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ABSTRACT
The emergence of multicore and manycore platforms poses a
big challenge for the design of real-time embedded systems,
especially for timing analysis. We observe in this paper that
response-time analysis for multicore platforms with shared
resources can be symmetrically approached from two per-
spectives: a core-centric and a shared-resource-centric per-
spective. The common “core-centric” perspective is that a
task executes on a core until it suspends the execution due
to shared resource accesses. The potentially less intuitive
“shared-resource-centric” perspective is that a task performs
requests on shared resources until suspending itself back to
perform computation on its respective core.

Based on the above observation, we provide a pseudo-
polynomial-time schedulability test and response-time anal-
ysis for constrained-deadline sporadic task systems. In addi-
tion, we propose a task partitioning algorithm that achieves a
speedup factor of 7, compared to the optimal schedule. This
constitutes the first result in this research line with a speedup
factor guarantee. The experimental evaluation demonstrates
that our approach can yield high acceptance ratios if the
tasks have only a few resource access segments.

1. INTRODUCTION
To reduce power consumption and mitigate thermal dissi-

pation issues in computing systems, there has been a trend
towards using multicore platforms. Such multicore systems
feature a number of shared resources, such as caches, memory
banks, and on-chip busses, which have a strong influence on
a task’s execution time and response time. Traditionally,
timing analysis consists of two separate steps: (i) worst-case
execution time (WCET) analysis, which computes an upper
bound on the execution time of a single job of a task running
in isolation, and (ii) schedulability analysis, which deter-
mines whether multiple tasks are guaranteed to meet their
deadlines, while sharing a processor. In multicores, however,
tasks compete for other resources than just a processing core,
and so characterizing their resource consumption by a single
value is no longer sensible.

For a more in-depth treatment of literature on the im-
pact of resource sharing on performance and worst-case tim-
ing analysis please consult the survey in [1]. One line of
work in timing analysis for multicores is to assume struc-
tured execution models, e.g., [11, 14, 15, 17]. For example,
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the superblock execution model, proposed by Pellizzoni et
al. [15], classifies the execution of a superblock into three
phases: data acquisition, local execution, and data repli-
cation phases. This is also standardized in IEC 61131-3.
For this structured model, the state-of-the-art results are
restricted to the sequential execution of superblocks without
any preemptions [11, 15, 17]. Recently, Melani et al. [14]
have studied the problem of scheduling tasks consisting of
one memory phase and one execution phase, called M/C
(memory-computation) tasks, providing an exact response-
time analysis under fixed-priority scheduling. Another di-
rection is to consider structured resource arbitration meth-
ods, e.g., Time Division Multiple Access (TDMA) or Round-
Robin (RR) arbitration [10, 17]. Since the resource sharing
problem in multicore systems does not admit tight analytical
solutions, approaches adopting timed automata, e.g., [11,13],
have been also reported. Altmeyer et. al [2] present a frame-
work to decouple response-time analysis from a reliance on
context independent WCET values by separately analyzing
the timing contribution of each resource to a task’s response
time. They implicitly assume that tasks spin while awaiting
the response from a shared resource, rather than suspending.

In summary, existing schemes either make very strong as-
sumptions about the tasks and their execution model [11,14,
15,17] or the analysis complexity is intractably high (the state
explosion problem) [11, 13]. Further, mathematical guar-
antees about the quality of the scheduling policy and the
schedulability analysis are usually not provided [2,10,15,17],
in contrast to classical results for single-core scheduling. In
this work, we introduce a new task model that is more per-
missive than the structured models proposed earlier, while at
the same time enabling the derivation of hard mathematical
guarantees in the form of a speedup factor.

The analysis presented in this paper is based on two
rather simple observations: Observation 1: During its
response time, a task is always either executing on its
core (i.e., executing or waiting for access) or the shared
resource (i.e., again either executing or waiting for access).
Both contributions to the task’s response time can be
analyzed separately. Observation 2: The common core-
centric perspective is that tasks are executed on a core,
until they need to access a shared resource, and suspend
their usage of the core. The potentially less intuitive
shared-resource-centric perspective is that tasks perform
requests on the shared resource, until suspending to perform
computation on their respective cores. Both views yield very
similar approaches to bound the time spent on the core and
the shared resource, resulting in a symmetric analysis.
Our contributions are summarized as follows:
• By adopting the two observations above, we develop

schedulability analysis in pseudo-polynomial time and
even polynomial time in Section 3.
• We propose in Section 4 our task allocation algorithm.

