
TU Dortmund

Master Thesis

Design and Implementation of
Computation O✏oading Mechanism in

Real-Time System

Author:

Huan Tian

Supervisor:

Prof. Dr. Jian-Jia Chen

July 2015

TU DORTMUND

Abstract

Automation & Robotics

Department of Information

Master of Science

O✏oading Mechanism Realization in Real Time Operating System

by Huan Tian

Computation o✏oading is a widely used method to improve the performance of em-

bedded systems by o✏oading some computation-intensive tasks to some powerful com-

ponents. In this thesis, we propose a computation o✏oading mechanism in real-time

systems. When the task model is complicated, a HEU o✏oading decision algorithm and

a priority-based HEU o✏oading decision algorithm have been proposed based on the

approximated demand bound functions. We use this computation o✏oading mechanism

in virus detection. In the case study of virus detection, we show the e↵ectiveness of our

mechanism. By some simulation results, we compare two di↵erent o✏oading decision

algorithms.

https://www.tu-dortmund.de/)
http://www.e-technik.tu-dortmund.de/cms1/de/Lehre_Studium/Studienangebot/Master_A_R/Master_A_R_en/Aufbau_Course_Information/index.html
http://www.cs.tu-dortmund.de/nps/de/Home/

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables v

Abbreviations vi

1 Introduction 1

1.1 Cyber-Physical System . 1

1.2 Computation O✏oading Techniques . 2

1.3 Computation O✏oading in Real Time System 3

1.4 Contributions . 5

2 Backgrounds 7

2.1 Overview of Real Time Scheduling . 7

2.1.1 Real-time task model . 7

2.1.2 Real-time scheduling algorithms 8

2.1.3 Schedulability analysis . 9

2.2 Related Works . 11

2.2.1 O✏oading Decision in Real-time Systems 11

2.2.2 Self-suspension Time analysis . 13

3 O✏oading Decisions Algorithms 15

3.1 Software Architecture . 15

3.2 System Model . 18

3.3 Approximated Demand Bound Function 20

3.4 HEU O✏oading Decision Algorithm . 22

3.4.1 Design of Approximated Demand Bound Function 22

3.4.2 Schedulability Analysis . 23

3.4.3 HEU-Based Version Selection Algorithm 24

3.5 Priority-Based HEU O✏oading Decision Algorithm 31

4 Case Study Virus Detection 37

4.1 Techniques about Virus Detection . 37

4.1.1 Background of Virus Detection . 38

ii

Contents iii

4.1.2 Virus Detection based on PAMANO Sensors 38

4.1.3 Data Analysis about Virus . 40

4.2 Portable Virus Detection Device . 41

4.2.1 Software Design . 42

4.2.2 Related Tools . 43

4.2.3 Software Implementation . 44

4.2.4 Experiment . 46

5 Experiments & Results 50

5.1 Model . 50

5.2 Tool Build . 51

5.2.1 data flow . 51

5.2.2 realization . 52

5.3 variables . 58

5.3.1 parameters . 58

5.4 Penalty & Priority . 59

6 Conclusion 61

6.1 Conclusion . 61

6.2 Prospect . 62

Bibliography 63

List of Figures

1.1 basic control structure of vision based navigation robotics[1] 4

2.1 basic concepts for task model.[2] . 8

3.1 o✏oading application system structure . 15

3.2 illustration of o✏oading mechanism model 17

3.3 Time Scheduling for the Three Versions based on EDF 19

3.4 time demand bound for task1 . 20

3.5 time demand bound for task2 . 20

3.6 Example:Approximated Demand Bound Function of Task 1 20

3.7 Example:Approximated Demand Bound Function of Task 2 21

3.8 One Example for MMKP . 29

4.1 PAMONO biosensor (left), the recorded data (center) and the concept of
virus detection (right)[3] . 40

4.2 processing pipeline for biosensor data analysis[3] 40

4.3 inputs and outputs of processing algorithms.[3] 41

4.4 software design . 42

4.5 structure of ”element” in Gstreamer . 45

4.6 software structure . 45

4.7 real received image from CCD camera(1080,145) 47

4.8 coming image bu↵er . 48

4.9 result of image denoising wit forementioned bu↵er 49

5.1 data processing procedure . 53

5.2 error illustration in ADBF . 56

5.3 UI design for o✏oading decision poblem 57

iv

List of Tables

5.1 execution time for di↵erent viruses . 58

5.2 deadline time for di↵erent viruses . 59

5.3 periodic time for di↵erent viruses . 59

v

Abbreviations

RTOS Real Time Operating System

WCET Worst Case Execution Time

EDF Ealiest Deadline First

DBF Demand Bound Function

ADBF Approximated Demand Bound Function

MMKP Multiple Multidimensional Knapsack Problem

vi

Chapter 1

Introduction

1.1 Cyber-Physical System

Cyber-Physical Systems (CPS) are integrations of computation, networking, and com-

putational elements, which can enable the physical world to connect with the virtual

world. Today, Cyber-physical systems can be found in many areas such as aerospace,

automotive driving, civil infrastructure, healthcare, manufacturing, transportation and

so on. The economic and societal potential of Cyber-Physical Systems is vastly greater.

More investments are being made worldwide to develop the technology in recent years.

Using sensors, the Cyber-Physical system can monitor and collect data from the envi-

ronment. The systems are normally connected with the internet globally. In the design

of Cyber-Physical systems, one of the challenges is about an increasing number of data

processing applications nowadays. With the increasing data sets, data analysis, search,

sharing, storage, transfer, visualization and privacy make the design of Cyber-Physical

systems much more di�cult. E↵ectively extracting important information from data

and predicting the potential behavior make an embedded system much more costly.

Data-intensive applications are commonly ultilized in current Cyber-Physical Systems.

For instance, virus can be really jeopardizable and cause catastrophic damage. Virus

detection technology seems essential and imperative under such circumstance. To detect

a virus which is a nano-sized object, a large number of data processing and analysis are

needed. An e�cient, accurate and propagative detection technology should be designed

1

Chapter 1. Introduction 2

more reliable and user friendly. How to devise such a kind of virus-detection device is

still an open problem now.

Moreover, with the growing number of data sets, how to e↵ectively work with big data

has become a necessary problem. Considering about these requirements, one simple

embedded device should be used as a powerful platform to finish many complicated

applications. Such an embedded device can be easily transplanted to many intelligent

devices such as smart phone, laptop or even simple micro-controller based devices. Some

of these application are also data intensive applications. For a normal embedded system,

one big problem, however, for most complicated applications, is resource constrained

problem. For example, for an image processing application, more and more complicated

algorithms, such as machine learning based algorithms, have been employed. Such

scale computing requires high performance computing platform, which seems di�cult

for computing components of embedded system.

Over the past several years, many solutions have been studied to address the problem.

Some commonly used methods include improve the computing ability and ultilize more

parallel processing elements. However, these methods need to put much more hardware

or software e↵orts. Compared with these methods, one simple and easier implemented

solution is computation o✏oading.

1.2 Computation O✏oading Techniques

Many embedded systems have limited resources, such as computing ability, battery life,

network bandwidth, storage capacity and so on. Computation o✏oading techniques can

e↵ectively alleviate these constraints by sending complicated computation to some re-

sourceful components and receiving the results to finish the whole computation. Compu-

tation o✏oading techniques are typically used to augment the computational capability

of some resource constrained device. Moreover, computation o✏oading techniques are

quite di↵erent from the traditional client-server architectures, where the client always

migrates computation to the serve[4]. Moreover, computation o✏oading techniques are

also di↵erent from load balancing strategies in multiprocessor systems or grid computing

systems[5].

Chapter 1. Introduction 3

O✏oading some complicated computations from resource-constrained devices to some

powerful components have many benefits, such as saving energy consumption and im-

proving performance[6],[7].

There are a significant amount of research papers about computation o✏oading tech-

niques. In their works, most of these papers are focused on following questions:

Is it necessary to implement such mechanism? Measurements should be carried

out to find out whether energy or performance can be saved and improved due to the

implementation. If the resource consumption does not change or slightly change, then

it seems not worth realizing such mechanism given consideration of energy and financial

cost for realization of mechanism.

When and where to implement such mechanism? A criteria, o✏oading decision,

should be determined in order to decide which parts of program or algorithms should be

uploaded. In such way, the mechanism could be feasibly and e�ciently applied. When

dealing with RTOS, other problems such as timing critical problem should also be taken

into account while catastrophically outcomes may occur due to deadline missing. Then

more sophisticated methods should be proposed to address the issue.

However, in previous paper, seldom works consider the computation o✏oading tech-

niques in real-time embedded systems.

1.3 Computation O✏oading in Real Time System

The real-time system is a system which can control an environment by receiving data,

processing them, and returning the results su�ciently quickly to a↵ect the environment

at that time. Hardware and software systems must subject to the timing constraint.

In real-time systems, each application must finish its computation within specified time

constraints, often referred to as deadlines. Such systems are often used for many mission

critical areas such as for vehicles, robotics, aerospace and so on. In these areas, missing

deadline for some applications will lead to disaster sequences.

Applying computation o✏oading mechanism in real-time embedded systems are mean-

ingful. For many applications, in order to get precise results or decision making, more

sophisticated algorithms must be applied. For example, machine learning algorithms

Chapter 1. Introduction 4

are di�cult for some mobile embedded systems to accomplish some tasks. Let us take

an image based navigation robotic for example. The general principle behind vehicle

robotics is trying to let the robotics make the decision itself based on the chosen features

yielded from images recorded by a camera device. The procedures or algorithms dealing

with images and features could be really time consuming due to the complexity and

computation scale. So the ideal solution will be uploading the images or selected parts

of programmings along with inputs to remote server which has more powerful CPU

or GPU, with which the calculation will be more quickly accomplished. So it seems

that with o✏oading mechanism, more complicated algorithms can be carried out on

embedded devices.

Navigation
Algorithms Motor ControlImage

Processing

features results
X

signalimages

Figure 1.1: basic control structure of vision based navigation robotics[1]

Fig. 1.1 illustrates one of the basic control schemes of vision-based navigation robot.

From the figure it can be noticed that the control strategy can be regarded as an on-

line dynamic processing which not only demands accuracy, sometimes, but also time-

e↵ectiveness. When the robot tries to avoid obstacles, for example, it is clear that

e�cient results should be required immediately such that the robot can make a turning

in time. Otherwise collisions may happen. So it also can be seen as a real time operating

system in some senses.

In the design of real-time embedded systems, deadline can be seen as an essential param-

eter because missing deadline can lead to catastrophically results. So during the design

of real-time embedded system, how to implement computation o✏oading mechanism is

still di�cult problem. How to find an e↵ective computation o✏oading mechanism is

also our focus. Moreover, in real-time systems, computation o✏oading often will lead

to some self-suspension time for each real-time task. Such a self-suspension time will

lead to some bad e↵ects for the scheduling analysis. How to guarantee all tasks with

self-suspension time is a hot topic is real-time systems. Based on the scheduling analysis,

we need to decide the o✏oading decisions such as which parts of programs should be

Chapter 1. Introduction 5

o✏oaded and which parts of programs should be executed locally. Such a problem is

known to be NP-hard problem [8].

1.4 Contributions

Here, o✏oading mechanism is realized with real time system. During which, some

problems forementioned will be addressed with algorithms such as EDF, Approximated

Demand Bound Function (ADBF) which will be introduced later. In order to realize

such mechanism, some tasks models must be set up. In the end, to illustrate the idea,

a real project – virus detection project is introduced to realize the mechanism.

In chapter 2, basic real time task concepts are introduced such as tasks modeling, tasks

scheduling algorithms. These will be used laster for scheduling model of multiple tasks

o✏oading mechanism. Later, related work about o✏oading mechanism is introduced,

one self-suspension problem is also introduced.

In chapter 3, the general o✏oading mechanism model is proposed, one task model or

multiple tasks model. Procedures about addressing such tasks scheduling problem are

presented. An approximation demand bound function (ADBF) is adopted to simply the

scheduling procedure. In the next few sections some algorithms are adopted. Among

which, one classification based ADBF method is discussed to reduce the approximation

errors. Also due to the NP-hard scheduling problem, HEU algorithm is used to yield

the optimal solution of this MMKP issue. In the end one priority based algorithm is

introduced to accelerate the candidates iteration procedures.

In case study chapter, one virus detection project is introduced. The first section concen-

trates the introduction of the project, general methods of the detection, basic techniques

and devices like such as PAMONO sensor, CCD camera. Then the basic principle and

processing procedures are presented. Next, a portable detection device concept is pro-

posed which is the main aim of the project, specific software design, related tools are

presented. In the end, one demo implementation of client is illustrated which processes

pre-processing procedures on the local embedded devices. Specific processing proce-

dures such as image cutting, de-noising and image skipping are discussed in experiment

section.

Chapter 1. Introduction 6

In the last chapter, tasks scheduling solution is given through one UI interface. In the

first, one general model is set up and one general UI interface is designed to address the

scheduling problem. The final interface design is given in tool build section. In next two

sections, parameters and penalty as well as priority are discussed. The determination

method and consideration is presented. Results and conclusion can be found in the final

section.

Chapter 2

Backgrounds

In this chapter, we mainly give some backgrounds which are related to this dissertation.

First, we begin with an overview of real-time scheduling, including task model, common

scheduling algorithms and scheduling analysis. Second, we introduce some related works

including o✏oading decision algorithms and self-suspension time analysis in real-time

systems.

