted as IPre(J`i,j),
is larger than d`i,j , the absolute deadline of the immediate
predecessor should be reassigned to d`i,j minus the WCET of
J`i,j . This is a standard procedure for scheduling jobs subject to
release dates and precedence constraints. Details can be found
in [7] and an example is provided in Section VI for illustration.

For the rest of this paper, we assume that the absolute
deadline assignment is adjusted accordingly so that d`i,j for
the subjob J`i,j is always greater than the absolute deadline of
IPre(J`i,j).

After the construction of G1,G2, . . . ,Gz , the scheduling
problem becomes a classical multiprocessor scheduling prob-
lem. In scheduling theory, a scheduling problem is defined by
a triple notation α|β|γ, where

• α: describes the machine environment,
• β: specifies the processing characteristics and constraints,
• γ: presents the objective to be optimized.

Scheduling G1,G2, . . . ,Gz on M homogeneous (identical)
processors is a special case of the classical scheduling problem
P |prec; rj |Lmax, i.e., scheduling a set of jobs with speci-
fied release times and precedence constraints on M identical
processors, minimizing the maximum lateness. Our goal here

is not to have any deadline misses. Therefore, a schedule is
feasible if Lmax ≤ 0.2

One possible scheduling strategy is to use the List schedu-
ling developed by Graham [27] in combination with earliest-
deadline-first scheduling (EDF). A List schedule works as
follows: Whenever a processor idles and there are subjobs
eligible to be executed (i.e., all of their predecessors in the
dependency graph have finished), one of the eligible subjobs
is executed on the processor. If more subjobs than processors
are available, we prioritize the subjobs that have the earlier
absolute deadlines, and if two subjobs have the same absolute
deadline, the one with the larger remaining workload has a
higher priority. We denote this scheduling algorithm List-EDF.

We note that List-EDF in our setting is a preemptive
algorithm. Whenever a new (eligible) subjob has an earlier
absolute deadline than an executing subjob on a processor
m, this new subjob can preempt the one that is executing on
processor m. Such flexibility to allow preemption does not
create any problem for the mutual-exclusive constraint of the
critical sections guarded by one binary semaphore s because
their execution order has been predefined in the dependency
graph Gs. Therefore, a critical section guarded by a semaphore
s can only be preempted by either non-critical sections or by
critical sections guarded by other semaphores.

Moreover, Graham [27] showed that the list scheduling
can suffer from multiprocessor timing anomalies. Specifically,
the reduction of the execution time of a subjob can lead to
longer response times of other subjobs. We do not prove that
no multiprocessor timing anomaly exists in List-EDF. Hence,
after deriving a schedule based on List-EDF, the schedule has
to be applied statically, i.e., in an offline fashion. One option
is to apply table-driving scheduling to ensure the repetitive
schedule in every hyper-period. Another is to enforce the actual
execution time of each subjob to be the same as its worst-case
execution time. Since the scheduling algorithm is deterministic,
the schedule is always repeated. We will discuss both options
in Section VII.

VI. An Illustrative Example for List-EDF
In this section, we provide an example to demonstrate how

our algorithm works. We consider a task set consisting of the
three tasks defined in Table II, which are identical to the tasks
in Table I when ε = 0.2, all requesting shared resource 1,
and two additional tasks defined in Table III which request
shared resource 2. These five tasks are scheduled on M = 2
processors by using List-EDF.

We begin with the tasks requesting resource 1 (Table I),
provided that the chain of the critical sections is defined by the
dependency graph shown in Fig. 2. This dependency graph re-
sults in an order of J1

1,2, J
1
2,2, J

2
1,2, J

1
3,2, J

3
1,2, J

2
2,2, J

4
1,2. Based

on this, the release times and deadlines for the individual
subjobs can be determined for all releases of all subjobs
of all tasks as displayed in Table II. Regarding the release
times, we will only consider the earliest possible release
time of the critical sections and of the second non-critical

