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Abstract—The optimization of learning has always been of
particular concern for big data analytics. However, the ongoing
integration of machine learning models into everyday life also
demand the evaluation to be extremely fast and in real-time.
Moreover, in the Internet of Things, the computing facilities that
run the learned model are restricted. Hence, the implementation
of the model application must take the characteristics of the
executing platform into account Although there exist some
heuristics that optimize the code, principled approaches for fast
execution of learned models are rare. In this paper, we introduce
a method that optimizes the execution of Decision Trees (DT).
Decision Trees form the basis of many ensemble methods, such
as Random Forests (RF) or Extremely Randomized Trees (ET).
For these methods to work best, trees should be as large as
possible. This challenges the data and the instruction cache
of modern CPUs and thus demand a more careful memory
layout. Based on a probabilistic view of decision tree execution,
we optimize the two most common implementation schemes of
decision trees. We discuss the advantages and disadvantages of
both implementations and present a theoretically well-founded
memory layout which maximizes locality during execution in both
cases. The method is applied to three computer architectures,
namely ARM (RISC), PPC (Extended RISC) and Intel (CISC)
and is automatically adopted to the specific architecture by a
code generator. We perform over 1800 experiments on several
real-world data sets and report an average speed-up of 2 to
4 across all three architectures by using the proposed memory
layout. Moreover, we find that our implementation outperforms
sklearn, which was used to train the models by a factor of
1500.

Index Terms—random forest, decision trees, caching, computer
architecture

I. INTRODUCTION

Data collection has become ubiquitous in the Internet of
Things, where sensors and restricted computing facilities are
embedded into various physical objects [1]. A plentitude of
such devices gathers data. Since the devices are most often
restricted in their energy, communication and computation
resources, data is transmitted to a larger computer or a
computing cloud for analysis. The learned model is then sent
back to the local device which applies it in order to deliver
a certain service such as, e.g., monitoring. In general, for
detecting a particular event, the stream of sensor measurements
is classified. This requires the learned model to be efficiently
executed at a resource-restricted device in real-time. Where
efficient learning has always been in the focus of research,

the demand to investigate the efficient application of learned
models has emerged only recently.

In general, tree ensembles are often referred to as one of
the best black-box methods available, because they offer high
accuracy with only a few parameters to tune [2], [3]. They are
among the most efficient methods available for model training,
but are not considered to be fast application-wise. Recently,
applications of DTs for information retrieval in real time have
pushed the issue of efficient traversal of ensembles of DTs
forward [4]. We take that approach further by explicitly taking
hardware architecture into account.

Where machine learning research has focused for a long
time on purely algorithmic properties, the borderline between
implementational details and algorithmic contributions has be-
come blurred. In an extensive study of unsupervised methods,
the impact of particular implementations, frameworks, pro-
gramming languages and libraries on the runtime performance
has been shown [5]. Particularly for runtime considerations, it
has been stated that caching behaviour determines the perfor-
mance of implemented algorithms even more than algorithmic
differences [6]. Taking into account the hardware architecture
is discussed in blogs1, but formal analysis and empirical
investigations are rare. A principled account of memory layout
for the real-time evaluation of DTs is still missing.

Real-time application of tree ensembles such as Random
Forests (RF) has become important in many domains, e.g.,
real-time classification of celestial objects in astrophysics [7],
real-time pedestrian detection [8], real-time 3D face analy-
sis [9], real-time classification of noise signals [10], nano-
partical sensors [11], etc. Hence, optimization for efficient
execution of the learned models becomes important.
Our Contributions: Instead of applying ad-hoc optimizations
and application specific enhancements to the execution of
tree ensembles, we aim for offering a principled approach.
A code generator should automatically adapt to particular
parameters of the computer’s memory and produce optimized
code segments that take the instruction and/or data cache into
consideration. Thus,we make the following contributions:
• Architecture and model awareness: We introduce a

probabilistic view of DT model execution in CPUs.

1see, e.g., https://code.facebook.com/posts/975025089299409/evaluating-
boosted-decision-trees-for-billions-of-users/



• Model-aware memory layout: We introduce a theoret-
ically well-founded memory layout for DTs maximizing
locality during execution based on the probabilistic view.

• Code generator: We present a code-generator, which
exploits the theoretical insights for generating fast im-
plementations of a given tree ensemble.

• Empirical evaluation: We perform a total of 1800 ex-
periments across 3 different computer architectures and
show that our implementation offers a speed-up factor
from 2 − 4 on average without changing the prediction
accuracy of the model.

The rest of the paper is organized as the following. We
recapture tree ensembles and present a probabilistic view of
DT execution in Section II. Then, we introduce the locality
concept of memory hierarchies (Section III). Section IV dis-
cusses related work. We propose an implementation that makes
good use of cache memories in Section V. Section VI presents
experiments on 12 data-sets across three different computer
architectures for different tree depths. Section VII concludes
the paper.