2.1 Overview of Real Time Scheduling

In this section, some basic concepts about modeling tasks in real time system are intro-

duced which will be adopted in latter sections.

2.1.1 Real-time task model

In real-time systems, most workloads require the execution at recurring intervals. One

of the simplest and most common used task model is the periodic task model, which

was first introduced by Liu and Layland. In this model, each task ⌧i is specified by a

worst-case per-job execution cost Ci and a period Pi. The utilization of the task ⌧i is

defined as Ci
Ti
. Each task release jobs periodically. The release time of one job from ⌧i is

denoted as ri. The absolute deadline of a job from ⌧i is ri +Di, where Di is the relative

deadline of ⌧i. Normally, the arrival time ai of one job from ⌧i is defined as the time

when a task comes out from system queen and is ready for execution. Computation time

7

Chapter 2. Backgrounds 8

Ci, unlike task period, is the real execution time of task which begins at the starting

time Si, and ends at the finishing time Fi. Absolute deadline di indicates the time when

system has already completed the current task and is ready to process the coming task.

T
a s f d

C

t

Figure 2.1: basic concepts for task model.[2]

Fig. 2.1 illustrates the typical parameters of a real-time task in detail. In this thesis,

when the system has several real-times at the same time, how to schedule these tasks is

a non-trivial problem. Figure 2.1 illustrates

Unlike the periodic task model, another task model is the sporadic task model. In this

model, Ti specifies the minimum separation between two successive released jobs, not

the exact separation in the periodic task model.We present the sporadic task model here,

but the periodic task model is assumed here unless stated otherwise.

2.1.2 Real-time scheduling algorithms

In this part, we briefly introduce fixed priority scheduling and dynamic priority schedul-

ing algorithm as follows:

Fixed priority Scheduling is one class of scheduling algorithm in real-time systems.

In real-time systems, the priority of each task is used to schedule di↵erent released

jobs. In fixed priority scheduling, each job is assigned a fixed priority via some policy.

Contention for resources is resolved in favor of the job with the higher priority that is

ready to run.

In fixed priority scheduling, all the jobs of a task have the same priority. A task, which is

a process or thread, has a specified priority. For instance, assume all tasks are numbered

and task ⌧i has priority i. The higher value of i denotes a higher priority and the lower

value of i denotes a lower priority. One of the typical task-level priority assignments is

known as rate-monotonic scheduling. In rate-monotonic scheduling, the priorities are

Chapter 2. Backgrounds 9

assigned on the basis of the task periods. The shorter the task period is, the higher

priority the job is.

Dynamic priority Scheduling is another class of scheduling algorithm. Task pri-

orities are assigned to individual jobs, not tasks like fixed priority scheduling. One of

the most used algorithms is the Earliest Deadline First(EDF) according to the prior-

ity which is inversely proportional to the absolute deadlines of the active jobs. EDF

scheduling algorithm has been proved as the optimal preemptive scheduling algorithms.

That means, if these exists a feasible schedule for a task set, the the schedule produced

by EDF is also a feasible schedule. EDF scheduling algorithm can be extended to some

more general cases in real-time systems.

2.1.3 Schedulability analysis

In real-time systems, a task set is feasible when there exists some scheduling algorithm

that can schedule all possible released jobs and all these jobs generated by the task

set don’t miss any deadlines. A task is referred to as schedulable according to a given

scheduling algorithm if its worst-case response time under that scheduling algorithm

is less than or equal to its deadline. Similarly, a task set is referred to as schedulable

according to a given scheduling algorithm if all of its tasks are schedulable. Schedulability

analysis is used to predict temporal behavior which determine whether all tasks can

meet its timing constraint during the run time. Such analysis are constrained by several

factors. Su�cient and necessary analysis are ideal and intractable. The complexity of

such analysis is NP-hard for many di↵erent task models. So given us a set of real-time

tasks, it is needed to analysis these tasks all these tasks can be schedulable by some

real-time scheduling algorithms.

For Fixed priority scheduling algorithm, in 1973, Liu and Layland [9] propose a

foundational and influential work in fixed-priority real-time scheduling theory. They

assume all tasks are periodic and released at the beginning of the period. The relative

deadline of each task is equal to its period. All tasks are independent, without resource

or precedence relationships. Each task has a specified worst case execution time, which

is less than or equal to its period. All tasks are pre-emptible on one processor.

Chapter 2. Backgrounds 10

Liu and Layland propose the Critical Instant Theorem for the feasibility of fixed priority

scheduling algorithm. For a given task, the critical instant is the release time when the

response time is maximized. From the theorem, for a given set of periodic tasks with

fixed priority, a critical instance for a task occurs when it is simultaneously released with

all higher priority tasks. For task ⌧i, all higher priority tasks releasing at 0 can create

the hardest situation, with the maximum response time of ⌧i.

The critical instant theorem provides an obvious necessary and su�cient test for feasi-

bility of fixed priority scheduling algorithm. That is to say, in order to find the worst

case execution conditions, we can assume that all tasks initially released together. The

task set is feasible if and only if all tasks can finish before its first deadline. We only

need to consider points which correspond to task deadlines and release times.

Based on the concept of critical instant, when a set of tasks are assigned priorities

according to the rate-monotonic policy, a su�cient utilization-based condition can be

used for feasibility. Assume a set of n periodic tasks is feasible, if

nX

i=1

Ci

Ti
 n(2

1
n)� 1

Although the Liu and Layland schedulability analysis is simple, the feasibility condition

is su�cient but not necessary. It needs all tasks have equal relative deadline and period.

Moreover, task priorities must be assigned according to the rate-monotonic policy. An

improved schedulability analysis has been proved as follows. If a set of tasks is released

together at 0, the i highest priority task will complete its first execution within its

deadline if there is a time 0 < t < Ti such that the demand on the processor, Wi, of the

i highest priority tasks is less than or equal to t, that is [10],

Wi(t) =
iX

j=1

d t
Tj
eCj  t

The only values of t which need to be checked are the multiples of the task periods

between 0 to Ti. This test can be used to test arbitrary fixed priority orderings.

Moreover, fixed-priority response-time analysis has also been proposed. The algorithm

computes the worst-case response timeRi of task ⌧i with the following recursive equation:

Chapter 2. Backgrounds 11

Ri = Ci +
iX

j=1

dRi

Tj
eCj

Only a limited points are needed to check for the system feasibility.

For Dynamic Priority Scheduling algorithm, task priorities are based on each job.

The Earliest Deadline First (EDF) is one of the most widely used algorithm. If execution

deadlines are equal to their periods for all tasks, analysis of schedulability analysis under

EDF algorithm can be simply carried out by guaranteeing that the utilization of all tasks

is no more than one. This set of n periodic tasks is schedulable by the EDF algorithm,

if and only if

nX

i=1

Ci

Ti
 1

When task deadlines are not equal to periods, scheduability analysis becomes much more

complicated. One popular method is demand bound function (DBF) analysis. Demand

bound function is defined as the maximum amount of resource demand of current jobs

within a time period t. The demand bound function can be defined as follow:

dbf(⌧i, t) = b
t+ Ti �Di

Ti
cCi

A set of tasks can be scheduled by EDF scheduling algorithm if and only if demand

bound functions of all tasks must be no more than 1. That is to say

8t � 0,
nX

i=1

dbf(⌧i, t)  t, (2.1)

2.2 Related Works

2.2.1 O✏oading Decision in Real-time Systems

Thanks to the recent advances in mobile and wireless technologies, mobile computing

devices have become very essential in our daily life. Devices such as smart phones,

mobile robots and wearable computers can be seen everywhere. Multiple tasks can be

Chapter 2. Backgrounds 12

executed simultaneously on such devices, which include voice and image recognition,

navigation, video processing, etc.

However, such devices can be resource limited due to constrains such as computation

capabilities, memory capacity and battery life. Hence, for those tasks of complicated

algorithms and time consuming computations, such devices may not be e�cient to finish

the execution of all the tasks in time. In this case, the results may become useless or

even harmful to the system due to the deadline missing. One solution is to use the

computation o✏oading, where the mobile device (i.e., the resource-constrained device)

o✏oads the computation intensive tasks to a powerful remote processing unit. The

remote processing unit executes the o✏oaded tasks and returns the results back to the

mobile device. Such embedded system and powerful remote processing unit construct

simple client-server system.

Many studies about such o✏oading mechanism has been carried on for a while. Paper

[11], [12], [13] determine the o✏oading decision based on comparison between the time

consumed during the local execution and the time consumed during the o✏oading for

each task. While in [14], [15], [16], [17], [18] graph partitioning method have been

adopted to solve the computation o✏oading problem. Task scheduling or the server

model, however, have not been considered jet in forementioned approaches which only

focus on the o✏oading decision. Also, most of them either do not consider the timing

satisfaction requirement for real-time properties, or use pessimistic o✏oading mechanism

for deciding whether a task can be o✏oaded or not [19]. Paper [20] uses total bandwidth

server (TBS)[21], [22] on the server side to provide resource reservation for the o✏oaded

tasks. While paper [23] focuses on the client who finds a feasible schedule for the tasks

such that the required utilization from the server is minimized, in order to avoid wasting

the resources of the server.

While in this part, one specific model of o✏oading mechanism is built up to alleviate the

computational pressure of local devices due to forementioned constrains. In the model,

multiple tasks are executed simultaneously on the sever while o✏oading mechanism is

applied for all tasks. Considering multiple versions with respect to each task due to

alternative o✏oading decisions, such tasks scheduling problem can be considered as a

NP -hard problem. Therefore, in this thesis, studies about how to schedule such model

will be carried on.

Chapter 2. Backgrounds 13

2.2.2 Self-suspension Time analysis

During the o✏oading, suspension delays may occur as mentioned. Suspension delay

can be caused due to tasks block to access shared resources or interact with external

devices such as I/O. Such delays can be quite lengthy (e.g., 15ms for a disk read), which

can cause really negatively impact on schedulability in real-time systems. Studies have

been shown that precisely analyzing hard real-time (HRT) systems with suspensions is

di�cult, even for very restricted suspending task models on uniprocessors[8].

Two major categories of techniques have been adopted to analyze suspensions, suspension-

oblivious v.s. suspension-aware analysis. Under suspension-oblivious analysis (which is

perhaps the most commonly used approach), suspensions are simply integrated into

per-task worst-case execution time requirements. However, this approach clearly yields

utilization loss. The alternative is to employ suspension-aware analysis,where suspen-

sions are explicitly considered in the task model and resulting schedulability analysis.

On a uniprocessor,suspension-aware analysis techniques that are correct in a su�ciency

sense have been proposed [24], [25], [26], [27]. However, these analysis can be quite

pessimistic in many cases. Indeed, suspensions are hard to analyze because they may

leave the processor idle and it is impossible to predict when suspensions may occur in

the runtime schedule. This causes pessimism in the analysis because we have to assume

that all suspending tasks suspend concurrently at any idle time instant. For scheduling

soft real-time (with guaranteed bounded response times) suspending task systems on

multiprocessor, studies can be found in[13], [28].

For the HRT case, besides the suspension-oblivious approach of treating all suspensions

as computation, several schedulability tests have been presented for analyzing periodic

tasks that may suspend at most once on a uniprocessor[24],[25],[26],[27]. Unfortunately,

these tests are rather pessimistic as their techniques involve straightforward execution

control mechanisms, which modify task deadlines. For example, a suspending task that

suspends once can be divided into two subtasks with appropriately shorted deadlines

and modified release times. Such techniques inevitably su↵er from significant capacity

loss due to the artificial shortening of deadlines.

In this thesis, models are built up based on o✏oading mechanism, which can cause self-

suspension. Solutions, however, will be found in order to avoid such time unreliable

delay. O✏oading model can be set up without waiting for any receive from remote

Chapter 2. Backgrounds 14

server. In such way, system of local can regard the o✏oading tasks as simple normal

tasks. Details about task modeling can be found in next chapter.

Chapter 3

O✏oading Decisions Algorithms

In previous chapter, scheduling problem has been discussed when dealing with imple-

mentation of o✏oading mechanism in real time system. In this chapter, more details

will be discussed. Models about o✏oading mechanism will be set up and presented.

Algorithms about scheduling such models will also be introduced, which is the main

concern of this thesis.

3.1 Software Architecture

First, a general architecture of computation o✏oading mechanism will be proposed.

O✏oading mechanism, as mentioned, can be adopted in many di↵erent areas. Discard

of di↵erent specific applications, the architecture of o✏oading mechanism can be extract

and depicted as in Fig. 3.1.

sensor serverclient

collecting data:
temperature
image
distance
…

pre-processing:
receiving data
de-noising
data classification
…

further processing:
detection
tracking
pattern recognization
…

client —sensor
client — sensor
…
client — sensor

server—client network

Figure 3.1: o✏oading application system structure

This general architecture has the following basic components:

15

Chapter 3. O✏oading Decisions Algorithms 16

• Sensors: The sensor part is to sense (or detect) some events or changes from

environment. According to di↵erent requirements, di↵erent kinds of sensors can

be adopted to collect environment information, such as temperature and humidity

sensors, velocity sensors, chemical sensors, biosensor and so on. Some cameras,

which can capture images from environments, can also be deemed as one type of

sensors.

