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ABSTRACT
Self-suspension is becoming a prominent characteristic in
real-time systems such as: (i) I/O-intensive systems (ii)
multi-core processors, and (iii) computation offloading
systems with coprocessors, like Graphics Processing Units
(GPUs). In this work, we study self-suspension systems
under fixed-priority (FP) fixed-relative-deadline (FRD)
algorithm by using release enforcement to control self-
suspension tasks’ behavior. Specifically, we use equal-
deadline assignment (EDA) to assign the release phases
of computations and suspensions. We provide analysis for
deriving the speedup factor of the FP FRD scheduler using
suspension-laxity-monotonic (SLM) priority assignment.
This is the first positive result to provide bounded speedup
factor guarantees for general multi-segment self-suspending
task systems.

1. INTRODUCTION
In many real-time and embedded systems, tasks may be

suspended by the operating system when accessing external
devices such as disks, graphical processing units (GPUs),
or synchronizing with other tasks. This behavior is often
known as self-suspension. Self-suspensions are even more
pervasive in many emerging embedded cyber-physical sys-
tems in which the computation components frequently in-
teract with external and physical devices. Such suspension
delays have negative impact on the timing predictability and
cause intractability in real-time scheduling [17].

Self-suspending tasks can be classified into two models:
dynamic self-suspension and multi-segment self-suspension
models. The dynamic self-suspension sporadic task model
characterizes the execution of a job of each task τi with
its upper bound on the (total) execution time Ci and its
upper bound on (total) self-suspension time Si. That is,
self-suspension under such a model can happen at any point
obliviously during the execution of a job as long as the sus-
pension time does not exceed the maximum self-suspension
time Si. On the other hand, the multi-segment sporadic task
suspending model characterizes the execution of a job of a
task τi by specifying its computation segments and suspen-
sion intervals as an array (C0

i , S
0
i , C

1
i , S

1
i , ..., S

mi−2
i , Cmi−1

i )
composed of mi computation segments separated by mi− 1
suspension intervals.

From the system designer’s perspective, the dynamic
self-suspension model provides an easy way to specify
self-suspending systems without considering the juncture
of I/O access or computation offloading. However, from
the analysis perspective, such a dynamic model leads to
quite pessimistic results in terms of schedulability since the
location of suspensions within a job is oblivious. Therefore,
if the suspending patterns are well-defined and characterized
with known suspending intervals, the multi-segment self-

suspension task model is more appropriate.
To resolve the computational complexity issues in many

of these NP-hard scheduling problems in real-time systems,
approximation algorithms, and in particular, approxi-
mations based on resource augmentation have attracted
much attention. If an algorithm A has a speedup factor
ρ, then it guarantees that the schedule derived from the
algorithm A is always feasible by running at speed ρ, if
the input task set admits a feasible schedule on a unit-
speed processor. Therefore, designing scheduling algorithms
and schedulability tests with bounded speedup factors
(resource augmentation factors, equivalently) also ensures
their qualities for such NP-hard problems.
Related work. Self-suspending real-time tasks have been
studied in the literature [5,7–13,15,16]. Unfortunately, a few
results in the literature are recently shown flawed. Please
refer to [4] and [15] for some of the existing flaws that have
been formally reported. Thus, none of the results with
wrong analysis will be further referred in this paper.

Recently, there have been some results [8, 11–13] on the
dynamic self-suspension task model [14]. The state-of-the-
art approach [8] is guaranteed to find a feasible fixed-priority
assignment on a speed-2 uniprocessor, if a feasible fixed-
priority assignment exists on a unit-speed processor. It
is evident that the multi-segment self-suspension task is a
special case of the dynamic self-suspension task, where the
locations and the number of suspension intervals can vary
from one job to another. However, this also implies that the
speedup factor 2 for dynamic self-suspension tasks does not
hold further when we consider multi-segment self-suspension
tasks. Some details about the above discussion can be found
in Section 4.

