technische universitat
dortmund

Hsiang-Yun Cheng, Chun-Feng Wu, Christian Hakert, Kuan-Hsun Chen,
Yuan-Hao Chang, Jian-Jia Chen, Chia-Lin Yang, Tei-Wei Kuo

Research Center for Information Technology Innovation, Academia Sinica, Taiwan
Institute of Information Science, Academia Sinica, Taiwan
Department of Computer Science, Technische Universitat Dortmund, Germany
Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
College of Engineering, City University of Hong Kong, Hong Kong

Citation: tbd

BIBTEX:

@inproceedings{Cheng/etal/2021,
author={Cheng, Hsiang-Yun and Wu, Chun-Feng and Hakert, Christian and Chen, Kuan-Hsun
and Chang, Yuan-Hao and Chen, Jian-Jia and Yang, Chia-Lin and Kuo, Tei-Wei},
booktitle={Design, Automation and Test in Europe Conference (DATE)},
title={Future Computing Platform Design: A Cross-Layer Design Approach},
year={2021},
volume={},
number={},
pages={}

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

Ia computer
science 12

tbd

Future Computing Platform Design:
A Cross-Layer Design Approach

Hsiang-Yun Cheng*, Chun-Feng Wu'$, Christian Hakert!, Kuan-Hsun Chen?
Yuan-Hao ChangT, Jian-Jia Chen?, Chia-Lin Yang§, Tei-Wei Kuo®"
*Research Center for Information Technology Innovation, Academia Sinica, Taiwan
Hnstitute of Information Science, Academia Sinica, Taiwan
iDepartment of Computer Science, Technische Universitit Dortmund, Germany

$Department of Computer Science and Information Engineering, National Taiwan University, Taiwan

ICollege of Engineering, City University of Hong Kong, Hong Kong
E-mail: johnson@iis.sinica.edu.tw, jian-jia.chen@cs.uni-dortmund.de, {yangc, ktw } @csie.ntu.edu.tw

(Special Session)

Abstract—Future computing platforms are facing a paradigm
shift with the emerging resistive memory technologies. First, they
offer fast memory accesses and data persistence in a single
large-capacity device deployed on the memory bus, blurring the
boundary between memory and storage. Second, they enable
computing-in-memory for neuromorphic computing to mitigate
costly data movements. Due to the non-ideality of these resistive
memory devices at the moment, we envision that cross-layer design
is essential to bring such a system into practice. In this paper, we
showcase a few examples to demonstrate how cross-layer design
can be developed to fully exploit the potential of resistive memories
and accelerate its adoption for future computing platforms.

[. INTRODUCTION

In recent years, data analytics applications that must process
increasingly large volumes of data, such as deep learning, graph
analytics, etc, have become more and more popular. These big
data applications demand large memory capacity and efficient
data accesses. Unfortunately, mainstream computing systems
are not designed to meet their needs, as DRAM has limited scal-
ability [1] and the intensive data movements between CPU and
memory incur serious performance and energy penalties [2].
This forces system architects to fundamentally rethink how to
design future computing platforms.

To meet the demands of big data, we are seeing a disruptive
change in the computing platform design: First, we need a new
tier of memory (i.e., storage class memory) to blur the boundary
between memory and storage to provide large-capacity persis-
tent memory directly on the memory bus. Second, instead of
moving data across the memory channels to distant compute
units, bringing computation closer to data to build a memory-
centric design can eliminate costly data movements. As emerg-
ing resistive memories, such as phase change memory (PCM)
and resistive RAM (ReRAM), offer superior density, non-
volatile property, and computing-in-memory capability, they
are suitable to serve as storage class memory and enable
the opportunity for a paradigm shift from the contemporary
processor-centric design towards the revolutionary memory-
centric design.

Despite the solution enabled by emerging memory tech-
nologies is promising, bringing such a system into practice

remains challenging due to the drawbacks of current resistive
memory devices. The limited write endurance and asymmetric
read-write latency/energy constraint the practicality of storage
class memory, while the inherent resistance variation in resistive
memory cells induces unreliable computation and hinders the
realization of computing-in-memory. One promising solution
to overcome these challenges is cross-layer design. Different
from device/circuit oriented solutions that rely on the ad-
vancement of technologies, cross-layer approaches can better
deal with the drawbacks coming from the imperfect devices
through the assistance of application, system software, and
architecture designs. For instance, for some specific types of
application data, such as the data that do not need non-volatile
guarantee [3] or the frequently updated training data of deep
neural networks (DNNs) [4], we can relax the retention time
of resistive memory devices to reduce write latency of storage
class memory. Regarding the computation reliability issue of
computing-in-memory, we can avoid serious accuracy degrada-
tion by jointly considering the underlying device property and
the error-tolerance characteristics of the target DNN to design
software data encoding scheme [5] or adapt architecture-level
configurations [5], [6].