• Embedded Devices: Embedded devices are responsible to collect data from sen-

sors and to do some calculations. However, due to the limited computing capacity,

the embedded system can only do some basic applications and some simple pre-

processing for future works. For some complicated applications. The embedded

systems can also send some complication computations to other powerful compo-

nents.

• Servers: The server part can be any powerful components, which are suitable for

some data intensive applications. These components can be Graphics Processor

Unit(GPU), Field Programmable Gate Array(FPGA), a server or a data center.

The server part can handle more complicated applications, which can alleviate

computations of embedded devices. For some components, such as servers or data

centers, data storage is also very larger compared with embedded systems.

• Networks: The connect between embedded devices and servers are is mainly

based on networks. Such network can be WIFI, zigbee, or fiber optic network

depending to requirements.

In this computation o✏oading mechanism, there are two di↵erent o✏oading conditions.

The first one is computation results can come back. That is to say, computation results

from servers are important for embedded devices. Sometimes these results are used for

further analysis in embedded devices. The other one is computation results can not

come back. In some conditions, due to limited computation ability and storage capacity,

embedded systems do not need the analysis results from servers. In the first condition,

when computations can come back, the whole task can be divided into three parts. As

in Fig. 3.2, subtask A and B are serial parts of the original real-time task. There exists

an idle time between subtask A and subtask B. This idle time is called self-suspension

time in real-time systems. Such a self-suspension time make the system not easy to

be scheduled. Moreover, the analysis with such self-suspension time is also much more

Chapter 3. O✏oading Decisions Algorithms 17

di�cult. In order to schedule this task wish self-suspension time, we propose to assign

di↵erent relative deadline for each sub task. When each sub task A and B has di↵erent

release time and relative deadline, then traditional scheduling algorithms can be used in

real-time systems.

offloadingA B t

Figure 3.2: illustration of o✏oading mechanism model

For a given application, the self-suspension time means which part can be o✏oading to

servers. Normally, in the design of embedded systems, we have di↵erent solutions of

o✏oad di↵erent application. Di↵erent o✏oading solutions will lead to di↵erent system

performances.

Moreover, in the design of such a system, we need to consider an o✏oading decision

problem. This part is essential for the system designs as the o✏oading decision will

influent the whole system. In this problem, we need to consider the following two

questions:

• How to model the o✏oading problem? In the o✏oading procedure, we need to

guarantee all tasks are feasible in real-time systems. Normally, the connection

between embedded devices and servers is just communication, such as socket pro-

gramming. It can be easily realized with programming language. In the socket

programming, no matter TCP or UDP protocols, each connection between the

embedded devices and servers has standard procedures. When the connection

between embedded systems and servers is established, then the data transfer can

start by the send-receive model in socket programming. In this procedure, we need

to analyze the system feasibility and check all tasks can be scheduled by a speci-

fied scheduling algorithm. Hence, we need to exactly model the whole o✏oading

procedure and analyze the scheduling algorithm in embedded devices.

• How to do the o✏oading decision? When and which parts of the tasks should

be uploaded? For any given application, obviously, there are di↵erent solutions

to o✏oading computations, including di↵erent o✏oading time, di↵erent o✏oading

Chapter 3. O✏oading Decisions Algorithms 18

parts and so on. Di↵erent o✏oading solutions have di↵erent e↵ects and the of-

floading decisions will have influences. Let us take an example, di↵erent the object

detection procedure, there are several o✏oading solutions such as di↵erent o✏oad-

ing images. And the o✏oading times may be also at di↵erent points. Di↵erent

solutions will have di↵erent detected accuracy. Hence, the problem how to do the

o✏oading is also a non-trivial problem.

In order to solve the following two problems, we propose the following system model as

follows:

3.2 System Model

In this part, when several periodic tasks released simultaneously on a uniprocessor, a

schedulability test should be made exactly. Suppose there are n tasks independent

periodic tasks, ⌧1,...,⌧n, scheduled by the EDF scheduling algorithm. For a task ⌧i, we

can have di↵erent o✏oading methods to o✏oad this task. However, di↵erent o✏oading

methods have di↵erent timing requirements and di↵erent system benefits. Such benefits

may be the saved energy consumption, performance improvement or image qualities.

Here, we assume each task ⌧i has wi di↵erent versions with respect to ⌧i waited to be

selected. Suppose the jth version of task ⌧i is chosen for the schedulability test, then the

demand bound function (DBF) will be presented as dbfi,j(t). Then, as been introduced

before, the schedulability test will be given in as below based on the equation (2.1):

8t > 0,
X

dbfi,j2⇧
dbfi,j(t)  t (3.1)

in which ⇧ is the set of selected versions of all independent n tasks. Meanwhile, in order

to get the best selection set ⇧, a parameter �i,j is also introduced here with respect to

task ⌧i,j . The parameter is presented as a benefit value which will be calculated and

accumulated in the algorithm which intends to find the maximum overall benefit. We

formally define the problem as follows:

Problem Definition Given a set of tasks ⌧1,...,⌧n and each task ⌧i has wi di↵erent

o✏oading versions. Each o✏oading version j from ⌧i has a benefit value vi,j . How can

we select each o✏oading version for ⌧i, 1  i  n to guarantee all tasks are feasible

Chapter 3. O✏oading Decisions Algorithms 19

according Equation (3.1) and the whole system can achieve the maximal overall system

benefits.

Noticed from the prior equation (3.1), it is not e�cient and possible to check every time

pointt, especially when the number tasks and versions increases, the exponential growth

of the computing time makes it even more impossible to calculate. Here, we use an

example to illustrate the di�culties of the problem.

Example1 Given three generalized multiframes Tasks ⌧1, ⌧2 as follows: Task ⌧1 can

start execution at any time and generate 3 jobs periodically. J11 and J13 has di↵erent

execution time 5 and 3. J12 can be o✏oaded with two sub tasks with execution time 2

and 1, a self-suspension time 4 due to the computation o✏oading. The interval release

time of J11, J12 and J13 are 10, 12 14. Similarly, task ⌧2 can also generate 3 jobs

periodically. J21 and J22 has di↵erent execution time 1 and 4. Job J23 can be o✏oaded

with a self-suspension time 5 and two sub tasks. The execution time of two sub tasks are

2 and 3. The interval release time of J11, J12 and J13 are 14, 9 12. The whole execution

of the task ⌧1 and ⌧2 are presented by Figure 3.3.

Task 1

Task 2

Figure 3.3: Time Scheduling for the Three Versions based on EDF

From Figure 3.3, we can see that each task has di↵erent execution sequences and the

demand bound function of each task can be depicted in Figure 3.4 and Figure 3.5. In

order to schedule all these tasks with EDF scheduling algorithm, it is needed to check

the schedulability. From the previous analysis, it is impossible to check every time point

of all tasks. Hence, it is di�cult to solve the o✏oading decision problem to guarantee

that all tasks can be scheduled by the EDF scheduling algorithm.

From this example, we can see that due to the irregular curves of the demand bound

function, the o✏oading decision problem is a non-trivial problem. How to solve such

an o✏oading decision problem is what we need to solve. As been discussed in the

previous chapter, schedulability tests for di↵erent scheduling algorithms can be really

time assuming some even can be NP -complete under some specific scenarios such as

Chapter 3. O✏oading Decisions Algorithms 20

5 10 15 20 25 30 35 40 45 50 55 60 65 70 t

5

10

15

20

25

dbf(t)

Figure 3.4: time demand bound for task1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 t

5

10

15

20

25

dbf(t)

Figure 3.5: time demand bound for task2

self-suspension which is the exactly problem will be encountered when one dealing with

the realization of o✏oading mechanism in real time system.

3.3 Approximated Demand Bound Function

Due to the irregular curves of demand bound functions, we propose a new approximated

demand bound function which can be adopted here. The approximated demand bound

function can simplify complicated representations of the demand bound function. Based

on the approximated demand bound function, the complexity of the problem can be

largely reduced.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 t

5

10

15

20

25

dbf(t)

Figure 3.6: Example:Approximated Demand Bound Function of Task 1

Chapter 3. O✏oading Decisions Algorithms 21

5 10 15 20 25 30 35 40 45 50 55 60 65 70 t

5

10

15

20

25

dbf(t)

Figure 3.7: Example:Approximated Demand Bound Function of Task 2

From the example, one can observe that after some time period or some o↵-set time

point, jumping points of the DBF repeats themselves regularly [29], this can be used for

time points checking such that no infinite time checking is necessary. To illustrate the

property, equation (3.2) is given below:

dbfi,j(t) = dbfi,j(t� b
t� Li,j

Ti,j
c) + b t� Li,j

Ti,j
c(dbfi,j(Li,j + Ti,j)� dbfi.j(Li,j)) (3.2)

where t � Li,j , while Li,j presents the o↵-set time before the points repeat themselves.

Also, given this property, it is reasonable to make the assumption that once these limited

points under the schedulability test have been carried out, the restless will not be checked

again. It is also true for the ADBF scenario which will be discussed later. Meanwhile,

in order to make it more simply to be adopted in the decisions, the discrete jumping

points within the demand bound function dbfi,j will be symboled like below:

(⌘1i,j , dbfi,j(⌘
1
i,j)), ...(⌘

s
i,j , dbfi,j(⌘

s
i,j))

where ⌘si,j presents the sth discrete jumping time point of the demand function while

dbfi,j(⌘si,j)) presents the demand value. Again take the existed example above, one ex-

ample result of the Approximated Demand Bound Function can be shown in Fig. 3.6 in

which both ADBF and DBF of the task example are completed and compared together.

From the figure, it can be seen that the ADBF is a linear approximation of the step curve

– DBF like discussed before. The question is how to model such linear function that it

can fits the original curve. As been known, a linear function can be characterized with

two variables – line slope u and starting point (p, q). In RTOS, the former presents the

utilization rate which is critical in the schedulability test. In the next section some algo-

rithms will be presented to model such linear curve and the general idea is to determine

the value of the variables.

Chapter 3. O✏oading Decisions Algorithms 22

3.4 HEU O✏oading Decision Algorithm

In this section, we propose a HEU o✏oading decision algorithm as follows:

3.4.1 Design of Approximated Demand Bound Function

To begin with the algorithms used to make the approximation and versions selection,

based on the discussion above, the model of ADBF will be set up like below:

dbf⇤
i,j(t) =

8
><

>:

0 t < Pi,j

Qi,j � ui,j ⇤ Pi,j + ui,j ⇤ t t � Pi,j

(3.3)

where dbf⇤
i,j(t) presents the approximated result as been shown above. And it is charac-

terized by three parameters: ui,j , Qi,j and Pi,j . As been discussed, the first one presents

the slope of the function which, actually, illustrates the utilization rate if the system.

Obviously, the slope of the function should not large than 1 or in case of multiple tasks,

the accumulated sum of slope. the point Qi,j presents starting point of the linear func-

tion while Pi,j presents the time point of Qi,j . It is easy to notice that once the three

parameters are determined further procedures – schedulability test and versions selection

both can be done based on the approximation result.

In order to determine the value of slope ui,j , suppose points Qi,j and Pi,j are given which

will be determined in later section. Under such assumption, the slope value should be

set up based on principle that the approximation error between the functions should be

as small as possible, one straight forward reflection on the graphic is the linear line –

straight line should tight up to the step curve. One example should be like the figure

discussed before figure 3.6. Given the principle and assumption, the ui,j value can be

determined based theorem below:

Theorem 3.1. For Approximated Demand Bound Function, given point p, q, 8 u 2 u

u  u⇤ = max{max{dbfi,j(⌘i,j)�Qi,j

⌘i,j � Pi,j
}, dbfi,j(Li,j + Ti,j)� dbfi,j(Li,j)

Ti,j
} (3.4)

as been shown above, the slope is determined among those which can be calculated

by discrete jumping points. Algorithm 1 shows a detail procedure of determination of

Chapter 3. O✏oading Decisions Algorithms 23

value u⇤i,j . The input is points Pi,j , Qi,j and the output is the value of slope. And the

algorithm is given based on the equation 3.4 in above theorem.

Algorithm 1 Framework to Build dbf⇤
i,j(t)

temp u = dbfi,j(Li,j+Ti,j)�dbfi,j(Li,j)
Ti,j

q 0
while q < si,j do

if temp u < dbfi,j(t)�Qi,j

⌘i,j�Pi,j
then

temp u dbfi,j(t)�Qi,j

⌘i,j�Pi,j

end if
q q ++

end while
ui,j = temp u
return ui,j

From the algorithm above, it is clear that with given point Qi,j ,Pi,j , the value of slope

can be yielded with an iteration which tries to find largest value of ui,j . Initially, variable

tempu is used to store the temporary value of the result, after comparing with u value

yielded with respect with each jumping point, the largest one will be stored and passed

to the final value ui,j . As been shown above the slope value within the iteration loop

is determined by the given two points and each jumping time point and correspond-

ing demand bound function result. This guarantees the fact that the approximated

linear demand bound function tights up to the original one which actually makes the

corresponding error between them the smallest one.

3.4.2 Schedulability Analysis

After calculation, the parameters of approximated demand bound function are deter-

mined and it comes to selection parts. Within the selection parts some algorithms or

parameters should be employed as conditions or constrains which models the selection

problem. One essential condition is the selected version must be schedulable. In this

part, schedulability analysis should be customized such that e�cient schedulability tests

can be carried on as conditions in the selection procedure.

