
Master Thesis

Automated Vehicle Telematic Data
Acquisition and Information Transformation

Thomas Richter
August 2016

Supervisors:

Prof. Dr. Jian-Jia Chen

Prof. Dr. Kristian Kersting

Technische Universität Dortmund

Fakultät für Informatik

Lehrstuhl Informatik 12

Entwurfsautomatisierung für Eingebettete Systeme

http://ls12-www.cs.tu-dortmund.de

In cooperation with:

AVL SCHRICK GmbH

Dreherstraße 3-5

42899 Remscheid

Contents

I Definition of Terms iii

1 Introduction 1

1.1 Description of the studied problem . 2

1.2 Structure . 3

2 Aims and objectives 5

3 Related research and state of the art 7

4 Fundamentals 9

4.1 CAN bus . 9

4.1.1 CAN protocol layers . 10

4.1.2 CAN frames . 10

4.2 Bluetooth . 13

4.2.1 RM CANlink Bluetooth . 13

4.3 Hybrid vehicles . 14

4.3.1 E-Drive Configurations . 14

4.3.2 Hybrid Levels . 17

4.4 Android . 25

5 Design & Implementation 27

5.1 State Definition . 31

5.2 Network device & connection protocol . 34

5.3 Message & signal selection . 36

5.4 Bluetooth connection . 38

5.5 Transforming raw CAN data . 42

5.6 Computing states & dispatch analysis event 45

5.7 Post-processing and data smoothing . 49

5.7.1 Moving average smoothing . 49

5.7.2 Exponential smoothing . 51

i

ii CONTENTS

5.7.3 Binomial smoothing . 53
5.7.4 Event post-processing . 55

5.8 Data storage & persistence . 56
5.9 Chart API & visualization . 58
5.10 Theoretical energy consideration . 60

6 Analysis & Usage 63
6.1 Battery consumption analysis . 63
6.2 Bluetooth latency analysis . 66
6.3 State detection analysis . 67
6.4 Usage . 70

7 Conclusion 79

8 Future work 81

A Additional code 83

List of figures 88

List of listings 89

Bibliography 91

Declaration 95

Chapter I

Definition of Terms

Battery The battery stores energy generated from the ICE or, during regenerative brak-
ing, from the electric motor. Since the battery supplies power to the vehicle, it is
larger and holds more energy than the batteries used in conventional vehicles.

BEV Battery electric vehicle is a car architecture that uses energy stored in battery packs
to propel the vehicle. Therefore it uses an electric motor which does not need fuel
and emits no toxic gas at all.

Boost Boost is a hybrid function which is used to support the engine with additional
torque. It is mostly used to assist the engine while launching or driving in low
engine speed areas. Therefore it is possible to downsize the normal engine without
performance losses, which results in a benefit regarding fuel consumption and toxic
gas reduction.

BSG Belt-driven Starter Generator is a hybrid component in the electric power train.
It uses an electric motor to contribute power to the internal combustion engine’s
crankshaft. It adds mild-hybrid capabilities like start-stop, regenerative braking and
power assist.

Coastdown Contrary to coasting, coastdown is used to recuperate energy which can be
used later on. Coastdown is possible when the powertrain is closed and no pedal is
currently pressed. The energy which is generated during the decelerating process is
stored in the battery.

Coasting Coasting was formerly known as Start/Stop on the move. It is a strategy
to lessen fuel consumption. At the beginning, coasting was exclusively used for
automatic transmission. The system detects the driver’s easing of pressure on the
gas pedal, decouples the engine from the transmission, and thus prevents the engine
from consuming fuel. Drivers can already manually emulate this effect by disengaging
the clutch on a downhill passage. Once a pedal is pressed, the engine is turned on

iii

iv CHAPTER I. DEFINITION OF TERMS

again. The coasting functionality is also possible for manual transmission vehicles
with an electronically controlled clutch. Effectively, the savings of fuel consumption
will be equal to the fuel consumption in engine idle mode, which is about 2 %-6 % [5].

dbc data base CAN is a Vector file format which is used to store CAN related data mes-
sages. The DBC file type is primarily associated with CANdb by Vector Informatik
GmbH. Each signal inside a CAN message decomposes to:

• name

• message id

• start-Bit and length

• byte-order (Intel/Motorola)

• data type (signed/unsigned/float)

• scaling factor

• unit string

• range of values

• default value

• comments

DCDC DCDC-Converter is used to regulate the voltage level for different components.

eClutch The e lectronically controlled clutch is a combination of hybrid powertrain and
manual transmission. Depending on the vehicles configuration, the system can en-
able the coasting and recuperation functionality, which results in a reduced fuel
consumption. Independently of the driver, the clutch decouples the engine from
the transmission if the vehicle is no longer accelerating which results in an engine
shutdown.

ECU Engine Control Unit is an electronic control unit that controls a series of actuators
on an internal combustion engine to achieve optimal and safe engine performance.

eMotor The electric motor assists the gasoline engine when additional power is needed.
It also acts as a generator: It converts energy from the engine while driving or from
regenerative braking into electricity and stores it in the battery. It is also used to
start the ICE instantly when needed.

eSC electric Supercharger is a specific supercharger that uses an electric motor to pres-
surize the taken air. The air becomes more dense and is internally matched with
more fuel, which results in short term generation of power.

v

Generator The generator converts mechanical energy from the engine or from regenera-
tive braking into electricity which can be used by an electric motor or stored in the
battery.

HCU Hybrid Control Unit is an electronic control unit that controls a series of hybrid
components to ensure their functionality and to derive the driver strategies.

HEV Hybrid electric vehicle is a car architecture concept which uses two or more power
sources. Its goals are to reduce fuel consumption as well as to limit the emission of
toxic gas.

HMI Human Machine Interface is the communication and interaction interface for the
connection between a human and a machine. In our case this is an Android applica-
tion for a mobile device.

ICE Internal Combustion Engine is the standard heat engine which is powered by either
gasoline or diesel.

Load point moving Load point moving describes a process where the ICE is burdened
with additional load from the electric motor in order to operate at a higher efficiency
point to be able to cut the conversion losses. This surplus energy can be used to
charge the battery or to propel the electric motor during boost phases.

Power-split device A power-split device is a gearbox connecting the ICE, generator and
electric motor. It allows engine and motor to power the vehicle independently or
together. Additionally, it allows the ICE to charge the batteries when overhead
energy is created while driving with an optimal load point.

Recuperation Recuperation is the recovery of energy to load the battery system. The
retrieved energy can then be used by the electric motor to support the engine while
starting or accelerating. Recuperation is possible by braking or coasting down (coast-
down) in a deceleration process or with load point moving while cruising.

SoC State of Charge is defined as the available battery capacity expressed in a percentage
value.

Start/Stop Start/Stop is a function that turns the engine off if the vehicle is standing
still for more than a certain threshold time (used to be three seconds), e.g., while
waiting for the traffic light to turn back to green. While this is working without
further restrictions in a vehicle with automatic transmission, the driver of a manual
transmission vehicle needs to open the powertrain by disengaging the clutch. Studies
have shown that the usage of this feature reduces the fuel consumption by 2 to 3 %
or in the case of vehicles which are mainly driven in the city by 4 % to 7 % [16].

vi CHAPTER I. DEFINITION OF TERMS

UML Unified Modeling Language is a general-purpose modeling language which is de-
veloped to provide a standard way to visualize the design of a system.

Chapter 1

Introduction

The first question that comes into one’s mind when talking about the electrification of
automobile vehicles is the necessity. The motivation arguments which are leading to a
change of technology are on the one hand air pollution and environmental impact, and on
the other hand the diminishing petroleum resources over time. An ideal combustion process
yields carbon dioxide (CO2) and water (H2O) while the real-world process additionally
yields a lot of toxic byproducts. Furthermore, CO2 is a leading greenhouse gas and 26 %
of CO2 emissions are caused by transportation [43]. Since the number of transportation
vehicles is not going to decline soon, the emissions are neither. Additionally, the worlds
petroleum resources are limited. The human beings are in need to find solutions that can
decelerate the consumption and, as an ideal solution, replace it in its entirety. Hybrid
electric vehicles are a first step into realizing such a deceleration process.
The concept of hybrid cars is to combine an internal combustion engine (ICE) and an
electric motor that can assist the engine in certain cases - mostly acceleration. The batteries
that power the electric motor are recharged automatically while driving. In a specific hybrid
vehicle configuration it is also possible to propel the car up to 50 kilometers per hour (kph)
in a pure electric mode without using classic combustion at all.
The idea of hybrid electric vehicles (HEVs) is surprisingly old. In 1900, Henri Pieper
introduced a hybrid vehicle with two engines, one being a normal internal combustion
engine and the other one being an electric motor [9]. The batteries could be charged when
the vehicle was not accelerating or at a standstill. The electric motor assisted the engine in
acceleration processes. The lack of electronic control mechanisms made the integration of
the two power sources nearly impossible. Additionally, the motivation for this configuration
was different from the current motivation for the electrification of vehicles. It mainly
focused on the point to further accelerate a car instead of saving fuel and reducing toxic
gas.
Because of the continuous growth and improvement in the technological sector, we can
greatly benefit from device-to-device communication. In the current age of information

1

2 CHAPTER 1. INTRODUCTION

technology it is possible to transfer a lot of data between given endpoint devices wirelessly.
The most common networks which are capable of providing such functionality are Bluetooth
and Wireless LAN. Acquired vehicle data over these networks can be transformed and
represented on nearly every device who supports the communication protocol. With real-
time analysis and event detection it is possible to further increase the engineering efficiency.
Changes on behalf of the hybrid control unit (HCU) can be done on the fly rather than
after the test cycle is done.
The goal of this thesis is to provide real-time energy analysis features over a network
connection with event detection and pattern matching to hybrid functions. These results
should be displayed on a mobile Android device, so the engineering process can be done
online in the car.

1.1 Description of the studied problem

Real-time analysis tools are not exactly new, but within the given scope of this thesis,
there is - at least not publicly available - no such tool for any mobile device. Since the
application is intended to be used on various vehicles, it needs to be modeled in a generic
way.
This illustrates the first problem. Most automobile manufacturers are deploying their data
messages over the CAN bus in a unique way which means that there is no standard yet.
There are very few cases of them being absolutely equal. Therefore, a solution has to
be found in order to map existing vehicle signals with the ones which are needed in the
application.
Another difficulty is the computation and persistence of all the data values which are
needed to classify the state of the car and to compute the analysis results in real time.
The classification process is not trivial as well. The state of the car has to be classified
periodically and this classification has to be done in real time with as little time overhead
as possible. The states/events of each car are not necessary equal as well, since they are
dependent on the vehicle setup and the build-in components. Consequently, the task is to
develop a model for each state/event with its restrictions in mind.

Constraints There are multiple types of constraints which we need to deal with:

• Vehicle constraint: Different CAN bus specifications (*.dbc files) and hybrid pow-
ertrain specifications. Maybe not all matchings and/or visualizations are possible.
Selection of suitable signals.

• CAN bus constraint: Bus load, cycle time

• Memory Consumption: Logging/Maintaining of the data, Android heap, pattern
matching computation in cycle time, calculations for the graphical interfaces

1.2. STRUCTURE 3

• Real-time constraint: Cycle time, amount of states/events, amount of signals

1.2 Structure

In the following, a brief overview of the structure of this thesis is given. All necessary
terminologies which are used throughout this thesis are explained in Chapter I, while
Chapter 2 lists the aims and objectives. Related research and the state of the art is
presented in Chapter 3, whereas Chapter 4 elucidates our used technologies and gives
a short overview of different hybrid architectures. The used design and implementation
to achieve the aim and objectives are defined in Chapter 5, while Chapter 6 shows first
analysis results and a quick summary of the application functionality on the mobile device.
Chapter 7 concludes the thesis and points out which goals and objectives were reached.
Chapter 8 illustrates additional ways to continue the thesis outcome and some general
possible improvements.

Chapter 2

Aims and objectives

The main aim of this thesis is the development and design of a solution in which the en-
ergy behavior of a vehicle can be displayed on a mobile device. This includes retrieving the
vehicle data over a telematic device, transforming them in a suitable manner, classifying
the state of the vehicle in each time step, computing the necessary information out of the
retrieved values with possible post-processing and representing the final results on a mobile
device screen.
In a first step, the data need to be retrieved over a telematic device because it is not
intended to use any wiring between the vehicle and the mobile device. The device should
be able to either transmit its data over a Bluetooth or GPRS connection. Since vehicle
specific data are found on its own CAN bus, the device needs to be able to retrieve data
from the CAN bus and transfer these over a network protocol. Therefore, the device and
its connection technology have to be selected initially.
Since the analysis of the energy behavior should work on a wide range of vehicles and the
CAN specifications are different for each one, it is necessary to somehow specify which
signal data are available in the current setup and where to find them exactly. With a
given database of CAN messages (dbc), we need to select which signals are necessary for
the computation and map them accordingly. Considering this, it would be great to have
an automatic way to select messages or signals out of a dbc-file and then generate inter-
changeable JAVA-code for the signal mapping.
Once the signal mapping and the data retrieval are finished, the raw data need to be trans-
formed into actual usable values. Since the raw data endianness can be different for each
message, we need to distinguish between big endian and small endian byte order as well
as signed and unsigned values. Therefore, suitable functions to transform the data into
usable values have to be designed and implemented.
To classify the vehicle’s state and to compute the necessary values for the graphical repre-
sentation on the mobile device, a suitable listener and a proper storage structure have to
be implemented as well as a transferring mechanism between Android activities.

5

6 CHAPTER 2. AIMS AND OBJECTIVES

The last objective is the final representation of the computed values on a mobile device
with possible post-processing. In order to achieve that, a preferable existing API has to
be chosen for the rendering and painting on the screen.

Chapter 3

Related research and state of the art

This chapter presents the related literature and research topics as well as the state of the
art of in-vehicle human-machine interfaces (HMI).
Yi et al. [45] present a system which collects mobile sensor data and monitor them on
an Android smartphone. The application is also able to stream received data over a
wireless Internet connection. The Bluetooth connection is established with the Near Field
Communication (NFC) technology. The application was developed in order to show body
sensor signals as a healthcare tool. Furthermore, a Java based server is used to analyze the
communication as well as data storage mechanism. Tahat et al. [41] introduce a system
which monitors and tracks a vehicle by transmitting the obtained data to a mobile device
via Bluetooth. This is done by collecting live data from the engines control unit utilizing the
on-board diagnostic system (OBD). The Bluetooth module transmits and communicates
with the Android mobile device over an interface which is also able to transmit the recorded
data to a server using a cellular connection. Zaldivar et al. [46] propose an Android-based
application that monitors the vehicle through an on-board diagnostics (OBD-II) interface
in order to detect accidents and prepare counter measures. The resulting application is able
to get data over a Bluetooth communication and designs an approach to detect accidents.
Once an accident is detected the application is able to prepare counter measures, like
sending a SMS or e-mail to pre-defined destinations. Spelta et al. [39] have implemented
a system for a vehicle-to-driver and vehicle-to-environment communication, based on a
smartphone core and Bluetooth communication. Since the authors focus on motorcycles,
they have equipped them with an embedded CAN-Bluetooth converter that is interfaced
with the smartphone, which acts as a gateway towards an audio helmet and a webserver.
Al-Ani [1] has designed and developed an integrated system which provides infotainment
services such as GPS-based navigation, road and traffic information as well as multimedia
content. The Android system is used as a developing platform to implement an Android-
based In-vehicle Infotainment (AIVI) system. It is able to display OBD content and can
establish a Bluetooth connection with the smartphone to initiate calls or voice messages.

7

8 CHAPTER 3. RELATED RESEARCH AND STATE OF THE ART

Another integrated HMI system solution is Android Auto [21]. It connects the smartphone
to the vehicle’s infotainment system and is able to use applications which are optimized
for Android Auto. As of now, only a dozen applications, mostly in the communication
and multimedia area, are certified to run on the infotainment system. It runs on an
Android operating system which makes it possible to communicate with remote devices
over Bluetooth and Wireless Lan protocols.
The DOK-ING MyHMI framework [15] however, offers possibilities for a HMI advancement
in the domains of communication, data acquisition and processing, and visualization. It is
a Java based application that can run on different platforms, including Android. It has full
support of OpenGL as well as OpenGL ES and has the ability to integrate a data processing
logic with different protocol stacks for the data specification and communication. Another
application which provides analysis functions over a Bluetooth or cellular connection, is
called Torque [25]. It needs an OBD-II adapter to get the vehicle information which are
then monitored on a mobile device. Further analysis features like average fuel consumption
or driving range are possible if the data are post-processed on a server or a device at home.
There are no specific studies dealing with an energy analysis for hybrid vehicles on a mobile
device. However, Hofman and van Druten [26] have investigated the possibilities of energy
and fuel savings in different hybrid configurations with regard to the conversion efficiencies
in the hybrid function regenerative braking. The simulation results show that the energy
recovery efficiency is strongly determined by the motor/generator efficiencies, sizes and
vehicle mass. A fuel saving increase around 21 % is achieved in the final design while
driving a New European Driving Cycle (NEDC).
The literate research has shown that most research groups use the OBD interface to get
vehicle data. However, the usage of an OBD interface might be good for a conventional
vehicle, but is not sufficient when operating with prototyped hybrid vehicles with a separate
HCU CAN bus. Since it is not possible to get the HCU bus data over the normal OBD
interface, this thesis uses an approach with the CAN interface and tries to narrow the
gap between monitoring signals and providing energy behavior analysis features for hybrid
vehicles.

Chapter 4

Fundamentals

This chapter introduces the basic technology concepts which are used to achieve the tar-
geted goal. The main technologies are the Controller Area Network (CAN) bus, the CAN-
link Bluetooth module, hybrid vehicles and the Android environment. Starting with a
short summary of the CAN bus structure and the operating principle, the CAN message
frame is explained. Afterwards, the chosen network device is defined and a short overview
over the specifications is given. The next section deals with a general approach to elucidate
hybrid electronic vehicles in an appropriate depth. This is necessary to define the possible
of vehicles states later on. The last section introduces Android as the chosen operating
system on the mobile device.

4.1 CAN bus

The development of the Controller Area Network (CAN) started in the early 80th at
Robert Bosch GmbH (Gerlingen, Germany). It was designed to allow electronic devices
to communicate with each other without the need of an external computer. The message-
based protocol was originally designed for multiplex electric wiring within automobiles [31],
but is - as of now - also used in various other contexts.
CAN is composed of nodes which can range from a simple single I/O device to an embedded
computer. The CAN network is only able to communicate if there are at least two nodes
on the bus. The ISO specification states that a node needs to consist of [14, 20,37]:

CPU Decides which messages to send and what to do with incoming messages.

CAN controller Fetches/Sends the bits serially until the whole message is received/-
transmitted and therefore ready for the CPU to process.

Transceiver Converts Can bus levels while transmitting/receiving.

Each node can send and receive messages, but transmitting and receiving at the same time
is not possible. The different message layouts and standards are described in the Section

9

10 CHAPTER 4. FUNDAMENTALS

4.1.2. In contrast to networks such as USB or Ethernet, CAN broadcasts many short
messages over the whole network instead of sending big chunks of data from node to node.
This however, guarantees data consistency for every node in the system [6,33].

4.1.1 CAN protocol layers

Like many other networking protocols, the CAN protocol can be decomposed into abstrac-
tion levels. The object layer deals with message filtering as well as message and status
handling, whereas the transfer layer receives messages from the physical layer and trans-
mits them to the object layer. The transfer layer is responsible for error detection, fault
confinement, arbitration, acknowledgment, message framing and synchronization [28]. ISO
11898-2:2003 norm defines the electrical aspects of the physical layer. However, the me-
chanical aspects have yet to be defined formerly. Nonetheless, there exists a de facto
standard of a mechanical implementation, as following [28]:

• pin 2: CAN-Low (CAN-)

• pin 3: GND (Ground)

• pin 7: CAN-High (CAN+)

• pin 9: CAN V+ (Power)

4.1.2 CAN frames

A CAN network can either be used with the base frame format (CAN 2.0A/CAN 2.0B)
or with the extended frame format (CAN 2.0B). The main difference is that the identifier
length is 29 bits for the extended frame specification instead of 11 bits for the base one. To
distinguish between an extended frame message and a base frame message the identifier
extension bit can be used. A recessive bit indicates that it is an extended frame format while
a dominant bit indicates a base frame format. CAN controllers which support extended
frame format messages also support base frame format messages. However, controllers that
only support the base frame format do not support the extended frame format. CAN can
be divided into four different frame types which are explained in the following sections
[19,28,37]:

• Data Frame: Includes node data for transmission.