II. DECISION TREES AND RANDOM FORESTS

We consider supervised learning problems, in which we
infer a model f̂ : Rd → Y from labelled training data
{(~xi, yi)|i = 1, . . . , N} to predict the value f̂(~x) of new,
unseen observations. For Y = R we have a regression
problem, for Y = {0, 1, . . . } we have a classification problem.
Tree ensembles train a set of individual trees and combine
their predictions to establish a joint model. In the classical
Random Forest (RF) approach by Breiman [12], a set of K
DTs are trained using different samples of input features. In
the literature, other RFs variations have been explored, such
as those that train trees on samples of data (bagging) [13] or
those that randomly generate trees without training at all [14].

It is common to all these methods, that they use tree-
structured predictors as base learners and that they inject
some form of randomness into the training. In the theoretical
analysis of these methods, we often encounter the fact, that
base learners should be as large as possible:

Breiman has shown that bagging in general, and Random
Forest specifically, reduce the variance of a biased learner
[15]. Thus, for optimal performance, individual trees should
minimize the bias error, which implies that they should not be
restricted in size. In [16], Breiman extended his formal argu-
ment by empirical support. More recent theoretical analysis of
RFs such as [17]–[20] consistently support Breimans original
claim, that trees should be as large as possible. In short,
recommendations for the optimal tree height range between
O(logN) and O(N), both, from a theoretical and empirical
perspective. This makes RF fundamentally different from other
ensemble learners such as Boosting [21], where the size of
individual base learners are restricted to reduce over-fitting.
When we wish to apply RFs, we need to keep in mind, that
individual trees are usually large.

A. A probabilistic view of DT execution

Our goal is to analyze the probability to perform a certain
comparison while traversing a DT. Based on this analysis, we
can decide for each tree, which implementation and which
data layout is the best. Our notation is the following: Each
node receives a unique identifier (e.g. in breath-first order) i.
We denote the left child of i with l(i) and the right child with
r(i). Let M denote the number of leaves in a DT. Since each
leaf has a unique path from the root of the DT, there are M
different paths from the root node to the leaves. Every node in
the tree stores information about the feature, as well as a split-
value against which the feature is compared to (split-point).
Additionally, every leaf node stores its associated prediction
(i.e., 0 or 1).

To classify a sample ~x, we begin to traverse the tree starting
by its root node and follow the children according to the
comparisons at each node until we hit a leaf node. Then, we
return the associated prediction value of the leaf node. Every
observation takes exactly one path π(~x) from the root node to
one leaf. To lighten the notation, we drop the argument ~x, if
we are not interested in the path of a specific observation.

Following the probabilistic view of DT execution in [22], we
model each comparison at node i as a Bernoulli experiment
in which we will take the path towards the left child with
probability p(i → l(i)) and respectively for the right child
with p(i → r(i)). It holds that p(i → l(i)) = 1 − p(i →
r(i)). An example can be found in Figure 1. Note, that the
probabilities p(i → l(i)) and p(i → r(i)) can be estimated
during training by counting the number of samples at each
node i taking the left and right path. Assume a path of length
L with π = (i1, i2, . . . , iL), where ij+1 is either the left or the
right child of the jth node on the path. Then, following this
path consists of a series of Bernoulli experiments each with
probability p(ij → ij+1). Let P denote the set of all paths in
the tree. Then the probability to take path π ∈ P is given by

p(π) = p(i0 → i1) · . . . · p(iL−1 → iL) =

L∏
j=0

p(ij → ij+1)

Again, let i be a node, then there is exactly one path π =
(0, . . . , i) ending in node i. We call the probability of the path
leading to node i the probability of that node,that is p(i) =
p((0, . . . , i)). Let T be the set of all nodes in the tree, then
we define the probability for every subset of nodes T ⊆ T as:

p(T ) =
∑
i∈T

p(i)

B. Problem Definition

In this paper, we consider the performance optimization
for executing a given ensemble model, e.g. a Random Forest
with the probabilistic information of its DTs. We automatically
exploit the parameters of the computer’s memory and produce
optimized code segments that take the instruction and/or data
cache into consideration. We assume the quality of the learned
model to be satisfactory and do not change it.



0

2

6

1211

0.15 0.85

5

109

0.1 0.9

0.2 0.8

1

43

87

0.25 0.75

0.4 0.6

0.3 0.7

Fig. 1: Binary DT with depth 4. Inner nodes are depicted with
circles, leaf nodes are displayed as rectangles. Green nodes
indicate a positive and red nodes a negative class. Each node
has a unique id and every path is associated with a probability.
For example, the probability to go from the root node 0 to its
right child 2 is p(0→ 2) = 0.7.

The ensemble is given in an XML or JSON format encoding
the trees. Our performance metric is the runtime of the
resulting implementation of the given forest. Programming a
decision tree is a simple task in most programming languages.
Take a binary decision tree in Figure 1 as an example. When
we execute a node of the DT, we either a) report the associated
prediction if the node is a leaf or b) just need to perform a
simple comparison and decide whether the next node is the left
child or the right child. In any modern programming language,
there are (at least) two ways to implement such a decision tree.

• A simple implementation, named the native tree, uses a
loop to iterate over each node of a tree within a contin-
uous data structure, e.g., arranged by a one-dimensional
array. An example code can be found in Listing 1.