In Section 5, we show that this algorithm offers non-



trivial quantitative guarantees, including a speedup fac-
tor of 7 in polynomial-time complexity.
• The experimental evaluation in Section 6 demonstrates

that our approach can yield good acceptance ratios.
We also show that our analysis can utilize the struc-
tured information in the task models to provide tighter
schedulability analysis.

To the best of our knowledge, this is the first result that
provides a speedup factor in the presence of shared resources.

2. SYSTEM MODEL
Multicore Architecture Model: We assume in this
paper that we have a multicore platform comprised of m
identical cores connected by a shared resource, e.g., a com-
munication fabric (bus) for accesses to a shared memory. We
assume the following properties:
• Each data request (after it is granted) has a processing

time (upper bound) of B.
• Each resource access request is atomic (non-split trans-

action). However, a segment of resource accesses with
several consecutive requests can be preempted at any
point at which a request finishes its transfer. This is
illustrated in Figure 1 where task τ1 requesting the
shared resource at the beginning of clock cycle 1 experi-
ences blocking of 4 clock cycles from task τ2 granted at
time 0, i.e., B is 5 clock cycles in this example, whereas
the second request from τ2 is preempted by τ1 at time 5.
• We consider a fixed-priority resource arbiter in this

paper: the arbiter of the shared resource always grants
the request that is assigned the highest priority.
• We assume that data transfers from the local to the

shared memory and vice versa are handled by direct
memory access (DMA) units, so that the computation
on the core may carry on during such activities. Such
a feature is found in PTARM [16].

Task Model: We consider a real-time system to ex-
ecute a set of n independent, preemptive, resource access
sporadic (RAS), real-time tasks τ = {τ1, τ2, ..., τn}. Each
task can release an infinite number of jobs under a given
minimum inter-arrival time constraint. An RAS real-time
task τi is characterized by a 5-tuple (Ci,Ai,Ti,Di,σi): Ti
denotes the minimum inter-arrival time (also known as pe-
riod) of τi; each job of τi has a relative deadline Di; Ci
denotes an upper bound on total execution time of each
job of τi on a computing core (ignoring the latency due to
shared resource accesses); Ai denotes an upper bound on
the amount of execution time of shared resource accesses of
τi; and σi denotes the maximum number of resource access
segments, each of them may consist of several consecutive
data requests to access the shared resource. That is, if the
platform allows multiple requests to be directly processed
without involving the core, a task can have multiple requests
to the shared resource within a resource access segment, e.g.,
fetching (or writing back in the other direction) a collection
of data and instructions from the shared main memory to
the local scratchpad memory.

That is, if there is no interference on the shared resource
accesses, the worst-case execution time of task τi is at most
Ci + Ai. Note that, the derivation of Ci assumes that the
shared resource accesses incur no timing cost. Moreover, the
derivation of Ai considers only the worst-case shared resource
access time of task τi. Figure 2 provides an example. Each
resource access segment may consist of several requests on
the shared resource. For example, given that B = 1 time
units, there are twenty resource accesses in resource access
segment (block) E in Figure 2. Note that Ai is assumed to
be wiB where wi is an integer. Similar to the models in the

literature, [2,11,15], we consider that the multicore platform
is timing-compositional [8, 18]. Therefore, we can use these
parameters to bound the worst-case behaviour safely.

We assume that Ci + Ai ≤ Di for any task τi ∈ τ . The
utilizations of task τi on a core and on shared resource
are defined as UCi = Ci/Ti and UAi = Ai/Ti, respectively.
We further assume that UCΣ =

∑n
i=1 U

C
i ≤ m and UAΣ =∑n

i=1 U
A
i ≤ 1. Otherwise, it cannot be feasibly scheduled.