Given the schedulability tests and especially demand bound function introduced in chap-

ter 2, it is clear that, in principle, the result of approximated demand bound function

should never larger than the timing point itself, more straight forward way, the slope

should never larger than 1.

Chapter 3. O✏oading Decisions Algorithms 24

Theorem 3.2. Given a set of tasks ⌧1, ⌧2,..., ⌧n, each task ⌧i has a selected version xi

and the corresponding safely approximated demand bound function dbf⇤
i,j(t) with respect

to demand bound function dbfi,j(t). Assume all tasks are sorted in non-decreasing order

with respect to the parameter Pi,xi. The task set is schedulable by algorithm EDF if it

holds that,
jX

i=1

dbf⇤
i,xi

(pj.xj)  pj,xj , j = 1, ..., n (3.5)

and
nX

i=1

ui,xi  1 (3.6)

As been shown, the first equation (3.5) guarantees the schedulability for starting jumping

time points with respect to each task in task set. As to the second equation (3.6),

obviously, it simplifies the testing procedures compared with original Demand Bound

Function algorithm, only the accumulated slope value should be guaranteed less than

one. It also reveals the main idea and application reason of Approximated Demand

Bound Function.

3.4.3 HEU-Based Version Selection Algorithm

Followed by section of u determination, this part concentrates on choice of P and Q. For

these value determination, it is obvious that one reasonable assumption is the value of

P should be less than the first value jumping points ⌘1i,j . Specifically, the corresponding

time point of these jumping points. Meanwhile the Q value should be the function result

value with respect to the first time point of ⌘1i,j – the jumping value of the function. So

the question is is it reasonable to set up the assumption like this?

The determination of P , Q value is essential and the procedure is main parameters

selection part while it is used to model the function and the starting points are essential

for schedulability test and can also e↵ect the error between demand bound function

and approximated demand bound function. Firstly, the assumption above guarantees

the schedulability property of original demand bound function as the starting points –

testing points is less than the first jumping point of the original function. This makes the

ADBF is much more reasonable to present the original DBF and a safely approximation.

Chapter 3. O✏oading Decisions Algorithms 25

Moreover, the assumption above actually minimizes the starting o↵set error which can be

seen through the equation (3.3). Also setting the starting point before the first jumping

time point makes it more easier to calculate the demand bound function result which

makes it more easier for the realization of the algorithm. So it is clear and reasonable

that the value of P is less than the x-axis value of the jumping points ⌘1i,j and value of Q

is the y-axis value of the point ⌘1i,j . Then how to exactly to determine these two value?

Given the assumption above and the theorem 2, it is noticed that the schedulability test

will test n di↵erent starting points with respect to given the task set ⌧1, ⌧2,..., ⌧n. As

been discussed above, the trick is in order to find the possible best ADBF model, it has

to be safe and possess the original schedulability property. In other words, the starting

point must be less than the first jumping point of demand bound function with respect

to the corresponding version. Suppose the starting points is donated as H points, for

notational brevity latter, considering the fact that the starting points should be derived

from first jumping point, one reasonable and possible propose is choosing the starting

points – these H points exactly before jumping points.

Given the H points ↵1, ↵2,..., ↵H , which 0  ↵h < ↵h+1, h = 1, ..., H � 1 the value of

points P , Q for given task ⌧i version j with corresponding jumping points ⌘si,j which

s = 1, 2, 3, ..., can be determined through following procedure:

• We greedily set Pi,j to be the maximum ↵h among the H points exactly before

the first jumping point ⌘1i,j of the corresponding demand bound function dbfi,j(t),

i.e., ↵h  ⌘1i,j .

• In order to build a safely approximated demand bound function, one suitable value

should be signed to Q. As been discussed above the value should be the y-axis

value of first jumping point ⌘1i,j . In this way the value ADBF actually should be

always less than result of DBF such that it preserves the original schedulability

property.

• To simplify the selection procedure, in this section version j should be deleted

from versions set of corresponding task ⌧i in two scenarios:

– for those ↵1 > ⌘1i,j , these make no sense while when all starting points are

larger than first jumping point, the ADBF could not guarantee for safely

presentation of DBF in time period [0,↵1].

Chapter 3. O✏oading Decisions Algorithms 26

– for those utilization rate yielded from Algorithm 1 is equal or larger than 1.

This is obviously not a suitable version selection.

As been seen above, the value determination of Q and P can be achieved by following

the procedures. For further illustration of the algorithm, one detail example is produced

here:

Example2 Suppose that there are three testing points H = 3, ↵1 = 2,↵2 = 3,↵3 = 5.

Again as been like example1, here one task set ⌧1, ⌧2, ⌧3 with two di↵erent versions

are introduced for the demonstration of the SMP (SelectedMultiplePoints) algorithm.

Suppose two versions are characterized by their WCET and deadline, then for version1

they have been presented correspondingly by E1,1 = [3, 1, 2] and D1,1 = [5, 4, 3]. For

version2 they have been presented as E1,2 = [2, 1, 4] and D1,2 = [4, 2, 7].

As been shown in equation (3.1), the time points of versions can be calculated easily.

For version1 the first jumping point in demand bound function is 3 which determines

the value of ↵2 as the maximum value less than the first jumping time point 3 among H

points ↵1,↵2,↵3, which in turn signs the value of point P1,1 = (3, 0). Again, calculated

by equation (3.1), it is clear that the first jumping value – also the lowest result of

the demand bound function is 2 which value the point Q1,1 = (3, 2). Meanwhile after

realizing the algorithm 1, the value of parameter u1,1 can be yielded easily u1,1 = 0.6.

So the approximated demand bound function dbf⇤
1,1(t) can be defined as:

dbf⇤
1,1(t) =

8
><

>:

0 t < 3

0.6 ⇤ t+ 0.2 t � 3
(3.7)

likewise, for version2, the first jumping time point is 2 which signs the value of P1,2 = 2.

The result of the dbf1,2(t) is 1 which determines the value of Q1,2 = 1. Hence, the result

of approximated demand bound function can be defined as:

dbf⇤
1,1(t) =

8
><

>:

0 t < 1

7
13 ⇤ t+

6
13 t � 1

(3.8)

Another question is how to determine the value of the H points and what if all the

versions proofed to be fail to be schedulable during the parameters selection procedure

Chapter 3. O✏oading Decisions Algorithms 27

as been shown above. While here, the H points are selected randomly at first, then it

is possible to find the fact that all the versions seems to be ine�cient for schedulability

test. This means that the given H points could not used to yield a safety approximation

result with SelectedMultiplePoints algorithm and could not be used for calculation.

Then the exhaustive search method is used here to change the value and renew the

procedure.

Once the parameters are settled, model of ABDF for each version of task set ⌧1, ⌧2, ..., ⌧i

will be determined dbf⇤
i,j(t). All the safety approximated versions are yielded as been

shown in prior section Example2. Then, the following procedure is to select the best

combination among the result versions. In this section, the problem will be modeled

first, then one algorithm named HEU is introduced to address the model, finally one

best solution of version will be yielded for o✏oading mechanism realization.

First, as been discussed, the selection problem needs to be modeled mathematically.

The usual procedure for such best version finding problem is try to define a benefit

function with relative variables and try to find the optimal value of the parameters for

minimization or maximization the benefit function. In the project, the benefit function

can be defined as the overall benefit – the accumulated benefit of each task. Let xi,j be a

versions selection decision parameters which specifies the selection situation with respect

to the task ⌧i version j. It is valued as xi,j 2 {0, 1}. In other words, when xi,j = 1, then

the task ⌧i,j is selected. As been shown in prior section, for each task in task set, it is

possible that each task possess di↵erent number of versions needed for selection. Hence,

for notational brevity, the feasible approximated demand bound function versions yielded

by algorithms introduced in last section are indexed as 1, 2, ..., w0
i, which, obvious, w

0
i

may di↵er from wi value introduced before.

Another parameter needed to be introduced for problem modeling is benefit variable �,

which presents the benefit of o✏oading the selecting task version of j. This parameter

can be valued either through system resource saving – time saving due to the o✏oading

mechanism in the project, or quality comparison between results of task carried on local

computer and those on remote server computer. Obviously, the server possesses more

resource and produces higher quality result. Due to this benefit parameter definition,

it can be noticed that the more tasks are uploaded to the server, the more benefit can

Chapter 3. O✏oading Decisions Algorithms 28

be yielded. Schedulability, however, may be an issue when all tasks select the version

possesses the best benefit. This is also the significance of o✏oading decision problem.

Once the benefit parameter �, the benefit function can be defined as follow:

f(xi,j) =
nX

i=1

w0
iX

j=1

xi,j�i,j (3.9)

as been shown above, the versions selection problem is modeled through this benefit

function. Obviously, to find the best solution of task versions is to maximize the function

result with respect to parameters – task selection decision parameter xi,j . Once the value

of xi,j is determined for each task, it is clear that which version should be selected for

the entire task set benefit function.

For maximum benefit function, constrains must be considered, otherwise solution may

be optimal but unreasonable or unrealizable. In the project, such constrains lies in

the schedulability and accumulated value of variable xi,j . For schedulability, as been

introduced in theorem 3.2. The equation (3.5) and equation (3.6) can be employed to

define the constrains here, specifically:

nX

i=1

w0
iX

j=1

xi,jdbf
⇤
i,j(↵h)  ↵h, 8h = 1, ..., H, (3.10)

nX

i=1

w0
iX

j=1

xi,jui,j  1 (3.11)

equation (3.10) describes the schedulability test for the given H points, which has been

discussed before. The second equation (3.11) presents the accumulated slope – the

overall utilization rate of the system. As been illustrated in equation (3.6), it must be

less than 1.

The last constrain is simple as for variable xi,j , it is obvious and reasonable that one task

should only select one version. For the mathematical expression, it should be described

Chapter 3. O✏oading Decisions Algorithms 29

as below:

w0
iX

j=1

xi,j = 1

xi,j 2 {0, 1}

(3.12)

Once the model is set up, algorithms should be implemented to address the problem. To

find out solution of the problem, a further explanation is given here. As been discussed

before, the aim of the algorithm is trying to find the best accumulated benefit. Mean-

while, the overall utilization constrain should not be violated. When the number of tasks

and versions increased, the calculation should increase explosively. This is not suitable

for programming and realization in embedded system. This kind of problem can be

named as MMKP (Multiple dimensional Multiple choice Knapsack Problem), obviously,

it is an NP � hard problem. The computational time may grow exponentially with the

growth of task set scale.

One simple example is to fulfill a container with multiple small cubes. As been shown

below, it is possible that for each cube there are several options which possess di↵erent

properties, in this scenario, di↵erent length, heigh and width. Di↵erent options produce

di↵erent rewards. The MMKP problem is to find the highest value of reward with out

violating any constrains, in this scenario, the total length, heigh and width must be less

than those properties of container itself.

stack 1 stack 2 stack 3 knapsack

Figure 3.8: One Example for MMKP

One solution for such problem is to adopt a heuristic HEU algorithm to address the

problem. The algorithm yields aa fast and near-optimal solution of the MMKP. As the

Chapter 3. O✏oading Decisions Algorithms 30

problem concerns the resource allocation within RTOS. Some variables can be introduced

first for problem modeling. Suppose within one task set ⌧1, ⌧2, ..., ⌧n, each task possesses

optional versions j, which j = 1, ..., w0
i. Suppose C and R present the current system

resource vector and total system resource limit vector respectively, which means that

perhaps there are more than one system resource constrains, not only timing constrain.

In order to present the system resource consumed by version j of task ⌧i, symbol ri,j

is introduced here. Noticed that variable ri,j is a vector due to the multiple system

resource while symbol ri,j only represents the aggregate resource consumption proposed

by Toyoda. The aggregate resource consumption is introduced here for a quantification

of resource changing due to the alternative selection of the versions. As for versions

selection, as been introduced before, vi,j presents the value for each task version while

⇢[i] reflects the selection decision with signed value ⇢[i] = 1, 2, ..., wi, with respect to

task ⌧i. Meanwhile, in order to make an iteration, parameters 4r(⇢, i, j) and 4p(⇢, i, j)

present the resource changing value and value gain per unit of extra resource due to the

updating of version selection.

To summarize the forementioned legend and further illustrate the algorithm, the main

procedure will be described and a pseudo algorithm will be given later. Now the main

procedure is presented as below:

• The algorithm starts with picking up the versions with smallest value vi,j and

replace the selection iteratively with those possess higher value as long as the

selection task set satisfy all forementioned constrains –feasible for scheduling under

EDF in RTOS.

• With conception of aggregate resource consumption mentioned by Toyoko, it is

possible to present the system overall resource in form of scalar instead of vector

comparison when dealing with multiple resource constrains.

• For updating principle, the main idea is replacing current selection with those

which maximizes the saving in aggregate resource. If no such item is found, then

one with higher value of gain per unit of aggregate resource is chosen.

For specifically procedure and further illustration, the pseudo algorithm is given in al-

gorithm 2. As been shown, the input of the data is properties of task versions and the

output is the best selected combination.