In this paper, we present the device features of resistive
memories, discuss their impacts on system architecture, and
introduce several examples to illustrate how cross-layer ap-
proaches can be leveraged to tackle the design challenges
incurred by resistive memory devices. For storage class mem-
ory, we elaborate how to facilitate wear-leveling through the
joint assistance from common existing hardware and different
levels of system software. We also show how to exploit the
special characteristics of DNNs and co-design the underlying
hardware mechanisms to suppress write hot-spots and improve
performance. To put computing-in-memory into practice, we
demonstrate how to conduct cross-layer design space explo-
ration through a simulation framework and how to enable reli-
able DNN inference through device-architecture and software-
hardware co-design. Our purpose is to attract attention from
relevant researchers to notice how cross-layer design could

be helpful to exploit the potential of resistive memory and
accelerate its adoption for future computing platforms.

II. RESISTIVE MEMORY DEVICES

Resistive memories generally refer to any memory technol-
ogy that stores and represents data using varying cell resistance.
Unlike traditional DRAM whose states are determined by
the amount of charge on a capacitor, resistive memories are
amenable to scaling, non-volatile, and there is nearly no cell
leakage. Among various resistive memory technologies that
adopt different materials and switching physics, Phase Change
Memory (PCM) and Resistive RAM (ReRAM) have superior
density and are being actively pursued as DRAM replacements.

A. Phase Change Memory (PCM)

A PCM storage element consists of two electrodes sepa-
rated by a resistive heater and a chalcogenide material (e.g.,
GeySboTes) [7], as shown in Figure 1(a). Through injecting
current into the resistor junction and heating the chalcogenide,
a PCM cell can be switched between a crystalline phase, rep-
resenting low resistance state (LRS), and an amorphous phase,
representing high resistance state (HRS). The programmed state
is determined by the amplitude and width of the injected current
pulse. Applying a high-power but short-duration current pulse
RESET the chalcogenide to HRS, while injecting a moderate-
power but long-duration current pulse gradually cooling the
chalcogenide and SET the cell to LRS. Write performance is
determined by SET latency, whereas write power is dictated
by RESET energy. Iterative write-and-verify scheme [8] can be
applied to program PCM cells to multiple intermediate levels,
as the resistance contrast between HRS and LRS is large.

B. Resistive RAM (ReRAM)

A typical ReRAM cell is composed of a metal-oxide layer
(e.g., HfO,) sandwiched between two metal layers of elec-
trodes, as shown in Figure 1(b). In order to switch the resistance
state, an external voltage is applied across the ReRAM cell.
A conductive filament (CF) made out of oxygen vacancies
is either formed (SET) or ruptured (RESET) depending on
the voltage polarity [9]. Due to the stochastic nature of the
generation and rupture of oxygen vacancies, recent studies
show that the resistance distributions of ReRAM cells follow
the lognormal distribution [10], [11]. The size of the CFs is
directly related to the amount of cell current. By using the
iterative write-and-verify scheme [12] to change the strength
of the CFs, a ReRAM cell can be programmed to intermediate
levels between HRS and LRS. Generally, a ReRAM cell is
called a single-level-cell (SLC) if it can only be programmed
to two resistence levels to represent the situation of single data
bit. A multi-level-cell (MLC) ReRAM can be programmed to
more resistence levels for representing multiple data bits.

III. IMPACTS ON SYSTEM ARCHITECTURE

Resistive memories are likely to bring revolutionary changes
in future computing paradigm. In the following, we show how
the promising features of resistive memories can be leveraged
to enable the deployment of storage class memory (SCM) and

Chalcog_emde E RESET Metal
material ide™~
(GST) I oL/ 1 ___Meting oxide . .
® 3 |LRS .
5 HRS
HRS (Amorphous) g SET Crystalize s }-‘I/RS
£ === . oRa00%| ©
. 38 Conductive o
Resistor = ox filament
(heater) - 3 Time RS Roy Ry logR
LRS (Crystalli
(Crystalline)) pem (b) ReRAM
Fig. 1. The schematic view of (a) PCM cell and its temperature-time

relationship; (b) ReRAM cell and its resistance distribution.

computing-in-memory (CIM). For each individual application
domain, we discuss the design challenges introduced by the
non-idealities in current resistive memory devices.