• An alternative implementation, named the if-else tree,
statically generates if-else blocks. Here, the split values
of a tree are all hard-coded as constant values into the
instructions. An example code can be found in Listing 2.

s t r u c t Node {
bool i s L e a f ;
unsigned i n t p r e d i c t i o n ; / / P r e d i c t e d Labe l
unsigned char f e a t u r e ; / / T a r g e t e d f e a t u r e
f l o a t s p l i t ; / / T h r e s h o l d
unsigned s h o r t l e f t C h i l d ;
unsigned s h o r t r i g h t C h i l d ;

} ;
Node t r e e [ ] = {{0 , 0 , 0 , 8 1 9 1 , 1 , 2} ,{0 , 0 , 1 , 2 0 4 8 , 3 , 4} , . . ]}
bool p r e d i c t ( s h o r t c o n s t x [ 3 ] ) {

unsigned i n t i = 0 ;
whi le ( ! t r e e [ i ] . i s L e a f ) {

i f ( x [ t r e e [ i ] . f ] <= t r e e [ i ] . s p l i t ) {
i = t r e e [ i ] . l e f t ;

} e l s e {
i = t r e e [ i ] . r i g h t ;

}
}
re turn t r e e [ i ] . p r e d i c t i o n ;

}

Listing 1: Native tree structure in C++

bool p r e d i c t ( s h o r t c o n s t x [ 3 ] ) {
i f ( x [ 0 ] <= 8191){

i f ( x [ 1 ] <= 2048){
re turn true ;

} e l s e {
re turn f a l s e ;

}
} e l s e {

i f ( x [ 2 ] <= 512){
re turn true ;

} e l s e {
re turn f a l s e ;

}
}

}

Listing 2: Example for If-else structure in C++.

Based on the given forest model, we will explore how to
automatically generate implementations of optimized native
trees and if-else trees. The presentation in this paper and
our current implementation aim for generating C++ code.
The same method can also be applied for generating code
segments in other programming languages, e.g., JAVA, C, etc.
The generated code may be further optimized by the compiler,
but this is out of the scope of this paper.

III. MEMORY LOCALITY

Due to the significant performance gap between the main
memory (DRAM) and the processor, modern computer archi-
tectures have introduced a memory hierarchy. In addition to the
main memory, smaller and faster memory subsystems next to
the processors, in the forms of cache and scratchpad memory,
are used to hide the long memory latencies of DRAM.
Drepper provides very insightful discussions about the impact
of memory hierarchy on the performance of programs [23].

In this paper, we will consider modern computer systems
with instruction and data-caches. The key assumption of the
memory hierarchy is the locality:
Temporal locality: Recently accessed items will be accessed

in the near future, e.g. small program loops
Spatial locality: Items at addresses close to the addresses

of recently accessed items will be accessed in the near
future, e.g. sequential accesses to elements of an array.

Unfortunately, naive implementations of DTs do not exploit
such locality when they classify a set of input data.

The benefit of the native tree implementation is the temporal
locality of the program, i.e., executing a tree is a simple loop
with a few lines of codes. However, the accesses to the nodes
of the tree do not have any spatial locality. The execution of
a DT follows a unique path from the root to a leaf, which are
stored in memory addresses that are unfortunately arranged
discontinuously, if no attention is made. As a result, the cached
data will not be further used, if the distance between each node
of the path is greater than the number of nodes that can be
loaded into a cache set at once.

As for the if-else tree implementation, since the thresholds
and the values needed for a split node of a tree are all
hard-coded into the instructions, this avoids indirect memory



accesses and has a clear advantage of the reduction of the
latency. Therefore, the if-else tree implementation does not
suffer from missing data locality. However, without awareness
of instruction-cache design, the hard-coded instructions may
just be loaded into the data-cache once and only used once, so
that the advantage of the temporal locality in the instruction-
cache is completely abandoned.

There are three types of caches misses [24], namely com-
pulsory, conflict, and capacity cache misses. The compulsory
misses are due to the first access to a memory block, which
by definition is not in cache. The capacity misses occur when
some memory blocks are discarded from the cache due to the
limited cache capacity, i.e., the program working set is much
larger than the cache capacity. The conflict misses occur in set
associative or direct mapped caches when several blocks are
mapped to the same cache set.

The implementation of a tree should take the layout of the
data (in the native tree), the instructions of the branches (in the
if-else trees), and the size of caches of the particular platform
of execution into consideration.

IV. RELATED WORK

Random forests and DTs have been studied in the context
of CPUs architecture already. Van Essen et al. present in
[25] a comprehensive study of different architectures for
implementing RFs on CPUs, FPGAs and GPUs. Based on
the CATE algorithm [26], the authors train a RF with DTs
constrained by a fixed height. By fixing the tree-depth, the
authors show an effective pipelining approach for executing
DTs on CPUs, FPGAs and GPUs. Note, however, that from a
theoretical perspective we know that trees should be as large
as possible to offer a small bias error. Thus, this “fixed tree-
depth” approach may hinder the effectiveness of RF models.

