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ABSTRACT

Formal models used for representing recurrent real-time pro-
cesses have traditionally been characterized by a collection of
jobs that are released periodically. However, such a model-
ing may result in resource under-utilization in systems whose
behaviors are not entirely periodic. For instance, tasks in
cyber-physical system (CPS) may change their service levels,
e.g., periods and/or execution times, to adapt to the changes
of environments. In this work, we study a model that is a
generalization of the periodic task model, called multi-mode
task model: a task has several modes specified with different
execution times and periods to switch during runtime, inde-
pendent of other tasks. Moreover, we study the problem
of allocating a set of multi-mode tasks on a homogeneous
multiprocessor system. We present a scheduling algorithm
using any reasonable allocation decreasing (RAD) algorithm
for task allocations for scheduling multi-mode tasks on mul-
tiprocessor systems. We prove that this algorithm achieves
38% utilization for implicit-deadline rate-monotonic (RM)
scheduled multi-mode tasks on multiprocessor systems.

1. INTRODUCTION

Many real-time systems are modeled as a finite collec-
tion of independent recurrent tasks, each of which gener-
ates infinite jobs repetitively. Traditionally, each task is
characterized by its worst-case execution time (WCET), its
period/minimum inter-arrival time, and its relative deadline,
as known as periodic/sporadic tasks.

The mode change model Such a sporadic task model
has been thoroughly studied in real-time community since
1970’s. Traditionally, the emphasis of designing embedded
systems is on providing high computational components but
obliviously on the link between the computational and physi-
cal components. The recent trend towards models adaptable
to the changes of environments has given rise to a new
aspect of implementing real-time systems. For example,
tasks in automotive systems are linked to rotation (e.g.,
of the crankshaft, gears, or wheels). Their activation rate
is proportional to the angular velocity of a specific device,
which in turn determines the execution mode to be invoked.
Therefore, it is encouraged to design a real-time task having
several modes to switch during runtime, called multi-mode
task.
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The mode change model is a generalization of the sporadic
task model. Each multi-mode task 7; with H; modes is
denoted by a set of triplets: =, = {7} = (C}, T}, D}),
2 = (C2,T?,D?),..., 7" = (¢, 7/"i, D)}, where C!
denotes the worst-case execution time (WCET) of task 75
under mode h; T* denotes the minimum inter-arrival time
of task 7; under mode h; and D! denotes the relative dead-
line. The importance of mode changes for real-time systems
has been pointed out in many perspectives, for instance, au-
tomotive Electronic Control Units (ECU) [3,6,9] and server-
based systems [10] in uniprocessor systems. Some of these
researches explicitly study the potential mode changes im-
posed by the physical environment under the names of adap-
tive variable-rate (AVR) model [3] or variable-rate depen-
dent behaviour (VRB) model [6], etc. Some model the
mode changes with constrained or unconstrained invoked
sequences like the generalized multiframe (GMF) model [2],
acyclie task model [1], digraph real-time (DRT) model [12],
and multi-mode task model [9].

Multiprocessor systems Due to the issue of power con-
sumption and excessive heat dissipation in increasing high
processor clock speeds, there has been a move towards us-
ing multiprocessor platforms. To schedule real-time tasks
on multiprocessor platforms, there are two widely adopted
approaches: partitioned and global scheduling. In global
scheduling, a global queue is implemented for all instances
of tasks, namely jobs, and the jobs can be arbitrarily as-
signed to any processor, depending upon a global scheduling
scheme. Hence, different jobs of the same task may execute
upon different processors. In partitioned scheduling, con-
trary to global scheduling, each task is assigned statically
to one processor and cannot migrate to the others. As a
result, all jobs generated by a task only execute on the
processor where the task is assigned. In this paper, we
consider the partitioned strategy, and we assume that all
the tasks allocated to a processor are preemptively scheduled
using fixed priority scheduling.