A. Storage Class Memory (SCM)

Resistive memories have been shown to provide higher den-
sity and comparable read performance as conventional DRAM.
Thus, many recent studies placed resistive memories on the
memory bus to serve as a large working memory [7], [13], and
scalable server-grade resistive memory DIMMs have become
available with the release of Intel Optane DIMM [14]. In
addition to offering large capacity, the non-volatile feature
of resistive memories makes it possible to persistently retain
data structures in memory without writing them to traditional
storage. With its persistent feature and DRAM-comparable
performance, resistive memories blur the boundary between
memory and storage, and thus envision a new tier of memory
(i.e., storage class memory) that can offer significant perfor-
mance advantages for data-intensive applications.

Despite the fact that exploiting resistive memories as SCM
is promising, several design challenges need to be addressed:

Limited write endurance. The physical properties of resistive
memories limit the number of reliable writes to each cell.
For example, a PCM cell can only endure about 10° to 10°
writes before an error occurs [15], [16], because the thermal
expansion and contraction during current injection degrade the
electrode storage contact. Similar to PCM, ReRAM also has an
endurance issue due to the gradual resistance change over the
write cycles [17]. Each ReRAM cell normally tolerates about
1010 writes [9], better than PCM, but some weak cells last
for only 10% to 10° writes. The limited write endurance of
resistive memories hurts the lifetime of SCM, especially if the
writes of the running applications are not uniformly distributed
to different cells and the heavily written cells fail earlier than
expected. Thus, write reduction [7], [18], wear-leveling [7],
[19], and error correction techniques [20] are needed to prolong
the lifetime of SCM.

Asymmetric read-write latency and energy. In resistive
memories, the transition between HRS and LRS is triggered
by applying high-power electrical voltage/current pulses with
long duration. Thus, compared to conventional DRAM, writes
in resistive memories are slower and consume higher energy.
For example, PCM writes require energy-intensive current
injection, so the write latency/energy of PCM is an order
of magnitude higher than its read latency/energy [7]. The
resistance drift of PCM cells [3] and the iterative write-and-
verify scheme [8] used to program multi-level cells further

exacerbate the problem. To tackle the challenge of asym-
metric read-write latency/energy, prior studies have proposed
some write reduction [7], [18], data encoding [8], [13], and
scheduling techniques [13], [21]. Another possible solution is
to relax the retention time to reduce write latency when SCM
is serving working memory requests that do not need non-
volatility guarantee [3].

B. Computing-in-Memory (CIM)

Resistive memories are able to perform arithmetic operations

beyond data storage. Recent studies have demonstrated that
resistive memory crossbar arrays can be utilized to efficiently
perform matrix-vector multiplications [22]-[24]. As shown in
Figure 2(a), if input voltage V; is applied to each wordline,
based on Kirchoff’s Law, the accumulated current on bitline
j is equal to the sum-of-products of the input voltage and
cell conductance (I; = Y . Vi/Riy; = >, Vi x Gyj). Ide-
ally, with the crossbar structure, matrix-vector multiplication
can be done in one constant time step. Such computing-in-
memory capability provides a promising solution to accelerate
deep learning inference [23], [24], since the convolution and
fully-connected layers of DNNs involve a significant number
of matrix-vector multiplications. For example, as shown in
Figure 2(a), by storing filter weights as the conductance of
resistive memory cells and converting input feature maps into
input voltage signals via digital-to-analog converters (DACs),
the output feature maps can be obtained by reading out the
accumulated currents on the bitlines through the analog-to-
digital converters (ADCs).
Reliability issue. While it is promising to exploit the CIM
capability of resistive memories to accelerate deep learning,
the design challenges introduced by the non-ideal devices and
peripheral circuits need to be carefully examined to achieve ro-
bust computations. For example, in ReRAM cells, the stochastic
nature of the conductive filament generation causes resistance
variations. This stochastic variation of ReRAM resistance is
likely to degrade the sensing accuracy of output currents, as
shown in Figure 2(b). The accuracy degradation is further exac-
erbated when a large number of wordlines are activated concur-
rently, as more per-cell current deviations are accumulated and
it becomes harder to differentiate between neighboring states
with a large overlapped region in the output current distribution.
The design of ADC, such as its bit-resolution and sensing
method, also affects the error rate.