The multi-segment self-suspension task model has been
specifically studied in [5, 15, 16]. Palencia and Harbour [16]
study fixed-priority scheduling for tasks with dynamic off-
sets, which can also be adopted to analyze the schedulability
of fixed-priority self-suspending task systems. Nelissen et
al. [15] propose a method based on a mixed integer linear
programming (MILP) formulation to calculate the worst-
case response time of a multi-segment self-suspension task.
In these two results, the authors assume a given priority as-
signment, and perform schedulability analysis. The analysis
in [16] can be reduced to pseudopolynomial time complexity
(with some approximations), but the analysis in [15] requires
exponential time complexity.

The only approximation result (with speedup factor guar-
antees) for multi-segment self-suspension scheduling prob-
lems is presented by Chen and Liu [5], for a special case
when there is only at most one self-suspending interval per
task. In their result, each computation segment is assigned
a relative deadline according to the equal-deadline assign-
ment (EDA), and then scheduled under earliest-deadline-
first (EDF) scheduling. Chen and Liu [5] prove that the
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speedup factor of EDA under EDF scheduling is 3. However,
the schedulability analysis and the speedup factor analysis
in [5] are restrictive since they can only be applied un-
der dynamic priority scheduling and with at most one self-
suspending interval per task.
Contributions. In this work, we analyze simple schedul-
ing strategies and derive the first bounded speedup factor
guarantees for the multi-segment self-suspension scheduling
problem under fixed-priority scheduling. The contributions
of this paper are summarized as follows:
• In Section 3, we explain how fixed-relative-deadline

(FRD) scheduling with release time enforcement
works. We show that tasks under the FRD scheduler
can be equivalently transformed to the well-known
generalized multiframe (GMF) [2] tasks. Specifically,
we study the equal deadline assignment (EDA) with
multiple suspension intervals per task under the
suspension-laxity-monotonic (SLM) priority assign-
ment: the smaller the suspension laxity, the higher
the priority level.
• Prior to this paper, only very negative results are

known in [17] for general cases. That is, the speedup
factor for EDF and rate-monotonic scheduling (RM)
can be ∞. In Section 4, we show that EDA together
with SLM has a processor speedup factor M2, where
M = maxτi max(2,mi). Note that there is no better
lower bound or upper bound with respect to the
quality (speedup factor) of the scheduling policy and
the schedulability analysis. Although this factor is
not a constant, it provides the first evidence that
simple strategies can still work pretty well when the
number of computation segments is small. Therefore,
the scheduling problem remains open when M is
relatively large.
• We empirically show that our proposed approach is

highly effective if the number of suspending intervals
is small (< 5), in terms of the number of task sets that
are deemed schedulable, despite that it is impractical
for task sets with many suspension intervals (≥ 5), in
Section 5.
• Although this paper focuses on fixed-priority schedul-

ing, we can conclude that the speedup factor M2 also
holds for EDF scheduling (under FRD and release time
enforcement). This will be discussed in the conclusion.

2. SYSTEM MODEL AND NOTATIONS
We consider a real-time system to execute a set of n

independent, preemptive, multi-segment self-suspension
real-time tasks τ = {τ1, τ2, ..., τn} on a uniprocessor.
Each task can release an infinite number of jobs under
minimum inter-arrival time (temporal) constraints. Similar
to sporadic tasks, a multi-segment self-suspension sporadic
task releases jobs sporadically, but the execution of each
job of τi alternates between pre-defined computation and
suspension phases in an interleaving manner. The execution
of each job of τi is composed of mi computation segments
separated by mi − 1 suspension intervals. A computation
segment is eligible to execute only after the completion
of the previous suspension interval. A multi-segment self-
suspension task τi is characterized by 3 tuples:

τi =
(
(C0

i , S
0
i , C

1
i , S

1
i , ..., S

mi−2
i , Cmi−1

i ), Ti, Di
)

where Ti denotes the minimum inter-arrival time of τi, Di
denotes the relative deadline of task τi; C

j
i denotes the upper

bound on the execution time of the (j + 1)th- computation

segment; and Sji denotes the upper bound on the suspension
time of the (j + 1)th- suspension interval.

