
TU Dortmund University

Department of Informatik, Informatik XII

Real-Time Group

Prof. Dr. Jian-Jia Chen

Master Thesis

Implementation and Evaluation of Real-Time Multiprocessor

Scheduling Algorithms on LITMUSRT

by

Jun Jie Shi

Supervised by:

Senior researcher: M. Ing. Wen Hung Kevin Huang

Examiner: Prof. Dr. Jian Jia Chen

Dortmund, DECEMBER 2016

Declaration of Authorship

I, Jun Jie Shi, declare that this thesis titled, ’Implementation and Evaluation of Real-

Time Multiprocessor Scheduling Algorithms on LITMUSRT ’ and the work presented

in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Eidesstattliche Versicherung

______________________________ ____________________

Name, Vorname Matr.-Nr.

Ich versichere hiermit an Eides statt, dass ich die vorliegende Bachelorarbeit/Masterarbeit* mit

dem Titel

__

__

__

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich

gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

__________________________ _______________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer

Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit

einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für

die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der

Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden

Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5

Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren

oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die

Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

_____________________________ _________________________
Ort, Datum Unterschrift

Acknowledgements

I am gratitude to many people who has given me so much assistance during my thesis.

First of all, I would like to thank my professor Prof. Chen who has kindly given me the

chance to work on this wonderful topic. Meanwhile, I appreciate my supervisor Kevin

who has guided me during the whole process of my thesis. I would also like to express my

appreciate to Shuai Zhao (The University of York) for his guidance and advice during

my implementation work. As well as Björn Brandenburg who is the maintainer of the

LITMUSRT also gave me a lot of assistance throughout all the six months of my thesis.

Last but not least, I would like to thank all those friends, Kuan-Hsun Chen and Wei

Liu who has supported me during the writing of thesis.

iii

Abstract

When concurrent real-time tasks have to access sharing resources, to prevent race con-

ditions, no two concurrent accesses to one sharing resource are in their critical sections

at the same time. Therefore, a mechanism for synchronization and resource access must

be furnished.

To date, many protocols for task synchronizations are available, for instance, Multi-

processor Priority Ceiling Protocol (MPCP) with suspension-based and Multiprocessor

resource sharing Protocol (MrsP) with spinning-based. Moreover, resource-oriented par-

titioned scheduling has been recently shown to be a particularly elegant approach for

semi-partitioned systems. However, those protocols are developed upon the assumption

that run time overhead is negligible. But, the fact is that the induced costs of overhead

may come into play and vary from one protocol to another. Therefore, it is still arguable

that whether there exists a preferable approach for resource sharing in multiprocessor

systems when taking into account run time overhead.

In this thesis, we will evaluate what impact runtime overheads would have on different

protocols based on the platform LITMUSRT . Whether the overheads will destroy the

essences of protocols in theory as well. We found that resource-oriented partitioned

fixed priority scheduling is a pragmatically good algorithm in the sense that it has high

performance in terms of schedulability and reasonably low run time overhead. Thus, the

implementation and evaluation for all the resource synchronization protocols are based

on P-FP scheduling algorithm.

iv

Contents

Declaration of Authorship i

Acknowledgements iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Thesis Organization . 3