In the sporadic task model, when the relative deadline
is equal to the period, the task allocation for partitioned
scheduling on multiprocessor systems is analogous to the
well-known bin packing problem [8]. In the bin packing
problem, the objective is to pack a set of items into a number
of bins such that the volume of the packed items in every
bin does not exceed that of the bin and the number of used
bins is minimized.

The siginificance of this work. In this work, we study
how to allocate implicit-deadline multi-mode tasks (i.e.,
Db = Tih) onto multiprocessor systems. The objective of
this paper is to obtain the utilization bound for multi-mode
tasks on M identical multiprocessor systems by using the
simple allocation algorithms combined with the schedula-
bility condition in uniprocessor, where the utilization of
a multi-mode task 7; is U; = maxp=1,2,...,H; Cih/Tih. The
contributions are summarized as follows:



e Following the result in [9], we can trivially provide a
utilization bound 3, U; < 252 M ~ 0.293- M if U; <
2 — /2 for every task 7;. More favorably, a utilization
bound >, U; < 3_2\/5M ~ 0.381- M on multiprocessor
systems under RM scheduling is derived, in Section 4.

e In Section 5, we then further improve this bound by
considering the upper bound on the utilization for ev-
ery task.

e We explicitly also conclude that the mode change
model studied in this paper is a relaxation® of the
generalized multiframe (GMF) model [2], the variable-
rate dependent behavior (VRB) model [6] (a.k.a the
adaptive variable-rate (AVR) model [3,4]), and the di-
graph real-time (DRT) model [12]. As a consequence,
we also derived utilization bounds for these models on
multiprocessor systems, in Section 6.

To the best of our knowledge, this is the first work to as-
sign multi-mode real-time tasks on multiprocessor systems.

2. RELATED WORK

The problem of scheduling sporadic real-time tasks on
multiprocessors regarding partitioned scheduling has been
addressed in a number of studies. Please refer to [5] for an
extensive survey of the research that has been conducted
within the real-time scheduling community on multiproces-
sors scheduling problems. Unfortunately, because the stud-
ied mode change model is a generalized model of the sporadic
task model, these results above are by no means applicable.

Regarding the studied mode change model, it has been
recently shown in [9] that the utilization bound 2 — /2
can be derived for a system with implicit-deadline multi-
mode tasks if each mode is prioritized according to rate-
monotonic (RM) scheduling. In other words, this bound
represents the maximum utilization of a system for multi-
mode tasks before any task can miss its deadline. There are
several models related to the studied mode change model, for
instance, the generalized multiframe (GMF) model [2], the
acyclie task model [1], the digraph real-time model (DRT)
[12], the adaptive variable-rate (AVR) model [3,4], and the
variable rate-dependent behavior (VRB) task model [6]. The
generalized multiframe (GMF) model [2] allows a task to
cycle through a static list of job types, each with potentially
different WCET bounds and relative deadlines. Stigge et
al. [12] propose a more expressive model, called digraph
real-time model (DRT), in which the release structures of
different types of jobs are represented by a directed graph.
The acyclic task model [1] allows a job to have any arbi-
trary execution time under the assumption that the absolute
deadline and the arrival time of the next job of this task are
both after the arrival time of the job plus the utilization
times the execution time of the job. In the variable rate-
dependent behavior (VRB) model (a.k.a. adaptive varying-
rate (AVR) model) [3,4,6], tasks are linked to rotation (e.g.,
of the crankshaft, gears, or wheels). Their activation rate
is proportional to the angular velocity of a specific device,
which in turn determines the execution mode to be invoked.

To the best of our knowledge, there is no result regarding
the above mode change models on multiprocessor systems.