• Remote Frame: Requesting the transmission of a specific ID (searching).

• Error Frame: Any node which detects an error can send an Error Frame.

• Overload Frame: Used to infuse a delay between data and Remote Frame.

4.1. CAN BUS 11

Data frame

The data frame is the only frame which transmits actual data. It can send data in two
different frame formats, one being the base frame format shown in Figure 4.1 and the
other being the extended frame format (Figure 4.2). The only difference between those
two formats is the ID length specification. While the extended frame uses a 29 bit identifier,
the base format uses a 11 bit identifier. The data field however, is eight byte long regardless
the frame format.

Figure 4.1: Structure of the CAN message frame with a CAN 2.0A standard frame.

Figure 4.2: Structure of the CAN Message frame with a CAN 2.0B extended frame.

A brief description of the data frame elements is given below [28,37]:

SOF The Start of frame indicates the start of a new frame transmission. It is used to
synchronize the nodes on the bus after being idle.

Identifier The Identifier is a unique representation of the CAN message and characterizes
its name and priority. A lower value means a higher priority on the CAN bus. During
the transmission of this field, the transmitter is always checking if there is another
message with higher priority.

RTR The remote transmission request bit is dominant (set to zero) when information is
required. All nodes in the system are able to receive the request, but only the one
with the matching identifier can process it. The response data is also visible on the
whole bus and can be used by each participant.

SRR The substitute remote request replaces the RTR bit in an extended message format
and is recessive. In this case the IDE bit is also recessive signaling that there is an
extended identifier.

12 CHAPTER 4. FUNDAMENTALS

IDE The identifier extension indicates whether the CAN identifier is in a standard or
extended format. A dominant bit means that the identifier is a standard 11 bit
value.

r0,r1 Reserved bits, with no possible future usage. r0 is used for the basic frame specifi-
cation, whereas both r0 and r1 are necessary for the extended frame protocol.

DLC The data length code is a 4-bit value which denotes the number of bytes of data
being transmitted.

Data Contains the raw application data and can take up to 64 bit at maximum.

CRC Cycle redundancy check denotes the error code for previous information. The CRC
checksum is used for error detection. The CRC delimiter must be recessive.

ACK The acknowledgment field includes feedback from other participants at the correct
receipt of the message. The ACK delimiter must be recessive.

EOF End of frame indicates the end of the data frame and transmission. It is composed
of five recessive bits.

IFS Inter Frame Space denotes the period for transferring a correctly received message.

Remote frame

The remote frame contains no data elements, but it transmits a remote request to all nodes
on the bus to send a data frame with the requested identifier. If a node has the answer
to the request it will transmit it to the bus and every listener can access it. It can be
abstracted with a simple analog: A bus node asks the question "How fast am I driving
right now?" and a node which holds the answer responds to everyone "40 kph" [28,37].

Error frame

An error frame is generated by any node that detects a bus error. It consists of two fields,
an error flag field followed by an error delimiter field. The error delimiter consists of eight
recessive bits and allows the bus nodes to restart the bus communications cleanly after an
error. There are, however, two forms of error flag fields. Their form depends on the error
status of the node that detects the error. If an error-active node detects a bus error, the
node interrupts the transmission of the current message by generating an active error flag.
After completing the error frame, the bus activity returns to normal and the interrupted
node attempts to resend the aborted message. If an error-passive node detects a bus error,
the node transmits a passive error flag. When the bus master node generates an passive
error flag then this may cause other nodes to generate error frames due to the resulting
bit stuffing violation [28,37].

4.2. BLUETOOTH 13

Overload frame

The overload frame provides a forced pause between data and remote frames. It consists
of two fields, an overload flag followed by an overload delimiter. An overload may occur
in two cases. Firstly, the electronic of the receiver needs a delay before transmitting the
next data or remote frame, e.g., because of a full buffer. Secondly, a delay is needed while
identifying a dominant bit during the transmission of a message procedure while it is not
able receive new content [28,37].

4.2 Bluetooth

Bluetooth is one of the standards for exchanging data wirelessly over a short distance.
It was invented by telecom vendor Ericson (Stockholm, Sweden) in 1994. The physical
range from a private network with Bluetooth devices is typically less than 10 m, but can
go up to 100 m in certain cases [40]. The two most prevalent implementations of the
Bluetooth specification are the Basic Rate/Enhanced Data Rate (BR/EDR) and Bluetooth
with low energy (LE). Each implementation uses different hardware to achieve its goals.
There are dual-mode chipsets to enable both use-cases to the application. Following, a
short description of the differences between the Bluetooth modes is given [10]:

BR/EDR Establishes a short-range, continuous wireless communication.

LE Allows for short bursts of long-range radio connection, making it valuable for appli-
cation that do not require a continuous connection and depends on longer battery
life.

Dual-Mode A device with a dual-mode chipset is able to connect with a BR/EDR as
well as a LE device.

4.2.1 RM CANlink Bluetooth

The RM CANlink Bluetooth module manufactured by Proemion (Fulda, Germany) was
chosen as the communication device between the car and the mobile application and is
shown in Figure 4.3. It is designed to transfer CAN data wirelessly by using the standard
Bluetooth protocol [36].

Figure 4.3: Chosen Bluetooth module for the car to mobile application communication [36].

14 CHAPTER 4. FUNDAMENTALS

The device can operate in two different ways. On the one hand it can serve as a CAN
to CAN bridge to transfer CAN data between the components. On the other hand it
functions as a single CAN to Bluetooth interface, transmitting data to mobile Bluetooth
devices such as PCs or Tablets for CAN data monitoring and analysis.
The CAN baud rates in Table 4.1 should be used as a reference regarding the maximum
cable length of the bus line. The Bluetooth module in the test-vehicle uses a baud rate of
500 kbit/s which is the standard for most automotive CAN buses.

CAN Baud Rate Maximum bus cable length

1 Mbit/s 25 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

Table 4.1: Dependency between baud rate and cable length for CAN transmission [8].

4.3 Hybrid vehicles

This section elucidates the concept of hybrid automobiles and shows the most common
system architectures and configurations.
A vehicle is generally called a hybrid vehicle if it utilizes more than one energy source to
achieve propulsion. Essentially, this means a hybrid vehicle is composed of a traditional
internal-combustion engine (ICE) as well as one or more electric motors and a battery
pack. The dimension of the battery pack depends on the vehicles hybrid architecture.
Hybrids are not to be confused with electric cars. The latter does not use gasoline-burning
machines to move forward at all, but relies solely on an electric motor and a big battery
pack. Hybrids however, utilize the electric components to collect and reuse energy that
would go to waste in a common car. The gained energy is then used to support the internal-
combustion engine with the electric motor, which decreases the fuel consumption by 10 %
to 15 % [12,13,17].

4.3.1 E-Drive Configurations

The main challenge for hybrid electric vehicles design is on how to manage multiple energy
sources, which are highly dependent on driving cycles, ICE sizing, battery sizing, motor
sizing, and battery management. The goal is to maximize the efficiency of the whole
driving system, while providing reasonable performance in terms of acceleration, range,

4.3. HYBRID VEHICLES 15

dynamic response and comfortness. Hybrid electric vehicles can roughly be divided into
three main configurations: Series, Parallel and Series-parallel. A short description of these
configurations can be found in the succeeding paragraphs.

Series hybrid

A series hybrid system can be regarded as an extension of a BEV by adding an ICE
to charge the battery in order to extend the driving range, which is one of the major
drawbacks of pure BEVs. Normally, the ICE is not used in the normal city driving mode,
mostly because it reduces the emission of toxic gas. In this case, the electric motor is
propelling the vehicle single-handedly while draining power from the battery. Because
this results in a considerable loss of energy, the car can recuperate during downhill slopes
or regenerative braking. This further enhances the fuel economy as well as supports the
braking system. The ICE is trying to operate at its most optimal load point to achieve
the minimum energy conversion loss, so that the output power level efficiency is maximal.
The resulting power overhead will be used to charge the battery when the power demand
of the electric motor is lower than the generator output power. But if the power demand
of the electric motor is higher than the output power of the generator, the generator power
as well as additional power from the battery will be used to drive the motor. Therefore,
the ICE is either off or operates at its highest efficiency point, and hence greatly improves
the fuel economy of the vehicle as compared to conventional ICE vehicles [7, 17,18,22].

Parallel hybrid

Parallel hybrid systems have both an internal combustion engine (ICE) and a coupled
electric motor. In contrast to the series hybrid configuration, the ICE is not solely used
to provide engine to charge the battery, but to propel the vehicle with the support of an
electric motor on the same transmission. When the demand power from the transmission
is higher than the power output of the ICE, the electric motor will be turned on and
contributes the difference in power. When the demand of the transmission is lower than
the power output of the ICE, the electric motor will become a generator and the overhead
power will be used to charge the battery set. In this way, this can be regarded as an
electric-assisted ICE vehicle, where the electric motor acts as a supporter to smoothen
the occurred loading to the ICE. The ICE can maintain its running operation almost
fully on the most efficient loading point, which enables the vehicle to get the maximum
efficiency level of power output, resulting in an improvement of fuel consumption. Since the
power outputs from both the ICE and the electric motor are additive, downsizing of both
components is possible to gain a reduce on additional cost and a fuel consumption profit
while getting a similar performance. Because parallel hybrids use regenerative braking as
well as coastdown and can additionally charge the battery with overhead power from using

16 CHAPTER 4. FUNDAMENTALS

the ICE in an optimal load point, they are the most efficient vehicles for the urban traffic
where a lot of so called "stop-and-go" situations occur [7, 18,22].

Series-parallel hybrid

Series-parallel hybrids or power-split hybrids use power split devices to provide power to
the wheels either mechanically or electrically. The main principle of this configuration
is the decoupling of the power supplied by the engine from the power demanded by the
driver. The ICE offers low torque output at low revolutions per minute (rpm) and thus a
larger sized engine is needed in conventional gasoline vehicles to achieve acceleration from
standstill. However, an electric motor has high torque output at low rpms and complements
the weakness of an ICE. Adding an additional mechanical linkage and a generator between
the ICE and the converter in a parallel HEV allows both series and parallel operations of
the ICE and the electric motor. Obviously, this structure allows more flexible operations,
but it is also complicated in the mechanical structure and costly in price. The popular
Toyota Prius adopted this configuration [7, 17,18,22].

Electric motor positioning

An electric motor is used in all hybrid vehicle configurations. However, there are five
possible positions on where to integrate it in the vehicles power-train. Figure 4.4 depicts
all possible positions of an electric motor in the power-train.

Figure 4.4: Possible configurations of hybrid eMotor components inside the vehicles power-train.

P0 uses a classic belt-driven starter engine (BSG) which operates on the engines belt
drive, but therefore is limited in its power output. An advantage lies in its low integration
costs compared to the other solutions. P1 uses a crankshaft-mounted integrated starter
generator (CSG/CISG) which is integrated between the engine and transmission. The
power output is mostly limited by the size of the starter generator, but has higher costs

4.3. HYBRID VEHICLES 17

due to the difficult mechanical integration process. If the ICE is decoupled by a secondary
clutch, it is possible to recuperate more energy than with a BSG, because losses due to
drag torque are being omitted. If the electric motor is not directly coupled to the ICE,
but located on the gear input with a secondary clutch, it is a P2 configuration. Because
the ICE is decoupled from the remaining power-train, regenerative braking and electric
driving are more efficient. P3 uses the electric motor on the gear output and is therefore
not restricted by the transmission. This enables the motor to work with higher speeds. A
P4 configuration means that the electric motor is fully integrated into an axle and supplies
either front or rear wheels with power. This enables the system to drive with an ICE on the
front wheels while using the axle drive for the rear wheels. Unfortunately, the integration
process is complex and the control unit of this configuration is not trivial either [22,24,44].

4.3.2 Hybrid Levels

While there are three main types of hybrid power-train concepts, there are different degrees
of hybridization as well. This section introduces the different types and tries to deepen
the understanding which is needed for the definition of the hybrid states for the final
implementation. Table 4.2 shows all current degrees of hybridization.

Functions Micro &
Micro-Mild

Hybrid

Mild
Hybrid

Full
Hybrid

Plug-In
Hybrid
(PHEV)

EV

Start & Stop X X X X X

Regenerative braking X(micro-mild
only)

X X X X

Additional electric
power for a few seconds

X(micro-mild
only)

X X X X

Electric power for low
distance (city)

X X X

Electric power for long
distance + recharge

X X

Energy savings 5-10 % (up to
25 % in the city)

10-25 % 25-40 % 50-100 % 100 %

Electric power 1.5-10 kW 5-20 kW 30-75 kW 70-100 kW 30-100 kW

Table 4.2: Hybrid Level functionality and power characteristics [11].

The micro hybrid offers only a small advantage over the conventional powered vehicle. It
adds a start-stop system which shuts down the engine while standstill time and powers it
again when the clutch or brake is pressed. If the feature of regenerative braking or boosting
power, which means an additional amount of torque for a short period of time, is added,
we talk about a mild hybrid level of hybridization. Full hybrids are different in the way

18 CHAPTER 4. FUNDAMENTALS

that they offer electric power for low distance driving which is greatly influenced by the
dimension of the included battery pack. A plug-in hybrid adds an additional feature of
driving longer ranges exclusively with an electric motor by greatly increasing the battery
pack as well as adding an external charging method to recharge the battery over night.
The full electric vehicle does not use a conventional ICE anymore and propels the vehicle
solely with electric power sources.
The fuel consumption savings are therefore ranging from small (micro hybrid) to somewhat
high (full hybrid), while the plug-in hybrid is able to have no fuel consumption at all.
Because a pure electric vehicle has no build in ICE anymore, it does not need fuel either
and does not emit any toxic gas with the drawback of a longer recharging process and
limited range.

Micro Hybrid

Micro hybrid is a term given to vehicles that uses some kind of start-stop mechanism to
automatically shut down the engine when idling, e.g., when waiting at a traffic light. In
general, micro-hybrid vehicles cannot be considered as real hybrids because they do not
use two different power sources for either support or propulsion. Nevertheless, the fuel
consumption is less than in a conventional gasoline-only vehicle. Figure 4.5 shows the gen-
eral structure of a micro-hybrid vehicle. It is propelled by an ICE and has an integrated
starter generator (ISG) to realize the start-stop system. The ISG is connected to a battery
which offers the energy to start the vehicle from standstill [17].

Figure 4.5: Power-train overview of a micro-hybrid vehicle system. The ICE is used for propelling
the vehicle while the starter generator is used to make a start-stop system when in idle position [35].

4.3. HYBRID VEHICLES 19

Figure 4.6 elucidates the power flows in the different operating modes, which are possi-
ble for a micro-hybrid vehicle. In image a) the ICE supplies power to the wheels while
also charging the battery through the generator. Additional energy can be gained through
regenerative braking as shown in image b). Kinetic energy of the braking process is recuper-
ated and directed to charge the battery through the generator. The ability of regenerative
braking is however not implemented in all micro-hybrid systems.

Figure 4.6: Operating modes and energy/power flows of a micro-hybrid vehicle structure: a)
Driving with normal ICE while charging the battery; integrated starter generator used for starting
from stop/idle. b) Braking - Regenerative braking to charge the battery. [35]

Mild Hybrid

A mild-hybrid architecture has a higher degree of hybrid feature utilization. Typically, a
mild-hybrid vehicle uses a parallel system configuration which makes it possible to use start-
stop systems and some form of regenerative braking. Depending on batteries dimension, a
boost feature to support the engine with additional torque at low revolutions per minute
is available. Unlike full- or plug-in-hybrids they can not solely propel the vehicle with
an electric motor. Mild hybrids are sometimes called power assist hybrids as they use
the ICE for primary power, with a torque-boosting electric motor connected to a mostly
conventional power train. The electric motor, which can be mounted in different locations
(see Section 4.3.1), is essentially a very large starter motor, which operates not only when
the engine needs to be turned over, but also when the driver demands additional torque
while accelerating. The electric motor can also be used to restart the combustion engine,
deriving the same benefits from shutting down the main engine at idle, while the enhanced
battery system is used to power the normal system, e.g., radio or navigation systems [11].
Figure 4.7 shows the general architecture of a mild-hybrid vehicle. The ICE supplies power
to the wheels for normal propulsion. The integrated starter generator can be placed at
different locations in the vehicles power-train (see Section 4.3.1), which results in different
hybrid capabilities. The battery pack size is larger compared to the micro hybrid because
the system supports boosting to support the ICE in situations of low revolutions per
minute [17].

20 CHAPTER 4. FUNDAMENTALS

Figure 4.7: Overall structure of a mild-hybrid configuration [35].

Figure 4.8 depicts the energy and power flow of the possible operating phases of a mild-
hybrid vehicle.

Figure 4.8: Operating modes and energy/power flows of a mild-hybrid vehicle structure: a)
Starting/Moving from standstill - ICE supplies power to wheels as well as charges battery. b)
Overtaking and accelerating - ICE as well as electric motor supplying power to wheels. c) Cruising -
ICE supplies power to wheels as well as charges battery. d) Braking - Braking energy is recuperated,
converted to current and charges the battery [35].

Phase a) describes the starting or moving of the vehicle from standstill, in which the ICE is
used to propel the car. Depending on the location of the starter generator, it can support
the ICE with additional torque. In phase b) the generator supplies power through the
battery and supports the propulsion from the ICE by adding additional torque. Phase c)
shows the power and energy flow while driving normally. When the engine operates at an

4.3. HYBRID VEHICLES 21

efficient load point, the loss of energy is minimal compared to a normal operation mode.
This overhead on energy can then be used to charge the battery. In regenerative braking
(phase d), the electric motor is reversed so that, instead of using electricity to turn the
wheels, the rotating wheels turn the motor and create electricity. Using energy from the
wheels to turn the motor slows the vehicle down.

Full Hybrid

Full-hybrid vehicles are able to run in different propelling modes. An ICE as well as an
electric motor are coupled with a power-split device. Therefore both the engine and the
motor are able to independently propel the vehicle, but can also add their torque to move
the vehicle together. A large battery pack is needed in order to enable electric driving.
Full hybrid vehicles have a split power path that allows more flexibility in the power-train
by converting mechanical and electrical power. They can use regenerative braking and are
able to reduce fuel consumption by operating the engine at an optimal load point [17]. An
overview of the structure can be seen in Figure 4.9.

Figure 4.9: An overview of the full-hybrid vehicle power-train structure. An ICE as well as an
electric motor are coupled with a power-split device. Therefore both the engine and the motor are
able to independently propel the vehicle, but can also add their torque to move the car together.
The generator can either be used to charge the battery or to give input to the electric motor [35].

Figure 4.10 shows the operating phases of a full-hybrid vehicle during a driving session.
Phase a) elucidates the starting process or moving from standstill, where the electric motor
supplies the power to the wheels, propelling the car alone. In phase b) the vehicle is driving
at highway speed and the ICE supplies power to the wheels as well as generates power over

22 CHAPTER 4. FUNDAMENTALS

the generator when operating in an optimal load point. This power can either be used
for the electric motor or to charge the battery. Driving at low speed, e.g., in the urban
environment, is illustrated in phase c). The electric motor drains energy from the battery
pack and propels the vehicle while the ICE is off. This reduces the fuel consumption as well
as the emission of toxic gas. In case the battery pack does not provide enough energy, the
ICE is started and charges the battery. Phase d) depicts the acceleration and overtaking
process. While additional torque is requested for a short amount of time, the electric motor
draws energy from the battery to support the ICE with additional torque [35].

Figure 4.10: Operating modes and energy/power flows of a full-hybrid vehicle structure: a)
Starting/Moving from standstill - Electric motor supplies power to wheels. b) Cruising or highway
driving - ICE supplies power to wheels as well as charges the battery. c) Low speed or city driving
- Electric motor supplies power to wheels. d) Overtaking and accelerating - In addition to engine
power, power is drawn from battery through the electric motor [35].

Plug-in Hybrid

Plug-in hybrid vehicles are full hybrids with the possibility to charge the vehicle with an
external power source. Like the full hybrid, they can run both the electric motor and ICE
independently as well as together. A difference is the larger dimensioned battery pack to
obtain greater driving ranges. Because the battery can also be charged through the ICE
when cruising, the driving range is larger than that of a full hybrid. Figure 4.11 shows
the power-train overview of the plug-in hybrid vehicle. The car can be propelled by using
the electric or the ICE or a combination of those two. The generator is able to charge
the battery or to supply electricity to the electric motor while cruising. The motor is able
to provide energy for low-speed driving, e.g., in the urban environment, but will meet its
limits on driving at highway speed. Therefore the ICE is used for these situations. However,
during acceleration and overtaking processes the electric motor supplies additional torque
to the ICE [11,35].