Task system τ is said to be an implicit-deadline system if
Di = Ti holds for each τi ∈ τ , and a constrained-deadline
system if Di ≤ Ti holds for each τi ∈ τ ; otherwise, an
arbitrary-deadline system. We restrict our attention here to
constrained-deadline task systems. A system τ is said to
be feasible if there exists a scheduling algorithm that can
schedule the system without any deadlines being missed.
A schedulability test of a scheduling algorithm is to verify
whether the task system is feasible under the given algorithm.

In this paper, we consider partitioned scheduling : each task
is statically assigned onto one core, and we assume that all
the tasks allocated to a core are preemptively scheduled using
fixed priority scheduling, for which each task is associated
with a unique priority level for scheduling. Since each shared
resource request is assumed non-preemptive, if task τi starts
a resource access segment, it has to wait for a lower priority
task to finish the access of the shared resource for at most B
time units. Therefore, we know that the maximum blocking
time of task τi due to non-preemptive blocking on the shared
resource is at most σiB. We assume that σiB ≤ Ai.
Definition of Speedup Factors: Speedup factors are
used to quantify the quality of sufficient schedulability tests.
A sufficient schedulability test A is said to have a speedup
factor of α if for any task system that is not deemed schedu-
lable by the test, it is the case that the task system is actually
not schedulable upon a platform in which each core and the
shared resource access is 1

α
times as fast.

For any RAS task τi and any real number t ≥ 0, the
demand bound function dbfi(t) is the largest cumulative ex-
ecution requirement of all jobs that can be generated by τi
to have both their arrival times and their deadlines within
a contiguous interval of length t [3]. The demand bound
function of task τi for an interval of length t is dbfCi (t) =

max(0, (
⌊
t−Di
Ti

⌋
+ 1)× Ci) and that for the shared resource

accesses is dbfAi (t) = max(0, (
⌊
t−Di
Ti

⌋
+ 1)×Ai).

3. SCHEDULABILITY ANALYSIS
We present our response-time and schedulability analyses

under the following conditions:
• We assume that the priority levels are assigned a priori.
• Each task τi is assigned to a core. Let Γp denote the set

of tasks that are allocated on core p, on which task τk
(that is under analysis) is allocated.
• We only test the schedulability of task τk assuming that

all tasks with higher priority than task τk are already
guaranteed to meet their deadlines.

The last condition also implies that we have to perform
schedulability tests by considering all the tasks one by one.
The task set hp(k) consists of the tasks with higher priority
than task τk. Therefore, the tasks in hp(k) can interfere with
task τk on the shared resource and the tasks in hp(k) ∩ Γp
can interfere with task τk on core p. Throughout this section,
we assume that we know an upper bound Ri on the worst-
case response time of any higher-priority task τi in hp(k),
which can be derived in the previous iterations. By the last
condition above and the assumption of constrained-deadline
task systems, we have Ri ≤ Di ≤ Ti.

3.1 Our Strategies and Preliminaries
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Figure 3: An example of accessing a shared resource by two
cores, on which τ1 and τ2 are allocated separately.

Consider the simplest case in which two tasks τ1 and τ2 are
assigned on core 1 and core 2, respectively. That is, there is
no multitasking on each core. We assume that τ1 has higher
priority than τ2 and we are now analyzing task τ2 in all the
examples. The schedule of accessing a shared resource by
these two tasks is indicated in Figure 3:
• At time t1, tasks τ1 and τ2 start their computation.
• At time t2, tasks τ1 and τ2 both attempt to access the

shared resource. The request from task τ1 is granted,
while task τ2 suspends itself on core 2.
• At time t3, task τ1 finishes its access to the shared

resource and resumes its local computation. At the
same time, task τ2 starts to access the shared resource.
• At time t4, task τ1 again attempts to access the shared

resource. Due to the minimum non-preemptive region,
this request from task τ1 is blocked by task τ2.
• At time t5, after leaving the non-preemptive region,

task τ2 on the shared resource is preempted by task τ1.
• At time t6, task τ1 finishes its access to the shared re-

source and resumes its local computation. At the same
time, task τ2 continues to access the shared resource.
• At time t7, task τ2 finishes its access to the shared

resource and resumes its local computation.
• At time t8, task τ2 finishes its execution.