Input feature map Filter1 Filter2 Filter3

L mEo- i
xd Pt s 2 HS (e
@ \@@) R«‘:L‘. %
T
El \7;"‘@}s W1y R;n'\—" Per-cell current dislt;i"tﬁj)tion
B QY | e
DAC>——2= <N AN deviation on BL
) ZEE 2 (AR

ADC

Output feature map
(a) (b)
Fig. 2. (a) Resistive memory based matrix-vector multiplication for DNN
inference; (b) Reliability issue caused by non-ideal ReRAM cells.

IS
==
=
B
Probability

I(mA)

read error-prone

IV. CROSS-LAYER DESIGN

The unique features of resistive memories enable an inno-
vative change in computing systems, yet the non-ideal device
properties hinder its realization. One promising solution to
tackle this challenge is cross-layer design. Through leveraging
the distinctive characteristics of various applications and the
assistance from system software and architecture, it is possible
to fully exploit the benefits of resistive memories while miti-
gating its weakness. In this section, we use several examples
to demonstrate how cross-layer approaches can be employed to
improve the reliability and performance of SCM and CIM.

A. Cross-Layer Design for SCM

To mitigate the endurance problem and reduce the write
performance penalty for SCM, we propose several cross-layer
mechanisms. First, we illustrate how to extend the lifetime
of SCM through the joint assistance from common existing
hardware and different levels of system software. Considering
the inherently limited endurance of resistive memories, one
can adopt the memory management unit (MMU) together with
system software to redirect the memory accesses and achieve
wear-leveling at the virtual page level. In addition, a finer
wear-leveling within each page can be achieved by system
software, which offsets the stack via the application binary
interface (ABI) level. Second, we demonstrate how to leverage
the characteristics of different neural network (NN) layers and
co-design the underlying hardware mechanisms to alleviate
write overheads. One example is to design CPU cache pinning
strategy based on the write-intensity of different NN layers,
so that write-hot data can be locked in the cache to reduce
SCM writes. Another example is to improve SCM performance
through data-aware programming scheme based on the error-
tolerance characteristics of different NN layers. To be specific,
for the NN training data that are updated frequently, we can
relax the retention time to reduce write latency. The details
of these cross-layer design examples are explained in the
following.

1) Software Based Wear-leveling Across Layers: Since the
limited endurance is crucial in the deployment of resistive
memories, several wear-leveling strategies have been proposed
in the literature. Despite many techniques proposing to tackle
the issue within the memory hardware, a few approaches intend
to maintain the memory wear-out in software by, either running
wear-leveling algorithms as part of the system software, or
directly as part of the application. These approaches either
utilize information (e.g. the current memory aging) which are
provided by special hardware or they even overcome the need
for this information by software-based approximations. In order
to modify the memory write accesses, software algorithms can
take action at various layers. On the device driver level (i.e.
MMU and virtual memory), fully transparent access redirection
can be employed. On the application level, recompilation and
automatic code rewriting can redirect memory accesses specific
for single applications. On the application binary interface
(ABI) level, memory contents can be replaced before appli-
cation functions are called. In the following, we present a

-

N N
i\ \i\ \i\\ ! i\
p N] p p N] p N]
b ! ‘;‘ b !
v v

Fig. 3. Shadow stack maintenance. The currently used stack is marked in red.

P
P

wear-leveling approach, utilizing the device driver and the ABI
levels.

For aging-aware coarse-grained wear-leveling we provide a
operating system service, which interacts with common existing
hardware [25]. This solution utilizes the MMU and modifies the
mapping of virtual to physical memory pages. By doing so, the
physical location of memory contents can be exchanged during
runtime so that write accesses can be redirected. Provided with
the current memory aging from another subsystem, the wear-
leveling algorithm keeps an estimated age for every physical
memory page. On an user-defined frequency, the algorithm
identifies the “hottest” and the “coldest” page and exchanges
the mapped virtual pages of both of them.