In [27] Asadi et al. introduce different implementation
schemes of tree-based models in the context of learning-to-
rank tasks. They mainly introduce the two different imple-
mentation schemes already discussed in the former section:
The first one uses a while-loop to iterate over individual
nodes of the tree, whereas the second approach decomposes
each tree into its individual if-else structure. For the first
implementation, the authors also consider a continuous data-
layout (i.e., an array of structs) to increase data locality, but
do not directly optimize each implementation. Also note, that
the authors mainly consider gradient boosted trees. There, the
individual trees are usually “weak” in a sense, that they are
comparably small, as opposed to larger trees in RFs.

Again in the context of ranking models, Lucchese et al.
present the QuickScorer algorithm for gradient boosted trees
[28]. In this approach, the authors discard the tree structure,
but view each tree traversal as a series of bit operations on
a 2∆ dimensional bitvector, where ∆ is the height of a tree.
Their approach offers significant speed-up, but is limited to
trees with fixed height ∆ ≤ 6. Again, this is a reasonable
restriction for gradient boost trees, but not for RF models,
where trees tend to be significantly larger.

Kim et al. present in [29] an implementation for binary
search trees using vectorization units on Intel CPUs and
compare their implementation against a GPU implementation.
The authors provide insight in how to tailor the implementation
to Intel CPUs by taking into account register sizes, cache
sizes, and page sizes. Their work is specialized for Intel
CPUs and thus it is not directly applicable for different CPU
architectures. Lucchese and colleagues already have noticed,
that many nodes are seldomly visited [4]. Buschjaeger and
Morik formalize this observation in [22] by estimating the
probabilities of specific paths during tree traversal. Based
on this probabilistic view of model execution, the authors
consider different implementation schemes for tree traversal
and theoretically analyze their runtime. Note however, that
this model of computation remains at the software level and
does not include the memory layout.

V. OPTIMIZATIONS OF DECISION TREE

So far we have introduced the two standard approaches for
implementing DTs. In this section, we are going to discuss
optimizations of these two approaches. To do so, we first
discuss the downsides of each implementation regarding their
caching behaviour. Then, we present optimizations to improve
caching.

A. Optimization of If-else Tree

As already mentioned, we can unroll the comparisons of
a DT into conditional statements forming an if-else structure
(cf. Listing 2). Since the entire tree is transformed into if-else
blocks without indirect memory accesses, we can expect this
implementation to perform better than the native tree structure.
However, cache misses may still occur:

a) Reducing compulsory cache misses: When an instruc-
tion cache miss takes place, several instructions are sequen-
tially fetched into the instruction cache. When a branch is
executed, these prefetched instructions will possibly not be
utilized. If we can increase the chance of actually using
prefetched instructions, we can reduce the number of the
compulsory cache misses. However, DTs are naturally com-
posed of many branches. To reduce the possibility of branch
executions for tree T , we can traverse all its paths and swap
the children of every node i when p(i→ l(i)) ≥ p(i→ r(i))).
By this way, we can decrease the possibility to branch out of
the current block, which in turn increases the utilization of
prefeteched code blocks.

b) Reducing capacity and conflict cache misses: The best
case for exploiting the instruction-cache fully is having all
the instructions of the if-else tree loaded into the instruction-
cache. However, if the size of the instructions from the overall
tree structure is greater than the size of the instruction-cache,
the cached instructions may be evicted out by loading other
instructions due to the capacity and conflict cache misses.
Considering the usage of DTs, we can notice that keeping
the instructions of those nodes utilized frequently in the
instruction-cache can improve the utilization of the cached
instructions, resulting in better performance.



With the above idea, we can define a computation kernel
which contains those nodes which are used most of time. For
example, note that the root node of a tree is used in every
case and thus it should be kept inside the cache all the time.
Let K denote the kernel and let s(i) be a mapping function
returning the instruction size of node i. Then, we wish to solve
the following optimization problem:

K = arg max
{
p(T )

∣∣∣T ⊆ T s.t.
∑
i∈T

s(i) ≤ β
}

(1)

where β is a given budget related to the size of the instruction-
cache on the targeted architecture. Given K, we can make sure,
that these nodes are likely to remain in the cache, whereas the
remaining nodes L = P \ K may be evicted more often.

In order to solve Eq. 1 we need to iterate over all possible
subsets of T which might be difficult for large trees. Thus, we
propose a greedy approach in which we look at a complete
path from root to leaf node: First, we swap the children
depending on their probabilities as already explained in the
former section. Then, we sort all paths in the tree by their
probability. After that, we greedily add a node one by one into
K until the accumulated size of the added nodes b is greater
than the given budget B. The rest of nodes are all added into
L. Algorithm 1 summarizes the presented approach.

Algorithm 1 Optimized if-else tree
Input: Tree T ,Paths P = {π1, . . . , πM}
Output: Kernel K, Label L
1: swapChildren(T )
2: P = sortByProbabilities(P)
3: b = 0
4: for π ∈ P do
5: for i ∈ π do
6: if b+ s(i) > B then
7: Add i to L
8: else
9: Add i to K

10: b = b+ s(i)
11: end if
12: end for
13: end for

Once the nodes are grouped into K and L respectively, we
can use goto statements to break the sequential generation of
if-else blocks: First, we generate if-else blocks for all nodes
in K. Once the left/right child of one of those nodes is in L,
a goto statement is generated at the same position to replace
the original if-else statement. Then, the corresponding if-else
statements of this node and its children are all generated into
a label block at the end. Listing 3 shows an example based
on Listing 2 by applying Algorithm 1.