1.2 Scheduling Algorithms for Multiprocessor 3

1.3 The Necessity of Resource Synchronization 5

1.4 Resource Synchronization Protocols in Uni-processor 8

2 Resource Synchronization Protocols for Multiprocessor 11

2.1 Resource Synchronization Protocols for Multiprocessor 12

2.1.1 Multiprocessor Priority Ceiling Protocol 13

2.1.2 Distributed Priority Ceiling Protocol 14

2.1.3 Flexible Multiprocessor Locking Protocol 14

2.1.4 Distributed FIFO Locking Protocol 15

2.2 New Protocols under Consideration . 16

2.2.1 Distributed Non-preemptive Protocol 16

2.2.2 Multiprocessor Resource Sharing Protocol 17

3 Test-bed Installation and Testing 20

3.1 Synopsis of LITMUSRT . 21

3.2 Installation and Modification . 21

3.2.1 Installation . 21

3.2.2 Modification . 22

3.3 Testing . 23

3.3.1 verification for PCP . 24

3.3.2 verification for MPCP . 25

v

Contents vi

3.3.3 verification for DPCP . 28

4 Implementation for New Protocols 30

4.1 Introduction for the Process Scheduling in the kernel 30

4.2 Debug . 34

4.2.1 Tracing and Logging . 34

4.2.2 KGDB . 35

4.3 Implementation of Distributed Non-Preemptive Protocol 37

4.4 Implementation of Multiprocessor Resource Sharing Protocol 41

4.4.1 FIFO Queue . 41

4.4.2 Spinning at Local Ceiling . 42

4.4.3 Help Mechanism . 44

4.4.4 verification for the implementation 46

5 Evaluation 50

5.1 Task-set construction and verification . 50

5.1.1 Construction . 50

5.1.2 Verification . 51

5.2 Overheads evaluation . 54

5.3 Response times evaluation . 56

6 Conclusion 61

6.1 Results based on this current implementation 61

6.2 Further Development . 62

List of Figures

1.1 The approaches how the global and (semi-)partitioned scheduling algo-
rithms work. 4

1.2 How the semaphore works to protect critical section. 6

1.3 How the deadlock appears. 7

1.4 Priority inversion phenomenon. 9

3.1 PCP’s behavior for one resource. 24

3.2 PCP’s behavior for two resource. 25

3.3 MPCP’s behavior on two processors for three resources (a). 26

3.4 MPCP’s behavior on two processors for three resources (b). 27

3.5 MPCP’s behavior on two processors for three resources (c). 27

3.6 DPCP’s behavior on two processors for two resources. 29

4.1 Flow chart of process states in the original Linux kernel. 31

4.2 Sleep and waking up of a task. 32

4.3 State transition diagram in DICK. 33

4.4 The flowchart when a task enters its critical section under DNP protocol. 39

4.5 The result of the first attempt of the DNP protocol. 40

4.6 The result of the second attempt of the DNP protocol. 40

4.7 The flowchart for the help mechanism. 44

4.8 The verification for the FIFO queue. 46

4.9 The verification for the spinning. 47

4.10 The direct blocking for the task with the highest priority. 48

4.11 The verification for the help mechanism (a). 49

4.12 The verification for the help mechanism (b). 49

5.1 The fist interval of the failure under DPCP. 52

5.2 The rest of the failure’s performance under DPCP. 52

5.3 The result with two processors and only one resource. 58

5.4 The result with four processors and only one resource. 58

5.5 The result with two processors and five resource available. 59

5.6 The result with four processors and five resource available. 59

5.7 The pie chart for migration overhead of DPCP. 60

5.8 The pie chart for IPI overhead of MPCP. 60

vii

List of Tables

1.1 The advantages and disadvantages of global and partitioned scheduling
algorithms. 5

3.1 The priority of the task T5 changes along with time. 24

3.2 The ceilings for both two resources. 25

3.3 The ceilings for both resources under MPCP. 28

4.1 The ticket table for FIFO spin lock. 43

5.1 The runnable average execution times. 51

5.2 The task-sets used for evaluation. 53

5.3 The different overheads caused by protocols. 55

5.4 The tasks chosen from the task-set. 57

5.5 The partition for all the tasks. 57

viii

Chapter 1

Introduction

In the end of the last century, the original uni-processor system cannot meet the rais-

ing demand for capacity of computer from the users any longer. So the multiprocessor

was developed by several companies. However, such multiprocessor chips have not been

used in real-time system widely. When we design a real-time system, we need consider

about lots of factors such as energy consuming and heat dissipation which may influ-

ence the whole performance, as well as the cost. In the first several years after the

multiprocessors are available, the researchers of the real-time system haven’t paid much

