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Abstract—The goal of this special session paper is to introduce
and discuss different emerging technologies for logic circuitry
and memory as well as new lightweight architectures for neural
networks. We demonstrate how the ever-increasing complexity in
Artificial Intelligent (AI) applications, resulting in an immense
increase in the computational power, necessitates inevitably em-
ploying innovations starting from the underlying devices all the
way up to the architectures. Two different promising emerging
technologies will be presented: (i) Negative Capacitance Field-
Effect Transistor (NCFET) as a new beyond-CMOS technology
with advantages for offering low power and/or higher accuracy
for neural network inference. (ii) Ferroelectric FET (FeFET) as a
novel non-volatile, area-efficient and ultra-low power memory de-
vice. In addition, we demonstrate how Binarized Neural Networks
(BNNs) offer a promising alternative for traditional Deep Neural
Networks (DNNs) due to its lightweight hardware implementation.
Finally, we present the challenges from combining FeFET-based
NVM with NNs and summarize our perspectives for future NNs
and the vital role that emerging technologies may play.

I. INTRODUCTION

Neural Networks (NNs) have been established as the domi-
nant solution in several application domains. Advancements in
NNs and DNNs have assisted in boosting the achieved accuracy,
resulting in significant improvements in several machine learn-
ing applications – especially when it comes to speech and image
recognition, gesture detection, and language classification [9].
However, such advancements came at the cost of immense
computational demands. In order to achieve the amazing level
of accuracy, reached recently in several AI domains, recent
DNNs have become deeper and deeper as well as much more
complex. As a result, to train such DNNs and/or perform
inference rapidly, a massive number of parallel operations
(multiplication and addition operations) need to be executed at
once exacerbating the computational demands and complexity.

Due to the ever-increasing need to accelerate DNNs infer-
ence, targeting to meet tighter and tighter latency constraints,
ASIC hardware accelerators have become an integral part of
modern systems-on-chip (SoCs). The main computation per-
formed by DNNs is the multiply-accumulate (MAC) operation.
DNN accelerators integrate thousands of MAC units to pro-
vide a considerable increase in inference speed. For example,
Google TPU features 64k MAC units while the embedded
oriented Edge TPU comprises 4k MACs. However, performing
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Abstract—Neural Processing Units (NPUs) are becoming an
integral part in all modern computing systems due to their
substantial role in accelerating Neural Networks (NNs). The
significant improvements in cost-energy-performance stem from
the massive array of multiply-accumulate (MAC) units that
remarkably boosts the throughput of NN inference. In this work,
we are that first to investigate the thermal challenges that NPUs
bring, revealing how MAC arrays, which form the heart of any
NPU, impose serious thermal bottlenecks to on-chip systems due
to their excessive power densities. For the first time, we explore
1) the effectiveness of precision scaling and frequency scaling
in temperature reductions and 2) how advanced on-chip cooling
using superlattice thin-film Thermoelectric (TE) open doors for
new trade-offs between temperature, throughput, cooling cost
and inference accuracy in NPU chips. Our work unveils that
hybrid thermal management, which composes different means
to reduce the NPU temperature, is a key. To achieve that, we
propose and implement PFS-TE technique that couples Precision
and Frequency Scaling together with superlattice TE cooling for
effective NPU thermal management. Using commercial signoff
tools, we obtain accurate power and timing analysis of MAC
arrays after a full chip design is performed based on 14nm
Intel FinFET technology. Then, multi-physics simulations us-
ing finite element methods are carried out for accurate heat
simulations in the presence and absence of on-chip cooling.
Afterwards, comprehensive design-space exploration is presented
to demonstrate the Pareto frontier and the existing trade-offs
between temperature reductions, power overheads due to cooling,
throughput and inference accuracy. Using a wide range of NNs
trained for image classification, experimental results demonstrate
that our novel NPU thermal management increases the inference
efficiency (TOPS/Joule) by 1.33x, 1.87x, and 2x under different
temperature constraints; 105◦C, 85◦C and 70◦C, respectively,
while the average accuracy drops merely from 89.0% to 85.5%.