From the point of view of the shared resource, task τ2
suspends its resource accesses in time intervals [t1, t2) and
[t7, t8) due to local computations, both of which are called r-
suspension intervals in this paper. Moreover, task τ2 executes
on the shared resource in time intervals [t3, t4) and [t6, t7) and
awaits (in the queue) to access the shared resource in time
intervals [t2, t3) and [t5, t6), all of which are called r-execution
intervals in this paper. Symmetrically, from the point of view
of core 2, task τ2 executes/suspends its computation on the
core, called c-execution/c-suspension, in time intervals [t1, t2)
and [t7, t8)/ time intervals [t2, t7). In either perspective, the
feasibility of τ2 can be examined by answering whether the
summation of r-execution time and r-suspension time (or c-
execution time and c-suspension time) of a job of task τ2 is
never more than its relative deadline.

Our analysis strategy to safely bound Rk of task τk is as
follows: Suppose that task τk releases a job at time t0. We
check whether this job of task τk is guaranteed to be finished
by t0 + t. Therefore, we have to determine the cumulative
amount of time in the time interval (t0, t0 + t] for r-execution
and r-suspension while executing this job of task τk. They
are defined as r-execution time and r-suspension time of task
τk in an interval of length t, respectively.

Without multitasking, the total time of resource access
suspension from the bus (r-suspension) is trivially upper
bounded by the execution time due to local computation.
However, with multitasking, this time increases due to
interference from other tasks allocated on the same core
p. To calculate an upper bound on the r-execution and
r-suspension time of task τk, we first provide two lemmas:

Lemma 1. The cumulative resource access time of task

τi ∈ hp(k) on the shared resource within an interval of

length t is upper bounded by: Ei(t) =
⌈
t+Ri−Ai

Ti

⌉
Ai

Proof. In the presence of suspension, we need to consider
the carry-in effect, as pointed out in [9, 12]. Nevertheless,
the interference due to such an effect can be quantified as
jitter, and thereafter the access times can be upper bounded
by releasing all the accesses from the first job (that arrives
before t0 and has an absolute deadline after t0) as late as
possible and the following accesses as soon as possible.

Lemma 2. The cumulative execution time of task τi ∈
hp(k) on the core, on which τi is allocated, within an interval

of length t is upper bounded by: Wi(t) =
⌈
t+Ri−Ci

Ti

⌉
Ci

Proof. This is due to the same argument in Lemma 1.

The rest of this section is organized as follows: (1) We first
derive a bound on the r-execution time (denoted as Xk(t))
and r-suspension time (denoted as Sk(t)) in Section 3.2 under
the assumption that the worst-case response time of task τk
is no more than t for some 0 < t ≤ Tk. (2) We then derive
a bound on the r-execution time (denoted as X∗k) and r-
suspension time (denoted as S∗k) that is independent of the
task’s response time in Section 3.3 by referring to the number
of resource access segments. (3) Section 3.4 provides the
schedulability test, combining the results from (1) and (2).

3.2 Calculating Sk(t) and Xk(t)
To evaluate the maximum r-suspension time, provided that

the interval length of interest is t ≤ Tk, we can simply sum
over the computation workload Wi(t) from all the higher-
priority tasks that are allocated on core p plus Ck. The
proofs are relatively straightforward.

Lemma 3. The r-suspension time of task τk due to its
executions on core p in an interval of length t is at most

Sk(t) = Ck +
∑

τi∈hp(k)∩Γp

Wi(t) (1)

Similarly, we have the corresponding lemma for the maxi-
mum r-execution time as follows.

Lemma 4. The r-execution time for task τk in an interval
of length t is at most

Xk(t) = Ak + σkB +
∑

τi∈hp(k)

Ei(t) (2)

3.3 Calculating X∗k and S∗k
We now show how to bound the r-execution time and the r-

suspension time, independently of the task’s overall response
time. To this end, we use σk to calculate X∗k and S∗k .