4.3. HYBRID VEHICLES 23

Figure 4.11: Power-train architecture of a plug-in hybrid vehicle. The ICE or electric motor
are used for propulsion; either in independent modes or in conjunction. The generator can supply
overhead energy to charge the battery. With an external charge mechanism the battery can also
be loaded over night, resulting in a higher driving range [35].

Figure 4.12 elucidates the power and energy flows of the plug-in hybrid. In phase a) the
starting process or moving from standstill is presented, where the electric motor provides
all the necessary power to propel the car. Phase b) shows cruising, which is driving without
accelerating, at highway speed, where the ICE is able to charge the battery and provide
torque to the wheels at the same time. Regenerative braking directs the recuperated energy
to charge the battery, which is depicted in phase c). While driving at low speed the electric
motor is providing the power to the wheels. This can be seen in phase d). In phase e)
the acceleration or overtaking process is shown, where the electric motor supplies the ICE
with additional power to achieve a short moment of boost. The last operating mode f) is
the external charging which regenerates the battery state of charge [35].

24 CHAPTER 4. FUNDAMENTALS

Figure 4.12: Operating modes and energy/power flows of a plug-in hybrid vehicle structure: a)
Starting/Moving from standstill - Electric motor supplies power to wheels . b) Cruising or highway
driving - ICE supplies power to wheels as well as charges the battery. c) Braking - Kinetic energy of
braking is recuperated and directed to charge the battery. d) Low speed or city driving - Electric
motor supplies power to wheels. e) Overtaking and accelerating - In addition to engine power,
power is drawn from the battery through the electric motor. f) External charging - The battery
can be externally charged, e.g., overnight. [35]

KIA Optima Mild Hybrid

This section describes the test-vehicle (Figure 4.13) which was used for all data input and
measurements and shows its overall system architecture.
The car was originally delivered as a commercially available 2.0L turbo-diesel. It was
turned into a 48V mild-hybrid vehicle which is now used for internal testing as well as
customer presentations.

Figure 4.13: The KIA Optima which was used as the test-vehicle for all measurements and data
input.

Figure 4.14 displays the overall system architecture of this new 48V hybrid system com-
bined with an electric supercharger (eSC). The e-booster is placed in upstream position to
the enlarged turbocharger (TC). The conventional alternator is replaced by the 48V BSG
which is integrated into the belt-drive of the engine. The BSG is connected to the 48V

4.4. ANDROID 25

battery by an inverter. Via a DC/DC converter the 12V battery is charged out of the 48V
system.

Figure 4.14: Internal hybrid component structure in the power-train of the KIA Optima Mild
Hybrid which was used as the test-vehicle.

4.4 Android

Android is an operating system (OS) as well as a software platform for smartphones and
tablet-computer. It is based on a Linux-kernel which was modified in every iteration.
The OS is open source and anyone can write code and applications for his own device.
Most applications are written in Java and run within individual instances of the Dalvik
virtual machine (DVM). The key goals of the Android architecture are performance and
efficiency, both in application execution and in the implementation of reuse in application
design [2,42]. The Android operating system is a stack of software components which con
be roughly divided into five sections and four main layers.

Kernel The linux kernel is positioned at the bottom of the software stack, providing a
level of abstraction between the device hardware and the upper software stack. The kernel
supports low-level core system services such as memory, process and power management as
well as providing a network stack and drivers for audio, display and other peripherals [2,42].

Android runtime Android allows multitasking execution so multiple processes can run
at the same time. Each process within the Android operating system runs in its own
dalvik virtual machine. Running applications in virtual machines provides a number of
advantages. Firstly, applications are essentially sandboxed, in that they cannot interfere
with the operating system or other applications, nor can they directly access the device
hardware. Secondly, this enforced level of abstraction makes it platform neutral. DVM is
like Java virtual machine (JVM) but it is optimized for mobile devices. It consumes less
memory and provides fast performance [2, 42].

26 CHAPTER 4. FUNDAMENTALS

Core libraries The Java Interoperability Libraries are an implementation of a subset of
the Standard Java core libraries that have been adapted and transformed for applications
running within a Dalvik VM. They also include Java-based libraries that are specific to
Android development including the application framework libraries in addition to user
interface building, graphics drawing and database access [2, 42].

Application framework On the top of Native libraries and Android runtime, there
is the Android framework. Android framework includes Android API’s such as UI (User
Interface), telephony, resources, locations, Content Providers (data) and package managers.
It provides a lot of classes and interfaces for Android application development [2, 42].

Applications Applications comprise both the native applications provided with the par-
ticular Android implementation, e.g., email applications, and the third party applications
installed by the user after purchasing the device [2, 42].

Chapter 5

Design & Implementation

This chapter illustrates the general concept and design of the application and elucidates
the objectives which were formulated in Chapter 2. Figure 5.1 depicts the most impor-
tant classes and interfaces which are responsible for the applications functionality as an
Unified Modeling Language (UML) diagram. In order to transmit data over a Bluetooth
connection the application has to be paired to the remote device. The class Bluetooth-
CommunicationService realizes the implementation of both the pairing as well as the read
and write operations of an ongoing connection. The inner class, which is responsible for a
pairing attempt, extends the Android Thread class. When an application is launched, the
system creates a thread which interacts with all the user interface components, therefore
often called UI thread. Time-consuming computations or processes can block the UI thread
which results in a freezing screen. In order to prevent this, a Bluetooth connection attempt
should be called from a separate thread. The mentioned inner class, which provides this
feature, is called ConnectThread. It gets all currently paired devices and tries to connect to
the one the user chooses. Once the pairing is successfully established the ConnectThread
class starts another thread which handles all incoming and outgoing data transmissions.
The implementation is realized in the class ConnectedThread which is only started once a
pairing is successfully established. It gets the Input- and OutputStream of the Bluetooth
protocol over a secured socket and reads incoming data bitwise. The class BmCmd, which
is not shown in Figure 5.1, originates from the RM CANlink Bluetooth device API and
checks if the read buffer is a complete message each time a new bit is incoming. Once the
EOF field is being recognized, the full message is split into its components (specified in
Section 5.2) and a new BmcCanMessage is created. This class contains all necessary in-
formation about one CAN message transmission, e.g., the identifier, the length of the data
field, the raw data array as well as which type of frame was transmitted. After creating
a new BmcCanMessage object, the BmCmd instance invokes the CanMessageReceived()
method from the ByteCommandCallbacks interface. The concept of callbacks offers the
possibility to use an event-driven model. In Java this is realized by defining a simple

27

28 CHAPTER 5. DESIGN & IMPLEMENTATION

F
igu

re
5.1:

U
M
L
representation

of
the

used
com

m
unication,storage

and
event

handling
structure

inside
the

application.

29

interface that declares the methods which should be invoked at some point. Every class
which implements the interface is now able to get the callbacks once one of the specified
methods is invoked.The class BluetoothCommunicationService implements the interface
ByteCommandCallbacks and gets a BmcCanMessage object each time the CanMessageRe-
ceived() method is invoked. The containing data is then transformed into specific signal
data which is stored into the corresponding CAN_Data object.
The storing and the graphical updating process is also shown in Figure 5.1. The abstract
class AbstractStatusMonitor contains a Map<K,V> object where K is the type of keys
maintained by this map and V is the type of mapped values or objects. In our case the
key would be of type String and the mapped object is from type CAN_Data. Therefore,
the signal and message data which are needed in order to do the computation have to be
specified and CAN_Data objects are to be created with the according unique key. Ab-
stractStatusMonitor uses the concept of weak references which means that the referenced
object is not protected from the collection of a garbage collector. This is not the case
when using strong references. An object, referenced only by weak references, is considered
weakly reachable and can be treated as unreachable and may be collected at any time.
Additionally, when an object has other registered objects - particularly in event handling
situations - if a strong reference is kept, these objects must be explicitly unregistered, oth-
erwise a memory leak occurs, whereas a weak reference removes the need to unregister the
objects [34]. AbstractStatusMonitor contains one to many EventManager objects which
are holding the listener objects in an array. Additional methods for removing the refer-
enced objects were added in order to have the possibility to remove a listener manually. In
the current scenario there is only a PulseListener, which is updating in a certain interval.
The abstract class AbstractStatusMonitor implements a Handler object which executes a
Runnable object which invokes the listeners in the specified update interval. The Runnable
invokes the onEvent() method for each PulseListener which is in the EventManagers listen-
ers list. An Android Activity or Fragment, which implements the PulseListener interface,
can therefore execute code periodically. Since the AbstractStatusMonitor is given as a
reference for a PulseListeners onEvent() method, it has access to the Map which contains
the CAN_Data objects. These objects are updated once a new Bluetooth CAN message is
being transmitted. Given the unique key, the corresponding CAN_Data object is accessi-
ble and the stored values can be retrieved. This can be done for multiple keys at once and
the resulting values are then used to compute the vehicle state and to create a graphical
representation. With the subclass RapidStatusMonitor it is possible to manually set an
update interval on the creation process. This update interval is the frequency in which the
onEvent() method for all listeners is being invoked.
Figure 5.2 shows an overview of the used layout design and the event handling process in
order to visualize the values on the screen. For each graphical representation layout an
Android Activity was created. Each Activity holds its own UI components and computes

30 CHAPTER 5. DESIGN & IMPLEMENTATION

F
igu

re
5.2:

R
epresentation

of
the

used
layout

structure
com

ponents
as

w
ellas

the
corresponding

event
handling

connections.

5.1. STATE DEFINITION 31

different energy behavior aspects. Therefore, the values which are stored in the CAN_Data
objects need to be retrieved in the Map object of the subclass from AbstractStatusMonitor.
Because it would be bad practice to implement a PulseListener which executes nearly the
same code in each Activity, the PulseListener was implemented in the main Activity of the
application. When a measurement is started, the values are stored in a background thread,
but only presented in a graphical way once one of the pictured Activities is started. How-
ever, because the implementation of the PulseListener is not implemented in each Activity
anymore, the necessary values for further computations are only present in the main Activ-
ity. Therefore, an event bus system is used, where the class event PulseRecuListenerEvent
is defined, which is invoked each time the PulseListener is updated in the main Activity.
Each analysis Activity has to subscribe to the event bus in order to get the posted message
events. This is a fast and reliable way to coordinate data communication between Activi-
ties.
In the following sections some of the steps are elucidated in a more detailed way and code
snippets further clarify the implementation process.

5.1 State Definition

In order to define the necessary states which are used for the analysis, we first have to
understand the basic concepts of different hybrid configurations, described in Section 4.3.
Since there is no standard hybrid configuration, there are vehicles with different usable
hybrid operating phases. The goal is to define states which are suitable for most hybrid,
electric and conventional vehicles. Therefore a minimum set of signals is used for the
decision process. It may be possible that the chosen test vehicle does not support a specific
defined state. Furthermore, the designed solution prevents getting into a state which the
car does not support. However, with this approach of generalizing as much as possible we
can only model the most basic hybrid features as a state, which results in the following
states:

• Brake

• Coastdown

• Boost

• Load Point Moving (LPM)

• Recuperation

• Zero State

The signals which are used to match the vehicle state need to be easily accessible and
should be available on each of the vehicles CAN buses. If the signal is not on the CAN

32 CHAPTER 5. DESIGN & IMPLEMENTATION

bus, the integration shall be as easy as possible. Because of these circumstances the chosen
signals for the matching algorithm are:

• Accelerator Pedal Position [%]

• Brake Pedal Position [%]

• Vehicle Speed [kph]

• Battery Current [A]

• Battery Voltage [V]

The signal Accelerator Pedal Position indicates the current state of the accelerator pedal.
If the driver is not pushing the accelerator at all, the signal is equal to zero. If it is pressed
to the maximum, the value is one-hundred. The signal for Brake Pedal Position works in
the same way. Vehicle Speed defines how fast the vehicle is currently driving in kilometers
per hour, while the signals Battery Current and Battery Voltage indicate how much power
the battery gains or loses. With the help of these five signals, we are able to describe the
mentioned states.
The state Brake indicates that the vehicle is situated in a process where the braking pedal
is being actively used. Because standstill braking is not desired, a threshold value for the
velocity is necessary. For this state it is not important if it is regenerative braking or not.
It only shows if the car is in a braking process. Therefore, we define a braking event like
5.1.1.

5.1.1 Definition (Brake). The Brake-State can be defined with:
BrakePedalPosition > 0.5 %

AcceleratorPedalPosition ≤ 0.5 %

VehicleSpeed > 2 kph

Similar to the state Brake is the state Coastdown because it also describes a deceleration
process, but with no pedal being actively used. Basically, the engine brake is actively
used during this process which can be pictured as a vehicle rolling until it stands still
or accelerates again. Like in the previous state we do not look at the power or energy
output, because they are different for each hybrid configuration. The vehicle can still
use Coastdown even if it is not recuperating energy in the process. This just indicates
that it is either not possible to harvest energy because of the vehicles configurations or
the calibration is not good enough and it is losing in efficiency. Therefore, we define a
coastdown event like 5.1.2.

5.1. STATE DEFINITION 33

5.1.2 Definition (Coastdown). The Coastdown-State can be defined with:
BrakePedalPosition ≤ 0.5 %

AcceleratorPedalPosition < 0.5 %

VehicleSpeed > 2 kph

The state Boost indicates that the electric motor is supplying power from the battery to
support the ICE. Hereby, the electric motor needs to drain at least a certain amount of
power from the battery while the driver is pushing the accelerator pedal. This state has
a small drawback, because the threshold value for the necessary drained battery power
might not be high enough for all system configurations. If a vehicle has a lot of enabled
electronics which need power from the battery, the application might compute the state
Boost because the power consumption could be over 500 W . Therefore, the threshold value
needs to be calibrated accordingly. The best method to achieve a proper threshold value
would be the analysis from the battery power consumption while driving in a conventional
car with all electronic systems enabled. Unfortunately, we only had one test vehicle to
calibrate the power threshold value.

5.1.3 Definition (Boost). The Boost-State can be defined with:
BrakePedalPosition ≤ 0.5 %

AcceleratorPedalPosition ≥ 0.5 %

BatteryPower < −500 W

Load Point Moving (LPM) is defined as an energy gain while driving. The engine operates
at an efficient load point which generates more energy due to a higher combustion con-
version efficiency and is therefore charging the battery. The accelerator pedal needs to be
pressed, otherwise state Coastdown would be computed. Therefore, we define LPM like
5.1.4.

5.1.4 Definition (LoadPointMoving). The LPM-State can be defined with:
AcceleratorPedalPosition > 0.5 %

BatteryCurrent > 0 A

Recuperation is the recovery of energy to charge the battery system. In this case, the
state Recuperation is computed when neither the states Brake nor the state Coastdown
is applicable. However, state LPM is not regarded as a subset of Recuperation, while
it technically is a recuperation process, because we are not necessarily in a decelerating
process. State Recuperation is detected when the car is generating power while standing,
e.g at a traffic light without a start-stop system activated. In this case the generator
charges the battery. Therefore, state Recuperation is defined like 5.1.5.

5.1.5 Definition (Recuperation). The Recuperation-State can be defined with:
AcceleratorPedalPosition ≤ 0.5 %

BatteryCurrent > 0 A

34 CHAPTER 5. DESIGN & IMPLEMENTATION

State Zero occurs when none of the above states is applicable in the current situation. For
example, when the driver accelerates slowly and the hybrid strategy does not decide to
boost or when the driver cruises but the system cannot use LPM to generate additional
energy to charge the battery. In these scenarios the state Zero is applied.

5.1.6 Definition (Zero). State Zero occurs when none of the previous states applies.

With the above defined states and the chosen signals we are able to describe and analyze
some basic hybrid features. It is possible to calculate the energy and power values for each
point in time and relate them to the corresponding state. Additionally, with the model
it is also possible to investigate certain scenarios, like how much energy was recuperated
during brake event X, in a detailed way.

5.2 Network device & connection protocol

The first design decision was made regarding the communication structure. Figure 5.3
illustrates the two possible configurations which were considered. Configuration a) uses a
communication device with GSM and GPRS module so that we are able to send the data
wherever the HMI is positioned as well as transmitting data to a server. Configuration
b) communicates with a network device as well, but does not want to send CAN data to
a server. Therefore, the communication device for configuration b) does not have to be
GSM-capable.

Figure 5.3: Possible communication structure: a) HMI communicates with a GSM-capable device
which sends and receives data to the CAN bus and a server. b) HMI communicates with a
networking device which sends and receives data from the CAN bus.

If we analyze the two configurations, there are drawbacks in both of them. While configura-
tion a) is connected with a GSM-module and therefore reachable over the world regardless
the position, the data transmitting latency will rise. In addition, a server must be pro-
vided which has ongoing costs. Additionally, if there are multiple projects with different
customers, the data management and data security need to fulfill a certain standard which
may be hard to realize. However, a server can bring the data to other platforms and the
post-processing possibilities of stored data are huge. Configuration b) can either use a
short communication network device which only communicates over the Bluetooth stack
or the same GSM-module which would have been used for configuration a). When using a

5.2. NETWORK DEVICE & CONNECTION PROTOCOL 35

Bluetooth module for the data communication, the latency will be better but the distance
to the HMI has to be shorter as well. The positive effect of being able to get data from
all over the world will be gone. Aside from that, the data storage needs to be done on the
device instead of a server which adds substantial weight on a smart implementation.
While researching GSM- and Bluetooth-modules, like the Telit EVK-ATOP, Locator-G3,
Axotec Telematic Box or the RM CANlink Bluetooth/Mobile, the first choice was the RM
CANlink Bluetooth module manufactured by Proemion (Fulda, Germany). The decision
was based on multiple factors. The most decisive criteria were: initial investments for
the hardware as well as ongoing maintenance costs, vehicle integration expense, further
implementation expenses to integrate the features, data security aspects, transmit/receive
data message latency. The idea of backing up the customer data on a server for further
post-processing was neglected, because the initial hardware investments as well as ongoing
maintenance costs are too high for a pilot project. Another argument against a GSM-
module in general was the high latency during a message transaction. A stable connection
cannot be guaranteed in all circumstances. However, a continuous data stream is neces-
sary for a representation and computation in real-time. Bluetooth has a lower range but
provides a stable connection with acceptable latency. The RM CANlink Bluetooth module
was chosen because of prior experience with the component. It also has an API for the
CAN protocol and the Bluetooth communication which can be used to a certain degree.
Figure 5.4 illustrates the CANlink Bluetooth message frame specification. The structure is
similar to the CAN 2.0A message frame which was introduced in Section 4.1.2.

Figure 5.4: Transmission and reception message specification which is used by the RM CANlink
Bluetooth device [36].

The Start of Frame (SOF) marks the beginning of a new command. The value C (0x43)

is the default setting, but for some device this value is changeable. Length decodes the
number of following data bytes as well as command bytes and can range from 0x00 to
0xFF. The Command byte denotes direct commands which can range from 0x00 to 0xFE.
For example, value 0x00 stands for a received 11 bit Identifier CAN message. The Data
field contains the 11 or 29 bit CAN Identifier followed by additional data bytes. An XOR
checksum over SOF, Length, Command and the data bytes content results in the Check-

36 CHAPTER 5. DESIGN & IMPLEMENTATION

sum field. The End of Frame (EOF) marks the end of the command. For a detailed
specification description and command set specification see [36].

5.3 Message & signal selection

Because there is no standardized version of the vehicle CAN bus configuration and signal
mapping, the signals needed for computation or displaying might be in different messages
with different endiannesses. Since it is necessary to specify the message ID as well as the
factor, min/max restrictions, offset, startbit and length of each signal, a Java-tool with
code-generation feature was developed. The specification is needed, because otherwise we
cannot match and read the raw data content from a Bluetooth message stream to a valid
message inside the application. With the developed tool, which can be seen in Figure 5.5,
dbc and Excel CAN bus specifications can be read.

Figure 5.5: The Java-tool enables the user to read Excel and dbc CAN bus specifications. The
resulting CAN messages and signals are displayed in the left window. After selecting a specific
message, it will collapse and show the containing signals on the top right table. The bottom table
is responsible for the export feature. All containing signals are exported into Java files.

