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Abstract
This document provides the detailed discussions on how to implement a schedulability test in
Theorem 4.4 in the paper.

I Theorem 4.4. Task τk is schedulable by the given global fixed-priority scheduling if

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk)

`Ck
D′k

+
∑

τi∈Tcarry−approx

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk, (1)

where µk = M − (M − 1)ρ with 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), D′k is (`− 1)Tk +Dk,

γi =
{

1 if Ui > ρ

0 if Ui ≤ ρ
(2)

and Tcarry−approx is the set of the dµke− 1 tasks among the k− 1 higher-priority tasks with
the largest values of γiUiDi. Note that |Tcarry−approx| can be smaller than dµke − 1 if the
number of tasks with Ui > ρ is less than dµke − 1. If Dk ≤ Tk, we only need to consider
` = 1.

In Theorem 4.4 we need to find a ρ with 1 ≥ ρ ≥ `Ck/((` − 1)Tk + Dk) for each ` ∈ N
such that

`Ck
D′k

+
∑

τi∈Tcarry−approx

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk (1)

holds, where µk = M − (M − 1)ρ and D′k = (` − 1)Tk + Dk. Furthermore γi = 1 if
Ui > ρ and γi = 0 if Ui ≤ ρ. As Ci, Di, Ti, and Ui are given for all tasks, whether Eq. (1)
holds or not only depends on the values of ρ (and hence µk), `, and Tcarry−approx. Let∑
τi∈Tcarry−approx

γiUiDi

D′
k

be denoted as G(µ). Note that Tcarry−approx depends on ρ and
hence µk. If we assume µk and hence G(µ) to be a constant, the left hand side of Eq. (1),
denoted as F (`, µ), is either an increasing or a non-increasing function with respect to `,
i.e., maximized either for ` = 1 or ` → ∞. We will use ∞ as a value here for notational
brevity, where F (∞, µ) is the limit of the function F (`, µ) when `→∞. Knowing this, for
a given µk we have the following cases:
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F (`, µ) is increasing with respect to `

F (1, µ) > µk ⇒ Eq. (1) never holds.
F (∞, µ) ≤ µk ⇒ Eq. (1) always holds.
F (1, µ) ≤ µk and F (∞, µ) > µk. This means, we can calculate a value lµk

∈ R with
F (lµk

, µ) = µk ⇒ Eq. (1) holds for 1 ≤ ` ≤ lµk
but not for ` > lµk

.

F (`, µ) is not increasing with respect to `

F (1, µ) ≤ µk ⇒ Eq. (1) always holds.
F (∞, µ) > µk ⇒ Eq. (1) never holds.
F (1, µ) > µk and F (∞, µ) ≤ µk. This means, we can calculate a value lµk

∈ R with
F (lµk

, µ) = µk ⇒ Eq. (1) holds for lµk
≤ ` but not for ` < lµk

.

As a result, for a given ρ we can calculate the interval where Eq. (1) holds by calculating the
values for ` = 1, ` = ∞, and lµk

∈ R with F (lµk
, µ) = µk. Note that this interval must be

further reduced due to the condition 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), i.e., some (or all) values
of ` are not allowed for a given µk. However, when each ` ∈ N is covered by at least one
interval, the task is schedulable according to Theorem 4.4. By testing only a finite number
of µk values, we can implement the schedulability condition in Theorem 4.4 efficiently.

When we only look at the right hand side of Eq. (1), we would want to reduce ρ as much as
possible to get the largest possible value for µk, thus making the condition easier. However,
increasing µk will lead to a larger value of G(µ), i.e., a bigger left hand side. This happens
either due to an additional summand in the summation or due to new tasks available to be
summed up, i.e, the reduction of ρ leads to Ui > ρ. For the number of summands, due to
the ceiling function, we only have to test integer values of µk, as they maximize the right
hand side of Eq. (1) for a given number of summands. As µk = M − (M − 1)ρ, the number
of integer values for µk is bounded by the number of processors, i.e., we only have to test
a finite number of ρ values to cover the situation where the number of summands in G(µ)
increases. In addition, only tasks τi with Ui > ρ are allowed in G(µ). As ρ gets smaller, the
number of tasks with Ui > ρ increases and vice versa. However, if we test all values with
Ui = ρ, where τi that has higher priority than τk, in an increasing order, we only have to
test a finite number of additional ρ values, depending on the number of tasks.

Therefore, we only have to test those O(M + k) possible ρ values. As discussed above,
each of them forms an interval Iρ of the integer values of ` that can be covered by the
specified ρ value. For each interval Iρ = [leftρ, rightρ), Eq. (1) holds when ` = leftρ, leftρ+
1, . . . , rightρ − 1, where leftρ is an positive integer and rightρ is either positive integer or
∞. Note that such an interval Iρ does not exist if Eq. (1) never holds, and such ρ values
are discarded from further considerations. Deriving all these valid intervals needs O(M +k)
time in the amortized manner, provided that the higher-priority tasks are sorted by their
utilization in O(k log k) and stored in a list in advance. We need to pay some attention
if an interval Iρ does not have a limited upper bound, called an unbounded interval here,
i.e., Eq. (1) holds for any ` ≥ leftρ. Note that we do need the existence of at least such an
unbounded interval to cover sufficiently large `. Among the unbounded intervals, we take the
minimum left endpoint, called `max. This step takes O(M + k). The remaining intervals Iρ
that are not unbounded are called bounded intervals. Verifying whether ` = 1, 2, . . . , `max − 1
are covered can be done by checking whether the union of these bounded intervals provides
the coverage, which is achievable in O((M + k) log(M + k)) with Klee’s algorithm [1].

Due to the above discussions, we can efficiently implement the schedulability test in
Theorem 4.4 with a time complexity of O((M + k) log(M + k)).
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