3. SYSTEM AND TASK MODEL

We assume in this paper that we have a multiprocessor
platform comprised of M identical processors, on which N
multi-mode tasks are scheduled. We further assume that
N > M, since the case with N < M is trivial. We re-
strict our attention on partitioned scheduling: each task
is statically assigned onto one processor. We consider the
multiprocessor system to execute a set of N independent,

I This is under certain assumptions to be explained in Section 6.

preemptive, real-time, multi-mode tasks 7 = {71, 72, ..., v }.
A multi-mode task 7; with H; modes is denoted by a set of
triplets:

7 = {7} =(C},T},D}), 7} = (C}, T}, D}), ..,
= (o, T, D)}

For the task mode 7", C" denotes the worst-case execution
time, T} denotes the minimum inter-arrival time, and DI
denotes the relative deadline of task mode 7)'. When a job
of mode 7/ is released at time ¢, the next release time of jobs
of task 7; is no earlier than ¢t + T}*, and when a job of mode
71 is released at time ¢, this job has to be finished no later
than its absolute deadline at time t+D?. A multi-mode task
can switch the mode being executing from one to another
only if the temporal constraint is met. That is, assuming
that a job of mode 7/ is released at time ¢, the earliest time
to switch to other modes is t +T7*. Note that the concept of
the mode change model studied in this paper is distinct from
that of system-wide operating modes [7,11,13]. Our studied
model characterizes the system where different tasks may
progress through their own execution modes independent of
each other.

Throughout this paper, we restrict ourselves on implicit-
deadline (D! = T!) multi-mode task systems. The ratio
Cl/T] (worst-case execution time to the minimum inter-
arrival time) denotes the utilization factor U of mode 7.
We denote the (maximum) utilization of task 7; as U; =
maxhzl,,,,ygi{Uﬁ}. We assume 0 < U; < a < 1, where « is
the upper bound on utilizations for every task. We further
assume U*"™ = Zfil U; < M.

We consider in this paper that the tasks are scheduled
under fixed-priority scheduling in mode-level: all the jobs
generated by the same task mode have the same priority;
however, jobs from different task modes may have differ-
ent priority levels. We specifically assume the priority for
each mode is assigned according to rate-monotonic (RM)
scheduling: the smaller the minimum inter-arrival time (also
referred to as the period historically), the higher the priority
level. We assume that the system is fully preemptive and
that the cost of preemption has been subsumed into the
worst-case execution time of each mode.

4. MULTIPROCESSOR UTILIZATION

4.1 Preliminaries

To the best of our knowledge, the only result related to
the utilization bound on uniprocessor systems for multi-
mode rate-monotonic scheduled tasks is that recently given
by Huang and Chen [9]. A uniprocessor system comprised
of a set of multi-mode rate-monotonic scheduled tasks is
schedulable if

U™ <2 -+/2 (1)

This also aligns with the utilization bound of the acyclic task
model by Abdelzaher et al. [1]. In addition to the above total
utilization bound, a more precise utilization bound based a
quadratic bound (denoted as QB for the rest of this paper) is
also presented in [9]. For completeness, we state this bound
in the following lemma:

LEMMA 1 (HUANG AND CHEN [9]). A multi-mode task
set I with implicit deadline is schedulable on a uniprocessor
under RM scheduling if 32 Ui <1 and

2
Z U, | + % Z (Ui)2
i €T\{7a} i €T\{7a}

(2)

1
Us<1—2 Y Uit
T, €0\{7a }

where U, = min,, erUs.



PROOF. This comes from Theorem 5 in [9]. [

Note that the above lemma requires to test both Zn er Ui <

1 and Eq. (2). Testing only Eq. (2) is unsafe since the
quadratic form in the right-hand side of Eq. (2) may
become larger than 1 when Z-r,ier\{-ra}Ui is sufficiently
large. However, it is still possible to only test a variance of
Eq. (2) if we test the tasks in I" sequentially, which will be
used in our algorithm and analysis.