Index Terms—Neural Processing Unit, Tensor Processing Unit,
Thermal Management, Superlattice Thermoelectric, Approxi-
mate Computing, FinFET

I. INTRODUCTION

Recent breakthroughs in Neural Networks (NNs) have led
to a renaissance in artificial intelligence in which the error
rate of some machine learning applications such as image and
voice recognition has largely (e.g., from 26% to merely 3.5%)
dropped [1]. However, such substantial improvements in the
accuracy of NNs come with an immense increase in com-
putation demands. Therefore, custom ASIC offering domain-
specific hardware acceleration becomes indispensable to ma-
terialize Deep NNs. After the successful demonstration by
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Fig. 1: Power density analysis, at the 14 nm FinFET tech-
nology node, for a 128 × 128 MAC array operating at the
maximum clock frequency along with the resulting tempera-
tures under the maximum heat dissipation that conventional
cooling (using forced-convection air) delivers. The modeled
system and cooling are described in detail in Section II-C.

Google in early 2016, Neural Processing Unit (NPUs) started
to attract an ever-increasing attention by both academia and
industry akin to the great improvements (orders of magnitude)
that NPUs can bring in cost-energy-performance compared to
conventional NN inference using CPUs and/or GPUs.

The heart of any NPU is a large array of multiply-
accumulate (MAC) units. For example, Samsung embedded
NPU comprises 1,024 MACs [2], while Google TPU consists
of an enormous number of 128 × 128 and even 256 × 256
MAC units [1]. Those MAC units form a massive 2D array that
profoundly accelerates the computations required by various
phases throughout the execution of NN inference. The inherent
nature of MAC array, in which such an enormous number
of MAC units are packed together within a relatively very
small area, to simultaneously perform tens of Tera of multiply-
accumulate operations per second, makes NPUs inevitably
subject to excessive on-chip power densities that rapidly result
in localized hot-spots, which form thermal bottlenecks. To
demonstrate that, we present in Fig. 1 the power density
(heat flux) of a 128 × 128 MAC array at the 14 nm FinFET
technology operated at maximum clock frequency. The anal-
ysis is performed at nominal voltage of 0.7V and at Turbo-
boost voltage of 0.8V. As shown, the high power densities
reach 187W/cm2 and 312W/cm2, respectively, resulting in
unsustainable on-chip temperatures that go beyond the critical
temperature of 105 °C, as typically defined by Intel [3].

The frequency and power analysis are done using commer-
cial signoff tools from Synopsys and Cadence for a full chip
(i.e., from RTL to GDSII) design of the studied MAC array.
The used technology is based on Intel 14 nm FinFET. The

Fig. 1: Power density and corresponding on-hip temperature
for a 128×128 systolic MAC array operating at maximum fre-
quency. The maximum heat dissipation that forced-convection
air cooling delivers is considered. The 14 nm FinFET technol-
ogy node is used for the MAC array implementation, which is
done down to the GDSII level. Analysis obtained from [2].

such a high number MAC operations per cycle results in a
significant increase in energy consumption, which might not be
tolerated, especially in embedded devices. In addition, recent
research demonstrated that integrating such a vast amount
of MAC units in a confined area, makes DNN accelerators
contingent to high on-chip power densities that rapidly result
in excessive on-chip temperatures (see Fig. 1) that form thermal
bottlenecks [2]. As a result, DNN accelerators are obliged to
sacrifice performance to abide to temperature constraints [2].
The latter further highlights the need for novel solutions that
will be able to sustain and/or improve the performance of the
DNN accelerators while also satisfying tight power constraints.

A. Required Innovations for Future Neural Networks

In order to increase the efficiency of NNs and boost the
inference speed, while containing the computational power
demands and hence avoiding thermal bottlenecks, innovations
in three main areas are highly required for future NNs. In
the following, we summarize those three areas along with an
overview of the focus of this paper.

(1) Emerging Non-Volatile Memories: Neural Processing
Units, such as Google TPU, include a very large on-chip
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memory in order to minimize the need of communication with
the off-chip memory. The footprint of such a memory consumes
around 30% of the total NPU chip area [9]. On-chip memory
is still widely implemented using conventional SRAM cells,
which largely suffer leakage power. Apart from the power
inefficiency of them, SRAM cells occupy relatively a large
area in which every cell consists of 6 transistors. Therefore,
the density of SRAM-based on-chip memory is limited.