A vehicle CAN specification contains information about all messages and signals which
are transmitted over the bus system, their ID, startbit, length, factor and so on. The
application reads the information and presents all CAN messages on the left side of the
window. If the user selects a message, it will collapse, showing the containing signals. The
signals will also be depicted in the upper right table. Since we do not want to receive all
messages which are specified on the vehicle CAN bus, the signals needed for the applica-

5.3. MESSAGE & SIGNAL SELECTION 37

tions illustration of the layout views and analysis feature have to be selected beforehand.
This prevents an overhead of data signals which are not providing any desired content for
the application. In order to select specific signals, the tool allows the user to use drag and
drop mechanisms to put signals from the top right table to the bottom right table. The
bottom table stores the signals which are necessary for the application working process. In
our example five signals from different messages were dragged into the table. The desired
output are Java-class files which can be instantly imported into the source files of the
Android application and provide a different set of signal specifications. Therefore, we are
able to swap vehicle specifications with little effort and only one building process instead
of selecting the values by hand and implementing them in the right places.
The export to Java-classes produces two classes with different structure. The first Java-
class, called StatusMonitor, defines each signal and puts it into a HashMap object under
a given name, which also represents the key, while creating a new CAN_Data object.
CAN_Data objects contain simple signal information like factor, minimum value, maxi-
mum value, offset as well as functions which calculate the actual values with regard to the
specifications. Listing 5.1 shows an excerpt of the output if the signal table from Figure
5.5 is exported. It specifies every signal and puts it into an underlying HashMap with
the signal-name as the key. The CAN_Data object for each signal contains data like:
factor, minimum and maximum value, offset, signed or unsigned as well as the message
identification number and the name.

1 pr i va t e StatusMonitor () {
2 super (500) ;
3 // De f i n i t i o n o f each s i g n a l
4 canState . put ("SpdVehAct" , new CAN_Data(0 x504 , "SpdVehAct" ,16 ,8 , f a l s e

, 1 . 0 , 0 . 0 , 0 . 0 , 2 5 5 . 0 , 0)) ;
5 canState . put (" Acce l e ra to rPeda lPos i t i onPre s en t " ,
6 new CAN_Data(0 x501 , " Acce l e ra to rPeda lPos i t i onPre s en t " ,48 ,7 , f a l s e

, 1 . 0 , 0 . 0 , 0 . 0 , 1 2 7 . 0 , 0)) ;
7 canState . put (" BrakePedalPos i t ionPresent " ,
8 new CAN_Data(0 x501 , " BrakePeda lPos i t ionPresent " ,25 ,7 , f a l s e

, 1 . 0 , 0 . 0 , 0 . 0 , 1 2 7 . 0 , 0)) ;
9 canState . put ("CR_Bms_BatI_A" , new CAN_Data(0 x671 , "CR_Bms_BatI_A" ,32 ,16 ,

true , 0 . 1 , 0 . 0 , −500 . 0 , 5 00 . 0 , 0)) ;
10 canState . put ("CR_Bms_BatTotV_V" , new CAN_Data(0 x671 , "CR_Bms_BatTotV_V"

,48 ,16 , f a l s e , 0 . 1 , 0 . 0 , 0 . 0 , 5 0 0 . 0 , 0)) ;
11 super . I n i t i a l i z e () ;
12 }

Listing 5.1: Specifying signal values into StatusMonitor. Each signal will create a new CAN_Data
object with underlying data information. Each object is referenced with its signal-name as the key.

The second class which is generated during the export process is called SetCANDataSignals.
An excerpt is shown in Listing 5.2. Every time the Bluetooth stream sends a new message,

38 CHAPTER 5. DESIGN & IMPLEMENTATION

the data is set in the object it belongs to. The CAN_Data object is referenced with its
name and bmcCanMessage.MsgData contains the raw byte array data information from
the Bluetooth stream. The underlying functions transform the raw byte data into the
actual value and place it into the CAN_Data object.

1 pub l i c void prepareData () {
2 i f (bmcCanMessage . I d e n t i f i e r == 0x501) {
3 s tatusMonitor . setValuesWithKey (" Acce l e ra to rPeda lPos i t i onPre s en t " ,

bmcCanMessage . MsgData) ;
4 s tatusMonitor . setValuesWithKey (" BrakePedalPos i t ionPresent " ,

bmcCanMessage . MsgData) ;
5 } e l s e i f (bmcCanMessage . I d e n t i f i e r == 0x504) {
6 s tatusMonitor . setValuesWithKey ("SpdVehAct" , bmcCanMessage . MsgData) ;
7 } e l s e i f (bmcCanMessage . I d e n t i f i e r == 0x671) {
8 s tatusMonitor . setSignedIntelValueWithKey ("CR_Bms_BatI_A" ,

bmcCanMessage . MsgData) ;
9 s tatusMonitor . setIntelValueWithKey ("CR_Bms_BatTotV_V" , bmcCanMessage

. MsgData) ;
10 }
11 }

Listing 5.2: Sets the values into the underlying CAN_Data signal object with regard to the
endianness and the signed status.

There is a function for each endianness and signed status, because the value has to be trans-
formed differently each time. A more detailed explanation of the raw data transformation
is given in Section 5.5.

5.4 Bluetooth connection

An important first step is to determine whether the mobile Android device supports Blue-
tooth. If that is the case, the feature has to be turned on. In order to use a Bluetooth
connection in the application, the devices have to be paired first. The pairing needs to be
done in the Android system settings and it is good practice to unpair all other devices that
might be in the list. Once the devices are paired, the application can set up a Bluetooth
connection to receive and send data.
The first step to set up a Bluetooth connection is the creation of a BluetoothAdapter ob-
ject using the function getDefaultAdapter(). If the function call returns null, the Android
device does not support Bluetooth. The next step is illustrated in Listing 5.3, where it is
examined whether Bluetooth is enabled or not. If its not enabled an Intent is transmitted
to the Android system which enables the feature.

5.4. BLUETOOTH CONNECTION 39

1 i f (! mBluetoothAdapter . i sEnabled ()) {
2 In tent enab l eB luetoothIntent = new Intent (BluetoothAdapter .

ACTION_REQUEST_ENABLE) ;
3 s t a r tAc t i v i t yFo rRe su l t (enab leBluetoothIntent , 1) ;
4 }

Listing 5.3: Turns on Bluetooth if its not enabled yet.

In order to use a Bluetooth connection the devices have to be paired. Therefore, it is
necessary to get all possible devices to which the application is able to connect. Listing
5.4 shows the implementation of this request. With the function getBondedDevices() we
are able to gather all Bluetooth devices which were paired to the device at one point.

1 Set<BluetoothDevice> pa i r edDev i ce s = mBluetoothAdapter . getBondedDevices () ;
2 i f (pa i r edDev i ce s . s i z e () > 0) {
3 f o r (BluetoothDevice dev i ce : pa i r edDev ice s) {
4 . . .
5 }
6 }

Listing 5.4: Get all paired devices.

With the set of usable devices a dialog window is created from which the user can pick a
device to connect to. At this point the Bluetooth device is stored into the BluetoothDevice
object. The next objective would be to establish a connection between both devices. Com-
monly, this takes place in another thread to avoid blocking the main thread with possible
heavy computing. Listing 5.5 shows the code as an inner class of the class which specified
the previous connection settings as well, in our case the class BluetoothCommunication-
Service. This thread requires a BluetoothDevice as a parameter and uses it to create a
BluetoothSocket. This socket is what Bluetooth uses to transfer data between devices.
The used UUID provides the socket with the information that data will be transferred
serially, which means one byte at a time.

1 pr i va t e c l a s s ConnectThread extends Thread {
2

3 pr i va t e f i n a l BluetoothSocket mSocket ;
4 pr i va t e f i n a l BluetoothDevice mDevice ;
5 pr i va t e f i n a l S t r ing mSocketType ;
6

7 pub l i c ConnectThread (BluetoothDevice device , boolean secure) {
8 mDevice = dev i ce ;
9 BluetoothSocket tmp = nu l l ;

10 mSocketType = secure ? " Secure " : " In s e cu r e " ;
11 t ry {
12 i f (s e cu re) {
13 tmp = dev i ce . createRfcommSocketToServiceRecord (UUID_SECURE) ;

40 CHAPTER 5. DESIGN & IMPLEMENTATION

14 } e l s e {
15 tmp = dev i ce . createInsecureRfcommSocketToServiceRecord (UUID_SECURE) ;
16 }
17 } catch (IOException e) {
18 . . .
19 }
20 mSocket = tmp ;
21 }
22 . . .
23 @Override
24 pub l i c void run () {
25 setName ("ConnectThread" + mSocketType) ;
26 // Always cance l d i s cove ry because i t w i l l s low down a connect ion
27 mAdapter . cance lD i s covery () ;
28

29 t ry {
30 mSocket . connect () ;
31 . . .
32 }
33 . . .
34 // Star t the connected thread
35 connected (mSocket , mDevice , mSocketType) ;
36 }
37 . . .

Listing 5.5: This thread runs while attempting to make an outgoing connection with a device.
It runs straight through; the connection either succeeds or fails.

In order to establish a connection the thread has to be started with the previous created
BluetoothDevice object as well as the information if a secured connection is desired. Listing
5.6 shows the implementation of the thread initialization. Once the run() method of the
ConnectThread is finished it calls the function connected() which will start another thread.
The so called ConnectedThread provides the tools to read the incoming data as well as
write data bytes on its own.

1 // Star t the thread to connect with the g iven dev i ce
2 mConnectThread = new ConnectThread (device , s e cure) ;
3 mConnectThread . s t a r t () ;
4 s e t S t a t e (STATE_CONNECTING) ;

Listing 5.6: Start the connect thread to establish a connection to the given device.

An excerpt of the code realization from the ConnectedThread class can be seen in Listing
5.7. Like connecting, transferring data is time-consuming and can block the UI thread,
therefore it should also run in a separate thread. The thread requires a BluetoothSocket as
a parameter and uses it to create an InputStream and an OutputStream. The InputStream

5.4. BLUETOOTH CONNECTION 41

is used for reading data coming from the remote device while the OutputStream is used to
transmit data to the remote device.

1 pr i va t e c l a s s ConnectedThread extends Thread {
2 pr i va t e f i n a l BluetoothSocket mSocket ;
3 pr i va t e f i n a l InputStream mInStream ;
4 pr i va t e f i n a l OutputStream mOutStream ;
5 pr i va t e boolean mStayConnected ;
6

7 pub l i c ConnectedThread (BluetoothSocket socket , S t r ing socketType) {
8 mSocket = socket ;
9 InputStream tmpIn = nu l l ;

10 OutputStream tmpOut = nu l l ;
11

12 // Get the BluetoothSocket input and output streams
13 t ry {
14 tmpIn = socket . getInputStream () ;
15 tmpOut = socket . getOutputStream () ;
16 } catch (IOException e) {
17 . . .
18 }
19 mBmCmd = (new BmCmd(bCmdCbImpl , nu l l)) ;
20 mInStream = tmpIn ;
21 mOutStream = tmpOut ;
22 mStayConnected = true ;
23 }
24

25 @Override
26 pub l i c void run () {
27 byte [] bu f f e r = new byte [1 0 2 4] ;
28 i n t bytes ;
29

30 // Keep l i s t e n i n g to the InputStream whi le connected
31 whi le (mStayConnected) {
32 t ry {
33 // Read from the InputStream
34 bytes = mInStream . read (bu f f e r) ;
35 mBmCmd. s8RxData (bu f f e r , bytes) ;
36 . . .

Listing 5.7: This thread runs during a connection with a paired remote device. It handles all
incoming and outgoing transmissions.

Reading the InputStream is not an easy task. Based on the RM CANlink Bluetooth message
specification (see Figure 5.4) the RM API will prepare the data and split them into the
specified protocol fields. Once a whole message is being received, a CanMessageReceived
method from the ByteCommandCallbacks object is invoked with the containing raw values
for each field. The BluetoothCommunicationService class implements the interface and

42 CHAPTER 5. DESIGN & IMPLEMENTATION

receives the data. If there is no error in the received data theay are transformed as described
in Section 5.5.
In order to start the ConnectedThread the function connected(), which is illustrated in
Listing 5.8, is called. At first, the thread that completed the connection as well as any
thread which is currently running a connection attempt, are canceled. Afterwards the
ConnectedThread is started and a message is send to the UI thread in order to display a
message about the successfully established connection.

1 pub l i c synchron ized void connected (BluetoothSocket socket , BluetoothDevice
device , f i n a l S t r ing socketType) {

2 // Cancel the thread that completed the connect ion
3 . . .
4 // Cancel any thread cu r r en t l y running a connect ion
5 . . .
6 // Star t the thread to manage the connect ion and perform t ran sm i s s i on s
7 mConnectedThread = new ConnectedThread (socket , socketType) ;
8 mConnectedThread . s t a r t () ;
9 // Send the name o f the connected dev i ce back to the UI Act i v i ty

10 Message msg = mHandler . obtainMessage (MainActivity .MESSAGE_DEVICE_NAME) ;
11 Bundle bundle = new Bundle () ;
12 bundle . putStr ing (MainActivity .DEVICE_NAME, dev i ce . getName ()) ;
13 msg . setData (bundle) ;
14 mHandler . sendMessage (msg) ;
15 s e t S t a t e (STATE_CONNECTED) ;
16 }

Listing 5.8: Starts the ConnectedThread which enables the application to read the incoming data
as well as write data bytes on its own. Also sends information back to the UI thread in order to
display an Android Toast which states that the connection was successfully established.

If the connection is lost because of any reasons the tread will be in a STATE_DISCONNECT
or CONNECTION_LOST state which results in an immediate reconnection attempt. If
this attempt is not successful the user has to manually try to reestablish the connection
by connecting to the device again.

5.5 Transforming raw CAN data

After establishing a Bluetooth connection as well as receiving a ByteCommandCallback
event after preparing the data, the data field can be transformed into usable values. The
CAN message data field contains up to eight data bytes in which multiple signals can be
assigned. Because the start bit and the length of each specified signal are known, the raw
data can be transformed.
The first step is to distinguish the CAN messages based on their message ID. Listing
5.2 shows the implementation inside the BluetoothCommunicationService class. If the

5.5. TRANSFORMING RAW CAN DATA 43

incoming CAN message has one of those specified IDs the application calls one of the
transformation functions in order to get an actual value for each signal which is specified
as a CAN_Data object under the given message ID. One of the transformation method
implementations can be seen in Listing A.3 in the appendix. The transformation function
mainly uses two assisting functions to compute the desired signal values. Listing 5.9 is a
recursive function which calculates the most significant bit position of a signal, given its
length and start position. In order to transform the raw data, knowledge about the end of
the signal is needed.

1 pr i va t e i n t getMSBbitFromSignal (i n t l sb , i n t l ength) {
2 //Compute as s i gned b i t s per byte
3 i n t r e s t = 8 − (l s b % 8) ;
4 // Assigned b i t s are compared with s i g n a l l ength
5 i f (r e s t < length) {
6 //New l sb value
7 l s b += r e s t − 2 ∗ 8 ;
8 //New s i g n a l l ength
9 l ength −= r e s t ;

10 // Recurs ive c a l l with new va lues
11 re turn getMSBbitFromSignal (l sb , l ength) ;
12 } e l s e {
13 // Ca lcu la t e msb
14 re turn (l s b + length − 1) ;
15 }
16 }

Listing 5.9: Computes the most significant bit (MSB) given the least significant bit (LSB) and
the signal length.

The second function implementation is illustrated in Listing 5.10. It computes the value
for a single byte if a bit mask and a bit offset is given.

1 pr i va t e s t a t i c i n t getIntFromBits (byte Byte0 , i n t pMask , i n t pB i tOf f s e t) {
2 i n t r e s u l t ;
3 r e s u l t = ((Byte0 & pMask) >> pBitOf f set −1) ;
4 re turn r e s u l t ;
5 }

Listing 5.10: Computes the value for a single byte with a given mask and bit offset (range from
1 to 8).

The algorithm will be explained based on an example which is illustrated in Figure 5.6.
In the bottom half of the picture, a data field layout with assigned signals is displayed.
The signal SCU_SPEED_MEASURED is currently being transmitted over the Bluetooth
connection. Once the CAN message is received and split into its components, the data
field will be (0 0 0 6 55 80 0 0). These are the raw values which are transmitted for
each byte. The signal should be received has his least significant bit on position 47 and

44 CHAPTER 5. DESIGN & IMPLEMENTATION

Figure 5.6: Example of a CAN message with signal specification. The data field layout shows
bytes 2 to 5. The light green signal is the signal currently being transmitted with a value of 3243
which raw data representation is illustrated in the bottom half of the picture.

the signal length is 16 bit. There are no information about the MSB and the bit offset in the
implementation yet. With the help of the function getMSBfromSignal() the MSB position,
which is 30 in the example case, is calculated. Since the signal is spread over three bytes
the application has to combine the values for each byte. In the beginning, the first byte is
computed. The computation of the mask value results in 128 or 0x80 since only the bit
of the is of interest. The value is calculated with the help of the function getBits() which
calls the function getIntFromBits implemented in Listing 5.10. In the current example, the
computed value is equal to 1 for the first byte. The second byte is read with a mask value
of 255 or 0xFF since the whole byte contains data from the specified signal. Only updating
the input values for the byte and bit offsets, the function getBits will be used again for the
computation of the second byte value. The computation results in number 85, but since
one bit from the previous computed byte is already known and the computation is ranging
from LSB to MSB, the number has to be multiplied by 2number of previous calculated bits. In
this case this is equal to 21 and therefore the value from byte one is added to the value
from byte two, resulting in the value 171. The same procedure is used for the last byte. At

5.6. COMPUTING STATES & DISPATCH ANALYSIS EVENT 45

first, the byte and bit offset for the new byte are computed. Afterwards the computation of
the bit mask as well as the calculation of previously read bits have to be done. For the last
byte, the resulting value 6, which needs to be multiplied with 29 = 512, results in 3072.
The summation of all values for each byte is equal to the transmitted value of 3243. The
algorithm works exactly the same for each amount of data bytes. The only computation
which takes place for each new byte is the calculation of the bit mask and the remaining
length to compute the required factor. In order to compute different endiannesses the
computation has to be slighty changed. Therefore, four transformation functions for each
endiannesses as well as their unsigned or signed status have been implemented.

5.6 Computing states & dispatch analysis event

The class RapidStatusMonitor has a Handler object which is specified in the Android
API [3]. The Handler implements a Runnable object which triggers an update event in a
specified update interval time. For each triggered update event it is possible to get a current
snapshot of the underlying CAN_Data objects. The CAN_Data objects are containing
the latest values which were received from the Bluetooth connection. Listing 5.11 shows
the implementation of a listener which is invoked each time the event is triggered. The
value of the CAN_Data object can be retrieved using the method getActValue(key), where
key is the name of the signal. This name is the specified key for the underlying HashMap
object structure. Once the signals are retrieved, one of the smoothing algorithms described
in Section 5.7 can be used.

1 pub l i c s t a t i c Pu l s eL i s t ene r s i g n a l L i s t e n e r 2 = new Pu l s eL i s t ene r () {
2 @Override
3 pub l i c void onEvent (AbstractStatusMonitor monitor) {
4 //Get the snapshot o f va lue s
5 s i gna lVa lueVe l o c i t y = monitor . getActValue ("SpdVehAct") ;
6 . . .
7 //Smoothing i f enabled
8 . . .
9 //Comuputing the s t a t e

10 s t a t e = computeStates (. . .) ;
11 // Tr igger an event on the EventBus
12 . . .
13 }
14 }

Listing 5.11: The PulseListener object which is invoked each time the Android Handler executes
the Runnable. Once the reception is complete, the data values can be read and smoothed if
necessary. Afterwards the state is computed and an event bus post is published.

In order to compute the state the measurement values are taken as an input for the com-
puteStates() algorithm method. Finally, the computed state and the smoothed measure-

46 CHAPTER 5. DESIGN & IMPLEMENTATION

ment values have to be send to the activities which are responsible for the implementation
of the graphical representation. Therefore, an event is posted on an EventBus. The steps
are elucidated in the following pages.

Computing states To compute the active state based on Section 5.1 the measurement
values, which are present in each CAN_Data object, are used. Listing 5.12 shows the
implementation of the computation algorithm. The measurement values Vehicle Speed
(spd), AcceleratorPedalPosition (acc), BrakePedalPosition (brake), BatteryCurrent (ihv)
and BatteryVoltage (uhv) are the input for the function.