Chapter 3. O✏oading Decisions Algorithms 31

To summarize the data processing procedure mentioned in this section, and make a

preparation for the next section – UI realization, a processing pipeline is introduced

here. First, in order to schedule the task set with self-suspension cased by o✏oading

mechanism, a Approximated Demand Bound Function is derived from the input vari-

ables which characterizing the independent task set – WCET, deadline and period. Once

the ADBF s are yielded by algorithm 1. As been shown before, the demand bound func-

tion is then characterized by three parameters which should safely guarantee the original

schedulability properties. Then all these versions of tasks are valued with corresponding

penalties which present the value of each task from perspective of users. This leads to

the version selection which can be seen as a MMKP problem. With given parameter –

slope of ADBF ui,jand each version value vi,j , algorithm HEU is proposed to select

the best solution of the problem. In the end, with optional selected and schedulability

proofed versions, the task set should be safely carried on in real time embedded system

under EDF algorithm.

To make the forementioned algorithms more manipulatable and generalizable, one demo

will be presented in next section to realize those data processing procedures. More

details and main procedures of realization will be discussed then.

3.5 Priority-Based HEU O✏oading Decision Algorithm

As been shown above, to approximate demand bound function, parameters starting point

P , jumping point demandQ and approximated curve slop u are essential. Starting points

P will produce an distance error which e↵ect final judgement of schedulability. So in

this section one classification algorithm is proposed to reduce such distance error.

The best solution, obviously, is that we can determine each approximating curve function

with exactly same value of the first jumping point. One problem, however, may arise

that such solution may lead to n dimensional MMKP problem which will not be seen

as a good solution. Suppose n tasks needed to be scheduled, then n starting points are

determined through such way. In order to solve the scheduling problem, algorithms like

Chapter 3. O✏oading Decisions Algorithms 32

Algorithm 2 HEU Algorithm

/* A heuristic algorithm for MMKP */
/* Legend:

n: task set number w0
i version number for task ⌧i i, j: task i version j

m: system resource number C: current accumulated resource v: value
R: total resource limit ⇢[i]: solution vector ri,j : resource for each version
4p: value gain per unit of extra resource 4r aggregate resource saving */

procedure HEU:

1: for i = 1, ..., n do
2: ⇢[i] = 1;
3: end for
4: C =

Pn
i=1 r[i][⇢[i]]

5: while 1 do
6: 4pmax = 04 rmax = 0
7: for i = 1, ..., n; j = ⇢[i] + 1, ..., li do
8: if 9k : k = 1, ...,m,C[k]� r[i][⇢[k]] + r[i][j][k] > R[k] then
9: continue;

10: end if
11: 4r = (r[i][⇢[i]]�r[i][j])·C

|C|
12: if 4rmax < 4r then
13: 4rmax = 4r, i0 = i, j0 = j;
14: end if
15: if 4rmax < 0 then
16: 4⇢ = (r[i][⇢[i]]�r[i][j])·C

4r
17: if 4⇢max < 4⇢ then
18: 4⇢max = 4⇢, i0 = i, j0 = j;
19: end if
20: end if
21: if 4⇢max <= 0and4 pmax <= 0 then
22: return⇢
23: end if
24: C = C � r[i0][⇢[i0]] + r[i0][j0]
25: ⇢[i0] = j0;
26: end for
27: end while

HEU are carried on whose constrains number will be signed by number of P . So simple

adopting value of jumping points seems fail to address the problem.

Alternative solution like determining all starting points with simple one or limited values

alleviates the calculation pressure as it reduces multiple constrains into only one or

limited constrains. The disadvantages, however, is quite obvious that such method may

increase error between original BDF and approximated DBF.

In order to determine value of P , meanwhile, avoiding increasing approximated error,

one classification procedure is proposed here. Basically, in order to sign the value of each

Chapter 3. O✏oading Decisions Algorithms 33

starting point, the first jumping points of each demand bound function are classified into

m groups and the P value of each DBF will be valued with the smallest value in each

group. This value m can be set up randomly. Obviously, increasing number of groups

may reduce the error while it will increase the constrain dimension at the same time.

It can be noticed that such method is basically adopting classification algorithms which

are widely used in unsupervised machine learning problem. One example is K-Means

algorithm. Here, to o↵er a customized algorithm with respect to real time tasks schedul-

ing, algorithm 3 is introduced here.

Algorithm 3 classification Algorithm

/* A classification algorithm for determination of P point */
/* Legend:

n: demand bound function number
m: signed classification number
point(2): vector stores first jumping points
label: label of points position aggregate resource saving */

1: for i = 1, ..., n� 1 do
2: for j = 1, ..., n� i� 1 do
3: if point[j] > point[j + 1] then
4: point[j] ! point[j + 1]
5: label[j] ! label[j + 1]
6: end if
7: end for
8: end for
9: for i = 1, ..., n� 1 do

10: sub[i] = point[i+ 1]� point[i]
11: end for
12: threshold = sub[m� 1]
13: for i = 1, ..., n� 1 do
14: if sub[i] < thrshold then
15: point2[i+ 1] = point2[i]
16: end if
17: end for
18: for i = 1, ..., n do
19: ParameterP [sub[i]] = point2[i]
20: end for
21: return ParameterP

As can be seen above, in the first part, all first jumping points have been sorted in in-

creasing order with Bubble Sort algorithm. Then subtraction between adjacent elements

is carried out and sorted in decreasing order. Based on selected classification number

m, the mth subtraction value is selected and seen as threshold. According to this value

Chapter 3. O✏oading Decisions Algorithms 34

and subtraction results, elements can be signed with the lowest value in each group. In

the end the result of parameter can be returned.

It can be noticed that the algorithm adopted Bubble Sort method which is the most

time consuming part. So considering the worst case, the complexity of the algorithm 3

is O(n2).

The advantage of HEU algorithm is it tries to find out optimal solution in a greedy

way, which trends to solve the MMKP problem in shorter time compared with non-

HEU algorithm. One disadvantage is the searching direction or iteration policy seems

deficient. This is due to the fact that the knowledge of candidates can not be known.

Any favor in any searching direction may or may not yield a quicker answer to the

question.

Considering about the fact that in RTOS, applications or tasks can be signed with dif-

ferent priorities which is quite common under resource limited circumstances. Even for

detection tasks, for example, di↵erent detection objects can be sighed with di↵erent pri-

orities according to the situation. In this way, the approximated demand bound function

can be also signed with such priorities. This can help to improve HEU algorithm.

With priorities signed with each task, the searching direction or as mentioned iteration

policy should favor tasks with higher priorities. In other words, resources assignment

will be considered first with those of higher priorities tasks. Algorithm 4 illustrates the

basic processing procedure of such method. Suppose the tasks are scheduled in priority

decreasing order with value from n to 1, while the versions are scheduled in penalty

increasing order with value from 1 to w, in which w presents number of version and n

indicates task number, then the result can be yielded through following algorithm.

In the first part, a greedy result is chosen as initialization value which is the best result

only considering the penalty. Then a while loop is carried on until possible result is

found. This is realized through break option. As can be seen the second part – loop

body can be separated into two sub parts: (1) constrains checking; (2) break the

loop or continue iterating result. As noticed, the principle behind this is as same

as HEU algorithm, iterating result until optimal solution appears. The di↵erence is the

iteration policy in this algorithm guarantees that the iteration candidates are of penalty

Chapter 3. O✏oading Decisions Algorithms 35

Algorithm 4 HEU Algorithm with priority

/* Priority based HEU algorithm */
/* Legend:

n: tasks number
w: versions number
flagschd: flag of schedulability
accpoint: detection points
accvalue: accumulated value of detection points
result: vector stores final optimal result
label: label of points position aggregate resource saving */

1: for i = 1, ..., n do
2: result[i] =versions with highest penalty
3: end for
4: while 1 do
5: if Parameteru[result[i]] >= 1 then
6: flagschd = 1; break
7: end if
8: accpoint = ParameterP [result[i]]
9: accvalue = 0

10: for l = 1, ..., n do
11: accvalue+ =point value
12: end for
13: if accpoint < accvalue then
14: flagschd = 1; break
15: end if
16: if flagschd = 0 then
17: break
18: end if
19: if flagschd = 1 then
20: flagschd = 0
21: for i = n, ..., 1 do
22: if result[i]%w=0 then
23: continue
24: end if
25: result[i] = result[i]� 1; break
26: end for
27: end if
28: end while
29: return result

Chapter 3. O✏oading Decisions Algorithms 36

& priority decreasing order. In other words, if the possible solution is found, then it is

the optimal one.

Due to the fact that this algorithm is also HEU based algorithm although the itera-

tion policy, as forementioned, determines the researching direction and speeds up the

iterations. In the worst case, the algorithm complexity will be O(wn).

Chapter 4

Case Study Virus Detection

As been shown in the prior chapter, the aim of the thesis is to realize an o✏oading

mechanism in project – ”Virus Detection”. In this chapter, more details about the

project will shown and a demo will be presented to illustrate the mechanism. As for the

o✏oading decision and parameters determination, they will also be introduced in latter

section.

4.1 Techniques about Virus Detection

Virus, based on definition of Merriam-Webster, is an extremely small living thing that

causes a disease and that spreads from one person or animal to another. Few, but,

horrible instincts such as smallpox, pandemic, AIDS, or even recently Ebola virus, have

shown that it can lead to countless losses and leave nothing but ruins and panic, a sound-

less massacre. Meanwhile, people’s pursuer towards simple and e�cient approaches of

virus detection never stops, which not only protect us form infection but also may help

us find out ”Patient One” with certain algorithms. The intention of this project is to

make the detection feasible on a mobile embedded device which should make it more

portable and easier. The project aims at detection of biological viruses using portable

biosensor with fuzzy-enhanced algorithm.

37

Chapter 4. Case Study Virus Detection 38

4.1.1 Background of Virus Detection

Rising numbers of global virus epidemics increase the demand for infection control. It

is desirable to deliver diagnoses on-site and as quickly as possible, in order to prevent

further spread of virus-transmitted diseases. This calls for virus detection devices which

are fast and portable. Such devices can be used e.g. at airports, to answer the question

whether or not passengers might propagate contagious diseases from high risk regions.

A novel method providing the basis for a portable and real-time capable virus detection

device is the so-called PAMONO technique (Plasmon Assisted Microscopy of Nano-Size

Objects). It enables selective detection of di↵erent types of nano-objects, including but

not limited to viruses. In order to be detected, the nano-objects must be immobilized

on the surface of the PAMONO biosensor. In the case of viruses, this is achieved

by preparing the sensor surface with antibodies. Using di↵erent antibodies enables

distinction of multiple strains of viruses. Conversely, it it possible to determine which

antibodies are capable of attaching to a certain kind of virus. These capabilities are

combined in an inexpensive device, consisting of the biosensor and of a laptop computer

for data analysis.

4.1.2 Virus Detection based on PAMANO Sensors

In 2010 a novel device named PAMONO (Plasmon Assisted Microscopy of Nano-Size

Objects) was proposed (Weichert et al., 2010; Zybin and et al., 2010[30]) to perform

a basis portable real-time capable virus detection. Instead of hours labor in the lab,

the detection procedure can be achieved by general medical practitioner holding mo-

bile devices anywhere anytime. It enables detection of di↵erent nano-objects, not only

virus, but also can be applied into field of environment monitor, automobile exhaust,

for instance.

PAMONO sensor, short for Plasmon Assisted Microscopy of Nano-Size Objects sensor,

detects nano-objects based on the di↵erential reflections of detected objects compared

with the surroundings. The general procedure behind it is utilizing a gold layer, which

will be used to generate a surface plasmon resonance e↵ect, to immobilize the detected

virus with corresponding antibodies, then the fixed virus and antibody will be illumi-

nated by a diode behind the golden layer. Then, according to the surface plasmon

Chapter 4. Case Study Virus Detection 39

resonance e↵ect, the ”surface plasmon resonance properties will change within a mi-

crometer scale area around that nanometer scale attachment”. This results in an in-

creasing reflectance of the sensor surface in that micrometer scale area. More light from

the diode will be reflected at the attachment site, which can be detected using optical

microscopy”[3].

At the same time a highly sensitive 12-Bit CCD camera chip will be used to record the

reflection of the e↵ect through a series of images with a lateral resolution of 1024 x 256

pixels at a temporal resolution of 30 frames per second. Figure 4.1 first part illustrates

the main structure of the device PANOMO. If the images were received in time, then

they will be seen as input variables and put into algorithms that can be applied to make

a detection and classifications based on given image features corresponding to di↵erent

demands.

Figure 4.1 illustrates the main idea of the detection procedure. It is clear that the general

procedure can be roughly divided into two parts – recording images through PANOMO

sensor, analyzing data with received images. Due to PANOMO sensor’s hight analytic

sensitivity, it is feasible to get enough features to make further decisions associated with

algorithms such as fuzzy-enhance detection technology. After that the result will be

yielded immediately to tell whether the images contain a virus or not. So in conclusion,

the basic procedure, a PMONO sensor based virus detection technology, can be listed

as follows:

• immobilization of detected virus through corresponding antibody

• record images of reflections from diodes

• data analysis

As can be seen, the detection procedure also can be regarded as a real time operating

system while the procedure can be seen as an online processing procedure. Although

powerful computing components can be utilized to guarantee the result due to the adop-

tion of o✏oading mechanism, missing deadline, somehow, can still occur given consid-

eration of problems such as self-suspension. RTOS computational o✏oading issue will

be discussed in detail and fair solution will be given.