On the other hand, emerging Non-Volatile Memory (NVM)
comes with significantly lower power consumption compared
to SRAMs. In addition, NVM offers a much higher density
in which a single NVM cell might consist of merely a single
transistor. Therefore, replacing conventional SRAM-based on-
chip memory in NPUs with NVM-based on-chip memory
offers: (a) a large increase in the efficiency due to the much
lower power consumption and (b) a higher memory density
and hence with the same area footprint of SRAM-based on-
chip memory, a larger memory capacity can be embedded
using NVM-based memory. This, in turn, allows the NPU to
load much larger data for the NNs to be processed and hence
reducing the necessity of NPU to communicate with the off-
chip memory. In other words, replacing SRAM with NVM
brings twofold benefit to the efficiency of NPUs in which not
only much lower on-chip power is consumed but also much
lower communications with off-chip memory is needed. In
this work, we focus on Ferroelectric Field-Effect Transistor
(FeFET) as one of the very promising NVM technologies.
FeFET is rapidly evolving due to its compatibility to existing
CMOS technology. It offers ultra-dense low-power NVM as
will be later explained.

(2) Emerging Beyond-CMOS Transistors: Existing CMOS
technology suffers from the inability of reducing the operating
voltage despite the amazing ability to scale down the transistor
feature sizes. This is due to the fundamental limit of sub-
threshold swing (SS) of current technology, which is dictated
by Boltzmann Tyranny to be always larger than 60mV/dec [15].
Such a fundamental limit imposes strong restrictions on the
required operating voltage of circuits and, in fact, it was the
key reason behind the discontinuation of Dennard’s scaling [1].

Emerging beyond-CMOS technologies that offer steep sub-
threshold slope transistors provide a unique opportunity for
technology to scale down the voltage while still maintaining
the same performance. In this paper, we will focus on Negative
Capacitance Field-Effect Transistor (NCFET) as one of the very
promising emerging transistors. NCFET technology, similar to
FeFET, also employs a ferroelectric layer within the transistor
gate stack. Therefore, NCFET is also fully compatible to the
existing CMOS fabrication process.

(3) Novel Lightweight NN’s Architectures: In most real-world
cases, state-of-the-art NNs models rely on a massive number
of parameters to achieve high accuracy. Therefore, there is an
inherent challenge to run NNs in an efficient way, especially
due to the existing memory wall. With the goal of reducing
memory accesses and required storage, it has been proposed to
employ quantization or even binarization techniques to simplify
NN models [7]. Specifically, using Binarized Neural Networks

(BNN) significantly reduces the memory needed for parameters
and hence makes the computation more efficient, compared
to higher precision NNs. Expensive MAC operations can be
computed by XNOR followed by bitcount. This enables the
possibility to build efficient NN accelerators from simple com-
ponents, with only a small tradeoff in accuracy. Furthermore, it
has been shown that in BNNs, the impacts of bit errors are well-
behaved (a flip of one parameter only shifts values by a fixed
amount [3]), when compared to floating point NNs (a flip of one
bit may cause values to become extremely high). This provides
BNNs with an inherent resiliency against errors and make them
an excellent candidate to be used with emerging memories,
because the latter often offer high energy saving but at the cost
of lower reliability. In this work, we explain how FeFET-based
memories are subject to errors induced by run-time and design-
time variations and demonstrate the high robustness of BNNs
against errors, which opens doors for combining BNNs with
FeFETs towards energy-efficient, yet reliable NNs.

II. THE ROLE OF NCFET TECHNOLOGY IN IMPROVING
THE EFFICIENCY AND ACCURACY OF NNS

Negative Capacitance Field-Effect Transistor (NCFET) tech-
nology is at the forefront of emerging beyond-CMOS technolo-
gies due to (i) its ability to overcome one of the fundamental
limits in existing CMOS technology related to sub-threshold
swing of 60mV/dec at the room temperature [1], [15], [20] and
(ii) its compatibility with the existing fabrication process of
CMOS [11]. The latter is a key for any emerging technology
to be adopted by the semiconductor industry as it paves the
way for commercial usages with minimal cost overheads.

