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Abstract—To overcome the memory wall in neural network
(NN) inference systems, recent studies have proposed to use
approximate memory, in which the supply voltage and access
latency parameters are tuned, for lower energy consumption and
faster access at the cost of reliability. To tolerate the occuring bit
errors, the state-of-the-art approaches apply bit flip injections
to the NNs during training, which require high overheads and
do not scale well for large NNs and high bit error rates. In
this work, we focus on binarized NNs (BNNs), whose simpler
structure allows better exploration of bit error tolerance metrics
based on margins. We provide formal proofs to quantify the
maximum number of bit flips that can be tolerated. With the
proposed margin-based metrics and the well-known hinge loss
for maximum margin classification in support vector machines
(SVMs), we are able to construct a modified hinge loss (MHL) to
train BNNs for bit error tolerance without any bit flip injections.
Our experimental results indicate that the MHL enables the
possibility for BNNs to tolerate higher bit error rates than
with bit flip training and, therefore, allows to further lower the
requirements on approximate memories used for BNNs.

Index Terms—Neural networks, error tolerance, approximate
memory

I. INTRODUCTION

In the last years, numerous fields have benefited from the
application of neural networks. One of the biggest challenges
in neural networks (NNs) up to date is, however, the resource
demand. NNs rely on deep architectures and a large amount
of parameters to achieve high accuracy.

Recent studies on efficient NN-based inference systems
have explored the use of approximate memory, which has
been realized by reducing the memory supply voltage and
tuning latency parameters with the goal of lower power
consumption and faster access. If these methods are pushed to
the limit, high bit error rates (BERs) can occur. For modern
memory technologies, such as volatile memories (SRAM [10],
[18], DRAM [8]) and emerging non-volatile memories (e.g.
STT-RAM [6], [14], RRAM [5]) the BER increases steeply
when reducing the voltage and tightening the timing. Without

This paper has been supported by Deutsche Forschungsgemeinshaft (DFG)
as part of the Collaborative Research Center SFB 876 “Providing Information
by Resource-Constrained Analysis” (project number 124020371) and project
OneMemory (project number 405422836).

countermeasures, these bit errors can degrade the accuracy of
NNs to unacceptable levels.

The survey in [16] by Huitzil et al. provides a compre-
hensive overview of the recent and further back work about
fault and error tolerant NNs, from which we summarize some
representative studies. For example, the study in [3] proposes
a penalty term which aims at distributing the computation to
neurons optimally to achieve error tolerance. Another study [2]
distributes the absolute values of weights evenly to neurons,
while the work in [13] aims at low weight importance.

Currently, the only known method to achieve bit error
tolerance on the part of NNs is training with bit flip injections
according to the error model. Bit flip injection during training,
however, has disadvantages. First, recent studies have reported
that injecting bit flips during training can significantly degrade
accuracy. The higher the BER during training, the more
significant the accuracy degradation [1], [5], [8]. Another
disadvantage is the additional overhead [9]. During the training
with bit flip injection, for every bit of the error-prone data a
decision has to be made whether to inject a bit flip, which
adds numerous additional steps in the NN training.

Achieving bit error tolerance in NNs without bit flip injec-
tion, and thus, conquering the above disadvantages, would be a
breakthrough for the research area of NNs using approximate
memory. To achieve this, the principles of bit error tolerance
in NNs need to be well understood. However, to the best of
our knowledge, the theoretical foundations of NN bit error
tolerance have not been reported yet.

In binarized NNs, however, a resource-efficient variant of
NNs [7], weights are represented by one bit. The binarization
of the parameters in BNN allows the exploration of bit error
tolerance to examine the effect of each bit flip precisely.

Our contributions: The key focus of this work is to explore
methods to achieve bit error tolerance without bit flip injection
in BNNs. We propose margin-based metrics that measure the
bit error tolerance of structural elements in BNNs and use
them for bit error tolerance optimization by transforming to a
margin maximization problem. This allows us to adopt existing
methods from support vector machines (SVMs) to solve the
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bit error tolerance problem. If the margins in the NN are not
distorted, the insights and methods we gain by researching
BNNs in this study may also be applicable to quantized or
floating point precision NNs. Specifically, our contributions
are as follows:
• In Section III, we provide a margin-based bit error

tolerance metric for single neurons in a BNN, which
formally characterizes when a neuron flips its output
value. This metric is further propagated to the output
layer of the BNN to quantify the bit error tolerance of
the output layer, which is used to quantify the ultimate
impact of bit flips.