Chapter 4. Case Study Virus Detection 40

Diode

 viruses

CCD CameraPrism
Gold Layer
Antibodies

Image receiving through PAMONO sensor

X

Y

t(time)

Time Series of Images recorded by CCD Real-time Data Analysis

time

in
te

ns
ity

Figure 4.1: PAMONO biosensor (left), the recorded data (center) and the concept of
virus detection (right)[3]

4.1.3 Data Analysis about Virus

After receiving images, a four-step fuzzy-enhanced algorithm will be adopted in order to

yield a final solution. Figure 4.2 reveals the detail of the four-step processing algorithm.

Wavelet denoising Per-pixel time
series analysis

eliminating false
positives

apply fuzzy rules
on received scores

Preprocessing Pattern Matching Fuzzy Detection Classification

Figure 4.2: processing pipeline for biosensor data analysis[3]

As can be seen, the procedure is divided into four steps: preprocessing, pattern matching,

fuzzy detection and classification. For any single pixel on the frame of the time series

recorded images, the detection algorithms will be carried out in both temporal and

spatial direction. It can be seen as a detection pipeline, which processes every incoming

image and detects every single pixel on it. Specifically, in the first processing pipeline,

di↵erent denoising techniques will be applied here aiming at noise removing. Random

impulse noise removal, for example, uses fuzzy logic technic to make the noise removal

more e�cient. After that several other image processing algorithms will also be used to

perform an image enhancing procedure, which mainly make a preparation for the next

step, pattern matching.

In the pattern matching procedure, a 3D volume of matching scores will be yielded

with respect to each pixel after comparing time-series frames. In general case, this step

will generate a score with respect to each pixel. It is designed to value the existence

possibility of the virus. The common approach is using a hard threshold with respect

to the selected features. The problem is sometime this may lead to missing detection

or over detection due to failure determination of the threshold. In the project, however,

this will be released by adopting a fuzzy logic enhancement method, which yields a more

Chapter 4. Case Study Virus Detection 41

robust and exact detection result of telling whether the pixels contain a virus candidates

or not.

Moreover, an auxiliary procedure will also be added here to make an additional verifica-

tion to eliminate the false candidates. This process can also be seen as a feature based

classification. In the project, some shape related features will be used to make the clas-

sification. Specifically, the contiguous areas of each candidate pixel will be aggregated to

polygons, which will be used as features in a random forest classifier to distinguish actual

viruses from artifact detections. A clear illustration will be seen through the Figure1.4.

From the figure, inputs and outputs of each step will be figured out and compared.

in
pu

ts
ou

tp
ut

s

Virus or not

3D volume
matching scores

Preprocessing Pattern Matching Fuzzy Detection Cllassification

Figure 4.3: inputs and outputs of processing algorithms.[3]

More detail about the algorithms could be discussed in latter chapters, where methods

will be proposed and analyzed to realize o✏oading decisions.

4.2 Portable Virus Detection Device

In the project, the detection part and algorithms will be accomplished and simulated

first with computer software Qt which mainly performs functions of the mobile interface

and parameters configurations. Then the program should be carried out on application

board with a live CCD camera, with which the system can be then considered as a real

time system. After setting up of the environment, parameters selection, server and client

setting up, the o✏oading should be carried out. Firstly, basic communication between

client and server should be set up based on socket network programming, which will be

discussed and presented in later chapter. Moreover, studies about o✏oading decisions

should be carried on aiming at finding solutions with respect to di↵erent scenarios such

as o✏oading with only one task or o✏oading with multiple tasks, which basically, will be

Chapter 4. Case Study Virus Detection 42

the general case in RTOS. Meanwhile, o✏oading decision problem should be considered

here to find the optimal solution of which part of algorithms should be uploaded. Given

proposed solution, a simulation will be applied to illustrate the idea and schedulabil-

ity should be discussed and guaranteed. With no doubt, considering about problem of

self-suspension, o✏oading mechanism will cause a scheduling problem. Then, specific al-

gorithms will be presented to address the problem proposed above along with a interface

designed with Qt to illustrate the idea. Latter, an interface will be designed to show the

result of the o✏oading mechanism decision which will be generalized for problems such

as versions selection problem. In the end results will be yielded and analyzed, further

discussion will be given.

4.2.1 Software Design

Here, we present the software architecture of the portable virus detection device. In this

architecture, we have the hardware layer, operating system layer and application layer.

In the hardware layer, the sensing parts is composed of PAMANO sensors and CCD

cameras. The PAMANO sensors and CCD cameras are connected with an embedded

system. The embedded system has some powerful CPUs and GPUs, which can also pro-

cess some virus detection algorithm locally. There are also some communication modules

to enrich the functionality of embedded systems, such as WIFI, Optical Fiber and etc.

In the operating system layer, we can utilise some general-purpose operating systems,

such as ubuntu. Moreover, in order to guarantee the real-time response time, there are

also some real-time operating systems which can also be used. In the application layer,

the embedded system can finish some image acquisition, de-noising and etc.

sensor,camera,
embedded device… hardware layer

operating system

application

RTOS ubuntu

image acquisition,
de-noising…

Figure 4.4: software design

For example, if we only need to detect limited virus types, the embedded system can

finish the whole detection. However, when the embedded system needs to process several

Chapter 4. Case Study Virus Detection 43

di↵erent virus types at the same time, the local embedded system with limited computing

resources is di�cult to finish all computations. At that time, a remote server can be

used to increase the computing capacity and storage.

From the application of algorithms, in the virus detection algorithm, according to dif-

ferent parameter configurations of our system, each application can also have di↵erent

ways to o✏oad computations.

4.2.2 Related Tools

In this part, we introduce some related works which are related to our system imple-

mentation as follows:

First, our implementation is based on a cross platform application framework QT. The

QT framework has several functions which makes the virus detection algorithm much

more easier to develop with graphical user interfaces (GUIs). One of the important

properties of QT framework is that it supports standard C/C++ library. Gstreamer and

OpenCV libraries can also link to the QT application. Moreover, QT framework has the

property which can process many multimedia applications. A novel concept introduced

in Qt — ”signal and slot” makes image acquisition much more easier. communication

between objects more easier.

Gstreamer is another widely used multimedia libraries, which are based on a pipeline-

based architecture. In Gstreamer, a component named element is set up first with source

and sink which define the data flow. Then di↵erent elements with di↵erent functions

accordingly, will be connected together to form a pipeline which can be seen a top-level

collection of elements. Obviously, with di↵erent functional elements, multimedia can be

processed step by step through data flow. In the thesis, one pipeline is set up to handle

a data processing procedure which starts from input data bu↵er and ends with output

final decision.

OpenCL is a programming framework which is based on heterogeneous platforms, which

can be used in single processor, multiple processors and heterogeneous processors. In

reality, due to some complicated parallel computations, OpenCL can take the advantage

of GPUs to accelerate the application execution, which can solve the resource limited

problem of embedded systems.

Chapter 4. Case Study Virus Detection 44

Besides framework mentioned before, another library named OpenCV is also used in

the project to process image and video. OpenCV (Open Source Computer Vision Li-

brary) is also a cross platform computer vision library which is widely used in image

processing, computer vision and model recognition. Specifically speaking, the library

o↵ers hundreds of algorithms which not only have c/cpp interface but also those for pro-

gramming languages such as Python and Java. These algorithms make it more easier to

process multimedia, images for example. Moreover, the most exiting thing about it is

that it can really realize a parallel processing mechanism which can significantly speed

up the calculations combined with OpenCL. This makes it more suitable for real time

computation tasks in which scenario timing requirements should be paid more attention.

Through acceleration of hardware and software architecture, tasks can be guaranteed to

be accomplished within given constrains. That is the essential idea of real time operat-

ing system encountering with complicated computations. In the demo of latter section,

some image processing algorithms from OpenCV are adopted here to do a preprocessing

of images. More detail will be discussed later in next section.

4.2.3 Software Implementation

In the client side, video images will be collected from a CCD camera which has been

introduced along with the PAMONO device in the first chapter. Then the first image

processing pipeline — preprocessing pipeline is carried on to make some preprocessing

procedures which will be helpful for latter processing. In this part, some universal pre-

processing algorithms are adopted to make the detection more e�cient and feasible.

In this part the video data received form camera will be transferred and converted

from Gstreamer bu↵er into image processing data bu↵er, which can o↵er the inputting

images for latter processing. This will be realized with Gstreamer architecture and

corresponding library. Also the algorithms are scheduled in form of ”plugin” in the

pipeline mentioned before in section Gstreamer. The advantage of this architecture is

it will be more flexible to schedule the algorithms while as ”plugin”, they can be easily

added, removed or changed during the image processing procedures. Also all states

of data can be seen through calling functions of Gstreamer. The image data flow in

through ”source” port of one element and be passed to another through ”sink” port.

Fig. 4.5 below will illustrate the structure specifically.

Chapter 4. Case Study Virus Detection 45

sink sink src sink

Bin element 1 element 2

Figure 4.5: structure of ”element” in Gstreamer

From the figure, it can be seen that the source data flow into processing element from

original source data, and then are passed to the source ports of elements to be processed

by algorithms, then send to following elements though port sink. Likewise, all algorithms

are presented as ”plugin” and image data pass through all elements which can be seen

as one big ”pipeline”. The data follow pass by and the final detection – existence of

virus can be yielded and returned.

To accelerate the processing procedure, OpenCL library is linked into Gstreamer. To

realize that, a ”gst-plugins-cl” is applied. Also, some common image processing algo-

rithms can also be called through library OpenCV . In the end, to integrate the whole

project, software Qt is applied to make it an application. Fig. 4.6 below reveals the

whole software structure of virus detection procedures

Qt interface
images

result

Gstreamer Processing Pipline

OpenCL

OpenCV

algorithms
 acceleration

Figure 4.6: software structure

From the image it can be seen how algorithms are scheduled together and how these

softwares are associated with each other.

Once semi-processed images are uploaded into remote server, the rest processing proce-

dure will carry on, the main processing procedures have already been introduced before.

The details can be found in paper [3].

Chapter 4. Case Study Virus Detection 46

4.2.4 Experiment

In reality, to perform such detection functions, client and server platforms are needed.

Here, the client configuration is 2.9 GHz Intel Core i7 with Intel HD Graphics 4000 1024

MB. While for server, there are eight Intel Xeon ES-2609 v2 2.50Hz with four AMD

Radeon HD 7900 Series.

In the client side, QT software framework software is adopted. Some image processing

algorithms, such as , are employed based on OpenCV and QT.

At first, given the function of the program – periodically receiving data from camera,

processing the yielded images and realizing the o✏oading.

It can be noticed that in the main program, functions should be called periodically

to read the image data and then send them to the processing procedures. During the

procedures, image denoising or some other image processing algorithms are adopted.

Finally, the semi-processed images are uploaded.

Back to Qt, such structure is realized through adopting signal system. Signal system

can be seen as a ”callback” function which can be triggered with multiple actions or

other signals. Basically, it can be seen as an event or time triggered based function.

The principle idea is to connect a SIGNAL sent trough a QT widget with a SLOT

generated by functions. Once the signal is sent, the function can be executed then.

One simple example can be one Qt widget PushButton, once the action ”Push” of the

widget is triggered, the corresponding signal will be sent and the ”signal function” will

be executed then. In the case of reading image data from camera, the reading function

read() is o↵ered by video processing class V ideoCapture in OpenCV which deals with

extracting image frames from camera, video or web. The output of the read function is

stored in form of matrix. This process will be carried on periodically. As been mentioned

before, in order to trigger such image reading process, one simple solution is to adopt

T imer widget. The class QTimer o↵ers time function which enables one to read and

control timing parameters. Specifically, with the Open(int) function in the class, the

timer will be triggered with respect to the setting parameter. Then the sending signal

can be connected with SLOT of image processing functions. Once the signal is sent,

the functions will be carried on. In this way, the image reading from camera can be

processed periodically.

Chapter 4. Case Study Virus Detection 47

In the image processing functions, some basic algorithms are realized. First, considering

about image cutting procedure. When dealing with multiple detection tasks, resource

limitation should be the main problem and image processing procedures should be de-

signed to alleviate system computational pressure. One possible method is image cutting

procedure. The object of such procedure lays in two considerations. Resource saving

is the first reason. The second one is the image quality of virus candidates decreases

due to the existence of angle between light beam of diode and CCD camera. This may

lead to bad result of detection on the edge area of the received images. So instead of

processing whole images, the detection results mainly depend on virus candidates in the

central area of images. Fig. 4.7 illustrates the receiving images from CCD camera.

Figure 4.7: real received image from CCD camera(1080,145)

As can be seen, the size of received images form CCD camera is (1080,145). To realize

the image cutting procedure, the size of image should be determined first. To di↵er

di↵erent detection execution time, we suppose for those viruses with larger diameter,

less edge area will be cut o↵ and vice versa. The cutting can be done through simply

valuing the Mat format variable in OpenCV . With di↵erent size of images, di↵erent

detection tasks may possess alternative execution time.

The second step of procedure is image denoising. While for this specific virus detection

tasks, the denoising procedure can be done with following procedures. test Considering

about the fact that the temporal solution of the CCD camera is 30 frames per second,

the image slight changes over time. Then, to accelerate the processing procedure, an

image bu↵er is set up. The bu↵er is illustrates through the following figure.

As can be seen, denoising procedures can be divided into three sub-steps according to

the data collection. The first and last m images and n images in the middle. So basically,

in order to save system resources and realize the denoising function, the middle n images

are skipped over while the first and last m images can be combined through averaging

images to yield two new processed images image Ima and image Imb respectively. Then

these two images can generate the final denoised images through the following formula:

Chapter 4. Case Study Virus Detection 48

m n m

image buffer

Figure 4.8: coming image bu↵er

D(i, j) =
Imb(i, j)

Ima(i, j)
(4.1)

in which D stands for the demoised image while i, j present the position of each pixel.