2Lmax is maxj{fj − dj}, where fj is the finishing time of job Jj and
dj is the absolute deadline of job Jj . Therefore, if Lmax ≤ 0, then all jobs
meet their deadlines.
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Task WCETs Other Parameters Release Times Deadlines
Ci,1 Ai,1 Ci,2 Ti = Di φi σ(τi) ` J`i,1 J`i,2 J`i,3 J`i,1 J`i,2 J`i,3

τ1 0.2 0.6 0.2 5 0 1

1 0 0.2 0.8 4.2 4.8 5
2 5 5.2 5.8 5.4 6 10
3 10 13.8 14.4 14.2 14.8 15
4 15 15.2 15.8 19.2 19.8 20

τ2 0.2 0.6 3.2 10 0 1 1 0 0.8 1.4 4.8 5.4 10
2 10 14.4 15 16.2 16.8 20

τ3 4 8 6 20 0 1 1 0 5.8 13.8 6 14 20

TABLE II. The (earliest possible) release times and the deadlines for the task set presented in Table I (with ε = 0.2), based on
the dependency graph in Fig. 2. The release times and deadlines of the critical sections are changed based on the order and the
resulting restrictions in the dependency graph (colored red), which propagates to later releases of the second non-critical section
or an earlier deadline of the first non-critical section (colored blue).

Task WCETs Other Parameters Release Times Deadlines
Ci,1 Ai,1 Ci,2 Ti = Di φi σ(τi) ` J`i,1 J`i,2 J`i,3 J`i,1 J`i,2 J`i,3

τ4 0.2 0.2 0.2 10 0 2 1 0 0.2 0.4 9.6 9.8 10
2 10 10.2 10.4 19.6 19.8 20

τ5 2 3 2 20 0 2 1 0 2 5 15 18 20

TABLE III. The tasks requesting the shared resource 2 (including release times and deadlines).

sections resulting from the dependency graph, assuming no
early completion of jobs. Note that the actual release times
may be later, depending on the actual schedule.

All first subjobs are released exactly periodically. For all
other subjobs, the release times may be adjusted based on the
earliest times their predecessors may finish. This is done in a
forward manner, i.e., starting from time 0 up until time H , i.e.,
20 in Table II and Table III. Hence, J1

2,2 is released at time 0.8
(marked red in Table II) due to the earliest possible finishing
time of J1

1,2 at 0.8. Therefore, the release of J1
2,3 is postponed

as well (marked blue here and for all other third subjobs that
are postponed). The second subjob of the second release of
τ1 can finish no earlier than at time 5.8, hence the release of
J1
3,2 is postponed accordingly. Due to the long critical section

of task τ3, the releases of J3
1,2 and J2

2,2 are postponed to time
13.8 and 14.4 as well.

The deadlines in Table II are constructed in a backward
manner, i.e., from the end of the hyper-period to the beginning.
Here, all third subjobs have a deadline identical to the end of
the related period. The deadlines of the second subjobs are
based on the dependency graph. While for J4

1,2, J
2
2,2, J

3
1,2, and

J1
3,2 the deadlines directly result from that job’s third subjob

the large duration of J1
3,2 leads to an early deadline of J2

1,2
(6 instead of 9.8) which again leads to the deadline of 5.4
(instead of 6.8) for J1

2,2. Again, the changed deadlines for the
second subjobs are marked red while the resulting adjustment
for the first subjobs is marked blue in Table II.

Regarding the tasks τ4 and τ5 (that access resource 2)
shown in Table III, we assume the order J1

4,2, J
1
5,2, J

2
4,2 for

the access to resource 2. Since no deadlines or release times
are adjusted in Table III, details are omitted.