The question remains, how to estimate the instruction size
s(·) of each node. The instruction set size generally differs for
the two different types of nodes:
• Split nodes require three types of instructions. First,

the values of the target feature and the corresponding
threshold are loaded into registers. Second, the values
inside the registers are compared against constant values

ARM [Bytes] PPC [Bytes] Intel [Bytes]

Type Int Float Int Float Int Float
Split 20 32 20 48 28 17
Leaf 8 8 8 8 10 10

TABLE I: The expected size of instructions for a split node and
a leaf node in a decision tree on ARM (Raspberry PI 2),
PPC (NXP T4240 processors) and Intel (Intel Core
i7-6700) processors.

and last, a jump out the current block is performed based
on the comparison.

• Leaf nodes need two types of instructions. First, the
return value of the prediction are stored into a register
and second, a jump back to the caller of the if-else tree
is performed.

Based on the above analyses, we can estimate s(·) by counting
the number of generated instructions on the targeted archi-
tecture in an isolated example. However, note that in a real
application the actual number of instructions may differ based
on the compiler, compiler options and actual code used. Thus,
this mapping function helps to choose appropriate parameters,
but should be viewed as the expected size of a node. Table I
summarizes the expected size of instructions for ARM, X86
(Intel) and PPC.2

bool p r e d i c t ( s h o r t c o n s t x [ 3 ] ) {
i f ( x [ 0 ] > 8191){

i f ( x [ 2 ] <= 512){
re turn true ;

} e l s e {
re turn f a l s e ;

}
} e l s e {

goto Labe l0 ;
}

Labe l0 :
{

i f ( x [ 1 ] <= 2048){
re turn true ;

} e l s e {
re turn f a l s e ;

}
}

}

Listing 3: If-else structure in C++ with goto statements

B. Optimization of Native Tree

As shown in Listing 1 we can implement a DT by placing
the nodes sequentially in an array and traversing this array
by using a simple while loop. We observe that half of the
nodes in a tree are leaf nodes, which only store a prediction
value. The naive native implementation however assumes the
same data type for each node, leading to unnecessary overhead.
Second, considering the usage of DTs for predicting classes,
we notice that the data access pattern in the array is mostly
not sequential. The distance between each accessed element

2We adopt GNU C++ (g++) compiler version 4.8.3 for ARM, version 4.9.2
for PPC, and version 5.4.0 for Intel with -O0 option.



becomes bigger when the depth of targeted nodes in the DT
becomes greater. This phenomenon violates the spatial locality
of the array and abandons the advantage of the cache design,
which may result in high cache misses.

a) Reducing compulsory cache misses: Nodes are
prefetched into the instruction-cache sequentially. If we can
reduce the amount of memory each node needs, we can fit
more nodes into the cache and thus reduce compulsory cache
misses. For the native implementation we recognize that a
leaf node only stores a prediction value, but does not use the
pointer to its children, nor does it use the feature index or the
split-value. A simple way to reduce the memory consumption
is to remove all leaf nodes from this array and move them
to a separate array with a specialized data type. However,
then we have to layout two arrays in the memory which
might be difficult. Thus we propose to abandon the isLeaf
and prediction field of the native solution, but store the
prediction of the left (right) child directly in the respective
fields left (right) if it is a leaf node. This method only
requires us to layout one array, but offers the same size-
reduction as using two arrays.

b) Reducing capacity and conflict cache misses: As
mentioned in Section III, if no attention is made, the nodes
stored in memory are arranged discontinuously. Thus, when a
node is loaded into the cache, the nearby nodes should be on
the same path to reduce capacity and conflict cache misses. A
sensible way to exploit the data locality is to allocate as many
nodes as possible on the same path into the same cache set.

To do so, we propose the following approach, where τ
denotes the cache set size: Let A be the array in which we
place all nodes of T . Furthermore, let C be the candidate list
of nodes in T which have not been placed in A yet and let S
denote the nodes which should be placed in the same cache
set. For each node, we greedily choose that child, which has
highest probability on the current path and try to place it in
S. Once S contains τ − 1 elements (thus is full), we append
all nodes form S to the array A, reset S and continue with the
next cache set. Algorithm 2 summarizes this method. When
adding a new node to S, attention has to be paid, because
there are two types of nodes (Line 7):
• The current node is a split node. Then we pick the next

node based on the children’s probabilities and put the
more probable child into S and the other child into the
candidate list C.

• The checked node is a leaf node, i.e., it is the end of the
path: We pick up a sub-root with the highest probability
from the candidate list C as long as it is not empty. The
traverse starts again until S is full.

If the current S is full before finishing a traverse of a path
(Line 14), two children should be put back to the candidate
list C (Line 16). A sub-root which has the highest probability
should be picked up from C for the next new set S. Once a set
is finished, the nodes in it will be allocated into the data array
sequentially. To the end, the output of the algorithm is the data
array with a path-oriented layout, in which path-oriented sets
are sequentially allocated into the array.