For the simplicity of presentations, for the rest of this
paper, we will implicitly call such tasks as self-suspension
tasks as the context is clear. In this work, we restrict our
attention to constrained-deadline task systems, i.e., Di ≤ Ti.

If mi is 1, there is only one computation segment of task
τi, which is equivalent to the conventional sporadic task
model. We further define such a task as τi = (Ci, Ti, Di). If
mi ≥ 2, we denote the amount of total computation segment
lengths

∑mi−1
j=0 Cji as Ci and the amount of total suspension

interval lengths
∑mi−2
j=0 Sji as Si. The computation segment

with the maximum execution time is denoted as Cmaxi =
max0≤j≤mi−1{Cji }. We assume that Ci + Si ≤ Di for
any task τi ∈ τ . The utilization of task τi is defined as
Ui = Ci/Ti. We further assume that

∑n
i=1 Ui ≤ 1.

In this paper, we focus on fixed-priority scheduling, in
which each task is associated with a unique priority level.
For a task τk in τ , we denote the set of the tasks with higher
priority than task τk as hp(k). More precisely, all the jobs of
a task have the same priority level, and the system always
selects the job in the ready queue with the highest-priority
level to execute. Clearly, if a job suspends itself, it is no
longer in the ready queue. On the other hand, when a job
resumes from its self-suspension, it is put into the ready
queue again.

Our proposed schedulability analysis works for any fixed-
priority assignment. However, it has been shown in [5, 17]
that rate-monotonic (RM) and deadline-monotonic (DM)
can have very bad performance. Alternatively, we will
consider two heuristic fixed-priority assignments, one is
suspension-laxity-monotonic (SLM), and another is the
optimal priority assignment (OPA) approach proposed
by Audsley [1]. The suspension-laxity-monotonic (SLM)
scheduling prioritizes the tasks according to their suspension
laxity Di − Si: the smaller the suspension laxity Di − Si,
the higher the priority level. The ties are broken arbitrarily.
The OPA priority assignment [1] starts from the lowest-
priority level iteratively to the highest-priority level based
on an OPA-compatible schedulability test.

We define the following feasibility and schedulability to be
used for the rest of the paper.
• A schedule is feasible if there is no deadline miss and

all the scheduling constraints are respected.
• A self-suspension task system τ is said to be schedu-

lable if there exists a feasible schedule for the task
system for any release patterns under the temporal
constraints.
• A self-suspension task system τ is said to be schedula-

ble under a scheduling algorithm if the schedule pro-
duced by the algorithm for the task system is always
feasible.

3. FIXED-RELATIVE-DEADLINE (FRD)
As discussed in Section 1, the fixed-relative-deadline

(FRD) scheduler proposed by Chen and Liu [5] is now
the only scheduling algorithm that has speedup factor
guarantees for multi-segment self-suspension sporadic task
systems. The FRD scheduler works based on a release
(scheduling) enforcement that assigns each computation
segment Cji with a relative deadline Dj

i , as also shown in
Figure 1:
• The release times between two consecutive computa-

tion segments Cji , Cj+1
i are separated by exactly Dj

i

time units plus the upper bound time on the suspen-
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Figure 1: A self-suspension task τi under FRD scheduler where
D0
i + D1

i + D2
i = Di − Si. The blue upward and the red

downward arrows indicate the release time and the relative
deadline, respectively, of task τi.

sion interval, i.e. Dj
i + Sji . For completeness, we

introduce a auxiliary variable Smi−1
i ≡ Ti −Di ≥ 0.

• Each suspension interval Sj+1
i is released at the ab-

solute deadline of the previous computation segment.
That is, if a computation segment Cji is released at

time t and is set an absolute deadline t+Dj
i under FRD

scheduling, then the follow-up suspension interval is
released at t+Dj

i .
• The sum of the assigned relative deadlines of task τi’s

computation segments cannot exceed Di − Si, i.e.,∑mi−1
j=0 Dj

i ≤ Di − Si.