The schedule based on global EDF is displayed in Fig. 3
and considers the deadlines provided in Table II and Table III.
Execution on processor 1 is marked blue while execution on

processor 2 is marked red. In addition, the access to the critical
sections related to resource 1 and resource 2 are shown with
different hatching patterns as detailed in Fig. 3. We assume that
if two tasks with the same deadline compete for a processor,
then the subjob with the larger remaining workload is preferred
in the scheduling decision. At time 0 the subjobs J1

1,1 and J1
2,1

are scheduled since their deadlines are 4.2 and 4.8. As soon
as J1

2,1 is finished at time 0.2, J1
2,2 cannot be scheduled since

J1
1,2 is its predecessor and has not finished yet. Therefore,
J1
3,1 gets the processor due to its deadline at time 6. At time

0.8, J1
3,1 is preempted by J1

2,2 which has a shorter deadline,
namely 5.4, but J1

3,1 is assigned to the other processor at time
1.0. Subsequently, J1

3,1 finishes its execution at time 4.4, and
J1
4,1 is assigned to the processor. After J1

2,3 finishes executing
at time 4.6, we observe the non-work-conversing behaviour
of our approach. Here, J1

3,2 has an absolute deadline of 14
which is earlier than the absolute deadline of J1

5,1 at time 15.
Nevertheless, due to the precedence constrains resulting from
the dependency graph, i.e., that J2

1,2 executes before J1
3,2 in

the total order, J1
3,2 is not eligible and processor 2 is assigned

to J1
5,1. Note that if processor 2 would be assigned to J1

3,2 at
this point in time, then J2

1,2 would miss its deadline since J1
3,2

would not finish its execution before time 12.6. Under the
dependency graph approach this is prevented by postponing
J1
3,2 until J2

1,2 is finished at time 6.

We point out that the release times displayed in Table II
and Table III are only considered when constructing the de-
pendency graph but do not have any impact on the scheduling
of the jobs afterwards. In the actual schedule, the subjobs are
released based on the actual finishing time of all predecessors
which may be much later than the earliest possible release
times considered during construction. The reason is that during
construction we assume that all non-critical sections can be
executed as soon as they are released without considering if
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sufficient processors are available to schedule all available
subjobs. For instance, in the actual schedule in Fig. 3, the
second subjobs of the first job of τ4 and τ5 are released much
later than at time 0.2 and 2, which are the release times in
Table III. However, not considering the combined workload
of the non-critical sections when constructing the dependency
graph allows us to construct the graphs for different resources
individually and to use well-known algorithms for uniprocessor
non-preemptive scheduling.

VII. Implementation and Overheads
This section details our implementation in LITMUSRT and

compares the implementation overheads of our approach and
FMLP provided by LITMUSRT for both partitioned and global
scheduling. Our implementation has been released in [49].

We considered two possibilities for the implementation
in LITMUSRT: 1) applying the table-driven scheduling that
LITMUSRT provides, or 2) implementing a new binary
semaphore which can enforce the execution order of subjobs.

A table-driven scheduling is defined by a static scheduling
table that repeat periodically, i.e., for each point in time in the
hyper-period the table determines which entity each processor
should be executing (if any). However, the large number of
subjobs and the fact that jobs may be migrated under global
List-EDF may lead to a very large table size. While table
driven scheduling directly prevents the multiprocessor timing
anomalies (detailed at the end of Sec. V), this can also be
avoided if early completion of jobs is not allowed, i.e., each
subjob is forced to execute the related WCET. Therefore,
we implemented a new binary semaphore that supports the
properties of our approach.

The new approach is implemented under the plug-in Parti-
tioned EDF with synchronization support (PSN-EDF) and the
plug-in Global EDF with synchronization support (GSN-EDF).
The EDF feature of List-EDF is guaranteed by the original
design of these two plug-ins. Therefore, we only have to
provide the relative deadlines for the three subjobs of each
task, and let the system update the absolute deadline for each
subjob in different periods accordingly during the run time.
Hence, we only explain how the subjob-order resulting from
the dependency graph is enforced. On the one hand, we must
ensure that jobs access the shared resource according to the
predefined graph order. On the other hand, the inner execution
order of the jobs must be ensured, i.e., the subjobs are always
executed in the order: first non-critical section, critical section,
second non-critical section.