Algorithm 2 Optimized native tree
Input: Tree-nodes T , maximum nodes per set τ
Output: A data array A with the path-oriented layout
1: A = [ ]
2: C ← {0}
3: while C 6= ∅ do
4: i = argmaxj∈C{p(π(j))}
5: C = C \ {i}
6: S = {i}
7: while |S| 6= τ do
8: if i is leaf-node and C 6= ∅ then
9: i = argmaxj∈C{p(π(j))}

10: C = C \ {i}
11: else
12: C = C ∪ argmin{p(i→ l(i)), p(i→ r(i))}
13: i = argmax{p(i→ l(i)), p(i→ r(i))}
14: if |S| = τ − 1 then
15: //this is the last node in S
16: C = C ∪ {l(i), r(i)}
17: end if
18: end if
19: S = S ∪ {i}
20: end while
21: A.append(S)
22: end while
23: return A

We want to give a quick example to illustrate Algorithm 2.
Considering the DT in Figure 1 and set the size τ to three, the
first path starts from the root node 0, which is a split node.
Accordingly, node 2 with a higher probability is chosen, and
node 1 is put into C. From the children of node 2, the leaf
node 6 is chosen (node 5 is put into C). As now S is full with
three nodes, the algorithm adds the current S into the output
array, prepares a new set S, and picks up a sub-root with the
highest probability from C. In the list C, currently there are
nodes 1 and 5. Since the probability of node 1 is higher than
the probability of node 5, node 1 is the next chosen sub-root.
To the end, the delivered sets are: {0, 2, 6} and {1, 3, 5}.

Please note that, the proposed approaches in a) and b) both
may be applied while implementing the optimization for native
trees. To do so, an additional field is required in the node
structure that indicates whether the prediction is embedded in
the respective fields left(right). In Algorithm 2, the leaf-
node case can be skipped technically, whereas the split-node
case has to consider this additional field accordingly.

VI. EXPERIMENTS

In this section we experimentally evaluate the proposed
optimizations. We have performed 1800 different experiments
by training Decision Trees (DT) [30], Random Forests (RF)
[12] and Extremely Randomized Trees (ET) [14] on 12
different data-sets with varying tree-depths to generate the
aforementioned implementations for different architectures,
i.e., X86, PPC and ARM CPUs.

Table II shows the data-sets we used during the experiments.
All data-sets are available in the UCI Machine Learning
Repository [31] with the exception of MNIST [32], IMDB [33]
and FACT [34]. In addition to the number of features and the
number of examples during test-time, we also report the range
of accuracy for the three different models DT, RF and ET. In



all experiments we used the CART algorithm with the Gini-
Score criterion for node-splitting and trained models using the
sklearn package [35]. For RF and ET we used 25 trees. If
the respective data-set comes with a pre-computed train/test
split we use this. Otherwise we use 75% of the data for training
and 25% of the data for testing. Expectantly, DTs often do not
achieve high accuracy, whereas RF and ET perform best with
large trees. We want to emphasize that we did not perform any
hyperparameter optimization with respect to the classification
accuracy, but report the accuracy here to validate our tool-
chain.

After training, we export the models into a JSON format
which is used by our code-generator. During code generation,
we make sure that optimized trees retain their accuracy. Please
note, that sklearn uses a probability-based majority vote,
whereas we weight all votes equally. Thus, final predictions
may differ, but we could not detect any significant change in
the final accuracies. Also note, that sklearn always produces
floating-point split-values. For data-sets with integer features
(e.g. letter or MNIST) this was rounded down towards the next
integer to circumvent the use of floating-point. This does not
change the accuracy neither. Our code is publicly available at
https://bitbucket.org/sbuschjaeger/arch-forest.

After the implementations have been generated, we use the
GNU tool-chain to compile the code with the most aggressive
optimizations (-O3) enabled. Each implementation is tested
individually by using the following protocol: For minimizing
unfairness due to caching, we first iterate twice over the
test data and perform predictions (burn-in phase). Then, we
measure the runtime needed to classify all examples in the
test set and repeat this 50 times.

We note that the performance of our implementation com-
pared to sklearn might be of interest, since sklearn is
arguably one of the most-used machine learning library and
thus well-known to many practitioners. We found that, our
implementation is on average 500 − 1500 times faster than
sklearn. However, we admit that this comparison is biased,
because large parts of sklearn are written in Python and
optimized for batch execution.

Therefore, we will focus the remaining evaluation on our
implementation. Due to limited space, we only focus on RF
models in the remaining parts of this section. We notice that
DT and ET result in similar behaviours across all systems
and thus do not add much more value to the discussion here.
We use the naive native implementation as baseline for all
experiments, and measure the average speed-up for each data-
set of each optimization against this implementation.

For native optimizations, we choose τ = 25 on X86,
τ = 8 on ARM, and τ = 8 for the PPC CPU. For if-else
optimizations, we use a instruction-cache size β = 128000
Bytes on X86, β = 32000 Bytes on ARM, and β = 32000
Bytes on the PPC CPU. The experiments performed on a
Intel Core i7-6700 desktop machine with 16 GB RAM
for X86. For PPC, we use a NXP Reference Design
Board with T4240 processors and 6 GB RAM. For
ARM, we use a Raspberry PI 2 with a ARMv7 CPU and

TABLE II: Summary of data sets for our experiments based
on UCI data sets [31], IMDB [33], MNIST [32], FACT [34].