• Based on the margin-based output layer metric and the
well-known hinge loss for maximum margin classification
in SVMs, we propose a modified hinge loss (MHL) in
Section IV for bit error tolerance optimization of BNNs,
which works without bit flip injections during training.

• We performed extensive experiments to compare with
the-state-of-the-art approaches, which train BNNs with
cross entropy loss (CEL) and bit flip injections [5]. The
results show that applying the MHL alone (without any
bit flip injections) outperforms CEL in terms of accuracy.
We further evaluated the combination of MHL and bit flip
injections, which significantly improves the accuracy of
BNNs at high BERs.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Fully connected and convolutional NNs consist of layers
that perform operations, e.g. a convolution of the input data
with the weights. Outputs are fed into an activation function,
and the result is supplied to the next layer as a new input. The
layer-wise process is repeated until the final output is obtained.
We call this way of computing the forward pass. The convo-
lution and the activation is computed using σ(

∑
iW

l
iX

l−1),
where W l

i is the weight of the i-th filter in layer l, X l−1 is
its input and σ the activation function.

In BNNs, which binarized weights and activations, the
convolution and activation can be simplified to

2 ∗ popcount(XNOR(W l
i , X

l−1))−#bits > s,

where popcount counts the number of 1s, #bits is the number
of bits in the XNOR operands, and s is a learnable threshold
parameter, the comparison against which yields a binarized
output [7], [12].

A. Training

Stochastic gradient descent (SGD) with mini-batches is
typically employed to train NNs. We denote the training data
as D = {(x1, y1), . . . , (xI , yI)} with xi ∈ X as the inputs,
yi ∈ Y as the labels, and ` : Y ×Y → R as the loss function.
With fW (x) as the NN output, the goal is to solve

argmin
W

1

I

∑

(x,y)∈D
`(fW (x), y) (1)

by a mini-batch SGD strategy using backpropagation. A
method to train BNNs has been proposed by Hubara et al.

[7], in which weights are stored as floating point numbers
for updating the model parameters in the backpropagation.
During the forward pass, the weights and activations are
deterministically binarized.

BNNs can be trained for bit error tolerance by bit flip
injections during training [5]. This enables the possibility
to use approximate memory, trading reliability for energy
efficiency and performance.

B. BNN Building Blocks

In this work we consider fully connected BNNs (FCBNNs)
and convolutional BNNs (CBNNs) performing classification.
The layer types we use are: 1) convolutional, 2) maxpool,
3) batch normalization, and 4) fully connected layer. Our
theoretical exploration does not need any specific properties
of these layers. We present more detailed information on the
used BNN architectures in the experiments section.

C. Memory Model

In this study, we assume that bit error rates (BERs) are
transient and symmetric, i.e., the probability for 0 to flip
to 1 is the same as the probability for 1 to flip to 0. This
assumption characterizes the probability of bit flips every
time when a bit is read from the approximate memory. This
matches the assumptions in recent studies about approximate
memories (SRAM [4], [15], [17], DRAM [8]), and non-
volatile memories (RRAM [5], MRAM or STT-RAM [6]).

Distinct from the existing results in the literature based on
bit flip injections, our training approach based on the modified
hinge loss (detailed in Section IV) does not have to consider
the BERs in the training phase. Therefore, the trained bit error
tolerance of the BNN is not bound to a specific error rate.
However, if the BER is specified, the BNN can be trained
to target this rate by combining the modified hinge loss in
Section IV and bit flip injections.

D. Problem Definition

Given a set of labelled input data, the objective is to train a
BNN for high accuracy and high bit error tolerance, provided
that the BERs are transient. In this work, we focus on the
problem of how to train BNNs for bit error tolerance without
bit flip injections.

To solve this problem, we explore bit error tolerance metrics
in Section III, which allow us to describe how the bit error
tolerance of BNNs can be measured with margins. Then, we
modify the hinge loss for maximum margin classification (in
SVMs) in Section IV to incorporate the metric and make it
applicable to BNNs.

III. BIT ERROR TOLERANCE METRICS

In this section, we first introduce a margin-based neuron-
level bit error tolerance metric for BNNs, which is extended
to formulate a bit error tolerance metric for the output layer.