Lemma 5. X∗k for task τk is the smallest t satisfying the
following inequality:

Ak+σkB+
∑

τi∈hp(k)

(
σk − 1 +

⌈
t+ σk · (Ri −Ai)

Ti

⌉)
Ai ≤ t (3)



Proof. We consider any arbitrary program path with z ≤
σk shared resource access segments. W.l.o.g., we only have to
consider z as an integer and ≥ 1. Let Ajk denote the amount
of execution times on the jth resource access segment from τk
in the program path. By definition,

∑z
j=1 A

j
k ≤ Ak. Let rj

be the smallest t satisfying Ajk+B+
∑
τi∈hp(k) Ei(t) ≤ t. In

other words, we know that the condition ∀0 ≤ t < rj ,A
j
k +

B +
∑
τi∈hp(k) Ei(t) > t holds for all j = 1, . . . , z. By

adopting Lemma 1, the worst-case response of Ajk can be
easily proved to be upper bounded by rj for all j = 1, . . . , z.

Thus, the maximum r-execution time of this program path
for task τk is upper bounded by r1 + r2 + · · · + rz. For a
specified 0 ≤ θ < r1 + r2 + · · · + rz, there always exists
a combination of t1, t2, . . . , tz with 0 ≤ tj < rj such that
θ = t1 + t2 + · · ·+ tz. Therefore, we know that

(

z∑
j=1

Ajk) + zB +
∑

τi∈hp(k)

z∑
j=1

Ei(tj) >

z∑
j=1

tj = θ. (4)

By the fact that dx+ ye+1 ≥ dxe+dye, we have
∑z
j=1 Ei(tj) =∑z

j=1(
⌈
tj+Ri−Ai

Ti

⌉
)Ai ≤ (z − 1 +

⌈
z·(Ri−Ai)+

∑z
j=1 tj

Ti

⌉
)Ai =

(z−1 +
⌈
z·(Ri−Ai)+θ

Ti

⌉
)Ai. The left hand side in Eq. (4) is at

most Ak + σkB +
∑
τi∈hp(k)

(
σk − 1 +

⌈
θ+σk·(Ri−Ai)

Ti

⌉)
Ai.

That is, the smallest t solved by Eq. (3) is at least r1 + r2 +
· · ·+ rz.

Similarly, we have the following lemma.

Lemma 6. Sr∗k for task τk is the smallest t satisfying the
following inequality:

Ck +
∑

τi∈hp(k)∩Γp

(
σk +

⌈
t+ (σk + 1) · (Ri − Ci)

Ti

⌉)
Ci ≤ t (5)

Proof. Since the number of shared resource access seg-
ments of τk is at most σk, the maximum number of execution
segments of τk on core p will be potentially σk+1, interleaved
the τk resource access segments. The rest of the proof for Eq.
(5) is similar to Lemma 5.

Note that it is also possible that resource accesses start both
at the beginning and at the end of a program. Hence, there
are at most σk−1 execution segments of τk in this case, which
in turn reduces pessimism, to be discussed in Section 6.

3.4 Response-Time Analysis
The following theorem concludes the schedulability test

and response-time analysis directly from Lemmas 3 to 6.

Theorem 1. The smallest t satisfying:

min {Xk(t),X∗k}+ min {Sk(t),S∗k} ≤ t (6)

is a safe upper bound of Rk if t is no more than Tk.

Proof. We prove this by contraposition. Suppose that
task τk releases a job at time t0. (Since we assume constrained-
deadline task systems, we can safely consider that there is no
job of task τk in the ready queue at time t0 if Rk ≤ Dk ≤ Tk.)
If this job has not yet finished by time t0 + t, then, at any
point in the time interval (t0, t0 + t], task τk either executes
(or is queued) on the shared resource or suspends on the
shared resource. Therefore, if the job of task τk is not
finished at time t0 + t, a necessary condition is that its
r-execution time plus its r-suspension time from t0 to time
t0 +t has been strictly larger than t. Such a condition implies
min {Xk(t),X∗k}+min {Sk(t),S∗k} > t, which contradicts the
assumption that t satisfies Eq. (6).