Dataset # Examples # Features Accuracy

adult 8141 64 0.76 - 0.86
bank 10297 59 0.86 - 0.90
covertype 145253 54 0.51 - 0.88
fact 369450 16 0.81 - 0.87
imdb 25000 10000 0.54 - 0.80
letter 5000 16 0.06 - 0.95
magic 4755 10 0.64 - 0.87
mnist 10000 784 0.17 - 0.96
satlog 2000 36 0.40 - 0.90
sensorless 14628 48 0.10 - 0.99
wearable 41409 17 0.57 - 0.99
wine-quality 1625 11 0.49 - 0.68

1 GB RAM.

A. Experiments on the X86 CPU architecture

Figure 2 depicts the average speed-up of the four different
optimizations on Intel. First we note, that the if-else tree
versions are the fastest on Intel and offer a speed-up around
3 across all tree depths. For smaller tree depth from 1 − 10,
we see that optimizing if-else trees only offer marginal speed-
up. However, for larger tree depth around 15 and 20, we can
see that optimized if-else trees can retain their speed-up and
outperform un-optimized if-else trees with a speed-up factor
larger than 3.

Native trees do not perform as well as if-else trees on Intel
CPUs. Overall, the speed-up compared to naive native trees
is only marginal for smaller trees below depth 15. Here, both
versions, i.e., the StandardNativeTree and the OptimizedNa-
tiveTree, offer a speed-up of 1.5 at-most. Interestingly, for
larger trees around depth 15 and more, we again notice that
our optimizations improve performance.

B. Experiments on the PPC CPU architecture

Figure 3 depicts the average speed-up of the four different
optimizations on PPC. We can observe that the results here are
similar to Figure 2, in which if-else trees always outperform
native trees with a speed-up in the range from 2−5. Along with
the increment of tree depth, the speed-up from both if-else tree
versions drop, but especially un-optimized if-else trees suffer
from degraded performance dropping to almost 2, whereas the
optimized version can retain a speed-up around 3.5.

Similar to X86 CPU, the native implementation does not
seem to be the best choice here by providing a speed-up under
2 in all cases. However, we also notice, that with increasing
tree depths, the optimizations are more important. It is worth
noting, that we can observe some cases where the native trees
outperform if-else trees when tree depth is bigger than 15.

C. Experiments on the ARM CPU architecture

Figure 4 depicts the average speed-up of the four different
optimizations on ARM. We observe that the situation on ARM
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Fig. 2: Average speed-up factor for real-time execution com-
pared to the naive native implementation on Intel for tree
depths from 1− 20.
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Fig. 3: Average speed-up factor for real-time execution com-
pared to the naive native implementation on PPC for tree
depths from 1− 20.

is more fragmented compared to X86 and PPC. In general, we
are able to achieve a speed-up around 4 for small trees, which
drops to around 2 − 3 for larger trees. Both implementations
roughly start with the same speed-up factor for small trees,
but then quickly diverge for tree depth around 5− 15. In this
range of tree depth we see that if-else trees are the fastest
choice on ARM. Additionally, we notice that with increasing
tree depth cache optimizations become more important and
consistently outperform their un-optimized counterpart. Once
trees are sufficiently large, we see that the native trees match
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Fig. 4: Average speed-up factor for real-time execution com-
pared to the naive native implementation on ARM for tree
depths from 1− 20.

the performance of if-else trees again and even outperform
them for tree depth of 15 and 20 in some cases. In this
sense, the results are similar to what we have seen on the
PPC architecture.

D. Discussion of the experiments

The experiments show overall different behaviors across the
three different architectures, but also depict some similarities.
Here, we want to discuss these phenomenas in terms of
the properties of the specific architectures, as well as the
concrete CPU models used for experiments. We note that
one of the main architectural differences between X86,
ARM and PPC are the available instructions. Since native
trees only use a small amount of hot-code, the differences
between CPU architectures will likely not matter much here.
However, while looking at if-else trees we can expect a
larger difference. To further investigate the interplay between
CPU architectures and code size, we consider table III in the
following. Table III depicts the instruction size of a single
tree for varying tree depths for the FACT data-set (containing
floating-point features) and the letter data-set (containing
integer features) of the StandardIfTree implementation.

Clearly the if-else trees are the best choice for Intel CPUs,
but why is that so? We find two reasons for that, one of which
is related to the architectural specifics of X86 architecture
and one which is related to the specific CPU we used: First,
X86 CPUs are Complex Instruction Set Computers (CISC)
offering a very rich set of instructions which include all
sorts of specialized operations. Since if-else trees unroll the
complete tree structure into code, they give the compiler
the opportunity to utilize this multitude of instructions to
the fullest, by encoding larger parts of the tree in single



instructions. And indeed, looking at table III we see that the
Intel CPU almost always requires the fewest instructions per
decision tree. Second, the Intel Core i7-6700 CPU
used for experiments has a comparably large instruction cache
of 256 KiB combined with two larger shared caches of 1
MiB (L2 Cache) and 8 MiB (L3 Cache). Thus, by encoding
a single tree in only a few instructions, it is likely to fit
it into the larger instruction cache. In contrast, native trees
do not utilize the CISC architecture and “waste” additional
data cache by encoding the tree as data and not as instructions.