Since the above strategy only operates on the granularity
of virtual memory pages (usually 4 kB), it might happen
that only a few bytes within a page are intensively written
and therefore a finer wear-leveling within pages is required.
To resolve this, we propose a maintenance algorithm, which
relocates the stack, which is the main cause for not properly
wear-leveled memory pages, by offsets of a few bytes and keeps
the view of applications on the stack consistent [26]. In order
to achieve this, we copy stack contents and adjust software and
hardware stack pointers in order to maintain the ABI semantics
and require no application cooperation. We further utilize the
hardware level and employ a shadow stack.

Figure 3 illustrates the working principle of the shadow
stack maintenance algorithm. The physical pages of the stack
(p) are mapped two times to consecutive pages in the virtual
address space (v). We call the upper virtual mapping the real
and the lower virtual mapping the shadow mapping. When
the application uses the stack in the virtual address space, the
maintenance algorithm relocates the stack by adjusting stack
pointers by small positives offsets and copying the entire stack
to the new location. At a certain moment, the used stack crosses
the boundary of the the virtual memory pages from step 1)
to 2). Due to the shadow mapping, the physical layout of the
stack performs an automatic wraparound. The movement can be
repeated until the original physical layout from 1) is established
in 4) again. Repeating this procedure on a fixed frequency leads
to a circular movement of the entire program stack, so that
heavily written elements are moved through a larger memory
space and the write accesses are distributed equally.

In order to evaluate the proposed strategies without limiting
on any specific resistive memory, an online runtime system
can be used, which adopts performance counters and config-

urable memory permissions (hardware level) to approximate
the amount of write accesses to certain memory locations [25].
The performance counters are used to count the total amount of
memory write accesses in the entire system and are configured
to trigger an interrupt when exceeding a certain threshold. The
evaluation highlights that in the best case, the above software-
based wear-leveling approaches can achieve a 78.43% wear-
leveled memory. This makes an improvement of ~ 900X in
the memory lifetime compared to a basic setup without any
wear-leveling mechanisms.

2) DNN characteristics aware hardware design: Neural
networks are one of the most popular applications in recent
years. To accommodate its large memory demands with lower
unit cost and standby power, SCM technologies (e.g., PCM
in the following cases) are a promising candidate to replace
the role of DRAM. However, compared with DRAM, SCM
devices usually suffer from a limited lifetime and lower access
performance. As reported by several previous works [4], [27],
instead of adopting a general management approach (e.g., start-
gap [19] or age-based wear leveling [28]), a more effective way
to tackle both lifetime and performance issues is to manage the
SCM devices by being aware of the behaviors of NNs.

There are two major phases during performing CNN infer-
ences, that is convolutional and fully-connected phases. Due
to different design objectives, the convolutional phases, which
aim to extract low-level to high-level features, may cause more
intensive memory write accesses on same specific memory
locations than that of the fully-connected phases which are
designed to make the inference decision. This phenomenon is
called write hot-spot effect [27]. To suppress the write hot-spot
effect, a self-bouncing CPU cache pinning strategy is proposed
to capture and pin (or lock) the write-hot data in the CPU cache
by being aware of CNN access behaviors. It is worth noted
that, without increasing programmer overheads or overhauling
software tools, this work does not need any programmer hints
provided by the user library or even the compiler. This strategy
periodically monitors the numbers of CPU write cache misses
and dynamically adjusts the reserved amounts of CPU cache for
cache line pinning. With this strategy, more CPU cache space
will be used for pinning the write-hot cache line during running
convolutional phases so as to suppress the write hot-spot effect.
If the strategy judges that the system enters the fully-connected
phases, the CPU cache space will be released for general-
purposed usage so as to avoid performance degradation.

Compared with the inference operation, training neural net-
work is more time-consuming, because a training operation
iterates both forward and backward NN processes several
times until reaching the saturation point. To accelerate the
performance of NN training on PCM devices, data-aware
programming scheme [4] is proposed to co-design the two
observed NN training behaviors (i.e., the bit-change rates and
data-update duration), and the special write commands provided
by the PCM devices. To make the training result smoothly
converge to the saturation point, model weights and biases will
be updated by using the manner of gradient updates, which
finely tune the model weights and biases. In this way, the bit