The order of the three subjobs within one job is directly
provided by liblitmus, the user-space library of LITMUSRT.
The task deploy tool rtspin is used to emulate purely
CPU-bound workload and to define the structure of tasks can
directly, e.g., the number of non-critical sections and critical
sections, the order of these non-critical sections and critical
sections, the related execution times, and the number of the
resources that the task will access. Each job is executed in
rtspin by using Algo. 2 where execution_for is a
simple spin loop function that emulates purely CPU-bound
workloads. The function execution_for(a, b, c) has
three inputs: a is the release time of the subjob, b is the
execution time of the subjob, and c is the deadline of the

Algorithm 2 Inner order enforcement in rtspin
Input: Execution times for three subjobs: Ci,1, Ai,1, and Ci,2,

deadlines for each subjob: d`i,j ;
1: execution for(r`i,1, Ci,1, d`i,1);
2: semaphore lock();
3: execution for(r`i,2, Ai,1, d`i,2);
4: semaphore unlock();
5: execution for(r`i,3, Ci,2, d`i,3);

subjob. Note, that the release times of the subjobs are not
predetermined but result from the moment the job is released
(for the first subjob), and the moments where the first non-
critical section and the critical section are finished (for the
second and third subjob). The deadlines of the subjobs however
are calculated beforehand and result from the dependency
graph and the intra job dependencies. All the commands in
Algo. 2 are executed sequentially, which directly ensures that
the critical section and the second non-critical section are only
released after their predecessor in the job has finished.

For a set of periodic real-time tasks that release the first
job at the same time, the schedule of the given task set will
be repeated for each hyper-period if

• the scheduler is deterministic, i.e., it always makes the
same scheduling decision for a given situation,

• the WCRT of all jobs is smaller than the period of the
tasks, i.e., it is ensured that at any point in time at most
one job of each task is in the system, and

• no early completion of (sub)jobs is allowed.

In one hyper-period, the order of all jobs’ critical sections
which request the same resource is defined according to the
dependency graph constructed by Algo. 1. We enforce that jobs
are executed in this order by extending the data structures that
describes tasks and implementing a new binary semaphore:

• The data structure rt_params that defines the properties
of each task, e.g., priority, period, and execution time, is
extended with the following three parameters:
◦ rt_order defines the positions of the jobs of one task

in the total order of the critical sections that access the
same shared resource over one hyper-period.

◦ rt_jobs is the number of jobs of the related task in
one hyper-period.

◦ total_jobs is the number of all jobs that share the
related resource (identical for all tasks accessing the
same resource).

• The binary semaphore for the dependency graph approach
with List-EDF is named list-edf_semaphore.
Besides the common components for semaphore,
i.e., semaphore_owner, wait_queue, and
litmus_lock, an additional parameter named
current_serving_ticket is defined that controls
the execution order of the critical sections.

The pseudo code provided in Algo. 3 shows three main
functions in our implementation, details are as follows:

The function get_job_order returns the position of
the job in the execution order for jobs that access the same
shared resource among different hyper-periods. In LITMUSRT,
job_no by default counts the number of jobs that one
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processor 1 processor 2

non-critical section critical sections R1/R2

τ5

τ4

τ3

τ2

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 3. An Example of List-EDF with two shared resources.

Task rt_order rt_jobs total_jobs
τ1 [0, 2, 4, 6] 4 7
τ2 [1, 5] 2 7
τ3 [3] 1 7

TABLE IV. An example of the data structure for tasks.

task releases. We apply a modulo operation on job_no and
rt_jobs to find out the exact position of this job within one
hyper-period. After that, the value of job_order is searched
from rt_order based on the obtained index.

We take the first three tasks in Fig. 3 which share the same
resource as an example and present the related data structure
in Table IV. Assume that the job_no for τ1 is 17. Line 1
in Algo. 3 returns the corresponding relative position in the
hyper-period, i.e., the 17th job of τ1 is the job of τ1 with index
1 in the current hyper-period. Therefore, the corresponding
element in rt_order is 2 (Line 2 in Algo. 3). Namely, the
17th job of task τ1 is the second job of τ1 that is granted
access to the resource within the corresponding hyper-period.