In the following, we use a notation describing properties of
neurons in convolutional layers, but our considerations also
apply to neurons in fully connected layers. Let n be the index
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of one neuron in a NN, and x ∈ X an input to the NN. The out-
put of a neuron in a convolutional layer is a feature map with
height U and width V . Let hx,n,u,v ∈ Z be the pre-activation
value of neuron n at place (u, v) ∈ {0, . . . , U} × {0, . . . , V },
before applying the activation function. For BNNs, the pre-
activation values of a neuron are computed by a weighted
sum of inputs and weights that are ±1. Therefore, one bit flip
in one weight changes the pre-activation value by 2.

Theorem 1. Let n ∈ {0, . . . , N} be the index of one neuron.
Furthermore, let q be the number of bit flips induced into
the weights of neuron n. The pre-activation of neuron n at
place (u, v) after induction of these bit flips is in the interval
[hx,n,u,v − 2q, hx,n,u,v + 2q].

Proof. For better readability, we use h for hx,n,u,v for abbre-
viation in the proof. Each bit flip of one weight of neuron n
changes h by 2. Inductively, this shows that q bit flips change
h by up to 2q. Hence, the pre-activation of neuron n after up
to q bit flips is in [h− 2q, h+ 2q].

We use this proof to first formulate a neuron-based bit error
tolerance metric for hidden-layer neurons. On this basis, we
formulate a metric for the entire output layer. We define the
set of indices of neurons of the hidden layer layer by NI and
of the output layer by NO.

For hidden layer neurons, i.e., those with index n ∈ NI ,
the pre-activation value is compared with a threshold sn ∈ Z,
which yields a binary output. Here, we use the following
activation function:

σ : hx,n,u,v 7→
{
1 hx,n,u,v > sn

−1 else
(2)

As long as the weights or input flips do not cause the pre-
activation value to pass the threshold, a neuron is bit error
tolerant. Therefore, the bit error tolerance of an hidden layer
neuron depends on the margin

Tx,n,u,v = |hx,n,u,v − sn| . (3)

between the pre-activation value and the threshold. With each
bit flip hx,n,u,v can get closer to sn and can finally flip the
output of the activation, if sn is passed. sn is taken into
account for activation shifts due to the batch normalization
layer and without batch normalization sn = 0.

Corollary 1. Let n ∈ NI be the index of one hidden layer
neuron. If hx,n,u,v > sn, then max

(
0,
⌊
Tx,n,u,v

2

⌋
− 1
)

many

bit flips can be tolerated. Else,
⌊
Tx,n,u,v

2

⌋
can be tolerated.

Proof. We denote h for hx,n,u,v , s for sn, and T for Tx,n,u,v .
We analyze the two cases individually.

If h− s > 0, then the output of neuron n is +1. We denote
by h̃ the value of h after up to q := max

(
0,
⌊
Tx,n,u,v

2

⌋
− 1
)

bit flips. By Theorem 1, we have h̃ ∈ [h − 2q, h + 2q]. We
conclude that h̃− s ≥ h− 2q − s = T − 2q which is > 0 for
q defined as above. More specifically, the output of neuron n
is still +1.

On the other hand, if h− s ≤ 0, then the output of neuron
n is −1. Let h̃ be the pre-activation value after up to q :=⌊
Tx,n,u,v

2

⌋
bit flips. Again, using Theorem 1 yields h̃ ∈ [h −

2q, h + 2q]. We obtain h̃ − s ≤ h + 2q − s = −T + 2q ≤ 0
and the output of neuron n is still −1.

We note that bit flips may propagate through the layers of
BNNs. If the margin from Eq. (3) is small, weight flips might
cause the neuron n to flip its output. This affects subsequent
neurons for which neuron n provides inputs. A flip of the input
value for a neuron affects the pre-activation value exactly as
the bit error of a weight, i.e., it modifies the pre-activation
value by 2. Therefore, the subsequent neurons may have to
tolerate a higher number of bit errors.

A detailed analysis of the neuron-based bit error tolerance
metric has been conducted in [1], showing the relation of
this metric to the bit error tolerance of BNN. Using this
metric for optimizing bit error tolerance has been reported
to be unsuccessful. The reason may be that bit flips of neuron
outputs can only affect the BNN prediction if the effect of
bit flips reach the output layer and lead to a change of the
predicted class. Therefore, we now shift our focus on applying
the notion of margin presented above to the output layer, i.e.,
to neurons with index in NO.