NCFET aims at increasing the “steepness” of MOSFET tran-
sistors towards pushing SS beyond its fundamental limit. This
is achieved through replacing the traditional high-κ material
with a ferroelectric (FE) material. In practice, NCFET dopes
the hafnium (HfO2)-based material – which is widely used
in existing CMOS technologies to grow high-κ dielectrics –
with zirconium to realize ferroelectricity [11]. The FE layer,
under certain conditions of capacitance matching, provides an
internal voltage amplification due to the presence of negative
capacitance effects. As a result, the ON current of transistor
becomes larger, while the operating voltage remains the same.

As a matter of fact, the switching speed of any circuit is
determined and governed by the ON current (ION ) of the
individual transistors that form the critical paths of the cir-
cuit. Therefore, employing NCFET enables circuits to achieve
a smaller delay and hence be clocked at higher frequency.
Alternatively, the same ON current can be achieved but at a
lower VDD and without decreasing the threshold voltage VT ,
i.e., no increase in the leakage power. Considering the quadratic
relation between power and VDD, NCFET delivers significant
power saving without performance loss (i.e., no trade-offs).

As mentioned earlier, the core component and basic building
block of DNN accelerators is the MAC unit. The overall
frequency of the DNN accelerator is mainly defined by the
frequency of the individual MAC unit. Analogously, the total
power of the entire DNN accelerator is determined by the power
consumption of the individual MAC units. Therefore in our
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Fig. 2: a) The delay gain achieved by NCFET when the
NCFET-based MAC units consume the same energy as the
FinFET-based MAC units. b) The power savings delivered by
NCFET when the NCFET-based MAC circuits feature the same
delay as the FinFET-based ones.

analysis, we consider the MAC unit as our driving circuit to
assess the impact of NCFET on future DNN accelerators. Our
analysis examines MAC units of varying bit-width (i.e., 4-bit to
10-bit) in order to provide a broad evaluation and cover varying
DNN microarchitectures.

In Fig. 2, we evaluate the delay and power improvements
that NCFET brings in DNN accelerators. The MAC units
are synthesized using Synopsys Design Compiler and then
power analyses are performed using Synopsys PrimeTime,
using realistic switching activity values. The FinFET-based
MAC circuits are mapped to the 14nm baseline FinFET tech-
nology library, while the NCFET-based ones are mapped to
our 14nm NCFET technology library. The 14nm FinFET and
corresponding NCFET libraries were generated as described
in [13] and [1], respectively. First, in Fig. 2a we examine the
delay gain achieved by NCFET when the NCFET-based MAC
units consume the same energy as the FinFET-based MAC
units. As shown in Fig. 2a, NCFET achieves 15% lower delay,
on average, compared to the baseline FinFET. Note that, this
delay gain directly translates to higher throughput and lower
overall inference latency. Further details are available in [2].
Therefore, given an energy optimized DNN accelerator, by em-
ploying NCFET, we can significantly improve its performance
without breaking the energy optimization.

In Fig. 2b, we examine the power savings delivered by
NCFET when the NCFET-based MAC circuits feature the same
delay as the FinFET-based ones. As shown in Fig. 2b, NCFET
achieves 46% lower power, on average, compared to the
baseline FinFET. Note that, lower power consumption (at the
same delay) directly translates to lower energy consumption and
also to lower power density, i.e., lower temperature. Therefore,
given a performance optimized DNN accelerator, by employing
NCFET, we can significantly decrease its power consumption
and satisfy tighter power and temperature constraints.

Finally, we examine the improvements that NCFET brings
at the microarchitecture level. To achieve this, we provide an
example that demonstrates how NCFET enables the realization

Fig. 3: The inference cycles reduction delivered by the 88 ×
88 NCFET-based 8-bit MAC array compared to the 64 × 64
FinFET-based one. Both MAC arrays feature the same delay
and power consumption.