THEOREM 1. Suppose that the tasks in I' are sorted and
indexed such that Uy > Uz > --- > Ujr|. A multi-mode task
set I with implicit deadline is schedulable on a uniprocessor
under RM scheduling if Vk =1,...,T,

k-1 = 2 =
UkSI—QZUi—t-Q(ZUi) +§Z(Ui)2 (3)

i=1 i=1 i=1

ProOOF. When k is 1, this holds naturally. In this proof,
we show that any feasible allocation by using Eq. (3) implies
that Zle U; < 1 under the assumption that Zf;ll U; <1
for k=2,3,...,|T].

. k=177 )2 k=1 (772
Due to the evidence that (Y ;7= Ui) > >77, (Ui)”, the

satisfaction of Eq. (3) implies that
2

k—1 = 2 =
<1-2Y Ui+ )+ 2 i 4
sy (Tu) 5 (Te) o

Let z denote Zi.:ll U;. Replacing Zf;ll U; by z, we have
Up <1—2z+ 2°. Tt follows that

Ui+2<1—2z+2° (5)

Hence, the total utilization Uy + z of the k tasks to pass
Eq. (3) is upper bounded by the right-hand side of Eq. (5),
which is upper bounded by 1 if 0 < z < 1. By the assump-
tion that U; < 1 for every task 7; € ' and 0 < z < 1, if
Eq. (3) holds for every k = 1,2,...,|T'|, the task set I' can
also pass the test in Lemma 1. [

4.2 Reasonable Allocation Decreasing Algo-
rithm

In this section, we first introduce some simple heuristic
allocation algorithms that have been developed for the bin-
packing problem [8]. An allocation algorithm is said to be
reasonable if the tasks are allocated sequentially and the
allocation algorithm fails to allocate a task to the previously
allocated processors only if there is no processor having suffi-
cient capacity to hold the pending task. There are three sim-
ple heuristic reasonable allocation (RA) algorithms, known
as First-Fit (FF), Best-Fit (BF), and Worst-Fit (WF). The
First-Fit algorithm places the item in the first bin that can
accommodate the item. If no bin is found, it opens a new bin
and puts the item to the new bin. The Best-Fit (Worst-Fit,
respectively) algorithm places each item to the bin with the
lowest (largest, respectively) remaining capacity among all
the bins with sufficient capacity to accommodate the item.

In addition, if the items are ordered by a decreasing ratio
of the value to the weight, of an item, before allocation, it
is known as a reasonable allocation decreasing (RAD) algo-
rithm, described in [8]. A RAD algorithm is characterized
as follows:

e Items are ordered by a decreasing ratio of the value to
the weight before allocation.

e Items are allocated sequentially by following the order
defined above and the allocation algorithm fails only
if there is no bin having sufficient capacity to hold the
pending item.

It has been shown that the approximation factor of an
RAD algorithm is 2 for the bin packing problem [14, Chap-
ter 9]. More precisely, if an RAD algorithm allocates M

Algorithm 1: First-Fit Decreasing (FFD)
input : A set 7 of multi-mode tasks and M identical processors
output: Task allocations I'; and the feasibility of system 7
sort the given N tasks in 7 s.t. Uy > Uz > --- > Un;

L« 0,vj=1,2,...,M;
for k=1,2,...,N do
for j=1,2,...,M do
if ) 5
Uk S1-23 cr, Uﬁé(zrierj U)®+1% Yoer; (U:)
then

Iy < T;U{r}; // assign 7 to proc. j
break (continue the outer loop) ;

return “infeasible allocation”;

return “feasible allocation”;

bins with M > 2, the overall weight is strictly larger than
% times of the bin size.? Therefore, we can directly use
the utilization bound 2 — /2 as the bin size and reach the
following theorem.

THEOREM 2 (RAD-TUB). An implicit-deadline multi-
mode system T is feasible under RM scheduling and a reason-
able allocation decreasing (RAD) algorithm using the total
utilization bound 2 — \/2 as the bin size if

2-v2
2

Ui <2—-V2 Yr €1 and U™ < ( YM 2£0.293 - M

(6)

PRroOOF. This comes from the above discussions and the
link to the bin packing problem. The condition U; < 2 —+/2
for every task 7; is needed since RAD algorithms assume
that the size of any item is smaller than the bin size. [

Using the total utilization bound is a simple solution, but
we will show in the next subsection that using the quadratic
bound (QB) in Theorem 1 can reach much better results.