1 pr i va t e s t a t i c i n t computeStates (double spd , double acc , double brake ,
double ihv , double uhv) {

2 i f (brake > 0 .5 && acc <= 0.5 && spd > 2) {
3 re turn 2 ; // State Brake
4 } e l s e i f (brake <= 0.5 && acc < 0 .5 && spd > 2) {
5 re turn 3 ; // State Coastdown
6 } e l s e i f (acc >= 0.5 && brake <= 0.5 && ihv ∗uhv < −500) {
7 re turn 4 ; // State Boost
8 } e l s e i f (acc >= 0.5 && ihv > 0) {
9 re turn 5 ; // State LPM

10 } e l s e i f (acc <= 0.5 && ihv > 0) {
11 re turn 1 ; // State Recuperat ion
12 } e l s e {
13 re turn 0 ; // State Zero
14 }
15 }

Listing 5.12: This function is responsible for the state computation. It is used every time the
PulseListeners onEvent method is invoked.

The algorithm has an integer output in the range from 0 to 5, where:

• 0 = State Zero

• 1 = State Recuperation

• 2 = State Brake

• 3 = State Coastdown

• 4 = State Boost

• 5 = State LPM

The state number as well as the five measurement values are then used to post an event
on the EventBus.

EventBus EventBus is an Android optimized event bus, developed by greenrobot, that
simplifies the communication between Activities, Fragments, Thread and more [30]. The
general idea behind an EventBus system concept is illustrated in Figure 5.7. A certain
amount of publisher nodes post events on the event bus which can be obtained by a
consumer node if it has subscription to the event type.

5.6. COMPUTING STATES & DISPATCH ANALYSIS EVENT 47

Figure 5.7: A publisher, which can be located in any class, posts an event and the EventBus
transmits the event to every subscriber who is currently registered to the bus [23].

The EventBus simplifies the communication between Android components and decouples
event senders and receivers. It also avoids complex and error prone dependencies and
Android life cycle issues. Additionally, there is no boilerplate code which would have been
necessary if the same architecture would have been realized with an observer pattern.
Furthermore, the library provides features such as [23]:

• High performance

• Build time indexing of annotations

• Different thread delivery

• Zero configuration

• Configurable with the builder pattern

Because the library is easy to integrate into the application and the developer does
not have to write a lot of additional boilerplate code with a self designed observer pattern
structure, which might perform poorly, the choice fell on the greenrobot’s EventBus library.
In order to post messages on the event bus an event has to be defined at first. Figure 5.8
defines the plain old java object (POJO) for the event. It defines all chosen member
variables as well as the constructor. With the get() methods it is possible to retrieve the
content after an event is transmitted.
The second step is to register the subscriber to the event bus, shown in Listing 5.13. The
subscriber can be any kind of Java class.

1 EventBus . ge tDe fau l t () . r e g i s t e r (t h i s) ;

Listing 5.13: Register the class as an EventBus subscriber.

Additionally, the subscription method has to be declared, as depicted in Listing 5.14.
The subscribers implement event handling methods that will be invoked when an event is
posted. These are defined with the @Subscribe annotation.

48 CHAPTER 5. DESIGN & IMPLEMENTATION

Figure 5.8: Plain Old Java Object (POJO) definition of the listener event which defines all the
necessary values for computation purposes as well as get() methods.

1 // This method w i l l be c a l l e d when a MessageEvent i s posted
2 @Subscribe
3 pub l i c void onMessageEvent (PulseRecuListenerEvent event) {
4 veh i c l eSpeed = event . get_vehic leSpd () ;
5 . . .
6 //Update g r aph i c a l view with the new data po in t s
7 }

Listing 5.14: Subscriber function to receive the transmitted bus event. The annotation
Subscribe enables the function to be regarded as a listener for incoming events of the type
PulseRecuListenerEvent.

EventBus can handle threading, which means that events can be posted in threads different
from the posting thread. However, we have to keep in mind that changes to the user
interface (UI) have to be done on the UI thread. But tasks which are time consuming can
be shifted to another thread which lessens the workload of the main thread. Listing 5.15
shows the annotation changes which have to be made to define the thread in which the
subscriber will be called.

1 @Subscribe (threadMode = ThreadMode .POSTING)
2 @Subscribe (threadMode = ThreadMode .MAIN)
3 @Subscribe (threadMode = ThreadMode .BACKGROUND)

Listing 5.15: Different thread modes which are possible on the EventBus.

5.7. POST-PROCESSING AND DATA SMOOTHING 49

Upon choosing POSTING the subscriber will be called in the same thread who posted the
event. Subscribers will be called in the main thread, which is often called the UI thread,
when choosing MAIN. If the annotation is defined as BACKGROUND, the subscriber will
be called in a background thread which will execute all its events sequentially. Once we
have implemented and declared the subscriber methods, the last step is to actually post
the event on the event bus. Listing 5.16 illustrates the posting definition.

1 EventBus . ge tDe fau l t () . post (new PulseRecuListenerEvent (. . .)) ;

Listing 5.16: Posts an event on the EventBus.

The post() method is transmitted each time the Runnable is re-executed inside the Han-
dler, which enables the application to continuously provide events to update the graphical
representation in the respective Activity.

5.7 Post-processing and data smoothing

Because resolution of some signal values is not high enough, we need to smooth the data to
avoid a ramp-like structure. This is especially important for the velocity signal. Since we
are calculating the energy difference - explained in Section 5.10 - between two timestamps,
the velocity resolution has to be as high as possible. Unfortunately, the signal is only able
to provide changes in kilometers per hour as an integer value which is insufficient for the
computation.
Smoothing is generally used to eliminate noise and filling in missing data values. Depending
on the needs and the datasets, a suitable algorithm has to be chosen inside the application.
In order to refine the small resolution of the velocity signal, multiple smoothing algorithms
are implemented. Only one can be activated at a time, but it is possible to change the
algorithm at runtime. The application does not have to be restarted to show the variously
smoothed data.

5.7.1 Moving average smoothing

Moving average is a basic and simple smoothing algorithm. In its simplest form it is the
unweighted mean of the previous n data points. Commonly, the mean is taken with an
equal number of data values on either side of a so called central value [32]. It is given by
the formula

st =
1

n

t∑
t−n

xt with t ≥ n, (5.1)

where st is the current smoothed statistics and xt the observation value at time t. This
approach needs a cold start time with at least n elements before it can begin to compute
results. Moving average is working like a window frame which iterates over data points.
Once the threshold of the cold start phase is overcome, a new value will replace the oldest

50 CHAPTER 5. DESIGN & IMPLEMENTATION

one. As an example, we define n = 5, so it is necessary to wait for at least five incoming
data values to start the algorithm. If we assume a data array with values 1, 2, 3, 4, 5, 6,

only the last five elements are in the frame which is moving to the right once a new value
is inserted. The first element in the previously defined array is therefore not necessary for
the computation anymore. Furthermore, we do not need to persist more than n elements
to achieve the results. However, there is a big drawback in the moving average approach.
The average age of this approach is equal to

agemovavg =
n+ 1

2
· frequency of data update in [ms]. (5.2)

This is the amount of time which the data series will lag behind the original one. If we
assume n = 31 and an update frequency of 50 Hz, the delay of the forecast at time t is
320 ms which could be too big for certain use-cases. Therefore, a suitable frame length n
has to be considered when using this algorithm.

Implementation

The algorithm described above was implemented for the application. Listing 5.17 shows
the code realization of the algorithm. In line 1 an array, which has the ability of a circular
ring buffer, is declared. That means the array contains n values, before a new element
replaces the oldest one. In the defined function movingAverageSmoothVelocity the smooth
statistic is the return value, which is computed by using formula (5.1). By iterating over
the array, every entry is summed up. The calculated value is divided by the number of
observations which are to be considered by the specification of the length n.

1 pr i va t e ArrayCi rcu la rBuf f e r outputMovingAverageVelocity ;
2

3 pub l i c double movingAverageSmoothVelocity (double inputValue) {
4 double r e s u l t = 0 ;
5 outputMovingAverageVelocity . i n s e r t (inputValue) ;
6 f o r (i n t i = 0 ; i < outputMovingAverageVelocity . s i z e () ; i++) {
7 r e s u l t += (double) outputMovingAverageVelocity . getItem (i) ;
8 }
9 re turn (r e s u l t / outputMovingAverageVelocity . s i z e ()) ;

10 }

Listing 5.17: Implementation of the simple moving average smoothing algorithm for the velocity
signal in Java.

With the chosen design of the algorithm implementation it is possible to generate smoothed
forecast values during the cold start phase. Keeping that in mind, the first value which
is not error-prone is calculated when the measurement is running long enough to fill the
array with n data values. The value for the frame length n needs to be specified by the user
depending on the vehicle and the signal resolutions. This can be done in the application’s

5.7. POST-PROCESSING AND DATA SMOOTHING 51

options menu. Listing 5.18 shows a code snippet which elucidate the internal initialization
as well as functions calls. The activation of the average smoothing algorithm as well as the
frame length n has to be selected at the option menu. Once the measurement starts, the
array is initialized with the length n, which can be seen in line 2. As long as new input
values are triggering and the cold start phase filled the array with n values, the returned
values can be used for a correct computation. But if the cold start phase is active, which is
illustrated in line 5, a value is returned due to the implementation method, which should
not be used for further computation.

1 double ve loc i ty_va lue = 0 ;
2 i n i tAr ray (n) ;
3 whi le (newValue) {
4 ve loc i ty_va lue = rMon . movingAverageSmoothVelocity (inputValue) ;
5 i f (counter_of_cold_start_values > n) {
6 // Do something with the smoothed value
7 }
8 }

Listing 5.18: Example of moving average function calls and initialization.

5.7.2 Exponential smoothing

Exponential smoothing is a standard technique for smoothing time series data. It is an easily
learned and applied procedure for approximatively calculation of values. It is commonly
applied to smoothen data, acting as a low-pass filter to remove high-frequency noise. Since
we have signals with high-frequency noise, this algorithm might be the most suitable for
the approximation. The simplest form of exponential smoothing is given by the formula

st = αxt + (1− α)st−1, (5.3)

where st is the current smoothed statistics by building a simple weighted average of the
current observation xt and the previously smoothed statistic st−1. The smoothing factor α
ranges between 0 and 1. Values of α close to one have less of a smoothing effect and give a
greater weight to recent changes in the data, while values of α closer to zero have a greater
smoothing effect and are less responsive to recent changes. It can be seen that exponential
smoothing produces a smoothed value as soon as two observations are available [32].

Deriving the formula

The time series data are build recursively. Theoretically, a data series at time t already has
infinite previous values. Practically, we define a certain start value for s0 with t = 0. This
start value greatly depends on the behavior of the data series. Exponential smoothing puts
substantial weights on past observations. So the initial value of demand will have a large

52 CHAPTER 5. DESIGN & IMPLEMENTATION

effect on early forecasts. However, in order to overcome this weakness and to determine a
good starting value, the smoothing series can run a certain amount of time which results
in a better approximation because some values are already known [32]. By listing the data
series recursively, starting with s0, we get the following equations:

s1 = αx1 + (1− α)s0,

s2 = αx2 + (1− α)s1,

s3 = αx3 + (1− α)s2,

. . .

(5.4)

If we solve the recursive function by substituting the values for st, we get equations (5.5)
and (5.6) for the times t and t− 1, respectively.

st = αxt + α(1− α)xt−1 + α(1− α)2xt−2 + α(1− α)3xt−3 . . . (5.5)

st−1 = αxt−1 + α(1− α)xt−2 + α(1− α)2xt−3 + α(1− α)3xt−4 . . . (5.6)

Multiplying (5.6) with (1− α) yields:

(1− α)st−1 = α(1− α)xt−1 + α(1− α)2xt−2 + α(1− α)3xt−3 + α(1− α)4xt−4 . . . (5.7)

If we subtract (5.7) from (5.5), the resulting equation reads

st − (1− α)st−1 = αxt

⇔ st = αxt + (1− α)st−1,
(5.8)

which is exactly the formulation of the recursively defined function (5.3).
As time passes the smoothed statistic st becomes the weighted average of a greater and
greater number of the past observations xt−n, and the weights assigned to previous ob-
servations are in general proportional to the terms of the geometric progression {1, (1 −
α), (1−α)2, (1−α)3, . . .}. A geometric progression is the discrete version of an exponential
function, hence the name exponential smoothing [32].

Implementation

A simple exponential smoothing algorithm was included in the application. It implements
equation (5.3) with regard to a starting value which can be set independently.
Listing 5.19 shows the exact implementation of the algorithm. The array output_vel

holds the smoothing statistics for t − 1. At the beginning, the starting value has to be
initialized with the function initExpSmoothVel which puts the given double value into the
respective array element. In case of new velocity input values the function expSmoothVel

computes the smoothed value with regard to the previously calculated smoothing statistic
in array element zero and the factor α. The resulting computation is saved into both array
elements and given as a result value for further post-processing.

5.7. POST-PROCESSING AND DATA SMOOTHING 53

1 pr i va t e double [] output_vel = new double [2] ;
2

3 pub l i c double initExpSmoothVel (double va lue) {
4 output_vel [0] = value ;
5 re turn value ;
6 }
7

8 pub l i c double expSmoothVel (double inputValue , double ALPHA) {
9 output_vel [1] = inputValue ∗ ALPHA + (1 − ALPHA) ∗ output_vel [0] ;

10 output_vel [0] = output_vel [1] ;
11 re turn output_vel [1] ;
12 }

Listing 5.19: Implementation of the exponential smoothing algorithm for the velocity signal in
Java.

Listing 5.20 illustrates a simple example on how to use the functionality. While there is a
continuous stream of new signal values, the values are constantly smoothed by using them
as an input value for the algorithm. If it is not initialized, the function sets a given starting
value beforehand. Afterwards, the computed value can be used for the representation on
a chart or for further calculations.

1 double ve loc i ty_va lue = 0 ;
2 whi le (newValue) {
3 i f (! initExpSmooth) {
4 ve loc i ty_va lue = rMon . initExpSmoothVel (i n i tVa lue) ;
5 initExpSmooth = true ;
6 } e l s e {
7 ve loc i ty_va lue = rMon . expSmoothVel (inputValue ,ALPHA) ;
8 }
9 // Do something with the smoothed value

10 }

Listing 5.20: Usage example of the exponential smoothing algorithm for the velocity signal in
Java.

5.7.3 Binomial smoothing

Binomial smoothing is essentially the same as a weighted moving average smoothing al-
gorithm, but with a binomial weighting distribution. The considered window frame is
defined by a threshold value. Like the moving average approach, the binomial smoothing
algorithm needs a cold start time to fill the frame with enough data points. The differ-
ence between the moving average and the binomial smoothing approach is that the values
are summed up with a binomial weighting function in the latter case. For large numbers

54 CHAPTER 5. DESIGN & IMPLEMENTATION

of applications, the weights become Gaussian and the smoothing approximates Gaussian
kernel smoothing [4]. The binomial smoothing function is defined as

st =
1

n

t∑
t−n

xt · wt with t ≥ n, (5.9)

where st is the current smoothed statistic, xt is the observation value at time t and wt is the
corresponding weight value at time t. The weight values are provided by repeatedly apply-
ing the moving average filter for two elements that have the weights (12 ,

1
2)l. For example,

with l = 4 applications the binomial filter weights are given by (12 ,
1
2)4 = (1

16 ,
4
16 ,

6
16 ,

4
16 ,

1
16).

This is the same as the pascal triangle, except the denominator which normalizes the
weights [4]. There is the same drawback as in the moving average approach. The average
age of a data value with the binomial filter approach is equal to

agebin =
n+ 1

2
· frequency of data update in [ms]. (5.10)

Therefore, a suitable frame length is as important as in the moving average approach.

Implementation

The binomial smoothing algorithm was implemented as a data filter alternative for the
application. Listing 5.21 illustrates the code realization to achieve the calculation. An
ArrayCircularBuffer provides a ring buffer, which means that after initialization with a
certain threshold value the latest incoming element will replace the oldest one without the
array growing in size. The array binomCoeff contains the weight values for each element
in the window frame. The weighting Array was computed upon the initialization of the
ring buffer. The code is illustrated in Listing A.1 in the appendix. The code conversion
from equation 5.9 can be seen in line 8. Each element in the ring buffer is summed up and
multiplied with its weighting value.

1 pr i va t e ArrayCi rcu la rBuf f e r outputBinomVelocity ;
2 pr i va t e s t a t i c double [] binomCoeff ;
3

4 pub l i c double binomSmoothVelocity (double inputValue) {
5 double r e s u l t = 0 ;
6 outputBinomVelocity . i n s e r t (inputValue) ;
7 f o r (i n t i = 0 ; i < outputBinomVelocity . s i z e () ; i++) {
8 r e s u l t += binomCoeff [i] ∗ (double) (outputBinomVelocity . getItem (i)) ;
9 }

10 re turn r e s u l t ;
11 }

Listing 5.21: Implementation of the binomial smoothing algorithm for the velocity signal in Java.

An example of the initialization order as well as the calculation of the weighting function
is given in Listing 5.22. After the ring buffer and the weighting function are generated, a

5.7. POST-PROCESSING AND DATA SMOOTHING 55

new input value can be added each time a new data point is retrieved. The value should
not be used until the threshold value for the cold start phase has been passed.

1 double ve loc i ty_va lue = 0 ;
2 i n i tAr ray (n) ;
3 pasca l (n) ;
4 whi le (newValue) {
5 ve loc i ty_va lue = rMon . binomSmoothVelocity (inputValue) ;
6 i f (counter_of_cold_start_values > n) {
7 // Do something with the smoothed value
8 }
9 }

Listing 5.22: Example of binomial filter function execution and initialization.

5.7.4 Event post-processing

Once the measurement has ended, the application computes event objects which are based
on the previous computed vehicle states. While the analysis is able to provide event
computation in real-time, it is currently not possible to relate equal states to an event that
lasts an unspecified amount of time. However, this is possible after the measurement has
ended because the data object, which is responsible for storing the measurement data, is
accessible. Figure 5.9 shows the designed structure in an UML diagram.

Figure 5.9: UML diagram of the used states and their connection. The StateEvent class is the
superclass for all other classes. Each application state has an own class with which we are able to
persist the events. A creation of an object needs the start- and end-time of an event which enables
us to get the respective data out of the underlying data object.

Each state which was defined in Section 5.1 has a single class with a superclass StateEvent.
An additional event state Performance was created to make it possible to save vehicle

56 CHAPTER 5. DESIGN & IMPLEMENTATION

performance tests which are described in Section 6.4. With the help of the implemented
algorithm illustrated in Listing A.2 we are able to get the start and end times of an event.
By iterating over the state array of the data object it can be checked whether a state at
timestamp t is followed by a state at timestamp t + 1. If the states are the same they
belong to the same event. Once a state differs from the previous one the event is over and
a new one starts.
The resulting event-data objects are stored into the DataAnalysisObject (Figure 5.10)
which is used when the Android Activities are called in an offline mode, meaning there is
no ongoing measurement. The DataAnalysisObject can also be persisted for later usage.

Figure 5.10: The singleton DataAnalyisObject stores all information about an event.

5.8 Data storage & persistence

All measurement values have to be stored somewhere in order to load and analyze them
again. Since the amount of data points the chart can hold is limited (see Section 5.9) the
whole test cycle cannot be displayed and therefore it is necessary to design a structure
for data persisting purposes. Figure 5.11 illustrates the Java object DataObject which can
save measurement data values for up to nine signals. Furthermore, it contains additional
elements to save the timestamps as well as the computed states. Once a measurement
is started the object goes into a isRunning state which disables read calls and further

5.8. DATA STORAGE & PERSISTENCE 57

computation on the underlying data structure. The idea behind the concept is pretty
straightforward. Because the saved data values are not being used during the ongoing
measurement, there is no need to worry about thread concurrency and synchronization as
well as concurrent read and write calls on the chosen List structure. If we want to read
the data values we just have to make sure the object is not in an isRunning status. But
this is only the case when the measurement was stopped or has ended. As a data container
for each signal a simple ArrayList was defined. ArrayList is a general list implementation
suitable for most use cases. It is backed by an Object array, which size is dynamically
adjusted while the user adds or removes elements from the list. The operation add() runs
in amortized constant time. This means that the average insertion time at the end of the
list across the entire runtime is constant, in this case O(1). However, the array copying
overhead grows significantly as the size of the collection increases because the number of
elements that need to be copied with each insertion increases. The ArrayList needs to be
copied when the capacity is exhausted and the internal array has to be extended. If we
manually set a minimum capacity we may inflate the random access memory (RAM) but
improve the performance. This is not used in the current implementation, but might be
good for future investigations.

Figure 5.11: The singleton DataObject stores all measurement data into the corresponding arrays.
Each signal has its own array.