Similar to the X86 architecture, we have seen that
if-else trees perform very well on the PPC architecture,
but to a lesser extend. Again, we can try to explain this
behaviour in terms of the PPC instruction set architecture
and the specific CPU model used for experiments. The PPC
CPU architecture is a Reduced Instruction Set Computer
(RISC) with performance enhancement for high performance
computing. RISC does not offer instructions for specialized
operations as CISC does. Thus, the compiler must largely
rely on the combination of (comparably) simple instructions
to implement if-else trees. This in turn results in larger
code which is less likely to fit into the instruction cache.
Comparing the instruction size of PPC to X86 in table III
we see that the PPC architecture indeed requires more
instructions compared to X86. Interestingly, this case is less
sever for integer features, which can be attributed to the
enhancements in this instruction set architecture. Looking at
the cache sizes of the T4240 processors we see that it
only has 32 KiB instruction cache, but also comes with a 2
MiB shared L2 cache, which is even larger than the Intel
Core i7-6700 CPU. For smaller trees around 5 − 10,
the cache sizes are still enough to hold all trees and thus
if-else trees are still the fastest choice. If trees become large
(depth 10 and more), the instruction cache is not enough
to hold all trees anymore and we must rely on the larger
L2 cache. However, this cache is slower and thus we suffer
some performance penalty, which in combination with the
larger code size explains the performance drop for larger trees.

Last, we want to discuss the fragmented behaviour of the
ARM architecture. Again we try to answer this question in
terms of ARM’s instruction set architecture and the specific
CPU used for experiments. Much like its PPC counterpart,
ARM also uses a reduced instruction set architecture (RISC).
However, ARM’s RISC does not come with specialized in-
structions for high performance computing and thus the com-
piler has to rely to a larger extend on the combination of
simple instructions for if-else implementation. This in turn
results in even larger code for integer features, which is
less likely to fit into the instruction cache as shown in
table III. Interestingly, for floating-point features, we see that
the ARM CPU uses fewer instructions than the PPC CPU,
which can be attributed to specific CPU model used during
experiments. The T4240 processors are optimized to-
wards high-performance computing in a low-power embedded

computing setting, such as networking applications and thus
are optimized towards integer operations. In contrast, the
ARMv7 CPU of the Raspberry PI 2 is a general purpose
CPU aimed at the needs of the average user and thus it lays
a larger emphasis on floating-point operations compared to
the T4240 processors. It has a 32 KiB instruction cache in
combination with a significantly smaller 512 KiB L2 shared
cache. In comparison to the other CPUs this means, that the
ARM CPU has 2 − 16 times less L2/L3 cache available. For
smaller trees around depth 5 − 10, the cache sizes are still
enough to hold all trees and thus if-else trees are still the fastest
choice. For larger tree depths, however, the instruction cache is
not enough anymore and native structures using the data-cache
become faster. However, since the data-cache is also small, we
quickly fill both caches to their maximum. Interestingly, if we
optimize both if-else and native trees we end up with roughly
the same performance.

VII. CONCLUSION

In this paper, we advocate for optimizing the evaluation of
learned models in the real-time setting. Since tree ensembles
in general and specifically Random Forests are among the
most powerful black-box methods available, we looked at the
application of decision trees from an computer-architectures
point of view.

We introduced a probabilistic view of decision tree ex-
ecution and carefully analysed caching behaviour for data
and instructions in this setting. Based on this analysis, we
were able to derive two optimizations for the most common
decision tree implementations, namely the native and the if-
else trees. We empirically showed that our optimizations are
capable of increasing the performance of around 2−5 for ARM
(RISC), 2− 4 for PPC (Enhanced RISC) and around 2− 4 on
X86 (CISC) architectures without changing the classification
accuracy. We provided an in-depth discussion of these findings
in terms of the CPU architectures and specific CPU models
used during experiments which may help practitioners to
choose the right implementation. Additionally we noted, that
in all 1800 experiments we neither lost classification accuracy,
nor did we lose performance by employing our optimizations,
making them always worth applying. Moreover, we found, that
our implementation outperforms sklearn by a factor up to
1500 for real-time classification.

Our findings in this paper show that implementing RF
can be challenging since the underlying features of computer
architectures should be carefully considered. Our algorithms
only exploit some features regarding memory hierarchy. Im-
plementations that consider other architectural features like
scratchpad, out-of-order execution, hyper-threading, branch
prediction, etc. may further improve the performance, which
are considered as future work.
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DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 224 575 8185 51005 167644
PPC 232 604 7732 51840 170772
ARM 204 604 9040 55012 180628

(a) Kernel of covertype with integer features

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 96 415 17023 127330 404722
PPC 96 556 20996 169696 577952
ARM 88 428 18436 154992 542020

(b) Kernel of fact with floating point features

TABLE III: The actual size of instructions for executing kernels on different architectures with O3 option.
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