change rates of the positions close to the most significant bit
(MSB) are much slower than that close to the least significant
bit (LSB). The reason is that, model weights and biases
are encoded by IEEE Standard for Floating-Point Arithmetic
(IEEE-754) where bit positions close to MSB represent the
exponent part which is hardly changed especially when the
data value is updated slightly. On the other hand, the update
duration of model weights and biases in different NN layers
is different. Generally, model weights and biases belonging
to the rearmost NN layers have a smaller update duration
compared with those belonging to the foremost NN layers
because a backward process is always executed right after the
completion of a forward process. The data-aware programming
scheme introduced Lossy-SET and Precise-SET operations to
program the PCM cells by considering the trade-off between
programming performance and data endurance. Specifically,
Precise-SET is applied to program data bits with low bit-change
rates for ensuring data correctness and Lossy-SET is used to
program data bits with high bit-change rates so as to speed up
the performance. Moreover, data bits programmed by Lossy-
SET shall be re-programmed by being aware of the data-update
duration and the error-tolerance characteristics of the target
DNN so as to avoid serious data corruptions.

B. Cross-Layer Design for CIM

Cross-layer design approaches can also be leveraged to tackle
the computation reliability issue when exploiting the CIM
capability of resistive memories to accelerate deep learning.
In this section, we illustrate two examples. First, we show
how a simulation framework can be used to facilitate device-
architecture co-design for reliable DNN inference. As the
inference accuracy of a ReRAM-based DNN accelerator is
jointly affected by impact factors across different system levels
(i.e., from device properties, architecture design, to DNN model
characteristics), we can conduct cross-layer design space ex-
ploration via a reliability simulation framework to find the best
setting that guarantees satisfactory inference accuracy. Second,
to enhance DNN reliability, a software-hardware co-design
strategy (named as adaptive data manipulation strategy) is
introduced to encode and place DNN parameters on a ReRAM-
based DNN accelerator by being ware of the IEEE-754 data
representation properties and the accelerator architecture. In the
following, we explain these cross-layer design approaches in
more details.

1) Simulation framework to facilitate device-architecture co-
design for DNN: Considering the device characteristics of
resistive memories, it is important to comprehensively explore
the design space from device to architecture level to guarantee
reliable CIM computations for DNN inference. For example,
due to the intrinsic resistance variation in ReRAM cells, it is
hard for ADCs to read out the correct values when a large
number of wordlines are turned on concurrently. As a result,
a practical ReRAM-based DNN accelerator only activates a
smaller section (OU) of a crossbar array in a single cycle [29].
The setting of the OU size depends on the cell properties of the
resistive memory device, the DNN model characteristics, and

the target inference accuracy. Thus, a simulation framework,
DL-RSIM [6], is proposed to facilitate design space exploration
for developing reliable resistive memory based DNN accelera-
tors.

DL-RSIM is composed of two modules, as shown in Fig-
ure 4, and can be incorporated with any DNN models imple-
mented by TensorFlow. The Resistive Memory Error Analytical
Module models the sensing error rates of the accumulated
current per bitline. It first takes a set of device configura-
tions, such as the resistance mean and deviation of each cell
state, as inputs and uses Monte Carlo sampling method to
model the accumulated current distribution on a bitline. It
then estimates the error rates of each sum-of-products results
based on the user-specified ADC bit-resolution and sensing
method. The estimated sum-of-products error rates are passed
to the TensorFlow-based Inference Accuracy Simulation Mod-
ule, which models the impact of sum-of-products sensing errors
on the inference accuracy of the target DNN.

configurations ,/ m = M
sensing

DNN
model
' log R| Monte TmA)
method

Resistive Memory Error Carlo
Analytical Module .
Sum-of-products .
error rates per bitlin /

[Resistive Memory Error Analytical Module

Cell resistance Bitline current
g | Estimated
error rates,

Hardware] “
Apply

Input
feature
maps

sampling

TensorFlow-based Inference Accuracy Simulation Module

TensorFlow-based Inference Accuracy Tenodel e
Simulation Module noutaver | - Convolution /
\ \ Fully-connected

Inference accuracy \

[Max p‘ooling]\ ~. [_Error injection
\ ; S

Fig. 4. Simulation framework of DL-RSIM.