The function list-edf_lock tries to lock the
semaphore to obtain the related resource. After getting the
correct position in the execution order according to the de-
pendency graph, the job’s job_order and the semaphore’s
current_serving_ticket are compared, even if the
semaphore is not occupied at that point in time. If they are
equal, the job will be granted access to the resource and
start its critical section; otherwise, the job will be added to
the wait_queue, which is sorted by the jobs’ parameter
job_order, i.e., the job with the smallest ticket number is
the head of the waiting queue. This ensures that the predefined
execution order is kept since a job can only lock the semaphore
after all its predecessors in the dependency graph finished
executing their critical sections in this hyper-period.

The function list-edf_unlock unlocks the semaphore
once a job has finished its critical section. The semaphore’s

Algorithm 3 List-EDF implementation
Input: Task τi, total_jobs for the resource accessed by τi within

one hyper-period, and current_serving_ticket for the
related semaphore;

Function get job order():
1: index ← τi.job_no mod τi.rt_jobs;
2: τi.job_order ← rt_order[index];

Function list-edf lock():
3: if semaphore_owner is NULL and

current_serving_ticket equals to τi.job_order then
4: semaphore_owner ← τi;
5: τi starts the execution of its critical section;
6: else
7: Add τi to the corresponding wait_queue;
8: end if

Function list-edf unlock():
9: τi releases the semaphore lock;

10: current_serving_ticket++;
11: if current_serving_ticket = total_jobs then
12: Set current_serving_ticket ← 0;
13: end if
14: Next task τnext ← the head of the wait_queue;
15: if current_serving_ticket equals to τnext.job_order

then
16: semaphore_owner ← τnext;
17: τnext starts the execution of its critical section;
18: else
19: semaphore_owner ← NULL;
20: Add τnext to the corresponding wait_queue;
21: end if

current_serving_ticket is increased by one, i.e.,
it can now be locked by the next job in the order. If
current_serving_ticket reaches total_jobs the
dependency graph is traversed completely, i.e., all jobs that
access the related resource finished their executions of the
critical sections in the current hyper-period, the parameter
current_serving_ticket is reset to 0 to start the next
iteration. After that, the first job (if any) in the wait_queue,
called τnext, is checked. If τnext has the job_order which is
the same as the semaphore’s current_serving_ticket,
τnext is set as the owner of the semaphore, and can start
the execution of its critical section. Otherwise, the semaphore
owner is set as NULL, and the task τnext is added into the
corresponding wait_queue.

The implementations for the global and the partitioned
plug-in are similar. The only difference is that for global
scheduling preemptions are very frequent. Thus, in order to
protect the executions of our aforementioned functions, the
preemption should be disabled inside the semaphore related
functions.3 In addition, the over-run situation has not been
treated carefully in our implementation. Once a task misses
the deadline, it may destroy the ticket system.

To evaluate the applicability of our approach, we tracked

3If a job cannot obtain the semaphore and sleeps in the corresponding wait
queue until the end of the simulation, it will remain in the system with the
uninterruptable sleep status. To avoid such a situation, the run-time of the
simulation should be a multiple of the hyper-period to ensure all the tasks can
finish their periods. Otherwise, the system should be restarted before the next
run to avoid complications.
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multiple overheads under LITMUSRT:

• CXS: context-switch overhead.
• RELEASE: time spent to enqueue a newly released job

into a ready queue.
• SCHED: time spent to make a scheduling decision, i.e.,

to find the next job that is executed.
• SCHED2: time spent to perform post context switch and

management activities.
• SEND-RESCHED: inter-processor interrupt latency, in-

cluding migrations.

The hardware platform used in our experiments is a cache-
coherent SMP, consisting of two 64-bit Intel Xeon Processor
E5-2650Lv4 running at 1.7 GHz, with 35 MB cache and
64 GB of main memory. Table V reports the overheads for
protocols supported by plug-in PSN-EDF and GSN-EDF in
LITMUSRT, namely of the existing implementation of the
Flexible Multiprocessor Locking Protocol (FMLP) [10] and
our implementations of List-EDF. The partitioned version of
List-EDF (which maps each task statically to a processor) and
the global version of List-EDF presented in Section V are both
included. Table V shows that the overheads of our approach
and of FMLP are comparable in LITMUSRT.