Each neuron in the output layer has only one output value
hx,n,1,1 which is one entry in the vector of predictions ŷ.
No activation function is applied to the output value of these
neurons. There are as many values in ŷ as there are neurons in
the last layer. The index of the entry with maximum value in
ŷ determines the class prediction, where we assume that ties
are broken arbitrarily.

If bit errors modify the output values in the output layer
such that another neuron provides the highest output value,
then the class prediction changes. Let hx,n′,1,1 and hx,n′′,1,1

with n′, n′′ ∈ NO be the highest and the second highest output
value of neurons in the output layer. The following corollary
shows that the margin

m := hx,n′,1,1 − hx,n′′,1,1 (4)

serves as bit error tolerance metric for the output layer.

Corollary 2. If m > 0, then the output layer of the BNN
tolerates max(0,

⌊
m
2

⌋
− 1) bit flips.

Proof. Let q ∈ {0, . . . ,max(0,
⌊
m
2

⌋
− 1)} be a number of bit

flips. We consider any distribution of the q bit flips to weights
or inputs of the output layer, i.e.,

∑
n∈NO

qn = q where qn is
the number of bit flips in weights or inputs of the neuron n.

Let n′ be the index of the neuron with the highest output
value. Furthermore, let n 6= n′ ∈ NO. For better readability,
we denote hn′ for hx,n′,1,1 and hn for hx,n,1,1. Furthermore,
we denote by h̃n′ and h̃n the values of hn′ and hn after qn′

and qn bit flips. By Theorem 1, we know that h̃n′ ∈ [hn′ −
2qn′ , hn′ +2qn′ ] and h̃n ∈ [hn−2qn, hn+2qn]. We conclude

h̃x,n′,1,1 − h̃x,n,1,1 ≥ hx,n′,1,1 − 2qn′ − hx,n,1,1 − 2qn

≥ hx,n′,1,1 − hx,n′′,1,1 − 2q = m− 2q > 0,
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as q ≤ max(0,
⌊
m
2

⌋
− 1) < m

2 . Since n 6= n′ ∈ NO is chosen
arbitrarily and we have shown that h̃x,n′,1,1 > h̃x,n,1,1, the
output value of neuron n′ is still maximal even after q bit
flips in the output layer.

IV. MARGIN-MAXIMIZATION FOR BIT ERROR
TOLERANCE OPTIMIZATION

In this section, we describe how we use the the margin-
based bit error tolerance metric of the output layer and the
well-known hinge loss for maximum margin classification to
construct the modified hinge loss for optimizing the bit error
tolerance of BNNs.

For bit error tolerance of the last layer, the margin m as
introduced in Eq. (4) needs to be large, so that the maximum
number of bit flips the output layer can tolerate is high. The
margin can be directly computed by subtracting the second
highest entry ŷc′′ of the output vector ŷ from the highest entry
ŷc′ , i.e., m = ŷc′−ŷc′′ . However, optimizing with respect to m
without considering the other entries ŷc of ŷ may not exhaust
the full potential of the margin between ŷc′ and the output of
the other classes ŷc. The larger the margin between ŷc′ and ŷc
of other classes c, i.e. mc = ŷc′ − ŷc, the more bit errors can
be tolerated in the neuron that calculates ŷc without a change
of the prediction. To put it concisely, for a bit error tolerant
output layer, ŷc′ needs to be as large as possible, while the
other ŷc need to be as small as possible. To achieve this, we
build upon the hinge loss for maximum margin classification.

The hinge loss, c.f. [11], for maximum margin classification
is defined as

`(y, f) = max(0, 1− y · f), (5)

with the ground truth prediction y = ±1 and the prediction
f ∈ R. This loss becomes small if the predictions have
the same sign as the predicted class and are close to 1
in magnitude. For predicted values larger than 1, the loss
becomes 0. The “1” in the loss forces the classifier to
maximize the margin between two class predictions. To solve
optimizations problems that use the hinge loss, many of the
common optimizers or algorithms can be used, such as the
stochastic gradient descent (SGD) strategy [19].

In the case of BNNs for multi-class problems, the version
of the hinge loss in Eq. (5) cannot be directly used. To
extend the hinge loss to multiple classes, we define yenc
as a one-hot vector with elements in {−1, 1}, which has a
+1 at the index with the ground truth, else −1. yenc has
the same number of elements as ŷ. Then the element-wise
product yenc · ŷ is computed. In this product, in case of correct
predictions, positive predictions in the correct class will stay
positive, negative predictions that should be as negative as
possible become positive. In case of wrong predictions, i.e.
high negative value for the correct class and high positive
value for the wrong class, the values become negative. For a
high penalty in the wrong case and a small penalty for the
correct case, we subtract the product yenc · ŷ from a parameter
b, and get (b − yenc · ŷ). Since we do not demand higher

Name # Train # Test # Dim # classes

FashionMNIST 60000 10000 (1,28,28) 10
CIFAR10 50000 10000 (3,32,32) 10

TABLE I: Datasets used for experiments.