4.3 Utilization Bound by Using QB

We consider any reasonable allocation decreasing algo-
rithm using the quadratic bound (QB) in Theorem 1, for
example, First-Fit Decreasing (FFD) algorithm using QB
(also see Algorithm 1). Note that by using the RAD algo-
rithm, when we consider to assign task 7., we know that the
utilization of 7 is no more than the utilization of the tasks

that have been assigned onto the processors.

For the rest of the analysis, we assume that the N given
tasks are sorted such that Uy > Uz > --- > Uy. Let 7y 41 be
the task that fails to be assigned to any of the processors, as
Y tasks have been assigned onto the processors successfully.
Let T'; be the set of the tasks that have been assigned
on processor j before task 7yy1 is considered. Thus, by
Theorem 1, the schedulability condition for each processor
that cannot accommodate task 7y 41 can be concluded as
follows:

, 1 , 1 )
Vi€ (LM, Uyyi>1-2 3 Uit (3 U)*+5 > (Ud)

€Ly T €Ly T €Ly
Notice that Zﬁl IT'j| = Y. By adding these M inequalities
together, we therefore have that

Y Y
1
MUy >M—2> Ui+ 3 > (Ui)?
=1 =1

+3 (( S U Ut (Y Ui>2> @)

7€ i€l T €0 M

2Although the description in the book [14] is for the first-fit algo-
rithm, the factor 2 holds also for any RAD algorithm. The description
in [14] was for a trivial analysis with overall weight strictly larger than
%. The overall weight % can be easily achieved as well.



Here, we can use Cauchy’s Inequality >, r? > s?2 >
(3°,ris:)® where all of 7;,s; € R. When s; is replaced

by 1, we have 3" r7 > (3, 7:)%, where z is the number
of terms of ¢ in the summation. By this inequality, we then
have that

Y
(( DOUPH(Y U+t () U)Q) (_ZUZ-)?

T €1 T, €2 €0\

Consequently, it follows that by Eq. (7) and (8

)
Y
MUy41 > M — 22U+2Z Z

=1

In the following lemma, we first provide a necessary condi-
tion for an RAD algorithm to fail to allocate a task onto the
M processors:

LEMMA 2. LetY be the number of multi-mode tasks that
have been assigned feasibly on M processors. If a reason-
able allocation decreasing (RAD) algorithm using quadratic
bound (QB) fails to allocate task Ty i1, then the following
condition must hold:

142y — /14 2v+ 292 (10)

Y
U >ZUZ-> 01

where v = X

PROOF. We have shown that the condition in Eq. (9) is
necessary for an RAD algorithm using QB to fail to allocate
a task onto the M processors. Due to the non-increasing
utilization ordering of the tasks, we have

Y
> U >YUyia (11)

i=1

Our objective in this proof is to find the infimum 23;1 U
such that Eq. (9) and (11) always hold. This is equivalent to
the following quadratic programming (QP), where U;s are
variables:

Y
min. > U; (12a)
=1

Y
st. MUy 1> M —2> U +
=1

Y , 1 ,
TVI(; U;)™ + 5;(%) (12b)
y

SU > YUy s (12¢)
=1

Let A be the multiplier of the schedulability constraint
by Eq. (12b) and p be the multiplier of the constraint by
Eq. (12c). The Lagrange function is

Y

,u(z Ui —YUy41)—

i=1

Y Y 1 Y
(MUY-H M+2ZU77MZ 52 >
i=1 =1 =1

with derivatives
Y — MA,
oL v

U, ) l—p—A2-U; — ZU ), otherwise. (13b)
=1

Y
L(Uy,Us,...,Uy) = ZUi -

ifi=Y+1 (13a)