attention to the multiprocessor environment for its high price, high power consumption

and less performance improvement. That means, with the raising of the cost and energy

consuming, there is no distinct improvement for the multiprocessor real-time system’s

performance. Until nowadays, benefited by the development of the chip technology,

multiprocessor chips become more and more popular with the faster computing speed,

lower price, lower power consumption as well as smaller volume. We believe that the

application for the multiprocessor on the real-time system can definitely improve the

performance with limited cost rise. Thus, people pay more attentions to such multi-

processor based real-time system, to find one optimal scheduling algorithm as well as

resource synchronization protocol. Good scheduling algorithms can take full advan-

tage of the multiprocessor which can reduce the average response time and increase

the handling capacity of the system, bad algorithms are just wasting the utilization of

the processors. Also, good resource synchronization protocol can improve the system’s

performance in some aspects. Of course, the criteria to judge whether one algorithm

as well as one protocol is good or not are depend on different real-time applications.

1

Chapter 1. Introduction 2

Some systems are trying to reduce the average response time, some are strict to the

deadline, thus we may apply different scheduling algorithms and protocols when facing

to different systems. All in all, the researches are trying to exploit the potentialities of

the multiprocessor’s computing ability as much as possible when using it in the real-time

system.

In the first place, we need talk about the attributes that one hard real-time system

has. One of the most important properties that a hard real-time system should have is

predictability. That is, based on the kernel features and on the information associated

with each task, the syetem should be able to predict the evolution of the tasks and

guarantee in advance that all critical timing constraints will be met [1]. A preemptive

real-time operating system (RTOS) forms the fundamental of most embedded systems.

If the preemption is not allowed, the optimal schedules may leave the processor idle

to finish tasks with early deadlines arriving later. Meanwhile, when preemption is not

allowed and tasks can have arbitrary arrivals, the problem of minimizing the maximum

lateness and the problem of finding a feasible schedule become NP-hard [1]. To ensure

rapid response time, an embedded RTOS can use preemption, in which a higher-priority

task can interrupt a lower-priority task that is running. When the higher-priority task

finishes running, the lower-priority task resumes executing from where it was interrupted.

The use of preemption guarantees the worst-case response time, which enable use of the

application in safety-critical situation. However, the situation will be different when

it comes to sharing resources which are mutual exclusion. When a task has accessed

one such sharing resource, it cannot be preempted by a higher priority task which want

access to the same resource. Thus, the critical sections are used to prevent the concurrent

accesses to the sharing resources. However, the use of the critical section will introduce

other problems e.g., deadlock and priority inversion. That is why we need resource

synchronization protocols to solve the problems caused by the resources sharing. All

those protocols are developed without considering the runtime overheads. However, the

fact is that the overheads cannot be neglected in the real world implementation.

The fact leads to the motivations of our topic. What impact runtime over heads would

have on different protocols’ performance? Different protocol will suffer from different

overheads. Will such difference destroy the advantages in theory of some protocols?

Further more, will the overheads play different roles under different utilization? Will

Chapter 1. Introduction 3

the overheads perform different among light load system, medium load system and heavy

load system? In our thesis, we will discuss all these problems in the following chapters.

1.1 Thesis Organization

In the Chapter 1, we will introduce the tasks scheduling algorithms for multiprocessor

and the resource synchronization protocols for uni-processor. In the Chapter 2, several

resource synchronization protocols for multiprocessor will be listed. Chapter 3 and 4

focus on the test-bed installation, verification and new protocols’ implementation. In

the Chapter 5, we will evaluate the performances for those resource synchronization

protocols which we are interested in with taking the overheads into account. Lastly, we

will draw the conclusions based on our current researches in Chapter 6.