58 CHAPTER 5. DESIGN & IMPLEMENTATION

The DataObject is a subscriber to the PulseRecuListenerEvent which is posted on the event
bus (see Section 5.6). Each time the MessageEvent is called the measurement values are
stored into the corresponding ArrayLists. Listing 5.23 shows the implementation of the
MessageEvent in the DataObject class. The method is called as soon as the PulseRecuLis-
tenerEvent is posted on the bus and the annotation indicates that it is called on a separate
background thread. With this implementation it is guaranteed that the main thread is not
blocked in the data persistence process.

1 @Subscribe (threadMode = ThreadMode .BACKGROUND)
2 pub l i c void onMessageEvent (PulseRecuListenerEvent event) {
3 //Save data in to corre spond ing ar rays
4 }

Listing 5.23: Declaration of the subscriber method for the DataObject class.

In order to save the data on the device an ObjectOutputStream serializes the objects which
are given as a List<Object> input parameter. The list contains the DataObject as well as
the AnalysisDataObject. The resulting file is stored with the extension .dat on the external
file system of the Android mobile device. It is possible to load saved data files and to
analyze the whole data set in an offline mode. The system is only able to save the data
input when no measurement is active at the moment. After the measurement has ended
and post-processing is finished the same analysis features are provided without saving the
data beforehand. However, the data is lost if the application is closed or restarted without
prior storage.

5.9 Chart API & visualization

In order to visualize the smoothed and computed values a chart view API, which is able to
provide real-time data updates, is needed. The first choice was the API MPAndroidChart
from Philipp Jahoda because it supports real-time updates up to 30.000 data points and
its core features are very good [29]:

• 8 different chart types

• Scaling on both axes
possible

• Able to combine chart
types

• Separate and cus-
tomizable axes

• Highlighting values

• Save chart as picture

• Customizable legends

• Animations for axes

• Limit lines

• Customizable paints,
background, gestures

These feature make the chart API an excellent choice for the representation of the
analysis layouts. The possible chart types are: LineChart, BarChart, PieChart, Scatter-
Chart, CandleStickChart, BubbleChart, RadarChart and the CombinedChart. The use of

5.9. CHART API & VISUALIZATION 59

a chart and its continuous filling with data points requires a definition in the extensible
markup language (XML) layout file of the corresponding activity. Listing 5.24 illustrates
the implementation in the XML file. A LineChart object, which is dimensioned like its
parent container, is specified and equipped with an additional identification name so it can
be referenced in the source code implementation.

1 <com . github . mikephi l . cha r t ing . char t s . LineChart
2 android : id="@+id / l i n e c h a r t "
3 android : layout_width="match_parent"
4 android : layout_height="match_parent" />

Listing 5.24: Definition of the chart type which should be used in the view. The XML specification
implements a linechart with the sizes for both dimensions being the same as the parent container.

Once the XML layout file specifies the necessary positioning of all user interface (UI)
components, we are able to use the identification name as a reference to retrieve the
LineChart object for our activity. Listing 5.25 shows the creation of the LineChart object
mLineChart.

1 LineChart mLineChart = (LineChart) findViewById (R. id . l i n e c h a r t) ;

Listing 5.25: Retrieve the LineChart object in the activity by using the XML reference.

Now we have to add data to the chart. Listing 5.26 gives a rough overview of an easy im-
plementation to realize real-time updates to the chart. Firstly, we have to create an initial
data object which holds the data sets of a single chart. Afterwards, the data object needs
to be added to the chart. However, the data object alone contains no values. Therefore,
a suitable amount of underlying data sets have to be created, where each data sets can
contains values for one signal. Line 7 is defining a new LineDataSet with no initial values
(null) and the name "Vehicle Speed [kph]" for the data series. It is then added to the data
object. To really add data to the chart, we have to add an Entry object - which consists
of the current measurement value and the position it should be added to - on the corre-
sponding LineDataSet. Line 11 adds an X-axis value with the current timestamp to the
chart, whereas line 12 adds the corresponding Y-value to the LineDataSet and therefore
to the chart as well. The function getEntryCount() gives the number of entries which are
currently being saved in the LineDataSet object. A new Entry object is always placed
at the last position. Line 13 and 14 are necessary in order to notify the chart about the
change of data and to invalidate the graphical representation. To achieve real-time updates
line 11 to 14 have to be repeated each time a new value is incoming.

1 // Creat ing a new LineData s e t
2 LineData mData = new LineData () ;
3 // Se t t i ng i t to the chart
4 mLineChart . setData (mData) ;
5

60 CHAPTER 5. DESIGN & IMPLEMENTATION

6 // Def in ing and s e t t i n g an under ly ing data s e t f o r mData
7 ILineDataSet mIset = new LineDataSet (nu l l , " Veh ic l e Speed [kph] ") ;
8 mData . addDataSet (mIset) ;
9

10 //Adding an entry and r e f r e s h i n g the chart
11 mData . addXValue (S t r ing . valueOf (timestamp)) ;
12 mData . addEntry (new Entry (vehSpeed , mIset . getEntryCount ()) , 0) ;
13 mLineChart . noti fyDataSetChanged () ;
14 mLineChart . i n v a l i d a t e () ;

Listing 5.26: Creates a new data object and sets it to the chart. To be able to visualize values
of a specific signal, a LineDataSet is created and given as a reference to the data object. After
adding a new X and Y value, the chart is notified of the change in the underlying data structure
and will be invalidated.

Listing 5.27 shows another necessity for a moving frame: A maximum threshold value for
visible X-axis entries. Afterwards the viewport is moved to the right so that the latest
value is always positioned at the right of the chart frame.

1 //Get a moving chart (500 va lue s) , l a t e s t va lue on the r i g h t s i d e
2 mLineChart . setVisibleXRangeMaximum (500) ;
3 mLineChart . moveViewtoX(mData . getXValCount () −501) ;

Listing 5.27: Moves the viewport of the chart with regards to a threshold value which is equal
to 500.

An important thing to keep in mind is that the chart representation is only running
smoothly up to 30.000 data points. So depending on the update cycle time we cannot
necessarily hold all the data for a test drive. This limitation does not have a great influ-
ence on the analysis feature because for looking at the values in real-time there is no reason
to hold the measurement values for such a long amount of time. Once the measurement
ended the whole data, which were persisted in a background thread, can be loaded and
presented accordingly. In order to get a smooth running application, we need to remove
the first Y-entry object and X-axis value when a certain threshold of measurement values
is hit. Basically, the oldest value at the beginning is replaced with the latest update which
guarantees a stable amount of visualized data points.

5.10 Theoretical energy consideration

To offer an additional analysis feature besides the illustration of the energy consumption
or recuperation, a new method for calculating the theoretical amount of power present at
the wheel was developed and implemented. In order to get that value as a reference for
the energy efficiency the difference in kinetic energy is considered. The kinetic energy of
a vehicle is the energy it contains due to its motion. The vehicle maintains the amount
of kinetic energy unless the speed changes. The difference in the kinetic energy of two

5.10. THEORETICAL ENERGY CONSIDERATION 61

successive velocity values is the energy which could have been recuperated in an ideal
system without efficiency losses. The kinetic energy is given by

Ekin(t) =
1

2
mv(t)2,

where t is the current timestamp, m is the mass of the vehicle and v is the current velocity.
To compute the change in the maintained energy while the vehicle is driving with decreasing
velocity (recuperation process), the kinetic energy at timestamp ti is subtracted from the
kinetic energy at the previous timestamp ti−1:

Etheo(ti) = Ekin(ti)− Ekin(ti−1)

=
1

2
m(v(ti)

2 − v(ti−1)
2).

To display power instead of energy the energy difference has to be divided by the time-
interval difference from ti and ti−1, since the dimension of power is energy divided by time.
This results in the following equation:

Ptheo(ti) =
1
2m(v(ti)

2 − v(ti−1)
2)

ti − ti−1
.

Ptheo is a first usable value which can be presented in the application charts in order
to compare the actual power and the theoretical power at a given deceleration process.
However, this is not a representative value because there are several efficiency losses in the
process of the energy conversion. We are able to filter out at least some of them. Each
vehicle loses on efficiency because of the aerodynamic drag and the rolling friction of the
tires. The resulting force is defined as

Fwheel(v) = av2 + bv + c,

where a, b, c are efficiency coefficients to describe the resulting quadratic function which
is velocity dependent. When the velocity value growths, the resistance gets bigger as
well, which results in an over all quadratic growth. The coefficients are calculated by
accelerating the vehicle to a certain velocity and then letting it roll out until standstill.
With enough measurements an approximation can be achieved. To get the amount of
power which cannot be used for the recuperation process, the force is multiplied with the
current velocity v(ti), resulting in

Pwheel(ti) = av(ti)
3 + bv(ti)

2 + cv(ti).

Finally, the difference between the theoretical power Ptheo and the power which is lost
at the wheel due to resistance losses Pwheel yields a better suited value for the efficiency
comparison:

Presult(ti) = Ptheo(ti)− Pwheel(ti)

=
1
2m(v(ti)

2 − v(ti−1)
2)

ti − ti−1
− av(ti)

3 − bv(ti)
2 − cv(ti).

62 CHAPTER 5. DESIGN & IMPLEMENTATION

However, there are still efficiency losses which are not considered in this approach. Ad-
ditionally, the current approach only works on a route without slope because there are
no hardware sensors which can measure the orientation and the inclination of the vehicle.
Such sensors would be a great addition for further iterations of the application. The co-
efficients a, b, c and the vehicles mass have to be entered into the options Params layout
and they have to be changed for each time the vehicle changes.

Chapter 6

Analysis & Usage

This chapter elucidates the analysis process of some key components which were important
for the implementation and gives a short explanation of the bottlenecks of data transferring
over bluetooth as well as a quick guideline to use the application. In the first part, the
analyses of battery usage, bluetooth latency and state detection is introduced with further
details and results. The second part deals with the introduction of the application and its
functionality and representation.

6.1 Battery consumption analysis

An important factor for mobile devices is the battery consumption of an application. The
goal is to minimize the power drainage while using the implemented functionality. This is
per se not a trivial task. Some restrictions arise from existing hardware components which
are required for the data communication, like bluetooth.
Since we are using the bluetooth protocol to transfer data to the mobile device and vice
versa, we are constantly streaming data and therefore use electrical energy to achieve this
task. With the chosen implementation it is possible to connect/disconnect the bluetooth
connection and with the concept ofWeak References (see Chapter 5) the usage of the update
listener objects is held at a minimum while being active. In order to test the battery
consumption, benchmarks with various starting states of charges have been performed.
The test bed was a HTC Nexus 9 with a Dual-Core 2.3 GHz Denver processor and 2GB
RAM operated on Android Marshmallow (6.0.1). The battery capacity amounts to 6700-
mAh [27]. All connectivity functions, like WLAN or GPRS, were disabled during the
benchmarks. The display brightness was set to the highest value to generate a worst case
calculation.
Listing 6.1 shows the implementation of a receiver object which fetches the values for
battery-level and device-temperature. The values are stored into an ArrayList each time a
battery changed event is broadcasted from the Android system. An internal timestamp is

63

64 CHAPTER 6. ANALYSIS & USAGE

added for each of those events. Line 14 to 17 show the registration and bounding process
to the specific battery changed event.

1 pr i va t e BroadcastRece iver mBatInfoReceiver = new BroadcastRece iver () {
2 @Override
3 pub l i c void onReceive (Context c , In tent i) {
4 // Battery l e v e l
5 i n t l e v e l = i . get IntExtra (" l e v e l " , 0) ;
6 //Device Temperature
7 double temperature = i . get IntExtra (" temperature " , 0) / 10 ;
8 time = SystemClock . elapsedRealTime () / 1000 − in i tTime ;
9 batte ryLv l . get (0) . add (time) ;

10 batte ryLv l . get (1) . add (l e v e l) ;
11 batte ryLv l . get (2) . add (temperature) ;
12 }
13 // Create f i l t e r to get an update a f t e r bat te ry s t a tu s changes
14 I n t e n tF i l t e r mIntentF i l t e r = new In t e nF i l t e r () ;
15 mIntentF i l t e r . addAction (Intent .ACTION_BATTERY_CHANGED) ;
16 // Reg i s t e r the r e c e i v e r
17 r e g i s t e rR e c e i v e r (mBatInfoReceiver , mIntentF i l t e r) ;
18 }

Listing 6.1: Sets up a BroadcastReceiver to listen for incoming battery changes.

After the end of the measurement the ArrayList was exported as a comma-separated-
value (csv) file for further usage. A least squared fitting, in which the sum of the squared
differences between the model curve and the measurement values is minimized, results in
the third-degree polynomial model for the battery consumption based on the decreasing
state of charge

SoC = −1.462 · 10−11t3 + 1.620 · 10−7t2 − 7.345 · 10−3t+ 96.081.

Figure 6.1 presents the experimental data of the battery consumption extracted out of the
generated export files. The state of charge SoC is plotted against the time t and it can be
seen that the battery consumption does not follow a linear discharge trend. The battery
consumption behaves linear up to a certain degree but changes its behavior at a state
of charge of around 48 %. Multiple evaluations showed that a third-degree polynomial
curve fits the measurement values best. According to this model, the battery is completely
discharged after approximately 210 minutes.
Unfortunately, the applications run time is much smaller than the specified 570 minutes
average indicated in the Nexus 9 technical specifications [27]. However, the average battery
service life does not correspond to the operating time under full load with the highest
display brightness. Additionally, the 210 minutes are more than enough for every test an
engineer can perform with a test vehicle.

6.1. BATTERY CONSUMPTION ANALYSIS 65

Figure 6.1: Time dependent battery level discharge of HTCs Nexus9 tablet. The stated third-
degree polynomial function fits the measurement values in a least-squares sense.

In order to verify our measurement results and to give additional insights, the same test
was executed on a Samsung Galaxy Tab S2 tablet with an Octa-Core processor (4 x
1,9 GHz + 4 x 1,3 GHz) and 3 GB RAM operated on Android Marshmallow (6.0.1). The
battery capacity is equal to 5870 mAh and therefore less, in comparison to the HTCs 6700-
mAh [38]. All other features are turned off in order to guarantee the same test conditions.
Figure 6.2 shows the illustration of the exported measurement values. Once again the state
of charge is plotted against the time t and a least squared fitting results in the following
second-degree polynomial model for the battery consumption:

SoC = −3.590 · 10−8t2 − 3.670 · 10−3t+ 100.249.

According to this model the battery is completely discharged after approximately 373
minutes. A comparison of both battery performances shows that the battery consumption
is not entirely explainable by the Bluetooth power consumption. Furthermore, the CPU
load has an additional effect. During the measurement, the HTC device was constantly
working under a performance load between 70 % and 80 % while the Samsung device
operated under a performance load between 15 % and 20 %. This indicates that the battery
consumption is related to the computation and rendering of the graphical representation
which can be dealt with if we get a better device.

66 CHAPTER 6. ANALYSIS & USAGE

Figure 6.2: Time dependent battery level discharge of Samsungs Galaxy Tab S2 tablet. The
stated second-degree polynomial function fits the measurement values in a least-squares sense.

6.2 Bluetooth latency analysis

An important factor for real-time applications is the latency between data messages. In
the current case, CAN messages are transmitted over a Bluetooth connection. Once the
message is received, the application performs multiple calculation within the analysis scope
of this thesis. Therefore, a reasonable latency has to be predominant to ensure a sound
graphical representation. An Android mobile device has the feature to enable a Bluetooth
connection snoop process, where it logs all incoming and outgoing Bluetooth tranfer. It
can be enabled in the developer options menu of Android since version 4.4. When the
analysis process has finished populating the capture file by running the application being
tested, the file generated by Android and saved into the external storage of the device can
be analyzed. The program Wireshark was used to analyze the resulting log file. Table 6.1
provides an excerpt of the snoop file with an additional column with the time difference
(∆t) between two messages. Each row of the table contains a single message package which
was received by the Android mobile device with information about the source point, the
destination, the used protocol and the message length. Considering the whole Bluetooth
snoop file it can be calculated that the average time between messages is approximately
11 ms. However, the CAN bus is configured to transmit for each node in a 10 ms inter-
val. This means that the Bluetooth connection throughput is rather slow compared to the
CAN bus speed. If we keep in mind that CAN messages are transmitted subsequently with
regards to their identification number priority, it might be possible for a higher prioritized

6.3. STATE DETECTION ANALYSIS 67

message to block out a message with a lower priority. This means that messages with a
higher identification number may have some internal delay as well. Another abnormality,
which could not be solved yet, are some high message transmission time differences at
random times.

Time t Source Destination Protocol Length Info ∆t

[s] [Byte] [s]

83,273983 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,001239
83,275222 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,001241
83,276463 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,496287
83,77275 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,001209
83,773959 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,00126
83,775219 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,496297
84,271516 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,001191
84,272707 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,00125
84,273957 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,497145
84,771102 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,001856
84,772958 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,001069
84,774027 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,495751
85,269778 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,002013
85,271791 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,001237
85,273028 (CANlink Bluetooth) localhost () SPP 29 Rcvd UIH Channel=1 0,000855

Table 6.1: Excerpt of a Bluetooth snoop file recorded by a mobile device with additional calculated
time differences between two message packages.

As can be seen in Table 6.1 there are four rows in which the message transmission time dif-
ference is rather high with close to half a second. However, there are periods of time where
none of these occur for minutes. If we calculate an average excluding these outliers, the
resulting message transmission speed is around 1,5 ms. This is a reasonable transmission
speed and all the necessary data messages can be transfered in time before new ones are
being transmitted. Further analysis of the outlier occurrence and a possible termination
of these events need to be done in order to guarantee a delay free transmission at all time.

6.3 State detection analysis

While Section 6.1 and Section 6.2 deal with hardware and communication type analysis,
this section provides information about the quality of the state design. The available
states, which are defined in Section 5.1, are tested in multiple test cycles with the KIA
Optima test-vehicle (see Section 4.3.2). The states were designed in such a way that each
point in time refers to a specific state. Because the test-vehicle has internal states which
are calculated by the hybrid control unit (HCU), we are able to analyze the correlation
between the HCU states and the self-defined ones. However, we need to keep in mind that

68 CHAPTER 6. ANALYSIS & USAGE

the HCU determines the states based on much more signals and components because these
are specialized for this vehicle. Additionally, there are more HCU states than self-defined
states so a correct assignment has to be defined. The HCU has the following internal states
for the vehicle:

• Off

• Brake

• Boost

• Launch

• Idle

• Drive

• Coastdown

• Shutdown

However, there is a difference in some of those states if we compare them with the
application states. HCU state Brake only applies when energy is recuperated through the
braking process which is contradicting to the application state. Additionally, the brake
pedal position trigger threshold seems to be on a higher value. The HCU state Launch is
essentially a boost function to support the engine in lower revolutions per minute during
a motor start process. Therefore, this state can be regarded as a Boost state. The HCU
state Idle occurs when no gear is engaged and the engine is not turned off. The state
Drive describes normal driving without any other function being active at the same time.
Shutdown is active before the state Off is reached, which is during an engine shutdown
process.
Figure 6.3 provides a detailed connection overview of the states. On the left side the HCU
states are listed, whereas the application states are depicted on the right side. A green
link represents an exact match and a black link indicates a similar match under the right
circumstances.

Figure 6.3: Relationship between the internal HCU states and the self- defined application
states. A green link represents an exact match and a black link a similar match under certain
circumstances.

6.3. STATE DETECTION ANALYSIS 69

For example, if an application state Brake is present, the HCU state needs to be Brake
as well for a direct match of states but can also be Coastdown, Idle and Shutdown for a
similar match, but only when the signal values also meet the required restrictions. An
application Brake state can also be a HCU Coastdown state if the brake pedal position
is beyond the threshold which was defined in Section 5.1. There are exceptions for each
HCU state which make some of them appear as a similar match to an application state,
because the basis on which the HCU decides the internal states is not known. However, by
evaluating several test cycles and the connection of similar states when a certain application
state is present could be determined and is shown in Figure 6.3. The quality of matches
in all driven test cycles is listed in Table 6.2. The application state Recuperation has
no exact match on the HCU side, but around 99, 9 % similar hits with the HCU state
Idle. The misses are assigned to HCU state Launch which is most likely a delay issue
since the states are contradicting. Following the evaluation of state Brake it can be seen
that the exact match percentage of around 38 % is not as high as assumed beforehand.
However, the measurement data show that a HCU Brake state is only applied when the
brake pedal position is higher than approximately five percent, otherwise it is counted as a
Coastdown state. Since the HCU state Brake only applies when energy is recuperated, the
state Drive is chosen when no energy can be gained while driving. A combination of exact
and similar matches for the Brake state results in approximately 98, 5 %. The remaining
misses are assigned to the state Off, most likely because of the vehicle speed threshold.
The application states Coastdown and Boost have a large number of exact matches with
around 71 % and 75 %, respectively. Similar matches are accountable to the HCU states
Drive and Idle. The misses are provided by the HCU state Off where the vehicle speed
threshold (defined in the application states) is once again the error factor. It has to be set
to a higher value in order to get better matching results and to filter out the HCU states
Off and Idle. Nevertheless, the states Coastdown and Boost have matching percentages of
around 99, 8 % each. The last application state LPM has no direct match, therefore the
HCU states Drive and Idle are a valid choice for a similar hit if they recuperate energy at
that point in time. HCU states like Boost or Launch however, would result into a miss.
The match percentage of approximately 99, 9 % illustrates the quality of the definition
as well, while the misses refer to the HCU state Boost, most likely because the power
threshold for a detection is not set to the optimal value.