Algorithm 1: MIRROR First-Fit Deadline-Monotonic

input : A set τ of RAS tasks and m identical cores
output: Task allocations Γj and the feasibility of system τ
sort the given n tasks in τ s.t. D1 ≤ D2 ≤ · · · ≤ Dn;
Γj ← ∅, ∀j = 1, 2, . . . ,m;
for k = 1, 2, . . . ,n do

for j = 1, 2, . . . ,m do
if task τk is schedulable according to Corollary 1 then

Γj ← Γj ∪ {τk}; // assign τk to core j
break (continue the outer loop) ;

return “infeasible allocation”;

return “feasible allocation”;

Corollary 1. An RAS task τk allocated on core p is
schedulable in fixed-priority partitioned scheduling if there
exists 0 ≤ t ≤ Dk s.t. Eq. (6) holds.

The response-time analysis in Theorem 1 and the schedu-
lability test in Corollary 1 require pseudo-polynomial time
complexity. Note that we can also simply test t = Dk re-
quiring only polynomial time complexity at the expense of
potentially less precise results.,

Response-Time Analysis: Spinning versus Suspension.
One might assume that Lemmas 3 and 4 also apply to a

scenario in which tasks spin rather than suspending upon
resource accesses. Unfortunately, this is not true, as it may
underestimate delays due to lower-priority blocking: In a
spinning scenario the response time of task τk is also affected
by lower-priority blocking of higher-priority task that have
preempted τk. To safely account for such delays, one would
have to adapt Lemma 1 to account for lower-priority blocking
of each resource access segment of task τi. A response-
time analysis obtained in this manner roughly corresponds
to the analysis described by Altmeyer et al. [2] adapted to
the setting explored in this paper. For the special case that B
is 0, employing Lemmas 3 and 4 without adaptation is correct
for a model in which tasks spin upon resource accesses:

Proposition 1. For B = 0, the smallest t satisfying:

Xk(t) + Sk(t) ≤ t (7)

is a safe upper bound of Rk if t is no more than Tk, even if
tasks spin upon resource accesses rather than suspending.

4. TASK ALLOCATION
We now present a task allocation algorithm that is compat-

ible with the schedulability test in Corollary 1. Our strategy
is to first sort the tasks according to their relative deadlines
such that D1 ≤ D2 ≤ · · · ≤ Dn. Then, we allocate the
tasks by using a simple heuristic reasonable allocation (RA)
algorithm [7], i.e., either First-Fit (FF), Best-Fit (BF), or
Worst-Fit (WF). The First-Fit algorithm places the task in
the first core that can accommodate the task. If no core
is found, it opens a new core and places the task in the new
core. The Best-Fit (Worst-Fit, respectively) algorithm places
each task in the core with the smallest (largest, respectively)
remaining capacity among all the core with sufficient capacity
to accommodate the item. The remaining capacity is defined
as the relative deadline minus the upper bound on the worst-
case response time by Theorem 1. Algorithm 1 presents the
pseudocode for the first-fit packing. Due to Corollary 1, if
Algorithm 1 returns a feasible allocation, this results in a
feasible schedule under the deadline-monotonic strategy (a
task with a shorter relative deadline has higher priority).

5. SPEEDUP FACTOR
In this section, we derive a speedup factor for Algorithm 1.



Lemma 7. Any constrained-deadline RAS task system τ
that is feasible upon a multicore platform comprised of m
cores and a shared resource must satisfy

max

{
max
t>0

∑
τi∈τ

dbfCi (t)

mt
, max
t>0

∑
τi∈τ

dbfAi (t)

t
, max
τi∈τ

Ci + Ai

Di

}
≤ 1

(8)

Proof. These conditions come from the definition of the
demand bound functions, as also used in traditional multi-
processor scheduling [5] (without considering resource shar-
ing). Note that all the demand for accesses to the shared
resource, i.e., dbfAi (t), must be sequentially executed on a
single computing unit, i.e., shared bus.

Theorem 2. Algorithm 1 has a speedup factor of 7.