Although the FRD concept can be generalized to multiple
computation segments, the (sufficient test) analysis by Chen
and Liu [5] only works for task systems with at most one
self-suspension interval per task under EDF.

Note that the release times of the computation segments by
using above release enforcement have to be strictly enforced.
Otherwise, the resulting early release of the subsequence
computation phases may introduce more interference than
the above release enforcement, due to jitters. The above
release enforcement can be achieved by designing the sus-
pensions properly. For example, every suspension has to
initialize a timer (interrupt) to set a predefined suspension
length. Even if self-suspension returns earlier, the following
computation segment is not placed back to the ready-queue
until the timer is triggered.

With the above treatment, every computation segment
of the task has to finish its execution before the assigned
relative deadline. In a nutshell, the FRD scheduler is a
release (scheduling) enforcement that releases computation
segments and suspension intervals by strictly following the
assigned time instants, irrespective of any early completion
during run-time. The concept of the FRD scheduler is very
simple. The key design challenge is to determine the priority
assignment and the relative deadlines of the computation
segments. If the priority assignment and relative deadline
assignment are both given, the schedulability test can be
easily done as in Section 3.1 by transforming the problem to
the generalized multiframe task model. In Sections 3.2, we
will discuss about two simple heuristics.

3.1 Schedulability Analysis of FRD
The generalized multiframe (GMF) task model was first

introduced by Baruah et al. [2]. A GMF task ψi consisting of

mi frames is characterized by the 3-tuple ( ~Ci, ~Di, ~Ti), where
~Ci, ~Di, and ~Ti are mi-ary vectors (C0

i , C
1
i , ..., C

mi−1
i ) of ex-

ecution requirements, (D0
i , D

1
i , ..., D

mi−1
i ) of relative dead-

lines, (T 0
i , T

1
i , ..., T

mi−1
i ) of minimum inter-arrival times, re-

spectively. In fact, from the analysis perspective, a self-
suspension task τi under FRD scheduler is equivalent to a
GMF task ψi, by considering the computation segments as
the frames with different separation times:

Lemma 1. The schedulability analysis problem under
FRD scheduling is equivalent to the schedulability analy-

sis of the following generalized multiframe task model by
converting each self-suspending task τi into a generalized
multiframe ψi in which

~Ci =
(
C0
i , C

1
i , ..., C

mi−1
i

)
, ~Di =

(
D0
i , D

1
i , ..., D

mi−1
i

)
(1)

and

~Ti =
(
D0
i + S0

i , D
1
i + S1

i , . . . , D
mi−1
i + Smi−1

i

)
, (2)

where Smi−1
i ≡ Ti −Di for completeness.

Proof. Due to space limitation, we only provide a
sketched proof. Computation segments under FRD schedul-
ing are released according to the assigned time instants,
which are exactly separated by one assigned relative deadline
and one suspension interval, i.e., Dj

i + Sji . Therefore, when
a job of task τi is released to the system at time θa, under
the FRD scheduling with release enforcement, (1) the first
computation segment has an absolute deadline θa + D0

i to
finish C0

i amount of execution, (2) the second computation
segment C1

i is released at time θa+D0
i +S0

i , has an absolute
deadline θa + D0

i + S0
i + D1

i , (3) the third computation
segment C2

i is released at time θa + D0
i + S0

i + D1
i + S1

i ,
has an absolute deadline θa + D0

i + S0
i + D1

i + S1
i + D2

i ,
(4) etc. Since

∑mi−1
j=0 Dj

i ≤ Di − Si in an FRD assignment,
the absolute deadline of the last computation segment in
the above release is θa + Di. Therefore, the earliest arrival
time of the next job of task τi after time θa +Di is at time
θa +Ti, which results in the last auxiliary setting by setting
Smi−1
i to Ti −Di.