We note that we only analyzed the resulting overheads
of partitioned List-EDF here. The actual performance of
partitioned List-EDF may strongly depend on a good task
partitioning algorithm which is out of the scope of this work.

VIII. Numerical Performance Evaluation
We conducted evaluations for M = 4, 8 and 16 processors

while the number of shared resources (binary semaphores) was
z ∈ {4, 8, 16}. For each M , we generated 100 task sets with
10 ·M tasks. For each setting, we considered total utilization
levels from 30%·M to 100%·M in steps 5%. The task periods
Ti are selected randomly from a set of semi-harmonic periods,
i.e., Ti ∈ {1, 2, 5, 10}, that is a subset of the periods used
in automotive systems [29], [34], [44], [50], [54]. For each
task set T, tasks with the target total utilization are generated
randomly by applying the RandomFixedSum method [23], i.e.,∑
τi∈T

Ci,1+Ci,2+Ai,1

Ti
is the target utilization. We enforced for

each task τi that Ui ≤ 0.5. To determine UCi,1, UCi,2, and UAi,1
(the utilization for the first non-critical section, the second non-
critical section, and the critical section), first UAi,1 was drawn
randomly as a percentage β of the total utilization Ui from a
given range, i.e., β was either in [5%−10%], [10%−40%], or
[40%− 50%], depended on the actual setting. Afterwards, the
remaining utilization UCi was split by drawing UCi,1 randomly
uniform from (0, UCi ) and setting UCi,2 to UCi − UCi,1. The
execution time equals to the utilization multiplied with the
period, e.g., Ci,1 = UCi,1 · Ti.

We compare our method with state-of-the-art multiproces-
sor resource sharing protocols and scheduling approaches:

• LIST-EDF-JKS: Our approach by applying the algorithm
by Jackson [32] for generating the dependency graphs and
List-EDF scheduling.

• LIST-EDF-POTTS: Our approach by applying Potts al-
gorithm [41] for generating the dependency graphs and
List-EDF scheduling.

• ROP-FP [52]: The Resource Oriented Partitioned (ROP)
scheduling in [52] under fixed-priority scheduling and
release enforcement.

• ROP-EDF [52]: ROP under dynamic-priority scheduling
and release enforcement.

• LP-GFP-FMLP [10]: a linear-programming-based (LP)
analysis for global FP scheduling using the FMLP [10].

• GS-MSRP [56]: the Greedy Slacker (GS) partitioning
heuristic with the spin-based locking protocol MSRP [25]
under Audsley’s Optimal Priority Assignment [5].

• LP-GFP-PIP: LP-based global FP scheduling using the
Priority Inheritance Protocol (PIP) [22].

• LP-PFP-DPCP [12]: LP-based analysis for partitioned
FP and DPCP [43]. Tasks are assigned using Worst-Fit-
Decreasing (WFD) as proposed in [12].

• LP-PFP-MPCP [12]: LP-based analysis for partitioned
FP using MPCP [42]. Tasks are partitioned according to
WFD as proposed in [12].

To the best of our knowledge, our method and ROP schedu-
ling with release enforcement [52] are the only approaches that
primarily focus on the critical sections and actively consider
them during the design process. On the other hand, resource
sharing protocols primarily try to handle the occurring resource
requests in a reasonable way. However, for some resource
sharing protocols, processor assignment strategies have been
developed later.