1.2 Scheduling Algorithms for Multiprocessor

Actually, we do have several efficient scheduling algorithms for uni-processor system

e.g., Earliest Deadline First (EDF) and Rate Monotonic (RM) Algorithm. Under the

multiprocessor environment, we have two classes of the scheduling algorithms, global

and partitioned [2]. But in our thesis, another type of scheduling algorithm will be

taken into consideration named semi-partitioned scheduling [3]. Global based scheduling

algorithms use a single scheduler for all processors. All the eligible tasks are stored in

a single priority-ordered queue, the global scheduler select the highest priority tasks

from this queue for execution. That means each task can be executed on any processor.

Global scheduler allows both normal execution and critical section to migrate between

processors. That makes it possible that a task can be preempted on one processor

and resumed on another processor. Partitioned based scheduling algorithms start by

partitioning tasks among processors. Each processor is associated with a separated ready

queue for eligible tasks. Then, tasks within each processor are scheduled by uni-processor

scheduling algorithms such as fixed priority (FP) scheduling or Earliest Deadline First

(EDF). The most difference between partitioned and semi-partitioned scheduling is that,

under pure partitioned scheduling, no migration is allowed, under semi-partitioned, the

migration is allowed under some criteria, thereby improving schedulability. The most

advantage of the partitioned based algorithms is that they reduce the multiprocessor

Chapter 1. Introduction 4

scheduling problem to a set of uni-processor scheduling. The Figure 1.1 has described the

approaches how the global and (semi-)partitioned scheduling algorithms work visually.

T 1

T 4

T 3

T 2

T 5

T 4 T 3 T 2 T 1

T 8 T 7 T 6 T 5

S S

P 1 P 4 P 3 P 2
P 4 P 3 P 2 P 1

S S S

One global

ready queue

One ready queue

 per processor

Only one One scheduler

scheduler pre processor

Global （Semi-）Partitioned

Semi-partitioned allow

migration under some criteria

Figure 1.1: The approaches how the global and (semi-)partitioned scheduling algo-
rithms work.

Every coin has its two sides. Both algorithms have their own advantages and disadvan-

tages. The Table 1.1 has listed all the Pros and Cons for both scheduling algorithms.

There is another scheduling algorithm named hybrid scheduling as well. Such algorithm

is neither pure partitioned nor pure global scheduling algorithm. For example, some

kinds of tasks are forbidden to migrate between processors, but others are allowed to do

the migration. One famous example of the hybrid scheduling algorithm is the cluster-

based scheduling algorithm. Under cluster-based scheduling, processors are divided into

different clusters. Tasks are statically allocated to different clusters, and in each cluster,

tasks are scheduled by global scheduling algorithms [4].

In our thesis, we adopt the Partitioned Fixed Priority scheduling algorithm, which

Chapter 1. Introduction 5

Global Partitioned

Pros

Automatic load balancing Supported by automotive industry

Optimality possible Limited migrations (semi-partitioned)

Many elegant algorithms available Isolation between processors

More efficient reclaiming Simple to understand and implement

Mature scheduling framework

Cons

Migration costs Cannot exploit unused capacity

Inter core synchronization Rescheduling not convenient

Loss of cache affinity NP-hard allocation

Weak scheduling framework (bin-packing problem)

Table 1.1: The advantages and disadvantages of global and partitioned scheduling
algorithms.

has the following advantages: (i) Partitioned based scheduling suffers from lower over-

heads with limited migration comparing to the global scheduling. (ii) There are well-

established theories support based on uni-processor. (iii) The P-FP also supports semi-

partitioned scheduling. (iv) All those synchronization protocols that we are interested

in can be implemented under P-FP.

1.3 The Necessity of Resource Synchronization

After confirming the scheduling algorithm that will be adopted in our thesis, we need get

some basic knowledge about the resource synchronization. In concurrent programming,

concurrent accesses to shared resources can lead to unexpected or erroneous behavior so

parts of the program where the shared resource is accessed is protected. This protected

section is the critical section. It cannot be executed by more than one process. Typically,

the critical section accesses a shared resource, such as a data structure, a peripheral

device, or a network connection, that does not allow multiple concurrent accesses [5].

