Evaluation Framework for Self-Suspending Task Systems

Georg von der Briiggen, Milad Nayebi, Junjie Shi, Kuan-Hsun Chen, and Jian-Jia Chen
TU Dortmund University, Dortmund, Germany

Abstract—In the real-time systems community, the perfor-
mance of newly designed scheduling algorithms or schedulability
tests is typically examined either by theoretical methods, like
dominance relations or speedup factors, or using empirical eval-
uations. Such empirical methods often evaluate the acceptance
ratio of the new algorithm/test compare to other algorithms/tests
based on synthesized task sets. However, it is often difficult
to perform such a comparison since not all implementations
are publicly available, use a different programming language,
a different task generator, etc. Hence, for self-suspending tasks,
we provide an easy to use evaluation framework with a pre-
implemented task generator, some pre-implemented schedula-
bility tests, and an integrated plotting tool. The framework is
written in Python and can be extended by including additional
schedulability tests.

I. INTRODUCTION

Self-suspension behaviour has analysed in the real-time
systems community as it results from multiple application
scenarios like 1) cloud offloading in the Internet of Things
era, 2) multiprocessor resource synchronization, 3) interactions
with external devices, e.g., GPUs, accelerators, and I/O de-
vices, etc. In general, self-suspension behaviour occurs when
a task leaves the processor without being either finished or
preempted by a higher-priority task. Three models for such
self-suspension behaviour have been examined:

1) The segmented model, where the self-suspension be-
haviour is described by a precise pattern of interleaving
execution segments and suspension intervals.

2) The dynamic model, where the self-suspension be-
haviour is described by two upper bounds on the total
worst-case execution time (WCET) and the total suspen-
sion time. It assumes that a task can suspend itself an
infinity amount of times as long as the upper bound on
the total suspension time is respected.

3) The hybrid models [4], that provide different tradeoffs
between the overly flexible dynamic model and the
overly restrictive segmented model, assuming different
levels of information in addition to the bounds on
WCET and suspension time, i.e., at least the number
of suspensions.

A review for the state-of-the-art of self-suspension can be
found in [1]. Multiple scheduling algorithms and related
schedulability tests have been proposed. Our goal is to provide
an easy to use framework that allows to compare these
schedulability tests based on synthesized task sets.

II. THE FRAMEWORK

The provided Python framework evaluates scheduling algo-
rithms and the related schedulability tests based on randomly

k for Self-

Task Systems - [m] X

General

Run Tests Plot Data Plot All

Prefix Data Path: | effsstsPlot/FRD

Configurations

Task Sets per Configuration: | 100 |+ | Utiization Start: [0 [2]] Utiization Step: 5 |4 Suspension Length Min Value: [0.01 /%

Tasks per Set: 10 =) Utlization End: [100 [+ | Number of Segments: [2 |+ Suspension Length Max Value: lo‘m s

Schedulability tests

FRD Segmented FRD Hybrid Segmented Dynamic General

SEFDAminD- 23] DO obivieus-w8 [1]3] [scar/m [pass-opA One
SEFDA-maxD- (2]2 [Clairvoyant-sssp |1 [3 [scar-opa

[serFoa-peminD- [1 3] [oblivious-MP [1E] [sceor

EDA [Clairvoyant-PDAB |1 s [scrRm

[Proportional O wmwe

Run

Fig. 1: The GUI of our framework.

generated implicit-deadline task sets. The evaluation setup
can be configured using multiple parameters like the number
of tasks, the utilization range that is considered, the relative
length of the suspension interval, the number of sets per
configuration, etc. The GUI of our framework is shown in
Figure 1. Furthermore, it is also possible to configure the
evaluation setup of the framework using a config file, running
it based on a command line. The results of the tests are stored
in numpy files and can also directly be printed into pdfs. The
framework also supports to plot previously collected data.

The framework already includes schedulability tests for
multiple algorithms, e.g., SEIFDA [5], SCAIR [3], PASS [2].
We plan to include additional schedulability tests from the
literature, implement additional functionalities, and keep the
framework up to date. This is supported by the underlying
Python architecture, since Python allows to include, for in-
stance, C or C++ code as well as MILP solvers.

REFERENCES

[1] Jian-Jia Chen, Georg von der Briiggen, Wen-Hung Huang, and Cong Liu.
State of the art for scheduling and analyzing self-suspending sporadic
real-time tasks. In RTCSA 2017, pages 1-10.

[2] Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou, and Cong Liu. PASS:
Priority assignment of real-time tasks with dynamic suspending behavior
under fixed-priority scheduling. In DAC 2015.

[3] Lea Schonberger, Wen-Hung Huang, Georg von der Briiggen, Kuan-Hsun
Chen, and Jian-Jia Chen. Schedulability analysis and priority assignment
for segmented self-suspending tasks. In RTCSA 2018.

[4] Georg von der Briiggen, Wen-Hung Huang, and Jian-Jia Chen. Hybrid
self-suspension models in real-time embedded systems. In RTCSA 2017.

[5] Georg von der Briiggen, Wen-Hung Huang, Jian-Jia Chen, and Cong Liu.
Uniprocessor scheduling strategies for self-suspending task systems. In
RTNS 2018.