Proof. Suppose that Algorithm 1 fails to obtain a par-
tition for τ : there exists task τk which cannot be mapped
to any core. Note that due to the sorting of the tasks in
Algorithm 1, all the tasks before task τk mapped onto cores
have been ensured Ri ≤ Di for i = 1, 2, . . . , k − 1. Since τk
fails the test of Corollary 1 on each of the m cores, for each
core p = 1, 2, . . . ,m, we have Sk(Dk) + Xk(Dk) > Dk. By
Lemma 3 and Lemma 4, we have

Ck +Ak +σkB+
∑

τi∈hp(k)

Ei(Dk) +
∑

τi∈hp(k)∩Γp

Wi(Dk) > Dk

Summing over all m such cores, we obtain

m

Ck +Ak + σkB +
∑

τi∈hp(k)

Ei(Dk)

+
∑

τi∈hp(k)

Wi(Dk) > mDk

(9)
By definition, Ri ≤ Di ≤ Dk for τi ∈ hp(k). To conclude the
speedup factor, we need to prove Ei(Dk) ≤ 3dbfAi (Dk).

If Ti > Dk, then Ei(Dk) ≤ (
⌈
Dk
Ti

⌉
+ 1)Ai ≤ 2Ai =

2dbfAi (Di) ≤ 2dbfAi (Dk). Otherwise, if Ti ≤ Dk, then

Ei(Dk) ≤ (
⌈
Dk
Ti

⌉
+ 1)Ai ≤ (

⌊
Dk
Ti

⌋
+ 2)Ai ≤ 3

⌊
Dk
Ti

⌋
Ai ≤

3dbfAi (Dk). Similarly, Wi(Dk) ≤ 3dbfCi (Dk). Dividing
both sides by mDk in Eq. (9), together with our assumption
σkB ≤ Ak and the facts Ei(Dk) ≤ 3dfbAi (Dk) and Wi(Dk) ≤
3dbfCi (Dk), we have

Ck

Dk
+

2Ak + 3
∑
τi∈hp(k) dbf

A
i (Dk)

Dk
+

3
∑
τi∈hp(k) dbf

C
i (Dk)

mDk
> 1.

(10)

Recall that
∑
τi∈τ dbf

A
i (Dk) ≥ Ak +

∑
τi∈hp(k) dbf

A
i (Dk).

Therefore, we have

Ck
Dk

+
3
∑
τi∈τ dbf

C
i (Dk)

mDk
+

3
∑
τi∈τ dbf

A
i (Dk)

Dk
> 1. (11)

Assume for a contradiction that the task set is feasible on
a multicore with speed 1

7
. Then, considering the adjusted

speed, we know by Lemma 7 that Ck
Dk
≤ 1

7
,

∑
τi∈τ

dbfCi (Dk)

mDk
≤

1
7
, and

∑
τi∈τ

dbfAi (Dk)

Dk
≤ 1

7
. This, however, clearly contra-

dicts Eq. (11), implying a speedup factor of 7.

We would like emphasize that the factor 7 in Theorem 2
can already be obtained in polynomial time if we only test t at
Dk in Corollary 1. Moreover, for implicit-deadline, harmonic
task systems, i.e., Ti = Di and Dk

Ti
is an integer for τi ∈

hp(k), the speedup factor is 5, since Ei(Dk) ≤ 2dbfAi (Dk)
and Wi(Dk) ≤ 2dbfCi (Dk) in such cases.

6. EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments using

synthesized task sets. Due to space limitations, only a subset
of the results is presented. We evaluate these tests on a 4-
core system, i.e., m = 4. We generate 100 task sets for each
utilization level, from 0.01m to 0.99m, in steps of 0.01m. The
metric to compare the results is to measure the acceptance
ratio. The acceptance ratio of a level is said to be the number
of task sets that are deemed schedulable by the test divided
by the number of task sets for this level, i.e., 100.

The cardinality of the task set was 5 times the number
of cores, i.e., 20. The UUniFast-Discard method [4] was
adopted to generate a set of utilization values with the given
goal. We here used the approach suggested by Davis et al. [6]
to generate the task periods according to the exponential
distribution. The distribution of periods is within two orders
of magnitude, i.e., 10ms-1000ms. The execution time was
set accordingly, i.e., Ci = TiUi. Task relative deadlines were
implicit, i.e., Di = Ti. We then generated a set of access uti-
lization values UAi for tasks with the given UAΣ , according to
the uniform distribution, generated by the UUniFast method.
We consider task sets with total access utilization UAΣ of 40%
and 70%. We ensure that for every task τi, U

A
i + UCi ≤ 1.