The resource synchronization protocol is used to organized such critical section accesses

from different tasks.

In the resource synchronization, there are two concepts that we need to keep in mind:

critical section and semaphore. Critical section is a piece of code executed under mutual

exclusion constraints that has been explained above. Semaphore is a synchronization

Chapter 1. Introduction 6

tool that can be used by tasks to build critical sections. A semaphore is a kernel

data structure that, apart from initialization, can be accessed only through two kernel

primitives, usually called wait and signal. When using this tool, shown in Figure 1.2

each exclusive resource Rk must be protected by a different semaphore Sk and each

critical section operating on a resource Rk must begin with a wait(Sk) primitive and

end with a signal(Sk) primitive [1].

Resource Rk

wait(Sk)

use

Resource

Rk

Signal(Sk)

T1 T2

wait(Sk)

use

Resource

Rk

Signal(Sk)

Figure 1.2: How the semaphore works to protect critical section.

Unfortunately, the need to share resources between tasks operating in a preemptive

multitasking environment can create conflicts. Two of the most common problems are

deadlock and priority inversion, both of which can result in application failure. Deadlock

may cause the whole system crash, priority inversion may break the predictability of the

real-time system, both of them can make our real-time system fail and cause some

unexpected disasters. Deadlock, shown in Figure 1.3, is a special case of nested resource

locks. Task A holds the resource 1 and is waiting for resource 2. Meanwhile, task B

holds the resource 2 and is waiting for resource 1. That means, both tasks hold one

resource and wait for another one. Thus, neither of these two tasks can execute. But,

in our thesis, we don’t consider about nested resources, which will make the task-set

Chapter 1. Introduction 7

construction and results analysis too complex. Therefore, we only need to take care

about the priority inversion phenomenon when studying those protocols.

Owned by

Request for

Request for

Owned by

Resource 1

Resource 2

Task A Task B

Figure 1.3: How the deadlock appears.

Ideally, a high-priority task τ should be able to preempted lower priority jobs immedi-

ately upon τ ’s initiation. Priority inversion is the phenomenon where a higher priority

task is blocked by lower priority tasks. A common situation arises when two tasks at-

tempt to access shared resource. To maintain consistency, the access must be serialized.

If the higher priority task gains access first then the proper priority order is maintained;

however, if the lower priority task gains access first and then the higher priority task

requests access to the shared resource, this higher priority taskis blocked until the lower

priority task completes its access to the shared resource. Thus, blocking is a form of

priority inversion where a higher priority task must wait for the processing of a lower

priority task [6]. There are two types of priority inversion: bounded and unbounded pri-

ority inversion. In the bounded priority inversion, task τL with low-priority acquires the

lock before the releasing of the task τH with high-priority. High-priority task τH is forced

to wait the task τL to release the sharing resource. The worst-case wait time for Task

τH is equal to the length of the critical section of Task τL. Bounded priority inversion is

also called as direct blocking, which is the price we in essential have to pay for ensuring

Chapter 1. Introduction 8

mutual exclusion. Such predictable direct blocking won’t generate any problem for the

real-time system considering the worst case execution time of the high-priority task can

be bounded. Unbounded priority inversion, shown in Figure 1.4, occurs when an inter-

vening task extends a bounded priority inversion. Task τM with medium-priority can

preempt task τL with low-priority in its critical section. Only when task τM completes

its job, task τL can resume its critical section. Meanwhile, task τH with high-priority

cannot execute until task τL release the resource. As a result, the worst-case wait time

for Task τH is now equal to the sum of the worst-case execution times of Task τM

and the critical section of Task τL. In some cases, priority inversion can occur without

causing immediate harm the delayed execution of the high priority task goes unnoticed,

and eventually the low priority task releases the shared resource. However, there are

also many situations in which priority inversion can cause serious problems. If the high

priority task is left starved of the resources, it might lead to a system malfunction or the

triggering of predefined corrective measures, such as a watchdog timer resetting the en-

tire system. Priority inversion can also reduce the perceived performance of the system.

