
Bucket of Ignorance: A Hybrid Data Structure for
Timing Mechanism in Real-Time Operating Systems

Marcel Ebbrecht, Kuan-Hsun Chen and Jian-Jia Chen
Design Automation and Embedded Systems Group

Technische Universität Dortmund, Germany
{marcel.ebbrecht, kuan-hsun.chen, jian-jia.chen}@tu-dortmund.de

Abstract—To maintain deterministic timing behaviors, Real-
Time Operating Systems (RTOSes) require not only a task
scheduler but also a timing mechanism for the periodicity of
recurrent tasks. Most of existing open-source RTOSes implement
either a tree-based or a list-based mechanism to track which task
is ready to release on-the-fly. Although tree-based mechanisms are
known to be efficient in time complexity for searching operations,
the additional effort processing removals and insertions are also
not negligible, which may countervail the advantage, compared to
list-based timer-managers, even with small task sets. In this work,
we provide a simulation framework, which is ready to be released,
to investigate existing timing mechanisms and analyze how do
they perform under certain conditions. Throughout extensive
simulations, we show that our proposed solution indeed requires
less computation effort than conventional timing mechanisms
when the size of task set is in the range of 16 to 208.

Index Terms—Timing Mechanisms, Hybrid Data Structure,
Bucket of Ignorance, Real-Time Operating System

I. INTRODUCTION

To guarantee the real-time properties on safety-critical sys-
tems, real-time operating systems (RTOSes) have been widely
adopted. For uniprocessor systems, two types of scheduling
algorithms are usually considered: fixed-priority (FP) schedul-
ing and dynamic priority scheduling. Particularly Earliest-
Deadline-First (EDF) policy as a dynamic priority scheduling
is proved to be an optimal scheduling policy for uniprocessor
systems [5], whereas it requires a large runtime overhead for
updating absolute deadlines from a job to the other. In contrast,
people commonly believe that the FP scheduling provides a
more practical basis with a lighter operating overhead [8], by
using a bit-map representation for the ready queue resulting
in O(1) queuing and de-queuing operations [4], which is
supported in many RTOSes, e.g., Amazon FreeRTOS [1] and
RTEMS [9]. However, an RTOS requires not only a task
scheduler but also a timing mechanism for maintaining the
periodicity of recurrent tasks to keep deterministic timing
behaviors [3].

In an RTOS that runs a strictly periodic taskset where a new
job for each task τi is released every period, the timer-manager
that implements one specific timing mechanism completes the
following operations at every system tick tk:

• search the underlying structure for a timer-item with an
expiry time equal or lower to the current system tick,

• remove this item, release the corresponding task, and
• insert a new timer-item into the data-structure to ensure

strict periodicity.

As these steps introduce runtime overhead at each tk and
raise the time required for the job activation primitive, the
required computation effort is directly related to the overhead
for processing the original tasks. It is worth noting that actually
the above steps are designed in an EDF manner, by which the
next ready-to-be-released task can be tracked according to its
assigned period [2]. If the time complexity of the underlying
timing mechanism is large, the time complexity of adopted
scheduling algorithm might be dominated. We pose this study
as RILO-Queuing (random in lowest out) problem: Random
values get stored into a data structure, but only the lowest
value needs to be accessed and removed.

In order to study the behavior of different existing timing
mechanisms, at first we develop a simulation framework to
analyze the list-based management in Amazon FreeRTOS [1]
and the red-black tree-based management in RTEMS [9].
Additionally, we propose a new timing mechanism that over-
comes one major weakness of the existing ones. The con-
ducted simulations with randomly generated task sets with log-
uniform distributed periods suggested by Emberson et al. [7]
show that, our proposed timing mechanism can save up to 53%
of computation effort in terms of value or null comparisons
(defined in Section V-A), which is more efficient than both
existing mechanisms (see Section V-B).
Our Contributions:

• We investigate existing timing mechanisms and show by
our simulation results how they perform under certain
conditions (see Section III).

• We introduce our new approach for a new timing me-
chanism based on a hybrid data structure that is more
efficient than lists and trees for this purpose under the
same conditions (see Section IV).

• We present a self-developed simulation framework we
used for evaluation (see Section V) and the related results
and configurations are all available on GitHub [6].

Since our current solution does not always outperform the
other timing mechanisms, we plan to further explore the
design space of various data structures to find a better solution
while considering the related properties of targeted tasksets.
Furthermore, we plan to develop a benchmark with crucial
tests for the RILO-Queuing problem formally, by which the
design of timing mechanisms might have a common standard
to judge the performance of implementations in the future.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section we give the definition of computation effort,
our task model and the corresponding timer-items. Next we
explain how the timer-manager handles these timer items and
at last we point out problems of current implementation.