We compare the approaches using the metric of acceptance
ratios. A subset of the results is presented in Fig. 4.4 In all
considered configurations, the acceptance ratios of LP-PFP-
DPCP and LP-PFP-MPCP are zero. Hence, both are not shown
in our evaluation results. In general, our proposed method
when applying Potts algorithm for generating the dependency
graphs clearly outperforms other approaches. The results also
show that work-conserving resource synchronization protocols
do not perform very well in the evaluated settings. Since the
extended Jackson’s rule (JKS) generates the dependency graph
in a work-conserving manner as well, LIST-EDF-JKS performs
worse than LIST-EDF-POTTS. In addition, the ROP-based
methods work comparably well due to the release enforcement
feature, which enforces the releases of the critical sections to
be periodic, thus removing the possible higher interference due
to release jitter. The enforcement also, as a side product, leads
to non-work-conserving schedules for the critical sections.
That is, a critical section can be delayed even when it is ready
to be executed to reduce the jitter.5

In the evaluation, we also specifically analyzed the effect
of the three parameters individually by changing:

1) M = z ∈ {4, 8, 16} (Fig. 4(a) to Fig. 4(c)): Increasing
z and M at the same time does not have significant
impact on the LIST-EDF-POTTS but the other approaches
perform slightly worse.

2) z for a fixed M , i.e., z ∈ {4, 8, 16} and M = 8
(Fig. 4(d) to Fig. 4(f)): When the number of resources
is increased, compared to the number of processors, the
performance gap between the LIST-EDF-POTTS and the

4Fig. 4 shows 7 different settings. Fig. 4(b), Fig. 4(e), and Fig. 4(h) are the
same but repeated for the clarity of the comparisons and discussions.

5Throughout this paper, we consider such non-work-conserving behavior as
a side product and not as creating non-work-conserving schedules on purpose.
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Max. (Avg.) in µs Partitioned FMLP Partitioned List-EDF Global FMLP (Global) List-EDF
CXS 34.45 (0.71) 29.93 (0.81) 42.25 (1.14) 30.87 (1.79)

RELEASE 30.01 (0.63) 25.37 (0.75) 65.44 (2.98) 61.63 (12.06)
SCHED 63.91 (0.92) 32.3 (1.03) 80.81 (1.77) 59.05 (4.46)

SCHED2 33.23 (0.13) 25.24 (0.15) 31.43 (0.19) 27.17 (0.25)
SEND-RESCHED 65.81 (11.38) 20.71 (1.44) 92.78 (17.2) 72.09 (20.77)

TABLE V. Overheads of different protocols in LITMUSRT.

ROP approaches increases. This indicates that when the
number of resources is large the benefit of our non-work-
conserving method becomes more significant.

3) Workload of Shared Resources, i.e.,
β ∈ {[5%− 10%], [10%− 40%], [40%− 50%]}
(Fig. 4(g) to Fig. 4(i)): If the workload of the critical
sections is increased, the performance of all methods is
reduced. The reason is that, when β = [40% − 50%],
the execution time of the critical section for tasks with
period 10 can be large, i.e., longer than 1 ms. There-
fore, tasks with period 1 directly miss the deadline for
all other approaches and, hence, the performance drops
down quickly when the utilization is increased and the
critical section workload is large as shown in Fig. 4(i).
Nevertheless, due to the non-work-conserving property,
the LIST-EDF-POTTS is still able to schedule some of
these task sets, i.e., some of the sets where the longest
critical sections are larger than 1 ms but shorter than 2 ms.

IX. Tasks with Multiple Critical Sections
In this work, we consider tasks that access exactly one

shared resource exactly once. Therefore, an important question
is how our approach could be extended to tasks that access
the same shared resource multiple times or multiple shared
resources (in a non-nested way). For the former case, it can
be considered to directly used the provided approach with
a slight extension, since the construction of the dependency
graph computes the order of the critical sections based on the
earliest release times and the absolute deadlines. Therefore, as
long as it is ensured that the release time of a critical section is
after all previous critical sections of the same job are finished
according to the dependency graph, the proposed algorithm
can be applied directly.