Here we use an example to illustrate how to use DL-RSIM
to perform device-architecture co-design: finding a good OU
size for the selected resistive memory device and the target
DNN model to achieve satisfactory inference accuracy. As
shown in Figure 5, the accuracy is degraded when OU height
(i.e., number of concurrently activated wordlines) increases.
Advances in device technology (i.e., increasing R-ratio and
reducing resistance deviation) can help to improve the inference
accuracy by shrinking the overlap with neighboring states in the
accumulated current distribution to reduce ADC sensing errors.
With 3x improvement in R-ratio and resistance deviation, a
simple three-layer NN model can achieve satisfactory accuracy
on MNIST dataset even when the height of an OU is 128, while
the height of an OU needs to be less than 16 to avoid accuracy
degradation for the complex CaffeNet testing on ImageNet
dataset.

#R-ratio=R,, 0= 0, ¥R-ratio=2*R,, =0,,/2 ©R-ratio=3* R,,0=0},/3

§100% 100% 100%
S 80% 80% 80%
&’ 60% 60% 60%
g 40% 40% 40%
S 20% 20% i :‘: : 20%
:G:) 0% N < 00 O N S 0 0% 0%
e ERME-R N*”E%@g NTY®IREY
Activated WLs Activated WLs Activated WLs
(a) MNIST (b) CIFAR-10 (c) CaffeNet

Fig. 5. Inference accuracy of (a) MNIST, (b) CIFAR-10, and (c) CaffeNet
when various number of wordlines (WLs) are activated concurrently, with three
different types of ReRAM cells [30]. Ry and o}, are the R-ratio and resistance
deviation of WO, ReRAM [10].

2) Software-hardware co-design for DNN reliability en-
hancement: Due to the overlapping variation error, ReRAM-
based DNN accelerators suffer from the reliability issue if more
wordlines shall be activated simultaneously for achieving better
performance. The overlapping variation error is that, because
of the CF shape varies from from cycle to cycle [31], [32],
the summed currents in the end of each bitline are difficult
to be converted to the correct digital value especially when
more wordlines are activated. To tackle the reliability issue,
a software-hardware co-designing adaptive data manipulation
strategy [5] is proposed to encode both inputs and weights
for alleviating the overlapping variation error by exploiting the
properties of IEEE-754 data representation and the accelerator
architecture. The proposed strategy is mainly composed of a
weight-rounding design (WRD) and an adaptive input sub-
cycling design (AISD). To be specific, WRD aims to reduce
the number of the ReRAM cells programmed in the low-
resistance-state (LRS) by rounding the weight value to the
neighbor value which can be represented by using fewer LRS.
That is, due to the CF shape of ReRAM cells, more serious
overlapping variation error is caused by the ReRAM cells
programmed to LRS because these cells induce wider current
values than the ReRAM cells programmed to high-resistance-
state (HRS). Besides, AISD dynamically divides each input
cycle into multiple cycles by being aware of the bit positions
representing different degree of importance. For example, an
input cycle near the MSB position will be divided into much
more sub-cycles so as to involve fewer activated wordlines in
each sub-cycle and thus relieve the reliability issue in the more
critical computation cycles.

V. CONCLUSION

In this special session paper, we illustrate that emerging
resistive memories enable a paradigm shift for future computing
platforms, yet the non-ideality of current resistive memory
devices might hinder its realization. A few examples of cross-
layer designs are provided to demonstrate how the design
challenges can be tackled. Such cross-layer designs can fully
exploit the potential of resistive memories while mitigating its
drawbacks. Our illustration and discussion show that cross-
layer solutions are attractive and play an essential role in
designing future computing systems.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Sci-
ence and Technology of Taiwan (MOST 109-2221-E-002-147-
MY3, 109-2221-E-001-012-MY3, 109-2218-E-002-019, 107-
2923-E-001-001-MY3, 108-2221-E-001-001-MY3, and 108-
2221-E-001-004-MY3), National Taiwan University (NTU-
CC-109L.891803), Macronix Inc., Taiwan (109-S-C24), and
Deutsche Forschungsgemeinshaft (DFG), as part of the project
OneMemory (project number 405422836).

REFERENCES

[1] O. Mutlu, “The rowhammer problem and other issues we may face as
memory becomes denser,” in DATE, 2017, pp. 1116-1121.

[2] A. Boroumand et al., “Google workloads for consumer devices: Mitigat-
ing data movement bottlenecks,” in ASPLOS, 2018, p. 316-331.

[10]
(1]
2]
[13]
[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

R.-S. Liu et al.,, “NVM Duet: Unified working memory and persistent
store architecture,” in ASPLOS, 2014, p. 455-470.