As this paper is about real implementations, the well-known
asymptotic bounds for different operations are only somewhat
helpful. For a sophisticated view on a real system, we define
the computation effort E that is needed in the code to fulfill
a certain operation as the number of comparisons that occur.

A. Task Model

A taskset T consists of n (strictly) periodic tasks τi =
(Φi, Ci, Ti, Di, ji) with i ∈ {1...n}, periods Ti ≥ Ti+1 and
a job counter ji initialized as ji = 0. A job Ji of τi is the
j-th released instance of this task. As the focus of the timer-
manager is on the strictly periodic releases of these tasks’ jobs,
we ignore the workload Ci, the phase Φi and the deadline Di

and reduce a task to τi = (Ti, ji).

B. Timer-Items and Timer-Manager

In this paper, we focus on handling the timer-items for tasks
in RTOS and exclude other events like interrupts as they do
not affect the way the timer-manager works in principle. A
timer-item Ii(ei, τi) consists of an expiry-time ei for each job
Ji of a task τi ∈ T with period Ti.

The timer-manager M implements one specific timing me-
chanism. It consists of a data-structure L that keeps the timer-
items and functions to manage this data-structure i.e. insert(Ii),
remove(Ii) and minTimer(): this function returns Ii ∈ L,
such that ∀Ik ∈ L\ Ii : ei ≤ ek. The timer-manager processes
each tick interval tk, as shown in Figure 1. There are three
main events:

1) Scheduler starts: At tk = 0 M creates Ii for all τi ∈ T
and starts the processing for the first time.

2) Stop processing: When there is no more eligible Ii in
L (minimal found ei > t), then M stops processing for
that tk.

3) New Tick: When a new system-tick occurs, M restarts
processing L.

As stated earlier in the introduction, there are three main
operations: 1) Search for Ii with the minimal ei, 2) remove
the Ii with the minimal ei and 3) insert a new Ii with
ei = Ti · (j + 1). Therefore, on task sets with periods greater
than 1, the search operation is the most executed one and
should need effort as little as possible. On the other hand the
effort for removing and inserting timer-items should be kept
low as well.

C. Problem of Current Timing Mechanisms

Currently, the timing mechanisms of most existing open-
source RTOSes are implemented based on a tree structure, i.e.,
in RTEMS the timer searches for the next first watchdog in a
Red-Black tree, whereas some use list-based approaches, i.e.
FreeRTOS. At the first glance, a tree-based approach might
be the best choice, as it performs very well when it comes

∀τi ∈ T insert
new Ii(ei, τi) with
ji = ei = 0 in L

Scheduler startsNew Tick

Set tk = 0

Suspend scheduler,
block tasks in

systems ready list

Set tk = tk + 1

Retrieve minTimer()

ei ≤ tk

Unblock tasks in
systems ready list,
resume scheduler

Insert new Ii

with ei = ji · Ti

Remove Ii from
L, add τi in

blocked state to
systems ready list,
set ji = ji + 1

End processing

no

yes

Fig. 1. Timer-Manager processing

to searching, especially when data is large, i.e., searching
performs at O(log n), whereas list-based approaches usually
need O(n). Nevertheless, inserting and removal operations
on tree-based approaches lead to additional operations, e.g.,
rotation and re-balancing, and this effort may mitigate the
advantage on searching.

III. EXISTING TIMING MECHANISMS

In this section we present the respective advantages and
disadvantages of two commonly used timing mechanisms.

A. List-based Management

Because M searches Ii with the lowest ei each tk, the Ii are
sorted by ascending ei in a linked list, such that minTimer()
returns the head with O(1). To remove a Ii, only the head
pointer of the list must be changed. The downside occurs on
assorted insertion: L must be searched for the next correct
position to insert the new Ii. This needs additional effort
for each processed position. The higher the period, the more
effort this process needs, i.e., O(n) in the worst case. The
advantage of list-based management is clearly on receiving
the next expiring Ii, but it suffers from the search effort when
inserting a new Ii.

B. Tree-based Management

The ei of each Ii is used as key for the nodes Nj and
minTimer() points to the head item from the leftmost node’s
list. Every node Nj holds a list C(Nj) of timer-items with
equal ei. Insertion of new Ii is shown in Figure 2. On removal,

insert new Ii in L

node Nj

with ei as
key already

exists?

Create node Nk , add
Ii to C(Nk) and

attach Nk to the tree

Add Ii to C(Nj)

done

no

yes

Fig. 2. Tree: Insert new Ii in L

Ii is removed from a node Nj by removing it from C(Nj).
If C(Nj) becomes empty, Nj is removed from the tree.