Recuperation Brake Coastdown Boost LPM

Exact Match [%] 0 37,84228761 70,98459801 75,17307737 0
Similar Match [%] 99,90623352 60,66408626 28,83575485 24,80892407 99,96773504
Miss [%] 0,093766482 1,49362613 0,17964714 0,01799856 0,032264965

Table 6.2: Matching percentages for each application state.

70 CHAPTER 6. ANALYSIS & USAGE

All in all, the application states are well defined and multiple test drives with the vehicle
support that claim as well. IF the brake pedal is pressed, a Brake state is provided while
the vehicle is in state Coastdown when no is pedal pressed. Table 6.2 provides matching
percentages for each state and it can be seen that the misses are exceptionally small.
Nevertheless, further improvements about the calibration of the threshold values have to
be done. In order to achieve that the tests have to be realized on multiple vehicles.

6.4 Usage

This chapter gives a short layout overview and a usage guide of the final implementation.
If the application is started, the main view is shown on the display (see Figure 6.4).

Figure 6.4: Start view of the Application. We can navigate into other activities like the cars
energy flow, a settings menu, a value diagnose view and the analysis functionality.

The user has the option to go into another activity or to connect the application to a Blue-
tooth device. Without a Bluetooth connection the graphical representation will show no
values or measurements, because no values are recorded. Once a connection is established
the whole functionality can be used. A touch event on the Analytics button triggers an
invocation of the underlying activity and its layout is being created as shown in Figure 6.5.
There are multiple options which are possible from here on. The Recuperation button leads
to functionalities with respect to gain energy through braking and coastdown. Whereas
the Performance button directs to an exact opposite scenario, because it depicts the usage
of energy while using the generator motor to support the combustion engine. The Energy
& State Analysis button displays a view which contains the graphical representation of the
energy usage over time in each considered state, as well as its distribution in total.

6.4. USAGE 71

Figure 6.5: Overview of the analysis functionality.

A touch event on Recuperation loads a set of selectable sub-layouts with different func-
tionality. The main layout shows an overview of the current driving cycle and is depicted
in Figure 6.6. The graph in the upper half of the screen indicates when it is physically
possible to recuperate energy (green area) while the white curve indicates the velocity over
time. In this case recuperation can either be a brake or a coastdown event. They are not
distinguishable by color in this view.

Figure 6.6: Recuperation layout with a previous recorded dataset.

The bottom graph shows the corresponding energy behavior if recuperation is possible.

72 CHAPTER 6. ANALYSIS & USAGE

The red area depicts the computed maximum power the vehicle could gain. The yellow
shape defines the amount of power which can be recuperated in this moment while the
magenta colored curve is counted as additional power, because the theoretical power is less
than the current power. This occurs because the vehicles surroundings, like hill slope, are
not considered while computing. For the computation of the theoretical power we basically
assume that the car is driving on a flat route without a slope. If there is a slight slope in
either direction the value is still acceptable but not entirely correct, because the change in
potential energy is not considered. The energy efficiency in total as well as separated in
brake and coast efficiency, is displayed on the top right of the layout. Below, the numerical
values to the corresponding curve over time are listed. The ON/OFF button indicates
whether a measurement experiment is ongoing at the moment or if the application is work-
ing in the offline mode.
A touch event on the text Brake or a swipe event in the top half outside the graph switches
this view to the desired layout which is shown in Figure (6.7). In this view it is possible
to analyze each brake event separately. The graph illustrates the power values for this
event over time with additional information on how the brake pedal is positioned. A gauge
on the upper right side of the layout shows the recuperation efficiency which can also be
expressed as electrical braking power relative to theoretical braking power (see Section
5.10). Respective numerical values of the harvested energy are published on the bottom
right side. With the drop-down menu another brake event can be selected and the layout
will be updated accordingly.

Figure 6.7: Representation of the energy distribution of a single brake event.

6.4. USAGE 73

Additionally, it is possible to see all brake events over time as shown in Figure 6.8. This
view is similar to Figure 6.4, but the bottom chart only shows a visualization of power
values if the car is braking. The green area in the top graph indicates that the state Brake
is active. A red gauge shows the total energy distribution over all brake events and the
green one just for the last occurring event. The same functionality can be applied to the
state Coastdown. It is possible to analyze each coast event separately or as a whole.

Figure 6.8: Representation of the energy behavior of all braking events over time.

While recuperation deals with the vehicles energy gains in multiple states, the Performance
section analyses the outgoing power consumption when using functions to support the in-
ternal combustion engine. It is separated in three different view elements. Firstly, the
driver can use the Performance test to actively measure how fast he is accelerating from a
certain start to end velocity. The velocity can either be one of the possible selections or a
manually given one. Once the start velocity is being exceeded, the measurement starts and
only ends if the end velocity is reached. While measuring, the power levels from both the
electric machine and the over all system are displayed. The power output of the electric
motor indicates how much it is supporting the acceleration process, whereas the system
power shows how much power needs to be expended to achieve the current propulsion. This
includes the change of roll- and air-resistances. Similar to the other layout it is possible to
load previously recorded performance tests.
To get further details about the boosting functionality, the user has to navigate to the
Boost view (Figure 6.9) which displays the power behavior while a boost event is active
with regard to the current velocity. It is only possible to view one event at a time. Once

74 CHAPTER 6. ANALYSIS & USAGE

a new event starts, the view is cleared and the animation begins anew. A selection option
is also available in this view and will be displayed once the measurement has ended. The
following selection of one boost list event will render the specific event onto the graphical
area. In the top right corner, the expended amount of energy is displayed for the chosen
event.

Figure 6.9: Representation of the energy behavior of a single boost event over time.

Another feasible analysis option is to look at the boost events over time. The application
activity view for this is similar to Coast over time or Brake over time, whereas the boost
state is examined in this case. The top chart in Figure 6.10 displays the velocity values
over time and indicates when a boost event is happening by drawing a red area under
the velocity curve. The bottom chart shows the power consumption with regard to the
accelerator pedal position. In this particular view the consumed energy is calculated and
shown in the top right corner.
A summary of the vehicles energy behavior is illustrated in figure 6.11. The top chart
shows the vehicles state properties for each point in time, while the bottom chart displays
a minutely measured energy distribution over the driving cycle. Each bar depicts the en-
ergy values for every hybrid function with regard to energy loss and gain. Every minute,
the application computes a summary and displays the results on top of the respective bar.
The pie chart on the right side of the layout indicates the total time distribution of hybrid
function usage.

6.4. USAGE 75

Figure 6.10: Representation of the energy behavior of all occurring boost events over time.

Figure 6.11: Representation of the energy behavior of all states and a distribution over time.

76 CHAPTER 6. ANALYSIS & USAGE

Additionally, the application is able to display data from a specific signal in the oscillator
view. Figure 6.12 displays a signal with a constant value of zero. By pressing the option
symbol in the top right corner it is possible to change the current viewed signal which
refreshes the chart. The text field on the top shows the latest value from the chosen signal,
while the start/stop button at the bottom can be used to freeze or unfreeze the chart
updates.

Figure 6.12: The oscillator view shows a chosen signal on the graph over time.

Figure 6.13 shows the engine map view which can present ICE load points and visualize
the process of load-point moving. The underlying brake specific fuel consumption map
(BSFC) indicates in which regions the ICE is working efficiently. In the green areas the
loss of energy is small, whereas the efficiency in the red area is not good. Depending on the
engine speed and the current torque given by the ICE, the load-point can be determined. It
is desirable to always operate in a green area to maximize the vehicles energy efficiency. In
order to achieve that load-point moving is used in hybrid architecture to get the optimum
energy result. In this view, the driver can monitor the load-point strategy and see changes
to it in an instant.

6.4. USAGE 77

Figure 6.13: Representation of the engine map which illustrates the engines current working
point. A green area is an optimal driving point but does not mean low fuel consumption per se.
It just indicates that the engine is working in an optimal combustion mode.

Additional features are possible with the developed options menu. It provides functionali-
ties which enables the user to store, load or export the measurement data as well as to open
a parameter view. This view contains all the calibration values which are vehicle specific
and should be specified before the test cycle begins. In case the user does not specify the
information, the application uses certain standard values.

Chapter 7

Conclusion

The main goal of this thesis was to design and implement a solution to acquire telematic
vehicle data and to transform the data to represent and analyze the energy behavior of
hybrid vehicles. In order to achieve that, a Bluetooth connection was realized between the
vehicle and the mobile device on which the graphical representation should be illustrated.
CAN messages were transmitted and transformed into usable values for further compu-
tation and state matching. The states in which a hybrid vehicle is able to operate were
designed and defined having all hybrid architectures in mind. For the selection of suitable
CAN messages and signals for the computation, a Java tool was designed and developed.
This tool is able to generate Java class files which can easily be integrated into the existing
source code of the application, making it possible to be independent of the vehicle model
or CAN specification. The computation of these states for each point in time as well as
calculations regarding the energy behavior of the vehicle were achieved online on the mo-
bile device. Suitable graphical representations as well as storage mechanism were designed
and implemented in order to fully capture the analysis feature for each hybrid state. All
operations are preformed in real-time to get the best possible result for an analysis.
The results of this thesis indicate that the desired goal was completely achieved, albeit with
certain limitations. A Bluetooth device was chosen in order to manage the communication
between the vehicle CAN bus and the mobile device. While the connection is working and
data can be transmitted and received, the latency - even if it is sufficient for the current
use-case - limits the developer on how much signals can be transmitted for a delay free
representation.
Since the CAN signals are not standardized - meaning they are not in the same message
and have not the same name and bit position on the CAN bus - and are dependent of
the hybrid vehicle structure, the developed Java tool will serve as a base for the selection
process. The visualization of CAN messages and signals makes it easy to choose the ones
needed for the computation. The exported Java class files just need to be added to the
applications source code files. This process works flawlessly, however, a limitation is the

79

80 CHAPTER 7. CONCLUSION

necessity to build the application for each vehicle. Nevertheless, with this approach it is
possible to generate a specific application with just a few clicks instead of a slow imple-
mentation process for each new vehicle.
The most important limitation lies in the fact that the application is only able to correctly
calculate the theoretical power - due to the lack of proper sensor devices - when the vehicle
is driving on a flat route without slope. If the road has any kind of slope, the theoretical
value is slightly error prone.
This thesis provides a possibility to save all measurement data on the mobile storage de-
vice. Each time new measurement data points are incoming they are persisted in the
random-access-memory (RAM) of the mobile device. In Androids latest operating system
Marshmallow an application has up to 512 Megabytes of RAM space. Since the graphical
representation and the computation consumes RAM as well, there is a limitation on how
long the measurement can be performed until the application begins to stutter because it
has to constantly reuse the memory.
As one of the additional features a post-processing algorithm, which polishes the data and
presents it after the measurement was loaded or has ended, was developed. Furthermore,
two new analysis views have been implemented to enable the user to get further informa-
tion about the vehicle. Firstly, a brake specific fuel consumption (BSFC) map analysis
was added to be able to visualize the current load point the internal combustion engine
(ICE) is operating in. Secondly, an oscillator layout was realized which makes it possible
to visualize a single signal over time.
This is the first study of a real-time investigation of hybrid vehicles energy behavior in
certain driving situations with a mobile device serving as a monitor. Although the con-
ducted tests are based on a small sample of test vehicles, the findings suggest that the
chosen design and implementation are sound and applicable, which means that an energy
behavior analysis is possible in real-time.

Chapter 8

Future work

This thesis was undertaken to design a way to acquire vehicle specific telematic data and
to transform the data for further usage in order to get a glimpse on the energy efficiency.
The results of this thesis indicate that the first steps towards an energy analysis for hybrid
vehicles are achievable on a mobile android device. However, there are several topics aris-
ing from this work which should be pursued for future improvements.
Firstly, the thesis was realized with a Bluetooth connection as the main communication
protocol. Additionally, a completed Bluetooth device was used to provide the CAN bus
communication. For future use-cases and to reduce the material costs and hardware di-
mensions, it may be good to design and manufacture an own communication device as
well as investigate its transmission latency. In order to reduce the battery consumption
of the mobile device, a connection with Bluetooth low energy might be worth consider-
ing. Secondly, there is room for improvements in the smoothing algorithms. Only basic
smoothing algorithms were implemented which run on the mobile device. If they would
compute on a micro-controller chip, the mobile device could reduce the performance load
which would be an obvious improvement. The smoothing algorithms could also be replaced
with more complex ones if they would be computing externally. Thirdly, the computation
of the theoretical energy disparity between two points in time is not optimal yet. It was
assumed that the vehicle is always moving on a route without any slope. Therefore, the
calculated energy is error prone in cases where the vehicle is running up- or downhill. An
improvement would be the use of a gyro sensor with which it is possible to detect rotational
motion as well as changes in orientation. With this additional information about the slope
and the orientation of the vehicle, it would be possible to better calculate the theoretical
energy. Another research area which might be of interest is the usage of Java 8, which
is supported with the upcoming Android operating system "Nougat". With the help of
lambda expressions and the concept of streams, a performance increase might be possible.
Lastly, with the upcoming trend of integrating Android Auto into new vehicles, there is
a possibility to integrate the application into that concept as well. The representation is

81

82 CHAPTER 8. FUTURE WORK

then done on the integrated monitor, but the system would have an in-build mechanism to
receive CAN messages over cable rather than using a network communication. This would
prevent the latency issues. Another positive factor would be the internal storage of the
data which is not needed on the mobile device anymore.
All in all the application design and implementation is working as intended with some
restrictions which were already stated. Future work can give some improvements for the
benefit of the current state of the application making it an even better tool to efficiently
analyze the energy behavior and other components of a hybrid vehicle.

Appendix A

Additional code

1 pr i va t e s t a t i c double [] pa s ca l (i n t l i n e) {
2 i n t l i n e s = l i n e ;
3 // I n i t i a l i s i n g the f i r s t l i n e o f the pasca l t r i a n g l e
4 Big Intege r [] l i n e_be fo r e = new Big Intege r [2] ;
5 l i n e_be fo r e [0] = Big Intege r . valueOf (1) ;
6 l i n e_be fo r e [1] = Big Intege r . valueOf (1) ;
7 //Loop over a l l l i n e s s t a r t i n g from the second one
8 f o r (i n t i = 2 ; i < l i n e s ; ++i) {
9 Big Intege r [] l i n e_cur rent = new Big Intege r [i + 1] ;

10 //The l e f t s i d e and r i gh t s i d e o f the t r i a n g l e i s always one
11 l i n e_cur rent [0] = Big Intege r . valueOf (1) ;
12 l i n e_cur rent [l i ne_cur rent . l ength − 1] = Big Intege r . valueOf (1) ;
13 // I t e r a t e over a l l e lements in the prev ious l i n e and sum up neighbours
14 f o r (i n t j = 1 ; j < (l ine_cur rent . l ength − 1) ; ++j) {
15 l i n e_cur rent [j] = Big Intege r .ZERO;
16 l i n e_cur rent [j] = l ine_cur rent [j] . add (l i n e_be fo r e [j − 1]) . add (
17 l i n e_be fo r e [j]) ;
18 }
19 // Set the cur rent l i n e as the o ld l i n e f o r the next loop r e p e t i t i o n
20 l i n e_be fo r e = l ine_cur rent ;
21 }
22 // Ca l cu l a t i on o f the weights , sum of each element has to equal one
23 double [] r e s u l t = new double [l i n e_be fo r e . l ength] ;
24 f o r (i n t i = 0 ; i < r e s u l t . l ength ; i++) {
25 r e s u l t [i] = l i n e_be fo r e [i] . doubleValue () / Math . pow(2 , l i n e − 1) ;
26 }
27 re turn r e s u l t ;
28 }

Listing A.1: Algorithm implementation to get the weighting values for the binominal smoothing
algorithm. Computes the values with the help of the Pascal’s triangle formulation. The summation
of all weights have to be one.

83

84 APPENDIX A. ADDITIONAL CODE

1 @Override
2 protec ted Boolean doInBackground (Void . . . params) {
3 t ry {
4 //Get the l i s t where a l l s t a t e s are p e r s i s t e d
5 List<Float> dataState = DataObject . g e t In s tance () . g e tS ta t e s () ;
6 StateEvent event ;
7 i n t s i z e = dataState . s i z e () ;
8

9 //Loop over a l l s t a t e e lements
10 f o r (i n t i = 0 ; i < s i z e −1; i++) {
11 // State i
12 f l o a t s = dataState . get (i) ;
13 // State i+1
14 f l o a t s1 = dataState . get (i + 1) ;
15 // I f s t a t e s are the same , we are in the same event
16 i f (s == s1) {
17 i f (s t a r t) {
18 startTimeIndex = i ;
19 s t a r t = f a l s e ;
20 } e l s e {
21 endTimeIndex = i ;
22 }
23 //Once the s t a t e i i s not equal with s t a t e i+1 the event ended
24 } e l s e {
25 endTimeIndex = i ;
26 s t a r t = true ;
27 // Creat ing a corre spond ing event ob j e c t r egard ing the s t a t e
28 i f (s == 0 .0 f) {
29 event = new NotMatched (startTimeIndex , endTimeIndex) ;
30 noneEvents . add (event) ;
31 } e l s e i f (s == 1 .0 f) {
32 event = new Recu (startTimeIndex , endTimeIndex) ;
33 recuEvents . add (event) ;
34 } e l s e i f (s == 2 .0 f) {
35 event = new Brake (startTimeIndex , endTimeIndex) ;
36 brakeEvents . add (event) ;
37 } e l s e i f (s == 3 .0 f) {
38 event = new Coast (startTimeIndex , endTimeIndex) ;
39 coastEvents . add (event) ;
40 } e l s e i f (s == 4 .0 f) {
41 event = new Boost (startTimeIndex , endTimeIndex) ;
42 boostEvents . add (event) ;
43 } e l s e i f (s == 5 .0 f) {
44 event = new LPM(startTimeIndex , endTimeIndex) ;
45 lpmEvents . add (event) ;
46 }
47 }

85

48 }
49 //Populate the DataAnalys isObject with a l l the computed events
50 DataAnalys isObject dataStateObject = DataAnalys isObject . g e t In s tance () ;
51 dataStateObject . setNoneEventList (noneEvents) ;
52 dataStateObject . setRecuEventList (recuEvents) ;
53 dataStateObject . setBrakeEventList (brakeEvents) ;
54 dataStateObject . se tCoastEventLi s t (coastEvents) ;
55 dataStateObject . se tBoostEventLi s t (boostEvents) ;
56 dataStateObject . setLPMEventList (lpmEvents) ;
57 re turn true ;
58 } catch (Exception e) {
59 . . .
60 re turn f a l s e ;
61 }
62 }

Listing A.2: Post-processing algorithm which computes the start- and end-time of an event as
well as stores them in the corresponding state object.