Then, the upper bound on the access time to shared resources
Ai was set accordingly, i.e., Ai = TiU

A
i .

The maximum number of resource access segments σi was
set depending on the following types of access: 1 (rare access,
type=R), 2 (moderate access, type=M), and 10 (frequent
access, type=F). The evaluated tests are listed as follows:
• MIRROR: the test proposed in Corollary 1.
• MIRROR-SPIN: the test following Proposition 1 using

only Sk(t) and Xk(t), which applies also to tasks that
spin while awaiting access to the shared resource. This
resembles the test from [2] in our model when B is 0.
• exact-MC: the exact test proposed in [14] for M/C

tasks, which is the special case of the RAS task model.
To fairly compare the results with respect to [2, 14], we as-
sume that B = 0 in all the tests; otherwise, our tests can ben-
efit from the short blocking time, and the other results can
be significantly impacted by their considerations of blocking
time as explained in Section 3.4.
Result I. Figures 4a and 4b depict the results (by using the
FF allocation) with frequent access (F) for 40% and 70% bus
utilizations. As shown in Figures 4a and 4b, the performance
by MIRROR-SPIN and MIRROR are identical in the case of
frequent accesses. The reason behind this is that Lemma 5
and 6, by which MIRROR are advantageous to MIRROR-
SPIN, become ineffective when the number of resource access
segments is large.
Result II. In Figures 4c and 4d we consider performance
differences between different reasonable allocations: FF,
BF, and WF, denoted by MIRROR-FF, MIRROR-BF,
and MIRROR-WF, respectively. The number of resource
access segments is 2 (type=M), which is aligned with the
superblock model used in the literature [11, 15] and the
IEC61131-3 standard. This models the execution of a job
into three phases, i.e., read, execution, and write. Therefore,
we only consider one computation segment in Lemma 6. The
performance of FF is identical to that of BF, and noticeably
better than that of WF. In such a case, the effectiveness of
MIRROR is sustainable for the case of 40% bus utilization,
smoothly dropping down at around 50% core utilization.
Result III. In Figures 4e and 4f, we show the effectiveness
by our proposed MIRROR (by using the FF allocation) for
M/C tasks, in which each task has only one computation
segment and one resource access segment [14]. We denote the
proposed approach for such tasks as MIRROR-MC, distinct
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Figure 4: Comparison with different access utilizations UAΣ and different types of access frequency (type). In the first (and second,
respectively) row the access utilization is 40% (and 70%, respectively). In the first (respectively, second and third) column, frequent
(respectively, moderate and rare) access frequency is assumed.

from MIRROR-RAS for RAS tasks which needs two segments
in Lemma 6. Note that in the presence of the M/C task
model, we do not have to consider the arrival jitter on the
interference due to memory accesses, quantified in Lemma 1.
We first notice that without knowing the program structure,
both MIRROR-SPIN and MIRROR-RAS perform relatively
poorly, even though MIRROR still outperforms MIRROR-
SPIN. In the presence of M/C tasks, the proposed MIRROR
achieves high schedulability, compared to exact-MC.

More importantly, the number of resource access segments
adversely affects schedulability, for instance, as reported in
Figures 4a, 4c, and 4e.

7. CONCLUSIONS
This paper presents a symmetric approach to analyze the

schedulability of a set of resource access sporadic real-time
tasks. Our key observation is to consider suspension-aware
response-time analysis in both core-centric and shared-
resource-centric perspectives. Our schedulability analysis
can also be seamlessly adopted for shared resource models,
e.g., Time Division Multiple Access (TDMA), First-Come
First-Serve (FCFS), and Round-Robin (RR) protocols.
Together with reasonable task allocations, we show that
the speedup factor of our approach using fixed-priority
arbitration, compared to the optimal schedule, is at most 7.
This is the first result that provides a speedup factor for
the scheduling problem in the presence of shared resources.
In future work, we would like to better understand the
interplay between the execution segments and the resource
access segments, to provide tighter analysis.
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