Because priority inversion results in the execution of a lower priority task blocking the

high priority task, it can lead to reduced system responsiveness, or even the violation of

response time guarantees.

1.4 Resource Synchronization Protocols in Uni-processor

To solve these problems mentioned above, several resource synchronization protocols

have been developed and investigated deeply. In this section, four well-developed pro-

tocols in uni-processor environment will be introduced.

Firstly, the non-preemptive protocol (NPP) is the simplest protocol to prevent the un-

bounded priority inversion phenomenon. Under the NPP, once a task starts its execu-

tion for critical section, it cannot been preempted by any other tasks until it finishes

the execution and releases the resource. The most advantage of the NPP is that the

implementation of NPP is quite simple [7]. We only need to raise the task’s priority to

the highest priority that the system supports temporarily when it executes the critical

section. Once it finishes the execution of the critical section, the priority will be low-

ered to the original one, in order to reduce the influence to other tasks with the higher

priority.

Chapter 1. Introduction 9

0 ms 5 ms 10 ms 15 ms

T H

T M

T L

Normal execution Critical section

Blocking time

Figure 1.4: Priority inversion phenomenon.

Secondly, the priority inheritance protocol (PIP) is also a simple solution to the problem

of unbounded priority inversion caused by resource constraints. Under the PIP, if a lower-

priority task τL locks the resource and starts execute the resource at first, the task τH

with the higer priority comes later, and it also want access to the same resource. Once

τH requests to the same resource locked by τL, the priority of τL will be raised to the

priority which is equal to the priority of τH . That means, after the resource requesting

by τH , τL can not be preempted by any other tasks with the priority higher than τL but

lower than τH . Thus, a high-priority task τH can be blocked for at most the duration

of min(n,m) critical sections. Where n is the number of lower-priority tasks that could

block τH and m is the number of distinct semaphore that can be used to block τH . It

bounds the maximum blocking time of each task [1].

Thirdly, the Priority Ceiling Protocol (PCP) extends the ideas of PIP to solve the

problems of unbounded priority inversion, chain blocking and deadlocks, while at the

same time minimizing inheritance-related inversions.[8] Each semaphore is assigned a

priority ceiling equals to the priority of the highest priority task that can lock it. When

a task acquires a shared resource, the task’s priority is temporarily raised to the priority

Chapter 1. Introduction 10

ceiling of that resource. The priority ceiling must be higher than the highest priority of

all tasks that can access the resource, in order to ensure that a task owning a shared

resource won’t be preempted by any other task attempting to access the same resource.

When the resource holder releases the resource, the task is returned to its original priority

level. Under the PCP, a high-priority job τH can be blocked for at most the duration of

one critical section [6].

Lastly, the stack resource policy (SRP) is a resource allocation policy which permits

processes with different priorities to share a single run-time stack. It is a refinement of

the priority ceiling protocol (PCP), which strictly bounds priority inversion and permits

simple schedulability tests. With or without stack sharing, the SRP offers the following

improvements over the PCP: (1) it unifies the treatment of stack, reader-writer, multi-

unit resources, and binary semaphores; (2) it applies directly to some dynamic scheduling

policies, including earliest deadline first (EDF), as well as to static priority policies; (3)

with EDF scheduling, it supports a stronger schedulability test; and (4) it reduces the

maximum number of context switches for a job execution request by a factor of two. It

is at least as good as the PCP in reducing maximum priority inversion [9].

All these four protocols applied in uni-processor environment are the fundamental of

most resource synchronization protocols used in the multiprocessor, that we will discuss

in the next chapter.