1 pub l i c void setValuesWithKey (St r ing key , byte [] msgData) {
2 //Get the data ob j e c t which r e f e r s to the s i g n a l name hashtag key
3 CAN_Data data = canState . get (key) ;
4 //Get LSB
5 in t l sb = data . g e tB i tPo s i t i on () ;
6 //Compute MSB
7 in t msb = getMSBbitFromSignal (l sb , data . b i t s i z e) ;
8 i n t numberOfBytes ;
9 i n t byteOffsetMSB = getByteOffsetMSB (msb) ;

10 i n t s tar tByte = data . getByteOf f se t () ;
11 i n t b i tO f f s e t = data . g e tB i tO f f s e t () ;
12 i n t msbBitOffset = msb % 8 ;
13
14 double r e su l tVa lue = 0 ;
15 //Goto case with matches the nubmer o f bytes o f the s i g n a l s p e c i f i c a t i o n
16 numberOfBytes = Math . abs(−1 ∗ (s tar tByte + 1) + (getByteOffsetMSB (msb))) ;
17 switch (numberOfBytes) {
18 case 1 :
19 //Function ge tB i t s () computs the value f o r one bit , g iven a mask and a b i t o f f s e t
20 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte ,
21 data . getBitMaskForLessThan8Bit (f a l s e) , b i tO f f s e t +1) ;
22 break ;
23 case 2 :
24 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB , getBiskMaskForMSB(msb) , 1)
25 ∗ Math . pow(2 , r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) ;
26 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte , data . getBitMaskLSB () , b i tO f f s e t +1) ;
27 break ;
28 case 3 :
29 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB , getBiskMaskForMSB(msb) , 1)
30 ∗ Math . pow(2 , r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) ;
31 //Remaining s i z e i s 8 b i t s sho r t e r now , s i n c e we a l ready got the value f o r the f i r s t byte
32 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 1 , 0xFF , 1)
33 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 8) ;
34 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte , data . getBitMaskLSB () , b i tO f f s e t +1) ;
35 break ;
36 case 4 :
37 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB , getBiskMaskForMSB(msb) , 1)
38 ∗ Math . pow(2 , r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) ;
39 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 1 , 0xFF , 1)
40 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 8) ;
41 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 2 , 0xFF , 1)
42 //Remaining s i z e i s 16 b i t s sho r t e r now , s i n c e we a l ready got the value f o r the f i r s t two

bytes
43 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 16) ;
44 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte , data . getBitMaskLSB () , b i tO f f s e t +1) ;
45 break ;

86 APPENDIX A. ADDITIONAL CODE

46 case 5 :
47 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB , getBiskMaskForMSB(msb) , 1)
48 ∗ Math . pow(2 , r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) ;
49 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 1 , 0xFF , 1)
50 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 8) ;
51 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 2 , 0xFF , 1)
52 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 16) ;
53 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 3 , 0xFF , 1)
54 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 24) ;
55 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte , data . getBitMaskLSB () , b i tO f f s e t +1) ;
56 break ;
57 case 6 :
58 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB , getBiskMaskForMSB(msb) , 1)
59 ∗ Math . pow(2 , r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) ;
60 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 1 , 0xFF , 1)
61 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 8) ;
62 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 2 , 0xFF , 1)
63 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 16) ;
64 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 3 , 0xFF , 1)
65 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 24) ;
66 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 4 , 0xFF , 1)
67 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 32) ;
68 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte , data . getBitMaskLSB () , b i tO f f s e t +1) ;
69 break ;
70 case 7 :
71 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB , getBiskMaskForMSB(msb) , 1)
72 ∗ Math . pow(2 , r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) ;
73 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 1 , 0xFF , 1)
74 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 8) ;
75 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 2 , 0xFF , 1)
76 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 16) ;
77 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 3 , 0xFF , 1)
78 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 24) ;
79 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 4 , 0xFF , 1)
80 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 32) ;
81 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 5 , 0xFF , 1)
82 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 40) ;
83 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte , data . getBitMaskLSB () , b i tO f f s e +1) ;
84 break ;
85 case 8 :
86 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB , getBiskMaskForMSB(msb) , 1)
87 ∗ Math . pow(2 , r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) ;
88 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 1 , 0xFF , 1)
89 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 8) ;
90 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 2 , 0xFF , 1)
91 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 16) ;
92 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 3 , 0xFF , 1)
93 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 24) ;
94 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 4 , 0xFF , 1)
95 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 32) ;
96 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 5 , 0xFF , 1)
97 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 40) ;
98 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , byteOffsetMSB + 6 , 0xFF , 1)
99 ∗ Math . pow(2 , (r ema in ingB i t s i z e (msbBitOffset , data . g e tB i tS i z e ())) − 48) ;

100 r e su l tVa lue += ByteCommand . ge tB i t s (msgData , 1 , startByte , data . getBitMaskLSB () , b i tO f f s e t +1) ;
101 break ;
102 de f au l t :
103 break ;
104 }
105 // Se t t ing the value to the CAN_Data ob j e c t
106 data . setValue ((i n t) r e su l tVa lue) ;
107 }

Listing A.3: Transforming of the raw data field into an usable value which is then stored into
the corresponding CAN_Data object.

List of Figures

4.1 CAN 2.0A . 11

4.2 CAN 2.0A . 11

4.3 RM CANlink Bluetooth device . 13

4.4 E-Drive Configurations . 16

4.5 Micro hybrid overview . 18

4.6 Micro hybrid operating modes . 19

4.7 Mild hybrid overview . 20

4.8 Mild hybrid operating modes . 20

4.9 Full hybrid overview . 21

4.10 Full hybrid operating modes . 22

4.11 Plug-in hybrid overview . 23

4.12 Plug-in hybrid operating modes . 24

4.13 KIA Optima test-vehicle . 24

4.14 KIA Hybrid Architecture . 25

5.1 Class diagramm overview of the communication structure 28

5.2 Class diagramm overview of the layout structure 30

5.3 Communication overview . 34

5.4 CANlink Bluetooth Transmit message frame specification 35

5.5 SignalTool overview . 36

5.6 Canalyzer configuration example . 44

5.7 Greenrobot EventBus architecture overview 47

5.8 PulseListenerEvent overview . 48

5.9 UML specification of the state classes . 55

5.10 Overview of the analysis object . 56

5.11 Overview of the measurement data object 57

6.1 Battery Analysis Nexus9 . 65

6.2 Battery Analysis Samsung Galaxy Tab S2 66

6.3 Relationship between HCU states and defined states 68

87

88 LIST OF FIGURES

6.4 Main View . 70
6.5 Analytics Main View . 71
6.6 Recuperation View . 71
6.7 Brake View . 72
6.8 Brake over time View . 73
6.9 Boost View . 74
6.10 Boost over time View . 75
6.11 Energy View . 75
6.12 Oscillator View . 76
6.13 Engine map View . 77

List of listings

Listing 5.1 – Specifying signal values into StatusMonitor 37

Listing 5.2 – SetCanDataSignals excerpt. 38

Listing 5.3 – Enable Bluetooth . 39

Listing 5.4 – Get all paired devices. 39

Listing 5.5 – Thread connection attempt. 39

Listing 5.6 – Start the ConnectThread. 40

Listing 5.7 – ConnectedThread overview. 41

Listing 5.8 – Start ConnectedThread. 42

Listing 5.9 – MSB computation function. 43

Listing 5.10 – Compute function for a single byte. 43

Listing 5.11 – PulseListener object. 45

Listing 5.12 – Function which is resposible for the state computation. 46

Listing 5.13 – EventBus registration. 47

Listing 5.14 – EventBus subscription. 48

Listing 5.15 – EventBus threading modes. 48

Listing 5.16 – EventBus event publishing 49

Listing 5.17 – Moving average smoothing implementation. 50

Listing 5.18 – Moving average smoothing example.. 51

Listing 5.19 – Exponential smoothing implementation. 53

Listing 5.20 – Exponential smoothing example. 53

Listing 5.21 – Binomial smoothing implementation. 54

Listing 5.22 – Binomial smoothing example. 55

Listing 5.23 – EventBus background subscription for DataObject.. 58

Listing 5.24 – XML chart definition. 59

Listing 5.25 – Chart retrieval inside the Activity 59

Listing 5.26 – Chart data creation and updating. 59

Listing 5.27 – Moving the charts viewport. 60

Listing 6.1 – Sets up a BroadcastReceiver to listen for incoming battery changes. . 64

Listing A.1 – Binomial weighting algorithm 83

Listing A.2 – Post-processing algorithm 84

89

90 LIST OF LISTINGS

Listing A.3 – Transformation algorithm 85

Bibliography

[1] Al-Ani, Tarik: Android In-Vehicle Infotainment System (AIVI). Master’s thesis,
University of Otago, Dunedin, New Zealand, 2011.

[2] Android: Android Interfaces and Architecture. https://source.android.com/

devices/. [last visit 21.07.2016].

[3] Android Developers: Handler. https://developer.android.com/reference/

android/os/Handler.html. [last visit 07.08.2016].

[4] Aubury, Matthew and Wayne Luk: Binomial Filters. Journal of VLSI Signal
Processing, 12(1):35–50, 1996.

[5] Austin-Morgan, Tom: Schaeffler’s E-Clutch system can cut fuel consumption by
up to 8 %. http://www.eurekamagazine.co.uk/design-engineering-news/

schaefflers-e-clutch-system-can-cut-fuel-consumption-by-up-to-8/

116864/. [last visit 12.08.2016].

[6] Bagschik, Peter: An Introduction to CAN. http://dmi.uib.es/~jantich/

Documentos/CAN.pdf, 2000.

[7] Bayrak, Alparslan: Topology Considerations in Hybrid Eletric Vehicle Powertrain
Architecture Design. PhD thesis, University of Michigan, USA, 2015.

[8] Beckhoff Automation GmbH & Co. KG: CANopen Verkabelung.
http://infosys.beckhoff.com/index.php?content=../content/1031/bk51x0/

html/co_inswirbus.htm&id=. [last visit 21.07.2016].

[9] Berman, Brad: History of Hybrid Vehicles. http://www.hybridcars.com/

history-of-hybrid-vehicles/, 2011.

[10] Bluetooth SIG, Inc.: Bluetooth core specification. https://www.bluetooth.com/
specifications/bluetooth-core-specification. [last visit 20.07.2016].

[11] Brahmachari, Ruprekha: Hybrid Cars, Presentation, 9th Indo-German Winter
Academy, Pune, India, 2010.

91

https://source.android.com/devices/
https://source.android.com/devices/
https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/android/os/Handler.html
http://www.eurekamagazine.co.uk/design-engineering-news/schaefflers-e-clutch-system-can-cut-fuel-consumption-by-up-to-8/116864/
http://www.eurekamagazine.co.uk/design-engineering-news/schaefflers-e-clutch-system-can-cut-fuel-consumption-by-up-to-8/116864/
http://www.eurekamagazine.co.uk/design-engineering-news/schaefflers-e-clutch-system-can-cut-fuel-consumption-by-up-to-8/116864/
http://dmi.uib.es/~jantich/Documentos/CAN.pdf
http://dmi.uib.es/~jantich/Documentos/CAN.pdf
http://infosys.beckhoff.com/index.php?content=../content/1031/bk51x0/html/co_inswirbus.htm&id=
http://infosys.beckhoff.com/index.php?content=../content/1031/bk51x0/html/co_inswirbus.htm&id=
http://www.hybridcars.com/history-of-hybrid-vehicles/
http://www.hybridcars.com/history-of-hybrid-vehicles/
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

92 BIBLIOGRAPHY

[12] Ceřovský, Zdeněk and Pavel Mindl: Hybrid Electric Cars, Combustion Engine
Driven Cars and their Impact on Environment. In International Symposium on Power
Electronics, Electrical Drives, Automation and Motion. SPEEDAM 2008, pages 739–
743, Ischia, Italy, 2008.

[13] CONTINENTAL AG: Grafik electrification. http://www.

continental-automotive.de/www/download/automotive_de_de/themes/

passenger_cars/powertrain/grafik_electrification.pdf. [last visit 11.07.2016].

[14] Corrigan, Steve: Introduction to the Controller Area Network (CAN), Application
Report, Texas Instruments, 2008.

[15] DOK-ING Ltd.: MyHMI. http://www.dok-ing.hr/solutions/myhmi. [last visit
03.08.2016].

[16] DPA: Motor ausschalten bei Rot - Kurzer Dreh hilft Spritsparen. http://www.n24.

de/n24/Nachrichten/Auto-Verkehr/d/496454/kurzer-dreh-hilft-spritsparen.

html, 2008.

[17] Ehsani, Mehrdad, Yimin Gao and Ali Emadi: Modern Electric, Hybrid Electric,
and Fuel Cell Vehicles - Fundamentals, Theory, and Design. CRC Press, Boca Raton,
Florida, USA, 2nd edition, 2009.

[18] Ehsani, Mehrdad, Yimin Gao and John M. Miller: Hybrid Electric Vehicles:
Architecture and Motor Drives. Proceedings of the IEEE, 95(4):719–728, 2007.

[19] Fischer, Olga, Oskar Kaplun, Thilo Schumann, Holger Zeltwanger and
Reiner Zitzmann: CAN dictionary. Keywords, Technical terms, Standards. Nurem-
berg, Germany, 8th edition, 2015.

[20] Göhner, Peter: CAN-Bus, Unterlagen zur Vorlesung Automatisierungstechnik I,
Universität Stuttgart, Germany, 2014.

[21] Google Inc.: Android Auto. https://developer.android.com/auto/index.html.
[last visit 12.08.2016].

[22] Görke, Daniel: Grundlagen der Hybridfahrzeuge. In Untersuchungen zur kraftstof-
foptimalen Betriebsweise von Parallelhybridfahrzeugen und darauf basierende Ausle-
gung regelbasierter Betriebsstrategien, pages 5–13. Springer Fachmedien Wiesbaden,
2016.

[23] greenrobot: greenrobot EventBus Documentation. http://greenrobot.org/

eventbus/documentation/. [last visit 29.07.2016].

http://www.continental-automotive.de/www/download/automotive_de_de/themes/passenger_cars/powertrain/grafik_electrification.pdf
http://www.continental-automotive.de/www/download/automotive_de_de/themes/passenger_cars/powertrain/grafik_electrification.pdf
http://www.continental-automotive.de/www/download/automotive_de_de/themes/passenger_cars/powertrain/grafik_electrification.pdf
http://www.dok-ing.hr/solutions/myhmi
http://www.n24.de/n24/Nachrichten/Auto-Verkehr/d/496454/kurzer-dreh-hilft-spritsparen.html
http://www.n24.de/n24/Nachrichten/Auto-Verkehr/d/496454/kurzer-dreh-hilft-spritsparen.html
http://www.n24.de/n24/Nachrichten/Auto-Verkehr/d/496454/kurzer-dreh-hilft-spritsparen.html
https://developer.android.com/auto/index.html
http://greenrobot.org/eventbus/documentation/
http://greenrobot.org/eventbus/documentation/

BIBLIOGRAPHY 93

[24] Hackmann, W.: Electrical Traction Drives: HEV E-Drive Development and Prod-
ucts, Presentation Continental AG, Gifhorn, 29.11.2012.

[25] Hawkins, Ian: Torque. https://torque-bhp.com/wiki/Main_Page. [last visit
03.08.2016].

[26] Hofman, Theo and Roell van Druten: Energy Analysis of Hybrid Vehicle Pow-
ertrains. IEEE Vehicle Power and Propulsion, 2004.

[27] HTC Corporation: Google Nexus 9 - Technische Daten. http://www.htc.com/de/
tablets/nexus-9/. [last visit 05.08.2016].

[28] Infinion Technologies Inc.: CAN - Controller Area Network Tutorial. http:

//microcontroller.com/learn-embedded/CAN1_sie/CAN1big.htm, 1999.

[29] Jahoda, Philipp: MPAndroidChart. https://github.com/PhilJay/

MPAndroidChart. [last visit 22.07.2016].

[30] Junginger, Markus: greenrobot EventBus. https://github.com/greenrobot/

EventBus. [last visit 29.07.2016].

[31] Mayer, Eugen: Serielle Bussysteme im Automobil - Teil 1:Architektur, Aufgaben
und Vorteile. Elektronik automotive, 7:70–73, 2006.

[32] Nau, Robert: Forecasting with moving averages. http://people.duke.edu/~rnau/
Notes_on_forecasting_with_moving_averages--Robert_Nau.pdf, Fuqua School of
Business, Duke University, North Carolina, USA, 2014.

[33] Osch, M. J. P. van and Scott A. Smolka: Finite-State Analysis of the CAN
Bus Protocol. In The 6th IEEE International Symposium on High-Assurance Systems
Engineering: Special Topic: Impact of Networking, pages 42–52, Washington, DC,
USA, 2001.

[34] Pawlan, Monica: Reference Objects and Garbage Collection. http://www.pawlan.
com/monica/articles/refobjs/. [last visit 04.08.2016].

[35] Premkumar, Samuel: The Future Of Automobile. http://www.slideshare.net/

spkingsley/the-future-of-automobile, 2010.

[36] RM Michaelides Software & Elektronik GmbH: Hardware Manual - RM
CANlink Bluetooth 2xxx, Fulda, Germany, 2006.

[37] Robert Bosch GmbH: CAN Specification Version 2.0, Stuttgart, Germany, 1991.

[38] Samsung Electronics: Benutzerhandbuch SM-T710 SM-T810, version 1.0, 2016.

https://torque-bhp.com/wiki/Main_Page
http://www.htc.com/de/tablets/nexus-9/
http://www.htc.com/de/tablets/nexus-9/
http://microcontroller.com/learn-embedded/CAN1_sie/CAN1big.htm
http://microcontroller.com/learn-embedded/CAN1_sie/CAN1big.htm
https://github.com/PhilJay/MPAndroidChart
https://github.com/PhilJay/MPAndroidChart
https://github.com/greenrobot/EventBus
https://github.com/greenrobot/EventBus
http://people.duke.edu/~rnau/Notes_on_forecasting_with_moving_averages--Robert_Nau.pdf
http://people.duke.edu/~rnau/Notes_on_forecasting_with_moving_averages--Robert_Nau.pdf
http://www.pawlan.com/monica/articles/refobjs/
http://www.pawlan.com/monica/articles/refobjs/
http://www.slideshare.net/spkingsley/the-future-of-automobile
http://www.slideshare.net/spkingsley/the-future-of-automobile

94 BIBLIOGRAPHY

[39] Spelta, Cristiano, Vincenzo Manzoni, Andrea Corti, Andrea Goggi and
Sergio Matteo Savaresi: Smartphone-Based Vehicle-to-Driver/Environment In-
teraction System for Motorcycles. IEEE Embedded Systems Letters, 2(2):39–42, 2010.

[40] Sponås, Jon Gunnar: Things you should know about Blue-
tooth range. http://blog.nordicsemi.com/getconnected/

things-you-should-know-about-bluetooth-range. [last visit 20.07.2016].

[41] Tahat, Ashraf, Ahmad Said, Fouad Jaouni and Waleed Qadamani: Android-
Based Universal Vehicle Diagnostic and Tracking System. In 2012 IEEE 16th Inter-
national Symposium on Consumer Electronics (ISCE), pages 137–143, 2012.

[42] Techotopia: An Overview of the Android Architecture. http://www.

techotopia.com/index.php/An_Overview_of_the_Android_Architecture. [last
visit 21.07.2016].

[43] US Environmental Protection Agency: Sources of Greenhouse Gas Emis-
sions. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
[last visit 08.07.2016].

[44] Vargas, Octavio: eMobility – Passing the baton from fossils to electrons, Presenta-
tion, Schaeffler Symposium 2014.

[45] Yi, Won-Jae, Weidi Jia and Jafar Saniie: Mobile Sensor Data Collector us-
ing Android Smartphone. In 2012 IEEE 55th International Midwest Symposium on
Circuits and Systems (MWSCAS), 2012.

[46] Zaldivar, Jorge, Carlos T. Calafate, Juan Carlos Cano and Pietro Man-

zoni: Providing Accident Detection in Vehicular Networks Through OBD-II Devices
and Android-Based Smartphones. In 2011 IEEE 36th Conference on Local Computer
Networks, 2011.

http://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
http://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

ERKLÄRUNG 95

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kennt-
lich gemacht habe.

Dortmund, den August 16, 2016

Thomas Richter

	Definition of Terms
	Introduction
	Description of the studied problem
	Structure

	Aims and objectives
	Related research and state of the art
	Fundamentals
	CAN bus
	CAN protocol layers
	CAN frames

	Bluetooth
	RM CANlink Bluetooth

	Hybrid vehicles
	E-Drive Configurations
	Hybrid Levels

	Android

	Design & Implementation
	State Definition
	Network device & connection protocol
	Message & signal selection
	Bluetooth connection
	Transforming raw CAN data
	Computing states & dispatch analysis event
	Post-processing and data smoothing
	Moving average smoothing
	Exponential smoothing
	Binomial smoothing
	Event post-processing

	Data storage & persistence
	Chart API & visualization
	Theoretical energy consideration

	Analysis & Usage
	Battery consumption analysis
	Bluetooth latency analysis
	State detection analysis
	Usage

	Conclusion
	Future work
	Additional code
	List of figures
	List of listings
	Bibliography
	Declaration