It has been shown in [18] that the interference (the de-
mand requested by a GMF task τi in an interval length t)
from a GMF task ψi can be efficiently calculated and upper-
bounded, as paraphrased in the following lemma:

Lemma 2 (Takada and Sakamura [18]). The maxi-
mum execution time (demand) Wi(t) that higher-priority
task ψi interferes with lower-priority tasks within an interval
of length t is upper bounded by

Wi(t) = max0≤h≤mi−1E
h
i (t) (3)

where

Ehi (t) =

h+`−1∑
j=h

Cj mod mi
i +

min

C(h + `) mod mi
i , t−

h+`−1∑
j=h

T j mod mi
i

 (4)

and ` is the maximum integer under the following condition:

h+`−1∑
j=h

T j mod mi
i ≤ t (5)

Proof. This comes from Section 4 in [18].

We then make use of the GMF interference function to
analyze the schedulability of a GMF task (equivalently, a
self-suspension segment under FRD scheduler), by adopting
the time-demand analysis (TDA).

Lemma 3 (Takada and Sakamura [18]). The (j +
1)-th frame of a GMF task ψk can meet its relative deadline
Dj
k if

∃0 < t ≤ Dj
k, s.t. Cjk +

∑
ψi∈hp(k)

Wi(t) ≤ t,
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where hp(k) is the set of the higher-priority GMF tasks than
ψk.

3.2 Fixed-Relative-Deadline Assignment
Proportional Assignment: Intuitively, one may assign the

relative deadline of the computation segments proportional
to their computation times, i.e. Dj

i = (Di−Si)·Cji /Ci. How-
ever, this assignment performs rather poor in terms of pro-
cessor speedup factor, as shown in [5] for one-segment self-
suspension systems under dynamic scheduling. Likewise,
under fixed-priority scheduling, the same example would
also lead to very poor speedup factor results. Therefore,
we will not further consider this assignment.

Equal-Deadline Assignment: It has been shown in [5]
that Equal-Deadline Assignment (EDA) can provide a non-
trivial resource-augmentation performance guarantee for
self-suspension systems (with mi ≤ 2 for each τi ∈ τ)
scheduled by dynamic scheduling, e.g. earliest-deadline-first
(EDF). EDA assigns equal relative deadlines to computation
segments, considering from a total slack Di − Si:

D0
i = D1

i = · · · = Dmi−1
i =

Di − Si
mi

(6)

In this paper, we intend to answer an open question to
know whether EDA works under fixed-priority scheduling
with multiple self-suspension intervals. In the following
theorem, we can summarize the schedulability test for a
constrained-deadline self-suspension task.

Theorem 1 (EDAGMF). A constrained-deadline self-
suspension task system τ is schedulable under fixed-priority
EDA scheduling if the schedulability test in Lemma 2 by
setting Dj

k to Dk−Sk
mk

succeeds for every task τk ∈ τ .

Proof. This comes from Lemmas 1 and 2 under EDA.

It is not difficult to see that the schedulability test in
Theorem 1 is in fact compatible with the well-known Opti-
mal Priority Assignment (OPA), proposed by Audsley [1].
The OPA algorithm assigns each priority level k to one
of the unassigned tasks that has no deadline miss along
with the other unassigned tasks, assumed to have higher
priority levels. The iterative priority assignment terminates
as soon as either no unassigned task can be assigned at
the priority level k or all priority levels are assigned. We
will evaluate the performance by using the OPA priority
assignment, compared to the SLM priority assignment, in
Section 5.

4. SPEEDUP FACTOR OF EDA
Although EDA with the SLM priority assignment is a sim-

ple strategy, we will provide the analysis in this section that
such a strategy has a bounded speedup factor guarantee.
Prior to this result, there was no positive result with theoret-
ical analysis for this studied problem. To prove the speedup
factor, we first need the necessary condition for the existence
of a feasible schedule for self-suspension sporadic real-time
tasks. Here, we would like to emphasize that the necessary
condition (Theorem 3 in [8]) for fixed-priority scheduling in
dynamic self-suspension models cannot be applied for multi-
segment self-suspension models. The reason is that the self-
suspension can happen arbitrarily in the necessary condition
in [8], but here in this paper self-suspensions are segmented.
Therefore, the proof in [8] cannot be applied here.