A necessary condition for the minimum is that the two
derivatives of (13a) and (13b) are zero. One can reformulate
each derivative in Eq. (13b) equal to zero such that U; is a
function of M, u, A, and ZZY:1 U;. In doing so, we can notice
that all the U; have the same value. It follows that for all

i=1,2,...,Y:
Uy=Usy=..=Uy (14)

To solve these equations, we look at several cases:

Case 1: p = 0. Since the derivative of (13a) must be 0
and M > 0, we then have A = 0. This in turn results in an
infeasible solution in (13b).

Case 2: A\ = 0. Similarly, we get 4 = 0 by (13a). This also
leads to an infeasible solution in (13b).

Case 3: p # 0 and, A # 0. In this case, both con-
straints (12b) and (12c) must be active. By Eq. (14) and
the activation of Eq. (12¢), it follows that Uyy1 = U,.
Therefore, we have Uy = Uz = ... = Uy = Uy41. After
solving quadratic equation in one variable with (active) Eq.
(12b), we have

VI<i<Y+1, U=

142X — 142X 42020
(1+3) Y
It follows that
Y 1+2Y —\/1+2Y +275
_ M M M
i=1 (1+M)

which is identical to Eq. (10).
proven. [

Hence, this theorem is

Thus, we see that Lemma 2 is necessary for an RAD al-
gorithm to fail; equivalently, the negation of Lemma 2 is a
sufficient condition for a system to be feasible for an RAD
algorithm using QB:

THEOREM 3. An implicit-deadline multi-mode system T
is feasible under RM scheduling and a reasonable allocation
decreasing (RAD) algorithm using quadratic bound (@QB) if

(3 —2\/5

Usum <

) M =~0.381-M (15)

PROOF. Notice that the right-hand side of Eq. (10) mono-
tonically increases with respect to the value of v = % Thus,
the minimization in the right-hand side of Eq. (10) happens
when v is minimized. It is evident that at least M tasks can
be feasibly assigned to the given processors before the RAD

fails; hence, v > 1. It follows that

142y — \/1+2w+2wM> \/5)M20381-M
(1+9) 2 '

(16)
Taking the negation of Lemma 2, this theorem is proven by
contrapositive. []

Figure 1 shows the utilization bound under RAD with
respect to -, assumed to be given. Therefore, if a tighter
lower bound on = could be derived, we would be able to
achieve better utilization bounds. For example, as shown in
Figure 1, if v > 2, we can conclude a utilization bound of
0.464 - M.

S. BOUNDS BASED ON MAX UTILIZA-
TION

In this section, we derive a generalized utilization bound
by considering the upper bound on the utilization for ever
tasks «. Note that U; < « for every task 7;. This is
motivated by Figure 1. If « is small enough, then, we would
like to show that v is also big enough in Lemma 2. We
here introduce a new function ¢(«) defined as the mazimum
number of tasks with utilization no more than a that can be
always guaranteed to fit into one processor. If we compute
¢(c) by simply combining the total utilization bound of
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Figure 1: Utilization bound of RAD with respect to v

Eq. (1) and the fact that a uniprocessor system with one
task is schedulable, we can already obtain a bound on ¢(a) >

max ({Q_ﬂJ , 1). However, such a lower bound on ¢(«) is

[e3
pessimistic, since the bound 2 — +/2 by Eq. (1) comes from
a large amount of tasks in [9]. Hence, instead, we consider
the quadratic bound, provided in Theorem 1, in hopes of
getting a tighter lower bound on ¢(a).