In such way, for each coming image form camera, one denosed new image can be yielded

with m + m images through such bu↵er. Normally, we set up value with m = 10,

n = 8. Fig. 4.9 illustrates the corresponding results. As the images slight change,

the candidates are di�cult to tell, to illustrate these points, in the following image, the

background is set to white and the image is zoomed in.

As seen, image a and image b are the results of averaging images of first and last m

images. The last image is the final result of denoised image. During such processing,

however, another method can be adopted to accelerate the processing procedure – image

skipping.

As mentioned before, the processed images will be yielded and uploaded to remote server

after the image bu↵er is full. In other words, with one coming image, one result image

is yielded even through it covers the information of imaged in the bu↵er. The trick is

we can set up the processing procedure to skip l images each time, that means for each

incoming l images, we will produce one denoised image. In such way the system can be

accelerate and system resource can be remained.

In the end the processed images are uploaded to remote server with socket programming.

Further processing procedures can be carried on with more powerful computational

components.

Chapter 4. Case Study Virus Detection 49

(a) average image Ima

(b) average image Imb

(c) denoising image D

Figure 4.9: result of image denoising wit forementioned bu↵er

With uploaded processed images, further procedures can be carried on on the server.

As been discussed before, the application number can be more than one which means

the scheduling algorithm should handle such scenario. In the next chapter, parameters

of determined model will be determined and solution of task scheduling problem will be

given.

Chapter 5

Experiments & Results

In the prior chapter, models of o✏oading mechanism have been discussed and one demo

has been presented. Simple application with o✏oading mechanism can be easily done

with socket programming and disadvantages have also been illustrated. Meanwhile,

for more complicated model – multiple applications with o✏oading, more sophisticated

solution should be introduced. This chapter concentrates on multiple applications model

and one final optimal solution will be shown in the end for tasks scheduling issue.

5.1 Model

As been shown, it is possible and e�cient to execute more than one detection procedures

at the same time. With o✏oading procedure, each detection task can possess di↵erent

execution time considering about the demo in last chapter. This can be caused by simple

di↵erent determination of synthesis number of images or, more generally, by di↵erent

significance level of virus.

Considering about the system resources limit. In order to execute more detections for

di↵erent viruses. It is notable to label the importance of each virus for detection priority

issue. With more important virus, more resources should be thrown in. Specifically in

the project, detection period can be reduced to make a more frequent test. For those not

significant viruses, a longer period can be adopted. In this way, system can pay more

attention to real significant viruses detection. Another way to distinguish the detection

is through image size. Likewise, for those viruses with smaller diameter, a larger image

50

Chapter 5. Experiments & Results 51

can really help during the detection procedure while others with larger diameters can

be resized with smaller size.

So for multiple application with o✏oading mechanism, multiple viruses can possess

di↵erent sizes and of di↵erent image synthesis numbers during the detection procedure.

As been talked before, the scheduling issue depends on corresponding parameters, which

will be presented in next section.

5.2 Tool Build

This section will present an UI used for implementation of all the procedures introduced

above. The interface is designed for yielding the best o✏oading decision based on relative

inputs. The inputs parameters are already discussed in prior sections – number of tasks,

number of versions for each task and corresponding characterized propertied such as

WCET, Deadline and Period. In this section, the main procedures introduced prior

will be scheduled and shown first to illustrate the data flow. Then in the end a Demo

of interface will be presented.

5.2.1 data flow

For further illustration, data flow of the UI design will be introduced first. As been

discussed before, it is clear that in the model of o✏oading mechanism application in

virus detection project there will be di↵erent versions needed to be selected. In this

case, characteristics such as period, execution time and deadline needed to be seen as

input data. Also, as been discussed in last chapter, parameters value also needed to

be considered here. In the demo, these characteristics will be send through algorithms

in form of two dimensional matrix. Row data, for example, can be easily signed as

di↵erent tasks with respect to di↵erent versions. Each row can be illustrated as TnV i

which stands for the ithversion of the nth task. Column data, on the other hand, can be

presented as characteristics of task: execution time, deadline and periods. As for value

parameter, as it can be signed with respect to di↵erent definitions, it can be send through

the algorithms with another matrix. Or it can be automatically determined during the

calculation. One simple example is when dealing with o✏oading mechanism, the shorter

programming time on the local embedded system, the higher benefit system can get, so

Chapter 5. Experiments & Results 52

the value parameter can be easily signed as time di↵erence between o✏oading version

and non-o✏oading version – the original system. Under such circumstance, the value pa-

rameter can be easily signed through subtraction calculation between the first column of

the input matrix – execution time and the original non-o✏oading version execution time.

Once the input data is send into the program, algorithms can be carried on to yield

the final result. Apparently, in order to get the best selection number of task version,

the approximated demand bound function must be yielded first. As been illustrated

above, the function is modeled and determined by algorithm SMP (Selected Multiple

Points). As been shown, the approximated demand bound function will be presented

as three parameter P , Q and u. Again, the result of the function can be stored in a

two dimensional matrix with row data versions of tasks and column data – P , Q and u.

These parameters will be further processed.

Based on yielded approximated demand bound function parameters P ,Q and u, associ-

ated with parameter value, result of best selection version can be got through algorithm

HEU .

To summarize the whole data processing procedure, figure 5.1 is shown below. From the

figure, it also can be seen the inputs and outputs of each algorithm.

As for specific realization approach and platform, next section – realization will be

introduced.

5.2.2 realization

Since the project is based on platform Qt as introduced before, the UI interface will

be also designed on platform of Qt. In case the UI interface needed to be carried on

other platform, a class in programming language Cpp is defined to realize the whole

processing procedures since platform Qt is based on Cpp. This is also one of the merits

of the platform.

Specifically, since the input data needs to be send in in form of matrix, one widget named

Table in Qt is introduced for receiving the data. One reason of employing QTable wid-

get is it is more easier to receive the data as its resembling shape and characters – row

Chapter 5. Experiments & Results 53

Start

reading
data

End

ADBF

MMKP
Solver

Figure 5.1: data processing procedure

and column. Another reason is as the number of tasks and versions are not determined

first, it is more easier to define such widget characters – number of row in QTable than

other simple input widget such as QLabel and QTextEdit. The number of tasks and

versions is variable which determines the processing programming procedure will be all

concerned with dynamic matrix definition.

As been discussed, the dimension of input parameters P , Q and u will be determined

by predefined task number and version number. Yet these numbers should di↵er along

with specific task models. For given o✏oading mechanism model, however, they are

simply determined as follow: given task ⌧ i which i = 1, 2..., n; each task possessed ver-

sion number w. Although the version number seems to be di↵erent with respect to the

specific task ⌧ i, it would be more easier to signed with the same size considering about

the following dynamic programming. Also one simple solution for scenario – tasks with

di↵erent version numbers is to copy one prior version with respect to the corresponding

task until all the tasks possess the same maximum number of versions. Theoretically it

would not change the final result. To receive these two integer numbers, one Qt widget

QTextEdic is employed, a simply trick is since all data types received from Qt widgets

are either QString or cell, functions such as toInt() should be implemented for data

Chapter 5. Experiments & Results 54

type transform. For convenience of programming, class variable TaskN and V ersN will

be defined as number of task and number of version respectively which can be easily used

for later variable definition such as determination of row number and column number of

input matrix.

After receiving the number of task and version, a widget PushButton is used for in-

puting data which values the parameter TaskN and V ersN , also, determine the row

number of input matrix through setting characteristic RowCount of widget QTAble.

Again, after typing in all required input data – execution time, deadline and period of

each task and version, PushButton ”Calculation” should be triggered with simple push

to yield the final result.

In order to make a clear illustration, the explanation will follow the data flow pre-

sented in figure 5.1. Again to simplify the programming procedure and make it more

transportable, all algorithms and processing procedures will be defined as class function

and can be called and revised easily.

First, in order to carry on the further algorithms, one basic processing procedure should

be employed – get jumping points from the inputing data as all later processing procedure

will based on ADBF whose parameters are determined by those jumping points. As

been shown before, these jumping points will be yielded at time points which can be

defined as below:

nX

i=1

Ci +mTi (5.1)

which i stands for task ⌧ i and m stands for number of period which can be signed as

m = 1, 2, With the equation above, it is not di�cult for us to calculate jumping points

of demand bound function. Meanwhile, for general demand bound function calculation,

it is easy to yield the function within given time. In this case, however, it can be noticed

that since the number of task and number of version varies along with the specific model,

the number of task set combined with alternative versions with respect to tasks can be

really big since it possesses an exponential growth along with the growth of number

of task and version. Suppose 10 task is considered with o✏oading mechanism in the

project, each task possesses 10 di↵erent versions, then the combination number should

Chapter 5. Experiments & Results 55

be 1010 which really makes the algorithm a bad processing procedure and can be seen

as a NP problem. Who to solve the problem then?

In the project, one class function named result dbf() is used for calculation of jumping

points of demand bound function. The trick is instead of calculating demand bound

function of whole task set, only one task one version is considered first. The combination

part can be processed later in algorithm HEU . Briefly speaking, in the end of the

function, the jumping points of each task version can be stored for following processing

procedures.

After getting jumping points, one class function result adbf() is used then to process

the inputing data and yield corresponding result as been illustrated in figure 5.1 before.

Specifically, in order to get the approximated demand bound function with inputing

data, forementioned algorithms will be used here. As been discussed in last section, three

parameter P , Q, and u should be valued to present the approximated demand bound

function. For specific realization, the algorithm is designed to avoid exponential growth

NP problem which caused by calculating combination of task versions, instead of simple

straight forwards approximation of whole task set, ADBF is concerned with simple one

task one version, as been discussed before. This makes the calculation more easier as for

one task, demand bound function will be more regular which makes the approximation

more easier. As been shown in last section, yet according to the algorithm, the parameter

u should be determined based on both parameter of P , Q and jumping point of demand

bound function. For simple one task DBF , however, it should be simply defined based

on jumping points since the shape of demand bound function repeats itself in every

period which can be easily illustrated through figure 5.2.

As been shown in figure above, it can be easily seen that in the no matter where point

(P , Q) is, the u value needs to be parallel with slope of the jumping points in DBF as

the ABDF should guarantee to possess a larger ”demand” than corresponding DBF

which means the approximated line should always above the original line and should

not interact with each other. In conclusion, the value of u can be directly determined

through the jumping points.

As for parameter P and Q, as been defined in prior section, in algorithm SWP , P point

will be determined through H points chosen through trail and error which makes the

programming e�cient. In the programming, however, it can be done with simple setting

Chapter 5. Experiments & Results 56

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8

0.8

1.6

2.4

3.2

�����

����

�����

���

������
�
��	�
��

Figure 5.2: error illustration in ADBF

by staring jumping point of each demand bound function. Specifically, the aim of in-

troducing H points is to make an approximation such that the starting point of ABDF

can be less than original demand bound function. Also the error between these two

starting points will influence the approximation error between DBF and ADBF , which

should be as less as possible. Given these consideration, in the programming, it is one

point before the original starting point that is signed to be the approximated demand

bound function. The error, as been discussed before, can be measured through subtrac-

tion calculation between these two starting points. One optimal solution is choosing the

exactly original starting points to make the approximation. After determination value

of P , Q point can be easily signed with the result of demand bound function with re-

spect to the first jumping point. These results – u, P , Q are stored in class parameters

– Parameter u, Parameter P and Parameter Q in form of one dimensional matrix

respectively.

Since the ABDF is presented by parameters P , Q and u which has already stored in

corresponding matrixes as result of class function result adbf(), it is time to select the

best version with algorithm HEU . In the programming, algorithm HEU is realized

based on the forementioned results. As been described in algorithm 2, some parameters

should be dynamically defined as along with the predefined parameters number of tasks

and number of versions such as solution vector ⇢ and resource vector r. One parameterm

– system resource number is set to be 1 while so far, in the project, only time limit is taken

into consideration. Also, value parameter should be already signed with corresponding

definition. As been introduce before, in algorithm, resource limitation should be checked

Chapter 5. Experiments & Results 57

to guarantee the schedulability first. Considering about the ADBF schedulability test

procedures mentioned in last section – checking the sum of utilization rate u and each

H points – mentioned in equation 3.5 and equation 3.6. After the schedulability test,

versions of non-compliance will be eliminated from the selecting pool. Also, as been seen

in the algorithm 2, a while loop here is employed trying to select the best version which

is defined as version that possesses not only the highest system utilization rate but also

highest penalty value per system resource.

Figure 5.3: UI design for o✏oading decision poblem

In the end, the best solution yielded from HEU algorithm is send through Qt widget

QTable to be presented in the front window. Some data type transform should also be

used here. One another functional push button ”WCET” is also located in the front

window which is designed to call other WCET analysis software to yield the timing

parameters directly after processing the source code. The known WCET analysis tool

software can be ”aiT” from AbsInt, ”RapiTime” from Rapita Systems or ”Chronos”

from National University of Singapore. The final result of UI design can be seen form

above figure 5.3.