The necessary condition is established upon the concepts
of demand bound function (dbf) used widespread in real-
time schedulability analysis. Roughly speaking, for any t >

0, the demand bound function of a task bounds the cumu-
lative execution requirement by its jobs that arrive in, and
have to be necessarily finished within any interval of length t.
In Lemma 4, we formally prove the demand bound function
of a self-suspension task, and then it is used to establish the
necessary condition by collecting all the tasks’ demand from
a self-suspension task system:

Lemma 4. If a self-suspension task system τ is schedu-
lable (i.e., there exists a feasible schedule for any release
patterns under the temporal constraints), then

∀t > 0,
∑
τi∈τ

dbfi(t) ≤ t (7)

where

dbfi(t) =


0 if 0 ≤ t < Di − Si,
Cmaxi if Di − Si ≤ t < Di,

Ci +

⌊
t−Di
Ti

⌋
Ci if t ≥ Di

Proof. We prove this lemma by contrapositive: if there
exists t∗ > 0 such that

∑
τi∈τ dbfi(t

∗) > t∗, then there exists
a release pattern resulting in an infeasible schedule. Note
that this is a necessary condition for any optimal scheduling.
Therefore, any release pattern that does not violate the
temporal constraints can be considered.

Let’s now examine a specific time interval [θa, θa+t∗). By
the value t∗, a task τi can be in either of the following three
cases exclusively:
• Case 1: 0 ≤ t∗ < Di − Si. For such a case, we do not

release any job from this task τi.
• Case 2: t∗ ≥ Di. For such a case, we release the first

job of this task τi at time θa, and the subsequent jobs
of task τi as early as possible by respecting the task
period, i.e., at θa, θa + Ti, θa + 2Ti, . . .. The workload
released no earlier than θa and has to be finished by

θa + t∗ is hence by definition at least Ci +
⌊
t∗−Di
Ti

⌋
Ci.

• Case 3: Di − Si ≤ t∗ < Di. For such a case, we need
a pattern to ensure that at least Cmaxi is released no
earlier than θa and has to be finished no later than
θa + t∗. Let’s assume that the (v + 1)-th computation
segment Cvi of task τi is the one with the maximum
execution time among the computation segments of
task τi. We consider the following release pattern of
task τi:

– A job of task τi is released at time θa−
∑v−1
j=0 S

j
i .

– The execution time of a computation segment Cji
of this job is 0 for any j = 0, 1, 2, . . . , v − 1.

– The execution time of a computation segment Cji
of this job is its worst-case execution time for any
j = v, v + 1, v + 2, . . . ,mi − 1.

– The suspension time of a suspending interval of
this job is always equal to its worst case Sji for
any j = 0, 1, 2, . . . ,mi − 1.

Therefore, Cvi computation segment is released at
time θa and followed by a total of suspension times∑mi−1
j=v Sji preceding the absolute deadline θa −∑v−1
j=0 S

j
i + Di. If Cvi cannot be finished before

θa −
∑v−1
j=0 S

j
i + Di −

∑mi−1
j=v Sji = θa + Di − Si, we

can already conclude that task τi misses its deadline.
Otherwise, we can artificially set the absolute deadline
of Cvi to some point no later than θa + t∗. As a result,
for the last case, the workload that is released no
earlier than θa and has to be finished by θa + t∗ is
hence at least Cmaxi .
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From the above analysis, we know that the existence of t∗

with
∑
τi∈τ dbfi(t

∗) > t∗ implies that the workload from the
generated jobs above, arriving no earlier than θa and with
absolute deadline no later than θa+t∗, is strictly larger than
t∗. Therefore, there does not exist any feasible schedule for
such jobs. Hence, this lemma is proved.

With the above necessary condition, we can now provide
the speedup factor analysis for the schedulability test of
Theorem 1 where tasks are prioritized according to their sus-
pension laxity Di − Si, called suspension-laxity-monotonic
(SLM) scheduling, i.e. the smaller the suspension laxity, the
higher the priority (with ties broken arbitrarily). We need
the following lemma to safely bound the function Wi(t) in
the GMF schedulability test.