While searching the correct position on inserting a new Ii
runs in O(log n) in the worst case, minTimer() needs this
effort as well. With the growing periods, the high effort for
checking for eligible timers each tick might countervail the
advantage from fast insertion obviously. Additionally, inserting
and removing nodes both cause additional efforts, i.e., rotation
and re-balancing, on balanced trees.

IV. NEW TIMING MECHANISM: BUCKET OF IGNORANCE

In this section, we present our approach to reduce the effort
for the management of L. Both aforementioned mechanisms
share one weakness: They insert the new Ii directly at the
correct position even if ei is significantly higher than current
tk. This is potentially a waste of computation time. To elim-
inate this potential waste, we propose a hybrid structure, that
actually combines an ordered list LO, as used in Section III-A,
with an unordered list LB . We term our strategy as Bucket of
Ignorance (BoI). Additionally we define for this first static
version of the mechanism s = n/2 as the splitting point. The
necessary operations work as follows:

• Initialization: During initialization all Ii are added to
LB . Then we start the refill process as shown in Algo-
rithm 1.

• Retrieve and Remove: minTimer() and remove(Ii)
work as on the list-based mechanism (see Section III-A)
and return resp. remove the head of LO.

• Insert: Whenever a new Ii should be inserted into L, Ii is
added either to LB or LO depending on its ei as shown in
Algorithm 1 where ListInsert is the inserting method
from the list-based mechanism. As we see there, Ii is only
inserted into a non empty LO, and therefore the insertion
only generates effort, if its ei is below ek of the head
element Ik of LB (caused by sorting on refilling LO this
is the minimum of LB), or when LB stays empty after
insertion caused by the refill process.

There are two corner-cases handled as follows:
• Overflow (Line 8): It is crucial for this mechanism, that
∀Ii ∈ LO,∀Ik ∈ LB : ei < ek. Therefore we have to
move more than s timer-items Ii from LB to LO as long
as ei of the last moved Ii equals ek of the current head
item Ik of LB .

Algorithm 1 Bucket of Ignorance
1: Refill LO :
2: MergeSort(LB)
3: for x=0, x<s, x++ do
4: emin ← LB .head.getExpireTime()
5: Append LB .head to LO

6: Remove LB .head
7: end for
8: for y=0, y<s, y++ do
9: if emin == LB .head.getExpireTime() then

10: Append LB .head to LO

11: Remove LB .head
12: else
13: break
14: end if
15: end for

16: Insert Ii in L:
17: if LB .isEmpty() then
18: Append Ii to LB

19: else
20: if LO .isEmpty() then
21: if ei < LB .head.getExpireTime() then
22: Append Ii to LO

23: else
24: Append Ii to LB

25: Refill(LO)
26: end if
27: else
28: if ei < LB .head.getExpireTime() then
29: ListInsert(Ii, LO)
30: else
31: Append Ii to LB

32: end if
33: end if
34: end if

• Hyperperiod (Line 17): If tk = lcm(Ti : ∀τi ∈ T)
(hyperperiod of T) LB becomes empty after refilling
LO due overflow. Therefore we put the next incoming
Ij directly to LB since ∀Ik ∈ LO : ej > ek.

The saved effort by just adding new Ii to LB accordingly
surpasses the additional effort for the decision where to add
new timer-items and sorting LB according to task sets with
periods. Please note that the refill procedure only runs during
the insert procedure, while all tasks are blocked already (see
Figure 1). Since a new timer is always higher than the current
tick, so no context switch can happen during the procedure.

V. SIMULATION FRAMEWORK AND SETUP

In this section we first describe the in-house analysis frame-
work and the setup we use for evaluation. Afterwards, we
present the results in terms of computation effort over different
type of timer-managers.

A. Analysis Framework

To compare and test different timer-managers with the scope
of the computation effort needed by a real system, we develop
an in-house analysis framework in Java. The framework allows
to simply implement new timer-managers through an interface
class, manually define that the effort a real system needs
and test it with different kinds of periodic task sets, e.g.,
incremental, harmonic, random, etc. As implementation on
a real system differs from simulation, we manually define

the effort a certain operation needs E. At the moment the
framework allows to count comparisons, as these are the
most time consuming operations. As the framework is not a
crucial part of this paper, please refer to README.md and
the commented code on our repository [6].

B. Simulation Setup and Preliminary Evaluation
To analyze the scalability, the cardinality of the task sets

ranged in {8, 16, ..., 248, 256}. For each cardinality, we eva-
luated 105 randomly generated task sets for a duration of 200
ticks. The periods of those tasks were generated according
to a log-uniform distribution with two orders of magnitude
over the interval [1, 100], as suggested by Emberson et al. [7].
This configuration ensures, that all tasks must be processed at
least twice. Due to the space constraints, we focus on the
most important part of the analysis. All the configurations
and results are available on the repository together with the
analysis framework [6]. We compare BoI with the list-based
mechanism and the red-black tree-based mechanism.