LEMMA 3. The mazimum number of tasks with utilization
no more than a that can be always guaranteed to fit into one
processor ¢(«) is at least:

(17)

o)z p = | 1A VELE

2

PRrOOF. It is not difficult to see the minimum ¢(«) hap-
pens when all the tasks are with utilization a. The value of
[ can be solved with the following inequality with respect
to the upper bound on the utilization for ever task a:

(B-1) 1 (8-1) 1(13—1)
Z Z 2 Z 2
a§172i=1 a+§(i=l * +§i=1a 1)

After reformulation, we obtain

PB-1)°+B-1)(a®—4a)+2—-2a>0 (19)
Solving it as the standard quadratic inequality w.r.t. 8, we
obtain

+a—+vVa?+38
2c0 or

Since we are only interested in providing the lower bound on
¢(), it is sufficient to take the value with the “—” sign as our
solution of B. Thus, it indicates a feasible schedule under
RM scheduling on one processor if 8 tasks with utilization no
more than a are allocated on the processor. Recall that by
definition 5 must be an integer. Hence, we have to apply the
floor function to round it down thereafter. We here conclude
this lemma. [

p)
»3§4 24—5-04—1—2\/04 +8
«

(20)

Figure 2 depicts § with respect to the utilization upper
bound «. This lower bound is tighter than the one by using
only Eq.(1). For example, if o = 0.381, we can conclude
that 8 = 2 by Lemma 3, as can be seen in Figure 2; however,

max ({Qj!—ﬂJ ,1) = 1. We then make use of Lemma 3 to

derive the following generalized utilization bound taking the
value of 3:

THEOREM 4. For a given «, suppose that (8 is from
Lemma 3. A multiprocessor system T with implicit deadline,
multi-mode tasks is feasible under RM scheduling and a
reasonable allocation decreasing (RAD) algorithm using
quadratic bound (@QB) if

youm < 1428 *(;igfﬁ”m M @1)

1
L
L
L

8

O PN W R U N ® O

S

50 0.1290.166 0.232 0.381
@

Figure 2: The value of 8 with respect to given «.

o (0.381,1] | (0.231,0.381] | (0.166,0.231] | (0.129,0.166]
B 1 2 3 4
utilization || 0.381M 0.4640M 0.5000 0.5190M

Table 1: Utilization bounds of RAD using QB under «

Y PR NIVl
PRrOOF. By Lemma 3, we have v = 5 = =5~ >
% = f. Hence, B is a lower bound on 7. Replacing

~ in Lemma 2 by (, and similarly taking the negation of
Lemma 2, we can thus conclude this theorem. [

This utilization bound is a generalized result of Theo-
rem 3. For example, if « = 0.23, then 8 = 3. By Theorem 4,
we then obtain the utilization bound of 50%, shown in Ta-
ble 1. Moreover, if @« — 0, then 8 — oo and the utilization
bound converges to 2 — v/2:

2+ 4 —4/2+ 2+ 5
M = (2 —V2)M =~ 0.58M

i
foroo (1+3)

6. BOUNDS FOR RELATED MODELS

In this section, we intend to answer the utilization bound
on multiprocessor systems for those related models: the
generalized multiframe (GMF) model, the variable-rate de-
pendent behavior (VRB) model, and the digraph real-time
(DRT) model. As we only focus on implicit-deadline multi-
mode task systems, we also implicitly assume that these
GMF, VRB, and DRT models are also with implicit dead-
lines. We explicitly show that the studied mode change
model is a relaxation of these models under the above as-
sumption.

LEMMA 4. The studied mode change model is a relazation
of the generalized multiframe (GMF) model , the variable-
rate dependent behavior (VRB) model, and the digraph
real-time (DRT) model if the minimum inter-arrival time
to change to the next mode is always equal to the relative
deadline of the current task mode.