W.-C. Wang et al., “Achieving lossless accuracy with lossy programming
for efficient neural-network training on NVM-based systems,” ACM
Transactions on Embedded Computing Systems, vol. 18, no. 5s, 2019.
Y.-W. Kang et al., “On minimizing analog variation errors to resolve the
scalability issue of ReRAM-based crossbar accelerators,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 11, pp. 3856-3867, 2020.

M.-Y. Lin et al., “DL-RSIM: A simulation framework to enable reliable
ReRAM-based accelerators for deep learning,” in ICCAD, 2018, pp. 1-8.
B. C. Lee et al, “Phase-change technology and the future of main
memory,” IEEE Micro, vol. 30, no. 1, p. 143, Jan. 2010.

J. Wang et al., “Energy-efficient multi-level cell phase-change memory
system with data encoding,” in ICCD, 2011, pp. 175-182.

H. . P. Wong et al., “Metal-Oxide RRAM,” Proc. IEEE, vol. 100, no. 6,
pp. 1951-1970, 2012.

K. C. Hsu et al., “A study of array resistance distribution and a novel
operation algorithm for WOx ReRAM memory,” in SSDM, 2015.

M. Suri et al., “Neuromorphic hybrid RRAM-CMOS RBM architecture,”
in NVMTS, 2015, pp. 1-6.

C. Xu et al., “Understanding the trade-offs in multi-level cell ReRAM
memory design,” in DAC, 2013, pp. 1-6.

C. Xu et al., “Overcoming the challenges of crossbar resistive memory
architectures,” in HPCA, 2015, pp. 476-488.

Intel Corp., “Intel Optane data center persistent memory,” in /EEE Hot
Chips (HCS), 2019, pp. i—xxv.

O. Zilberberg et al., “Phase-Change Memory: An architectural perspec-
tive,” ACM Comput. Surv., vol. 45, no. 3, Jul. 2013.

H. Kim et al., “Evaluating phase change memory for enterprise storage
systems: A study of caching and tiering approaches,” ACM Trans. Storage,
vol. 10, no. 4, Oct. 2014.

B. Chen et al., “Physical mechanisms of endurance degradation in TMO-
RRAM,” in IEDM, 2011, pp. 12.3.1-12.3.4.

S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique to
improve PRAM write performance, energy and endurance,” in MICRO,
2009, p. 347-357.

M. K. Qureshi et al., “Enhancing lifetime and security of PCM-based
main memory with start-gap wear leveling,” in MICRO, 2009, pp. 14-23.
S. Schechter et al., “Use ECP, not ECC, for hard failures in resistive
memories,” in ISCA, 2010, p. 141-152.

M. K. Qureshi et al., “Improving read performance of Phase Change
Memories via write cancellation and write pausing,” in HPCA, 2010, pp.
1-11.

M. Hu et al., “Dot-product engine for neuromorphic computing: Pro-
gramming 1T1M crossbar to accelerate matrix-vector multiplication,” in
DAC, 2016, pp. 1-6.

P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in ISCA,
2016, pp. 27-39.

A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ISCA, 2016, pp. 14-26.
C. Hakert et al., “Software-Based Memory Analysis Environments for
In-Memory Wear-Leveling,” in ASP-DAC, 2020, pp. 651-658.

C. Hakert et al., “SoftWear: Software-Only In-Memory Wear-Leveling
for Non-Volatile Main Memory,” CoRR, vol. abs/2004.03244, 2020.
C.-F. Wu et al., “Hot-spot suppression for resource-constrained image
recognition devices with nonvolatile memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2567-2577, 2018.

C.-H. Chen et al., “Age-based PCM wear leveling with nearly zero search
cost,” in DAC, 2012, pp. 453-458.

W. Chen et al., “A 65nm 1Mb nonvolatile computing-in-memory ReRAM
macro with sub-16ns multiply-and-accumulate for binary DNN AI edge
processors,” in ISSCC, 2018.

T.-H. Yang et al., “Sparse ReRAM engine: Joint exploration of activation
and weight sparsity in compressed neural networks,” in ISCA, 2019, p.
236-249.

E. Ambrosi er al, “Impact of oxide and electrode materials on the
switching characteristics of oxide ReRAM devices,” Faraday discussions,
vol. 213, pp. 87-98, 2019.

J. Lin et al., “Rescuing memristor-based computing with non-linear
resistance levels,” in DATE, 2018, pp. 407—412.