of more complex DNN accelerators. For this analysis, we
consider a microarchitecture similar to the Google Edge TPU.
The Edge TPU comprises a 64× 64 8-bit systolic MAC array.
Exploiting the power gain that NCFET delivers at MAC unit
level, for the same total power consumption, we can generate
larger MAC arrays that comprise more MAC units. First, based
on our analysis in Fig. 2, we performed a full-chip design of
a FinFET-based 64 × 64 MAC array and of a NCFET-based
88×88 one. Both MAC arrays feature the same delay and power
consumption (FinFET at 0.7V and NCFET at 0.4V). Note that,
88 × 88 is selected since it is the largest size that satisfies
these requirements when considering 8-bit inference. However,
the NCFET-based MAC array features higher throughput since
it integrates 1.89x more MAC units. Next, we used the cycle
accurate CNN simulator SCALE-Sim from ARM [16] to ob-
tain computation cycles required to run the inference on the
aforementioned MAC arrays. Fig. 3 shows the gain in cycles
that is obtained by running inference on the 88× 88 NCFET-
based MAC array compared to running inference on the 64×64
FinFET-based one. Eight state-of-the-art NNs trained on the
ImageNet dataset are considered in Fig. 3. On average, for
all the examined NNs, NCFET requires 27% less cycles. Note
that, the cycle gain directly translates to latency and energy
gains since the NCFET and FinFET MAC arrays feature same
delay and power consumption. Therefore, compared to FinFET,
for the same power budget, NCFET enables the realization
of larger DNN accelerators that deliver significantly higher
performance (lower latency) and lower energy consumption.

In addition, as shown in Fig. 3 this high latency and energy
reduction enable running more complex DNNs on resource
constrained devices. The latter may eventually translate to
higher accuracy. For instance, running ResNet18 on the 88×88
NCFET-based MAC array result to 7.53% higher accuracy, 13%
lower latency, and 13% lower energy consumption compared to
running the edge-oriented MobileNet on the 64 × 64 FinFET-
based MAC array.

III. THE ROLE OF FEFET TECHNOLOGY IN IMPROVING
THE EFFICIENCY OF NNS

In the following, we provide a general overview on the
FeFET technology and then explain BNNs in detail along with
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Fig. 4: A hidden neuron of a BNN, where wi is the binary
weight, xi the binary input, yi the XNOR-result, ys the shifted
result, and a the output of the activation function.

discussing why BNNs is an interesting candidate to be used
together with FeFETs due to its inherent resiliency to errors.

A. Overview of FeFET Technology

As earlier explained, NCFET replaces the traditional high-κ
layer in transistors with a ferroelectric layer. Ferroelectric FET
(FeFET) is, in fact, similar but with one key difference regard-
ing the thickness of the included FE layer. When the FE layer
thickness becomes relatively high (e.g., 10nm), then negative
capacitance effects disappear and instead a hysteresis-loop in
the electrical characteristics of underlying FET transistor comes
into place. The latter is in charge of turning the traditional FET
into an NVM device. Compared to other emerging memories,
FeFET is considered as one of the most promising technology
due to the full CMOS-compatible, as demonstrated in many
prototypes by GlobalFoundries [18]. Furthermore, it has been
shown that FeFET-based memories is able to provide read and
write latencies within 1ns, which narrows the gap with SRAM
technology, while FeFET still provides much low power [18].
Another key benefit of FeFET is the high density because every
FeFET cell consists of merely one transistor.

One of major drawback of FeFET is the low resiliency to
errors. Design-time (caused by manufacturing variability) and
run-time (caused by temperature) variations strongly degrade
the propriety of FE and hence shrinks the available noise
margin. Thus, when reading stored values within FeFETs,
errors might appear, unlike SRAMs which are very reliable.
Therefore, to deploy FeFETs as on-chip memory, it is necessary
to understand and model the underlying probability of error
based on the mechanisms by which information is stored.

The key mechanism in FeFET for logic‘0’ and logic ‘1’
to be stored, is the available dipoles inside the FE. When an
electric field is applied, the direction of those dipoles switch
(based on the direction on the applied field). When the field is
ceased, the dipoles retain their direction. Later, the intensity of
provided current by FeFET (i.e., high or low current) based on
the dipoles direction enables the sensing circuit to differentiate
between logic‘0’ and logic ‘1’.