Lemma 5. The function Wi(t) defined in Eq. (3) is upper

bounded by Wi(t) ≤
⌈
t
Ti

⌉
Ci, where Ci is

∑mi−1
j=0 Cji .

Proof. This is based on simple arithmetic and obser-
vations. We can imagine a more pessimistic analysis by
pushing all the demand of the frames to only one frame.

Theorem 2. The schedulability test of Theorem 1 using
SLM has a processor speedup factor M2, where M is
maxτi∈τ max(2,mi).

Proof. We prove this theorem by contrapositive. If the
schedulability test of Theorem 1 using SLM fails for task
τk, then, we prove that

∑
τi∈τ dbfi(Dk − Sk) ·M2 > Dk −

Sk, where dbfi(t) is defined in Lemma 4. The failure of

Theorem 1 (with Dj
k = Dk−Sk

mk
) means that

∀0 < t ≤ Dk − Sk
mk

, Cmaxk +
∑

τi∈hp(k)

Wi(t) > t. (8)

Therefore, by Lemma 5, we also know that

∀0 < t ≤ Dk − Sk
mk

, Cmaxk +
∑

τi∈hp(k)

⌈
t

Ti

⌉
Ci > t (9)

That is, we have Cmaxk +
∑
τi∈hp(k)

⌈
Dk−Sk

mk
Ti

⌉
Ci >

Dk−Sk
mk

.

By the definition of SLM scheduling, we know that Di −
Si ≤ Dk −Sk for higher-priority task τi in hp(k). There are
two different cases for higher-priority task τi in hp(k):
• Case 1: 0 < Di − Si ≤ Dk − Sk ≤ Ti. In this case,⌈

(Dk − Sk)/mk

Ti

⌉
Ci ≤

⌈
Ti

mk · Ti

⌉
Ci = Ci = mi

Ci
mi

≤miC
max
i = mi · dbfi(Di − Si) ≤ mi · dbfi(Dk − Sk)

(10)

• Case 2: Dk − Sk > Ti. By the assumption of the
constrained-deadline task systems, we have Di ≤ Ti
and⌈

(Dk − Sk)/mk

Ti

⌉
Ci

≤
(⌊

(Dk − Sk)/mk

Ti

⌋
+ 1

)
Ci ≤

(⌊
Dk − Sk

Ti

⌋
+ 1

)
Ci

=

(⌊
Dk − Sk − Ti

Ti

⌋
+ 2

)
Ci ≤ 2

(⌊
Dk − Sk −Di

Ti

⌋
+ 1

)
Ci

=2dbfi(Dk − Sk) (11)

The second inequality comes from mk ≥ 1.
Therefore, with the assumption in Eq. (9), and the above

two cases in Eq. (10) and Eq. (11), we can conclude that

Dk − Sk

mk
<Cmaxk +

∑
τi∈hp(k)

⌈
(Dk − Sk)/mk

Ti

⌉
Ci

≤dbfk(Dk − Sk) + σk ·
∑

τi∈hp(k)
dbfi(Dk − Sk), (12)

where σk is defined as maxτi∈hp(k)max(2,mi). Therefore,
we can have

Dk − Sk <
∑
τi∈τ

(mkσk) · dbfi(Dk − Sk).

This concludes that the speedup factor when the test in
Theorem 1 fails for a certain τk is mkσk. Since mkσk ≤M2,
the speedup factor is M2 regardless of τk.

5. EXPERIMENTAL RESULTS
In this section, we conduct experiments using synthesized

task sets for evaluating the schedulability as follows:
• Idv-Burst-RM : the polynomial-time test for dynamic

self-suspension tasks under RM scheduling in Corol-
lary 2 in [13].
• PASS-OPA: the pesudopolynomial-time algorithm

and analysis presented in [8] for handling the general
dynamic self-suspension system under fixed-priority
scheduling.
• PH-SLM: the pseudopolynomial-time analysis consid-

ering jitter, in Section 2.4 in [16], under SLM priority
assignment.
• EDAGMF-SLM: Theorem 1 using SLM priority as-

signment in this paper.
• EDAGMF-OPA: Theorem 1 using OPA priority as-

signment in this paper.
We generate 100 task sets for each utilization level, from

0.01 to 0.99, in steps of 0.01. The acceptance ratio of a level
is said to be the number of task sets that are schedulable di-
vided by the number of task sets for this level, i.e., 100. The
metric to compare the results is to measure the acceptance
ratio of the above tests with respect to a given goal of task
set utilization.