Chapter 5. Experiments & Results 58

In the UI design, algorithms forementioned are implemented to solve the o✏oading

decision problem. As for the model based on project virus detection, the UI design can

be presented as figure above, it can present one general model of o✏oading problem. For

other models, however, interfaces such as inputing data structure may vary along with

the demand. Hence, some further work may still need to be done. One solution may lie

in some Qt widgets. One widget List, for example, enables selection function which can

be used as model selection before inputing and calculation. It makes the design more

reliable and portable. Also, since the approximated demand bound function can also be

realized with other algorithms and selection result can also be yielded employing other

algorithms, new class functions can easily build based on corresponding algorithms and

be used for addressing the problem with same class variable defined before.

5.3 variables

5.3.1 parameters

In order to schedule forementioned model with EDF algorithm, parameters should be

measured first. As been shown above, di↵erent sizes of image and di↵erent image skip-

ping number can influence the execution time of one task. So during the measurement,

execution time has been measured with di↵erent size of images and di↵erent number

of image skipping. The measurement result can be seen through following table. The

order of viruses is concerned with the size of images, such di↵erent versions are caused

by image cutting. As forementioned, due to the physical characters, candidates in the

edging area are not su�cient enough for the detection, cutting edge area can be good

method for resource saving. Also considering about the size of viruses, those with larger

diameters can possess larger central area while those of small diameters may be cut o↵

more.

diameter(nm) image size 3 images(s) 5 images(s) 7 images(s) 9 images(s)

300 1080,145 0.412 0.480 0.478 0.473
250 1080,135 0.406 0.435 0.471 0.456
200 1080,125 0.412 0.435 0.457 0.455
100 1080,115 0.411 0.425 0.441 0.466
50 1080,110 0.384 0.429 0.435 0.440

Table 5.1: execution time for di↵erent viruses

Chapter 5. Experiments & Results 59

As can be seen the execution time is measured through trail and error. Also, for di↵erent

viruses with di↵erent diameters, di↵erent image sizes are determined. The rest columns

imply the synthesis image number which can also lead to di↵erent execution time.

As for deadline and period, they can be set based on execution time. The following two

tables illustrate the result of these two parameters respectively. All these parameters,

as been discussed before, will be sent into the interface designed in last section, then the

final result of optimal scheduling solution can be yielded. Another parameters – penalty

and priority will be introduced later.

diameter(nm) 3 images(s) 5 images(s) 7 images(s) 9 images(s)

300 0.824 0.960 0.956 0.946
250 0.812 0.870 0.942 0.912
200 0.824 0.870 0.914 0.910
100 0.822 0.850 0.882 0.932
50 0.768 0.858 0.870 0.880

Table 5.2: deadline time for di↵erent viruses

diameter(nm) 3 images(s) 5 images(s) 7 images(s) 9 images(s)

300 1.648 1.920 1.912 1.892
250 1.624 1.740 1.884 1.824
200 1.644 1.940 1.828 1.820
100 1.644 1.700 1.764 1.864
50 1.536 1.716 1.740 1.760

Table 5.3: periodic time for di↵erent viruses

5.4 Penalty & Priority

As been mentioned before, in order to yield best solution, HEU algorithm is adopted

for solving such MMKP problem. Then parameter penalty should be determined first.

Such determination actually can be divided into two situations.

• scenario a: in this case, the penalty value increases when the demand of system

resources decreases. In other words, versions demanding less system resources

possess higher penalty. In this way, HEU algorithm will not be necessary as the

best solution is the versions with least resource demanding. The typical example

for such situation is signing the penalty as ”system resource saving” parameter. As

Chapter 5. Experiments & Results 60

it is the only concern in the project, then the less processing procedures executed

in the local, the better the total penalty will be. In this project, more skipping

images are encouraged.

• scenario b: in this case, the penalty value decreases along with the decreasing

of system resources saving. In this scenario, when the demand increases, on one

hand corresponding constrains may be violated, on the other hand penalty value

will be higher. Such trade o↵ situation is the reason of adopting HEU algorithm.

In the project, skipping procedure may increase the local execution time, system re-

sources in the server, however, will be saved. This is because when one image is skipped,

one execution period in the server will be saved. So although considering the fact that

the less the skipping images number is, the better quality the result will be, skipping

is still necessary. In the project, the penalty is determined with respect to the image

skipping number. More images are skipped, more penalty will be yielded.

In last chapter, one priority based HEU algorithm is mentioned to reduce the computa-

tional complexity. In the project, such priority can be determined with respect to the

importance of the viruses. Recalling the concept in priority based HEU, the tasks with

higher priority will possess higher penalty in the end, which, in the project, will have

more skipping images. So suppose viruses with less importance possess higher priority,

that means more resources will be saving even through detection result quality may be

influenced.

With all parameters forementioned, the optimal solution can be found through the

designed interface easily.

Chapter 6

Conclusion

6.1 Conclusion

In the thesis, in order to implement o✏oading mechanism, several models have been

proposed, result required from remote server, result require-less from the server, one

task application, multiple tasks applications. Each of the models have been discussed

and corresponding task scheduling problems have also been discussed. During which,

multiple task based o✏oading mechanism model has been illustrated through specific one

case study. The scheduling problem concerns problem such as Approximated Demand

Bound Function and Multiple Multidimensional Knapsack Problem. Solutions such as

HEU and priority based HEU have been proposed.

Through the solution, it can be noticed that with forementioned processing procedure,

one schedulable solution can be yielded. Also, the solution can be e↵ected with di↵erent

determination result of parameter ”penalty”, which e↵ects the iteration results of algo-

rithm HEU. Also, the proposed priority based HEU algorithm reduces the computational

complexity due to the signed priority. As for error reduction, the classification based

approximated demand bound function is introduced. Finally, one general computation

tool is built up to this kind of model.

With given model and computation tool interface, o✏oading mechanism can be imple-

mented with multiple tasks which can be seen as schedulable and optimal solution based

on the determined penalty. This o✏oading model can reduce the resource demand of

task in embedded system. This seems more significance especially when ”the free meal

61

Chapter 6. Conclusion 62

is over”. With such mechanism, more sophisticated algorithm can be adopted which

means more complex functions can be realized now.

6.2 Prospect

As been shown, the o✏oading mechanism can be realized with di↵erent models. Here,

only one specific model has been presented. O✏oading model like result required task

system, for example, still needs to be studied while self-suspension problem may arise.

Also interface design can be improved when more models scheduling problems have been

solved. WCET, for example, can be measured with softwares instead of measurement.

More further works are needed.

Bibliography

[1] Ezio Malis. Survey of vision-based robot control.

[2] Giorgio C. Buttazzo. Hard Tral-Time Computing System. Springer, 2011.

[3] Pascal Libuschewski, Dominic Siedho↵, Constantin Timm, Andrej Gelenberg, and

Frank Weichert. Fuzzy-enhanced, real-time capable detection of biological viruses

using a portable biosensor. Proceedings of BIOSIGNALS, pages 169–174, 2013.

[4] Miller BP Powell ML. Process migration in demos/mp. In ACM SIGOPS Oper

Syst Rev, pages 110–119, 1983.

[5] Yung-Hsiang Lu Bharat Bhargava Karthik Kumar, Jibang Liu. A survey of com-

putation o✏oading for mobile systems. Mobile Networks and Applications, 18(1):

129–140, 2013.

[6] Balan RK. Powerful change part 2: reducing the power demands of mobile devices.

In IEEE Pervasive Comput, pages 71–73, 2006.

[7] Kandemir M Vijaykrishnan N Irwin MJ Chandramouli R Chen G, Kang B-T.

Studying energy trade o↵s in o✏oading computation/compilation in java-enabled

mo- bile devices. In IEEE Trans Parallel Distrib Syst, pages 795–809, 2004.

[8] F. Ridouard. Negative results for scheduling independent hard real-time tasks with

self-suspensions. In Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE

International, pages 47 – 56. IEEE, 2004.

[9] James W. Layland C. L. Liu. Journal of the ACM (JACM), volume 20. ACM New

York, 1973.

[10] J. Lehoczky. The rate monotonic scheduling algorithm: exact characterization and

average case behavior. Real Time Systems Symposium, pages 166 – 171, 1989.

63

Bibliography 64

[11] C. Krintz S. Gurun, R. Wolski and D. Nurm. On the e�cacy of computation

o✏oading decision-making strategies. In Int. J. High Perform. Comput, 2008.

[12] Y.-H. Lu Y. Nimmagadda, K. Kumar and C. Lee. Real-time moving object recogni-

tion and tracking using computation o✏oading. In Intelligent Robots and Systems

(IROS), IEEE/RSJ International Conference, 2010.

[13] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft real-time

multiprocessor systems. In Proceedings of the 30th RealTime Systems Symposium,

2009.

[14] A. Messer I. Greenberg X. Gu, K. Nahrstedt and D. Milojicic. Adaptive o✏oading

inference for delivering applications in pervasive computing environments. In IEEE

International Conference on Pervasive Computing and Communications (PerCom),

pages 107–114, 2003.

[15] C. Wang Z. Li and R. Xu. Computation o✏oading to save energy on handheld

devices: a partition scheme. In CASES, pages 238–246, 2001.

[16] C. Wang Z. Li and R. Xu. Task allocation for distributed multimedia processing on

wirelessly networked handheld devices. In In Parallel and Distributed Processing

Symposium., Proceedings International, IPDPS, 2002.

[17] K. Yang S. Ou and A. Liotta. An adaptive multiconstraint partitioning algorithm for

o✏oading in pervasive systems. In In IEEE International Conference on Pervasive

Computing and Communications (PerCom), pages 10–125, 2006.

[18] S. Ou K. Yang and H.-H. Chen. On e↵ective o✏oading services for resource-

constrained mobile devices running heavier mobile internet applications. In IEEE

Communications Magazine, 2008.

[19] Y.-H. Lu K. Kumar, J. Liu and B. Bhargava. A survey of computation o✏oading

for mobile systems. In Mob. Netw. Appl., 2013.

[20] A. Toma and J.-J. Chen. Computation o✏oading for frame-based real-time tasks

with resource reservation servers. In In the 25th Euromicro Conference on Real-

Time Systems (ECRTS 2013), 2013.

[21] M. Spuri and G. Buttazzo. E�cient aperiodic service under earliest deadline

scheduling. In In Real-Time Systems Symposium, 1994.

Bibliography 65

[22] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dynamic priority systems.

In Real-Time Systems, 1996.

[23] A. Toma and J.-J. Chen. Server resource reservations for computation o✏oading in

real-time embedded systems. In the 11th IEEE Symposium on Embedded Systems

for Real-time Multimedia (ESTIMedia 2013), 2013.

[24] S. Park D. Kim I. Kim, K. Choi and M. Hong. Real-time scheduling of tasks that

contain the external blocking intervals. In Proceedings of the 2nd International

Workshop on Real-Time Computing Systems and Applications, 1995.

[25] J. C. Palencia and M. Gonzlez Harbour. Schedulability analysis for tasks with

static and dynamic o↵sets. In n Proceedings of the 19th IEEE Real-Time Systems

Symposium, 1998.

[26] R. Rajkumar. Dealing with suspending periodic tasks. In Technical report, IBM

T. J. Watson Research Center, 1991.

[27] K. Tindell. Adding time-o↵sets to schedulability analysis. In Technical Report 221,

University of York, 1994.

[28] C. Liu and J. Anderson. An o(m) analysis technique for supporting real-time self-

suspending task systems. In Proceedings of the 33th IEEE Real-Time Systems

Symposium, 2012.

[29] M. D. Natale H.Zhang. Using max-plus algebra to improve the analysis of non-cyclic

task models. In 25th Euromicro Conference on Real-Time System, 2013.

[30] C. Timmb F. Weicherta, M. Gaspara. Signal analysis and classification for surface

plasmon assisted microscopy of nanoobjects. Sensors and Actuators B: Chemical,

151:281–290, November 2010.

	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Cyber-Physical System
	1.2 Computation Offloading Techniques
	1.3 Computation Offloading in Real Time System
	1.4 Contributions

	2 Backgrounds
	2.1 Overview of Real Time Scheduling
	2.1.1 Real-time task model
	2.1.2 Real-time scheduling algorithms
	2.1.3 Schedulability analysis

	2.2 Related Works
	2.2.1 Offloading Decision in Real-time Systems
	2.2.2 Self-suspension Time analysis

	3 Offloading Decisions Algorithms
	3.1 Software Architecture
	3.2 System Model
	3.3 Approximated Demand Bound Function
	3.4 HEU Offloading Decision Algorithm
	3.4.1 Design of Approximated Demand Bound Function
	3.4.2 Schedulability Analysis
	3.4.3 HEU-Based Version Selection Algorithm

	3.5 Priority-Based HEU Offloading Decision Algorithm

	4 Case Study Virus Detection
	4.1 Techniques about Virus Detection
	4.1.1 Background of Virus Detection
	4.1.2 Virus Detection based on PAMANO Sensors
	4.1.3 Data Analysis about Virus

	4.2 Portable Virus Detection Device
	4.2.1 Software Design
	4.2.2 Related Tools
	4.2.3 Software Implementation
	4.2.4 Experiment

	5 Experiments & Results
	5.1 Model
	5.2 Tool Build
	5.2.1 data flow
	5.2.2 realization

	5.3 variables
	5.3.1 parameters

	5.4 Penalty & Priority

	6 Conclusion
	6.1 Conclusion
	6.2 Prospect

	Bibliography