TABLE I
SIMULATION RESULTS

Size n List(n) Tree(n) BoI(n) DBoI(n)
8 537 3, 260 705 −31.28%

16 2, 292 7, 949 2, 099 8.42%
32 9, 450 17, 608 6, 026 36.23%
64 38, 044 37, 331 17, 198 53.93%

128 151, 918 76, 681 52, 633 31.36%
208 400, 565 125, 004 121, 775 2.58%
212 431, 899 129, 863 129, 950 −0.07%
256 606, 541 153, 759 174, 687 −13.61%

Table I shows the average amount of comparisons for each
size n that was done during timer-simulations. DBoI(n) =

1− (BoI(n)
min(List(n),Tree(n))) is the percentage of amount BoI needs

less than the minimum of both existing list or tree-based
mechanisms. Figure 3 shows clearly, that the tree-based and
BoI mechanisms are more efficient than list-based the larger
n gets. Additionally the results show that BoI performs faster
than the tree-based mechanism up to n = 208 in the average
case and up to n = 72, when comparing best result of tree-
based with worst of BoI. With growing n BoI suffers from
two problems: 1) As we define s as half of n, LO gets longer
and therefore the effort for inserting new Ii into LO grows as
using a list-based mechanism (see Section III-A). 2) As we
generate the task sets with periods from the interval [1, 100],
we get more tasks with identical periods that causes a higher
occurrence of overflow corner-case (see Section IV). We might
face these problems at high n as follows: 1) For task sets with
a high amount of tasks with identical periods we insert sub-
lists of Ii into L0 that holds timers with equal ei and 2) for
task sets with a low amount of tasks with identical periods we
use a tree instead of a list on LO.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a new hybrid solution that requires
less computation effort than conventional list-based and tree-
based method under certain conditions. Our approach may

32 64 96 128 160 192 224 256

103

104

105

106

Size n

N
um

of
C

om
pa

ri
so

ns
(E

)

List
Tree
BoI

Fig. 3. Number of comparisons over different size n of task sets as arithmetic
mean, where the areas around the plots covers all results for each n. Note
that the y-axis is in logarithmic scale.

result in significant improvement on handling RILO-Queues.
With the preliminary results presented in this work, we plan
to continue working on this topic with the following ideas:

• Processing the refilling LO from LB by a normal task
instead of during insertion could be an interesting idea.
We plan to analyze the worst case formally to calculate
the maximum possible period of this task such that LO

never runs empty.
• To understand the behaviour of the proposed mechanism

in the average case, we are going to improve and optimize
the framework to allow the simulation of larger sized task
sets and measure the effort at a finer granularity.

ACKNOWLEDGEMENT

This paper is supported by Deutsche Forschungsgemeinshaft
(DFG), as part of the Collaborative Research Center SFB 876
with Subproject A1 (http://sfb876.tu-dortmund.de).

REFERENCES

[1] Amazon Web Services. Freertos user guide. https://docs.aws.amazon.
com/freertos/latest/userguide/freertos-ug.pdf. Accessed: March, 2020.

[2] G. C. Buttazzo. Rate monotonic vs. edf: Judgment day. In R. Alur and
I. Lee, editors, Embedded Software, pages 67–83, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[3] K.-H. Chen, G. Von Der Brüggen, and J.-J. Chen. Overrun Handling
for Mixed-Criticality Support in RTEMS. In WMC 2016, Proceedings of
WMC 2016, Porto, Portugal, Nov. 2016.

[4] R. I. Davis. A review of fixed priority and edf scheduling for hard real-
time uniprocessor systems. SIGBED Rev., 11(1), 2014.

[5] M. L. Dertouzos. Control robotics: The procedural control of physical
processes. In IFIP Congress, 1974.

[6] M. Ebbrecht and K.-H. Chen. RTMCT - RTOS Timer Manager Compari-
son Toolkit. https://github.com/marcelebbrecht/timerComparision. branch
rtas20, Accessed: March, 2020.

[7] P. Emberson, R. Stafford, and R. Davis. Techniques for the synthesis
of multiprocessor tasksets. In WATERS workshop at the Euromicro
Conference on Real-Time Systems, pages 6–11, 7 2010.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):4661, Jan. 1973.

[9] RTEMS Documentation Project. Rtems classic api guide. https://docs.
rtems.org/branches/master/c-user/scheduling\ concepts.html. Accessed:
March, 2020.