Parameter Range

Fashion FCNN In → FC 2048 → FC 2048 → FC 10
Fashion CNN In → C64 → MP2 → BN → C64 → MP2 → BN

→ FC2048 → BN → FC10
CIFAR10 CNN In → C128 → BN → C128 → MP2 → BN

→ C256 → BN → C256 → MP2 → BN
→ C512 → BN → C512 → MP2 → BN
→ FC1024 → BN → FC10

TABLE II: BNN architectures used in this work.

prediction values than b, we set negative values to zero with
the max function, and denote the modified hinge loss (MHL):

`MHL(ŷ, yenc) = max{0, (b− yenc · ŷ)}. (6)

Eq. (6) is still a convex function like Eq. (5), so it can be
used with the same optimizers. In this work, for optimizing
BNNs, the ` in Eq. (1) is replaced with `MHL, which optimizes
the BNN via the mini-batch stochastic gradient descent (SGD)
strategy to minimize the difference (b−yenc·ŷ), as described in
Section II-A. The lower this difference, the larger the margin
between ŷc′ and all the other ŷc. Above, we demanded exactly
this property for a bit error tolerant output layer.

V. EXPERIMENTS

This section presents the results demonstrating the perfor-
mance of BNNs optimized using MHL in comparison to the
state-of-the-art cross entropy loss (CEL) [5]. The experiment
setup is presented in Section V-A. We report the perfor-
mance of the MHL without and with bit flip injection in
Section V-B and V-C, respectively.

A. Experiment Setup

We evaluate three types of BNNs: Fully connected BNNs
(FCBNNs) and small convolutional BNNs (CBNNs) for Fash-
ion, and a larger CBNN for CIFAR10. The BNN architectures
are presented in Table II and the dataset info is in Table I.
The BNNs use convolutional (C) layers with size 3× 3, fully
connected (FC) layers, maxpool (MP) with size 2 × 2, and
batch normalization (BN) layers followed by activation.

For training, we run the Adam optimizer [7] for 200 epochs
for Fashion and 500 epochs for CIFAR10, with either cross
entropy loss (CEL) or modified hinge loss (MHL). We use
a batch size of 256 and an initial learning rate of 10−3. To
stabilize training we exponentially decrease the learning rate
every 25 epochs by 50 percent.

To cover a wide spectrum of bit errors, for testing we
use bit error rates (BERs) from 0% (no bit errors) up to
35%, with increments of either 1% for Fashion and 0.5% for
CIFAR10. For training with bit flips we use different BERs,
from 1% up to 30% BER, such that accuracy degradation
is below 10% from the original accuracy. Depending on the
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Fig. 1: Accuracy over bit error rate for BNNs trained with CEL under a given bit flip injection rate (specified in the legend,
0%, 5%, 10%, etc.) and BNNs trained with MHL without bit flip injections for a specified b in Eq. (6).

approximate memory and its properties, accepting BERs of
this extent can improve the approximate memory, such as in
energy consumption, timing parameters, production cost, etc.

As the base line to the MHL, the CEL with bit flip injections
is used (proposed in [5] and in [8] for classification models).
The CEL measures the performance of classification NNs
returning values that can be interpreted as class probabilities.
With the ground truth class i and softmax as input, the
CEL is defined as `CEL(ŷ, i) = − log

(
exp(ŷi)∑
j exp (ŷj)

)
, which

can be written as log
∑

j exp (ŷj)− ŷi. With large differences
among ŷj , the term

∑
j exp (ŷj) becomes approximately the

highest value ŷj∗ due to the exponential, so the term ŷj∗− ŷi
influences the optimization most. In case of good predictions,
this term will be close to zero. In case of bad predictions,
i.e. large ŷj∗ and small ŷi, the ŷj∗ will be decreased and
ŷi increased. In these two cases, the margins between the
neuron that returns ŷi and neurons other than the one returning
ŷj∗ may not always be considered in the loss, because of
the distortion by the exponential. However, the actual margins
are considered in the MHL, which we compare to the CEL
regarding bit error tolerance next.