We first generated a set of sporadic tasks. The cardi-
nality of the task set was 10. The UUniFast method [3]
was adopted to generate a set of utilization values with
the given goal. We used the approach suggested by Davis
and Burns [6] to generate the task period according to an
exponential distribution. The distribution is of two orders of
magnitude, i.e., [10ms − 1000ms]. The execution time was
set accordingly, i.e., Ci = TiUi. Task relative deadlines are
set to their periods, i.e., Di = Ti. We then converted them
to self-suspension tasks. Suspension lengths of the tasks
were generated similarly to the method in [12]. Suspension
lengths of the tasks were generated according to a uniform
random distribution, in either of two ranges depending on
the self-suspension length (sslen): [0.01(Ti − Ci), 0.1(Ti −
Ci)] (short suspension, sslen=S), [0.1(Ti −Ci), 0.3(Ti −Ci)]
(medium suspension, sslen=M), and [0.3(Ti − Ci), 0.6(Ti −
Ci)] (long suspension, sslen=L).

The number of computation segments mi was set depend-
ing on the following types of self-suspensions: 2 (rare sus-
pension, sstype=R) and 5 (frequent suspension, sstype=F).
We then generated every computation segment Cji and sus-

pension interval Sji with the given Ci and Si, according to
a uniform distribution, like the UUniFast method.

In Figure 2, we show the result for the performance by
these tests above in terms of the acceptance ratio, from
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Figure 2: Comparison with different types of suspension lengths (sslength) and different types of suspension frequency (sstype).

different suspension types and lengths. We first notice that
the improvement in EDA by using OPA over SLM is very
little (almost invisible, but there do exist some task sets
schedulable by OPA but not by SLM). The performance by
Idv-Burst-RM is inferior to all the others in all the cases.
The acceptance ratios by PH-SLM and PASS-OPA are al-
most identical. The proposed EDAGMF-SLM is far more
effective than PASS-OPA and PH-SLM in the case of the
rare suspension type (Figure 2a, 2b, and 2c). In the case
of the frequent suspension type (Figure 2d, 2e, and 2f), the
acceptance by EDAGMF-SLM drops down close to that by
PASS-OPA and PH-SLM. Generally speaking, our proposed
approach, by using enforcement, is impractical to be adopted
for task sets with many suspension intervals (≥ 5); however,
it is highly useful for task sets with small numbers of sus-
pension intervals (< 5).

6. CONCLUSION
In this paper, we propose to adopt SLM priority assign-

ment and the FRD scheduler using EDA for scheduling
multi-segment self-suspending tasks. This paper partially
solves this challenging open problem. Although we are
not able to provide a constant bound, the speedup factor
M2 in this paper is the only positive and general result.
Previously, for this problem, only negative results were
known since 2004 [17], and all the factors reported in [17]
were ∞ even for one suspension interval. Since there is no
lower bound of this problem, further improvement is possible
but may require sophisticated approaches. In future work,
it is interesting to improve the upper bound of the speedup
factor and provide the lower bound.

Although we focus on fixed-priority scheduling, we can
conclude that the speedup factor M2 also holds when we use
EDF scheduling under FRD and release time enforcement.
This is due to the fact that EDF (under FRD) remains an
optimal scheduling policy for GMF tasks, as proved in [2].
Moreover, our analysis uses a necessary condition (Lemma 4)
of any arbitrary feasible schedule when analyzing the pro-
cessor speedup factor. As a result, this paper also provides
generalized results of [5] for dynamic-priority scheduling.
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