B. What FeFETs Offer to Neural Networks?

Using FeFET memory instead of conventional SRAM on NN
accelerators has several key benefits. (1) Non-volatility: During
inference, NNs need to access a large number of parameters,
and buffer the inputs and the intermediate results. When using
FeFET instead of SRAM in NN accelerators, this data will be
non-volatile. First, keeping the parameters in FeFET memory
without the need to continuously supply energy plays a key
role in maximizing the efficiency. Secondly, storing the inputs
and intermediate results in FeFET allows for novel computation
schemes in systems with energy constraints, such as checkpoint
computing, where the device can be powered down after the
intermediate results (or inputs) have been stored in FeFET [12].
For a comparison with other emerging NVM technologies,
recent studies have found that FeFET-based components in
NN accelerators outperform RRAM-based ones [4]. (2) High
density: With FeFET, six times more data per area can be stored
than in conventional SRAM, due to the difference in memory
cell structure. (3) Comparable speed to SRAM: Replacing
SRAM in NN accelerators will not lead to a large loss in
inference speed. Read and write latencies are within 1ns (close
to SRAMs).

C. Which Challenges FeFETs bring to Neural Networks?

Fluctuations in temperature considerably impact the FE prop-
erties and can lead to flipping the direction of some dipoles.
This manifests itself as changes in the provided current by
FeFET in which the sensing circuit will later erroneously
decode the stored value. In other words, a bit flip occurs
during reading. In [5], [14], we have studied for the first time
how temperature increase degrades the electrical properties of
FeFETs. Using multi-physics (TCAD) simulations, we modeled
how temperature and process variation can cause errors. We
demonstrated in [5] that temperature increase non-uniformly
degrades the electrical propriety of FeFET when it stores logic
‘0’ or logic ‘1’, leading to asymmetric probability of error.

Therefore, despite the aforementioned benefits of FeFETs,
deploying them in NNs necessitates that the NN model to
be error tolerant, due to the bit errors caused by temperature
and process variation. However, abstracted error models of
FeFET are not yet available and research is still in its infancy.
Fortunately, several studies have investigated similar scenarios
with bit errors using other different memory types. These
studies explore the use of approximate memory for NNs, in
which reliability (in form of bit errors) is traded for energy
efficiency and speed [6], [10].

IV. BNNS FOR ERROR-RESILIENT AND EFFICIENT NNS

Among many NN models, the most resource efficient variant
are BNNs, which are also highly resilient to bit errors [3]. Since
BNNs have binarized weights and activations, the convolution
and activation can be computed efficiently by

2 ∗ popcount(XNOR(W l
i , X

l−1))−#bits > s,

where popcount instruction accumulates the number of bit sets,
#bits denotes the number of bits in the XNOR operands, and
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s is a learnable threshold parameter, the comparison against
which produces a binary activation value [8], [17]. An overview
of a BNN neuron operation with XNOR and accumulation
(popcount), shift, and threshold for hidden layer neurons is
shown in Fig. 4. Using BNNs instead of floating-point NN
greatly reduces the needed memory size and accesses, while the
costly arithmetic operations can be calculated by computation-
ally efficient bit-wise operations. For instance, considering only
binary weight accesses, BNNs require 32 times smaller memory
size and 32 times fewer memory accesses compared to floating-
point NNs, leading to improved energy-efficiency and speed,
while only XNOR, accumulation, and binary thresholding is
needed for the majority of BNN operations [8].

A. Error-Tolerance Optimization for BNNs

BNNs can also be trained for error tolerance by bit flip
injection during training, as proposed in [6]. Due to the binary
properties of BNN neurons, bit flips in one weight or activation
only causes a fixed change of the values, for which a proof is
provided in [3]. However, if the BNNs are optimized with the
standard cross entropy loss and high bit error rates during train-
ing, the accuracy degrades significantly. This is undesirable,
since using BNNs instead of higher precision variants already
necessitates sacrificing a small accuracy loss.

With more sources of bit errors in addition to the FeFET
bit errors, e.g. due to approximate components, such as ap-
proximate computation units, which are employed in novel NN
accelerators [19], the number of bit errors will be even higher.
In these cases, using bit flip injections during training with the
standard cross entropy loss may lead to even higher decrease
of accuracy [3].