B. MHL without Bit Flips against CEL with Bit Flips
Fig. 1 presents the experimental results of different BNNs

with respect to the accuracy over BER (from 0% to up to 15%
in Fig. 1(a) and (b) and from 0% to up to 5% in Fig. 1(c)). For
each data set, five BNNs were conducted using MHL without
any bit flip injections and CEL with different BERs for bit
flip injections. Moreover, for all BNNs trained with MHL, we
employed a parameter search for b (in Eq. (6)), testing powers
of two, up to two times of the maximum value the neurons
in the output layer can compute (maximum output value of
a neuron in the output layer is the number of neurons in the
layer before the output layer). Among these configurations of
b, the best one was chosen.

We observe that BNNs trained with the MHL without
bit flip injections have better accuracy over BER than the
BNNs trained with CEL under bit flip injections, i.e., in

Fig. 1(a) and (b) up to 10% and Fig. 1(c) up to 5%. The
BNNs trained with CEL suffer from significant accuracy drop
for lower BERs, when the BER during training is high, e.g.,
CEL 20% and/or CEL 30% in Fig. 1 at low BER. The BNNs
trained with MHL, however, do not suffer from this accuracy
drop. Although the BNNs trained with CEL 20% and bit
flip injections have better accuracy for Fashion CBNN in
Fig. 1(b) when the error rate is higher than 10%, the accuracy
of the BNNs drops by a significant amount, which may be
unacceptable. Further investigations should be deployed, to be
presented in Section V-C.

C. Combination of Modified Hinge Loss and Bit Flip Training

In this section, we evaluate the BNNs trained with the MHL
and bit flip injections under different BERs. In addition, the
BNNs trained with the MHL without bit flip injections (i.e.,
those BNNs generated using the MHL in Section V-B under
0% BER) are included here as the baseline in this subsection.
For all configurations, we employed the same parameter search
for b as in Section V-B.

Fig. 2 presents the experimental results of different BNNs
with respect to the accuracy over BER (from 0% to up to 30%
in Fig. 2(a) and (b) and from 0% to up to 6% in Fig. 2(c)). In
all experiments, we observe that the accuracy over the BER
of the BNNs trained under MHL and bit flip injections is
significantly higher than that of the baseline trained by only
MHL. For example, for Fashion in Fig. 2(a) and 2(b), the BER
at which the accuracy degrades significantly is extended from
5% (baseline, green curve) to 20% and 15% respectively, with
a small trade-off in the accuracy at 0% BER. If more accuracy
at low error bit rates is traded, the BER at which accuracy
degrades steeply can be shifted even further. For CIFAR10 in
Fig. 2(c), this breaking point can also be increased. However,
more accuracy has to be traded compared to the previous cases.

If b is higher than the ones shown, the accuracy for lower
BERs suffers similar to using CEL with high BERs. If b is
lower, there will be no significant change compared to CEL
with 0% BER. We only show the results with the best b.
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Fig. 2: Accuracy over bit error rate for BNNs trained with MHL and bit flip injections (denoted as flip 0%, 1%, etc). The
number after the b is the value to which the parameter b in the MHL is set during training (see Eq. (6)).

VI. CONCLUSION

In this work, we proposed a concept of margin to formulate
a bit error tolerance metric for the entire output layer, for
which we formally proved that it measures the maximum
number of any bit flips that can be tolerated. Based on this
metric and the well-known hinge loss for maximum margin
classification in SVMs, we proposed the modified hinge loss
(MHL) for optimizing the bit error tolerance of BNNs. Our
experimental results show that the BNNs trained with the
MHL achieve higher levels of bit error tolerance and accuracy
compared to BNNs trained with the cross entropy loss (CEL)
and bit flip injections.

We believe that the fundamental understanding of the bit er-
ror tolerance in this paper for BNNs provides a cornerstone for
the exploration of other NN models. Despite the limitation of
using only binary values, the concept of margins of individual
neurons and the margins of the output layer can be potentially
extended to any NN model with higher precision weights. In
these evaluations, alternative ways of margin maximization
should be investigated, for retaining properties of the CEL (e.g.
notion of class probabilities and applicability to imbalanced
classification problems), which may be important in some
cases. Avoiding paramter search for b is another important
step, e.g. with a different hinge loss. We plan to explore such
extensions in the future.
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