In the latter case, a direct extension seems not possi-
ble anymore. The reason is that the dependency graphs are
constructed individually for each resource and therefore it is
not trivial to guarantee that previous critical sections of the
same task that accessed a different resource are finished at
the point in time a critical section is released. However, it
is possible to use our approach after modifying tasks that
access more than one shared resource in a non-nested way. To
achieve independence of the graph constructions, such tasks
can be decomposed into two (or more) subtasks that do not
overlap during their execution and each task handles one of
the resource requests. Consider a task τi with k + 1 non-
critical and k critical sections, i.e., τi has the execution order
Ci,1, Ai,1, Ci,2, Ai,2, ...., Ai,k, Ci,k+1. We decompose such a
task into k subtasks where the j-th subtask consists of Ci,j

and Ai,j , i.e., a task with just one non-critical and one critical
section. The only exception is the last subtask that contains
of three sections, i.e., Ci,k, Ai,k, and Ci,k+1. Each subtask is
assigned a chunk of the relative deadline Di such that the j-th
subtask has a relative deadline of Di,j and

∑k
j=1Di,j = Di.

Furthermore, each subtask is assigned a phase φi,j based on
the summation of the previous relative deadlines to ensure
that execution of subtasks does not overlap (as long as all
subtasks meet their deadline). To be precise, φi,1 = 0 and for
1 ≤ j ≤ k we set φi,j =

∑j−1
g=1Di,g . While this violates our

assumption that all tasks have an offset of 0, it has no negative
impact for our algorithm. The reason is that this assumption
is only used to ensure that it is sufficient to unroll the periods
to one hyper-period since at that point in time no leftover
workload of any task remains in the system if all tasks meet
their deadline and, therefore, the schedule is ensured to repeat
itself. Since we assume that

∑k
j=1Di,j = Di for all tasks that

are decomposed, this property still holds. Such decomposition
strategies can also be applied when the same shared resource
is accessed multiple times.

Note that how the tasks and deadlines are decomposed are
open problems and, therefore, left for future research. The
problem is similar to the deadline assignment problem for
Fixed-Relative-Deadline strategies used for scheduling self-
suspending task sets [53]. Common strategies are to divide
the deadlines equally or proportionally to the workload in the
related interval.

X. Conclusion
We study multiprocessor resource sharing of periodic real-

time tasks, develop a framework to construct a dependency
graphs for the critical sections, and present the List-EDF
scheduling algorithm. To the best of our knowledge, this
is the first non-work-conserving approach for multiprocessor
resource sharing for periodic real-time tasks without period
restrictions. We explain the implementation of List-EDF in
LITMUSRT, and show that the overheads are similar to
the FMLP implementation in LITMUSRT. Furthermore, we
evaluated the performance of List-EDF applying numerical
evaluations, observing that our approach outperforms the state-
of-the-art in all considered settings.

We believe that this paper presents an initial step rather than
a conclusive approach towards multiprocessor synchronization.
We show the potential power of non-work-conserving multi-
processor resource sharing. However, further explorations are
needed since multiple open problems remain.
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Fig. 4. Comparison of different approaches for semi-harmonic periodic task sets

• As the schedule derived from the presented List-EDF
algorithm has to be applied statically to avoid the mul-
tiprocessor timing anomaly, it would be interesting to
analyze the schedulability of the online version of List-
EDF. Time efficient schedulability tests, like utilization-
based analyses, could be helpful for an online version.

• In this work we only evaluated the schedulability of global
List-EDF. While we implemented partitioned List-EDF in
LITMUSRT and compared the resulting overheads, how to
efficiently partition tasks under List-EDF remains an open
problem. Recent research shows that the assumption that
global scheduling leads to a higher acceptance rate than
partitioned and semi-partitioned algorithms not always
holds [9], [14]. However, an improper task partition can
result in a poor performance.

• The dependency graph approach does not actually need
the locking/unlocking mechanism anymore since the de-
pendency graph handles the mutual exclusion of the
critical sections. However, our current implementation in
LITMUSRT is still based on the existing locking mecha-
nism. How to implement the dependency graph approach
in modern real-time operating systems with low overhead

is an interesting research direction.
• We limit our study to real-time task systems with one non-

nested critical section per task. While we discuss some
ideas in the previous section, how to deal with multiple
non-nested critical sections per task is a challenging open
problem.
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