Alternative methods need to be investigated to conquer the
above challenges. By considering how to train BNNs for bit
error tolerance without bit flip injections, we were able to
modify a method known from support vector machines for the
use of bit error tolerance optimization. By identifying margins
in the output layer (as described in [3]), we constructed a
modified hinge loss (MHL), which significantly increases bit
error tolerance of NNs compared to the state-of-the-art method
cross entropy loss (CEL) with bit flip injection during training.
If the margins in the NN are not distorted, the MHL can also
be applied to quantized or floating-point precision NNs.

In the following, we first present the results showing how
the MHL outperforms CEL with bit flip injection. Then, we
show how the combination of MHL with bit flip injection
increases the bit error tolerance drastically. In the experiments,
five BNNs were tested for every plot. The same BNNs are used
as in [3]. For BNNs trained with MHL, a parameter search
was conducted and the best b was chosen. Here, we present
experiment results for evaluating accuracy over bit error rate
(BER) from 0% to up to 15% or 30% in Fig. 5 and 6 for the
Fashion dataset. For training and evaluation, we use a bit error
model which is in line with the assumption in recent studies
that use approximate memory [6], [10].

We first compare the MHL alone to CEL with bit flip
injection in Fig. 5. In the experiment results, we observe that
MHL-trained BNNs have better accuracy over BER than BNNs
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Fig. 5: Accuracy over bit error rate when MHL is used as the
loss, compared to CEL with bit flip injections (bit error rates
0%, 5%, etc). The number next to b denotes to which value
the parameter b is set to during training with the MHL [3].
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Fig. 6: Accuracy over bit error rate when MHL is combined
with bit flip injection (bit error rates 0%, 1%, etc), compared
to MHL alone. The number next to b denotes to which value
the parameter b is set to during training with the MHL [3].

trained with CEL and bit flip injections, for a BER of up to
10%. From 10% on, the accuracy of CEL-trained BNNs can be
better when training with high BERs (e.g. 20%), however, this
is after the accuracy drops significantly. Furthermore, the CEL-
trained BNNs have significant accuracy degradation for higher
BER during training (e.g. CEL-20%), while the MHL-trained
BNNs do not suffer from this degradation.

Secondly, we compare the combination of MHL and bit flip
injections to the MHL alone. We observe that the accuracy over
BER can be drastically improved when using the combination.
In Fig. 6, the BER at which the curve drops steeply is extended
from 5% (baseline, MHL without bit flips) to 10%, 15%, or
20% BER respectively, depending on the BER during training.
There is however a small trade-off in accuracy at 0% BER. With
more accuracy trading, higher bit error rates can be tolerated.

Although the MHL increases bit error tolerance, drastic
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enhancements can still only be achieved by combining the
MHL with bit flip injection during training. On the one hand,
bit flip injections introduce overheads during training, which
may not scale well for larger NN models and more complex
bit error models. Methods to achieve bit error tolerance in
NNs without bit flip injection should be continued to be
investigated. On the other hand, the combination of MHL and
bit flip injection enables the possibility to introduce additional
approximate components to the NN inference system, i.e. not
only FeFET memory, but also approximate computation units,
which increases the number of bit errors in the system.

V. CONCLUSIONS AND OUR PERSPECTIVES

(1) Both NCFET and FeFET are promising emerging tech-
nologies, which employ ferroelectric material. NCFET in-
creases the efficiency of logic gates, whereas FeFET increases
the efficiency of memory. Their compatibility with the existing
CMOS fabrication process make them interesting candidates to
be adopted by the semiconductor industry.

(2) Building hardware accelerators for DNNs in which (i)
SRAM on-chip memory is replaced with FeFET and (ii)
conventional FET-based MACs are replaced with NCFET-based
MACs opens new doors to significantly accelerate NNs and
suppress their computational power demands.

(3) BNN features a lightweight implementation, which makes
it a promising candidate to increase the efficiency of NNs.
BNNs also exhibit a high resiliency against errors. Therefore,
using BNNs together with FeFETs enables NNs to still profit
from the high energy savings provided by FeFETs while relia-
bility and accuracy are still maintained despite errors stemming
from design-time and run-time variations.

(4) All in all, we envision that future NNs combine both
emerging transistors like NCFETs and emerging NVMs like
FeFETs along with lightweight architectures like BNNs towards
realizing ultra-low power & ultra-high efficiency AI.
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