PrOOF. Due to the space limitation, we only provide
sketched explanations here. By definition, a generalized
multiframe task [2] must execute each frame sequentially
and circularly, starting from any of its frames. The studied
multi-mode task model can be equivalently obtained by
relaxing the constraint of sequential executions for the
generalized multiframe task. Likewise, we can reconstruct
the structure of job executions from the directed graph,
represented by the DRT model [12], into a complete graph
with a self-loop for each vertex. Regarding the VRB model
[6], the acceleration or deceleration, that determines which
modes may be possibly invoked in the next release under the
current rotation speed, can be assumed to be an unlimited
value. By considering those execution modes invoked on
the threshold of rotation speeds, the corresponding mode
change model is thereafter obtained. []

We also conclude the utilization bounds for these models:

COROLLARY 1. The generalized multiframe (GMF) task,
the variable-rate dependent behavior (VRB) task, and the
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Figure 3: The acceptance ratio by FFD, BFD, and WFD using the quadratic bound under different numbers of processors
and ratios of the number of tasks to the number of processors.

digraph real-time (DRT) tasks with implicit deadline on mul-
tiprocessor systems achieve the utilization bound provided in
Theorems 2, 3, and 4.

7. EVALUATIONS UNDER DIFFERENT RADS

In this section, extensive simulations have been carried
out in order to quantify the pessimism of the multiprocessor
utilization bounds. The metric to compare the results is to
measure the acceptance ratio of these tests for a given goal
of task set utilization. We generate 100 task sets for each
utilization level.

Task utilization values were generated from a uniform
distribution but with the constraint that they summed to
a constant desired total utilization Us>. We adopted the
UUnifast-Discard to generate task sets. The cardinality of
a task set was decided according to the ratio of the number
of tasks to the number processors, in one of three values
[2,5,10], provided that the number of available processors
is given. We evaluated three RAD algorithms mentioned
earlier, namely First-Fit Decreasing, Best-Fit Decreasing,
and Worst-Fit Decreasing, using the total utilization bound
in Theorem 2, denoted by FFD-TUB, BFD-TUB, and WFD-
TUB, receptively, and those using QB in Theorem 3, de-
noted by FFD-QB, BFD-QB, and WFD-QB, receptively.

The remaining capacity §; on processor j for an RAD
using TUB and QB is defined as follows: for TUB we use
8 =2 —+/2— Zﬂerj U; — Uk, and for QB we use §; =

1-2 Enerj Ui""%(znerj Ui)?+3 ETiEFj (U:)? = Uy, where
task 7 is the task being allocated.
Results. Figure 3 shows the acceptance ratio under differ-
ence numbers of processors and tasks, e.g. M = 16, % =5
implies the number of tasks is N = 16 x 5 = 80. Note that
for better readability, we only show the result of FFD-TUB.
The performance of FFD-TUB is identical to that of BFD-
TUB and slightly better than that of WFD-TUB, similar
to the cases where QB is used. The first and most obvious
observation is that the RAD algorithm using QB is far more
effective than that using TUB. We then notice that FFD-
QB and BFD-QB perform alike and are superior to WFD,
across all the settings. We also notice that the maximum
effective utilization of RADs decreases noticeably from 90%
down to 70% when the ratio % increases from 2 to 10, with
a fixed number of processors (e.g. Figure 3 (a), (b), and (c)).
On the other hand, the variance of the number of processors
would slightly affect the acceptance ratio, as the ratio of the
number of tasks to the number of processors is fixed (e.g.
Figure 3 (a) and (d)).

Overall, in our simulations, the simple RAD heuristics

combined together with the quadratic bound can admit task
sets even with noticeable high utilization, from 70% and up
to 90%.

8. CONCLUSIONS

A multi-mode task model is a natural generalization
model that represents higher expressiveness over the spo-
radic task model. We study the problem of scheduling multi-
mode tasks on multiprocessor systems. We prove that a 38%
utilization bound can be guaranteed for implicit-deadline
multi-mode tasks on multiprocessor systems by using any
reasonable allocation decreasing (RAD) algorithm, e.g.
First-Fit Decreasing (FFD), if each mode is prioritized
according to rate-monotonic (RM) scheduling policy. Em-
pirical results show that task sets with noticeably high
utilization, 70%, are still deemed feasible by our approach.
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