Chapter 2

Resource Synchronization

Protocols for Multiprocessor

Unlike the uni-processors, in the multiprocessor environment, we should consider more

elements which can affect the scheduling behavior. In the uni-processor environment, we

only consider about the sequence when we allocate the tasks, meanwhile, all the critical

section can only be executed on that processor. However, everything will be changed

when it comes to multiprocessor situation. Under the P-FP multiprocessor scheduling

algorithms, we should make the decision to allocate which task to which processor at

first. Besides the allocation of tasks to different processors, the tasks’ sequence within

one processor can also raise new challenges because of the global resource existing. When

dealing with the sharing resources, we should be careful of the resource’s location and

task’s migration. That means we need to manage the global resource synchronization.

In this chapter, we will discuss different protocols of the resource synchronization, that

we are interested in under the multiprocessor environment. Some of them have been

implemented some where, some of them are not. We will only discuss the theories of

them in this chapter, the implementation issues will be investigated in Chapter 4.

11

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 12

2.1 Resource Synchronization Protocols for Multiproces-

sor

The existing resource synchronization protocols can be categorized as suspension-based

and spinning-based protocols. Under a suspension-based protocol, a task will suspend

if the resource is locked by other tasks when it tries to lock the sharing resource. That

means, the processor can be taken over by the lower-priority tasks, when the high-

priority task is blocked by another task who is executing the critical section on other

processor. Once the resource is released by other task, the high-priority task will resume

to the processor and preempt the execution of the lower-priority tasks. Such suspension-

based protocols can make the full use of the processor when the high-priority tasks are

waiting for the release of the resources. However, under a spinning-based protocol, a

task will keep the processor and perform spin-lock when the requesting resource is locked

by others. What means, the lower-priority tasks can never occupy the processor if there

is at least one higher-priority task hasn’t finished its execution.

Under the multiprocessor environment, the location of resources should be taken into

consideration. There are two major types of semaphore protocols. In shared-memory

locking protocols, tasks execute critical sections locally, in the sense that each task

accesses shared resources directly from the processor on which it is allocated. That

means, for each task, it can access to the shared resource wherever it is located on the

preocessors available on the system. For example, there is the case under the classic

Multiprocessor Priority Ceiling Protocol (MPCP) [10, 11]. In contrast, in distributed-

based locking protocols, each resource is accessed only from a designated synchronization

processor (or cluster). Under such protocols, which derive their name from the fact that

they could also be used in distributed systems (i.e., in the absence of shared memory),

require critical sections to be executed remotely if tasks access resources not local to

their assigned processor [12]. In other word, each resource has been assigned to one

specific processor, each request for the shared resource should be execute on that specific

processor, which requires the migration is possible for each task which is requesting the

resources locating on remote processors.

In this section, we will introduce four famous protocols under Partitioned (or semi-

partitioned) Fixed Priority (P-FP) briefly. These four protocols have been developed

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 13

and investigated very well, meanwhile, have been implemented somehow and somewhere.

Some of them will participate in our evaluation in Chapter 5.

2.1.1 Multiprocessor Priority Ceiling Protocol

Multiprocessor Priority Ceiling Protocol (MPCP) was proposed by Rajkumar in [11],

which extends Priority Ceiling Protocol (PCP) to shared memory multiprocessor en-

vironment, hence allowing for synchronization of tasks sharing mutually exclusive re-

sources using P-FP scheduling. Under the MPCP, resources are divided into local and

global resources. The local resources are protected using a uni-processor synchroniza-

tion protocol like PCP. All the tasks which will access to the local resources will be

allocated to the processor where the resource is assigned on. Those tasks only access to

the global resources can be allocated freely. We only focus on the global resources in

our thesis. MPCP is suspension-based protocol, under which tasks waiting for a global

resource suspend and are en-queued in an associated prioritized global wait queue. A

task blocked by a global resource suspends and makes the processor available for the

local tasks. Meanwhile, the priority of a task within a global critical section (gcs), in

which it request a global resource, is boosted to the priority which is greater than the

highest priority among all local tasks (also can be treated as normal execution). This

priority is called remote ceiling. A gcs can only be preempted by other gcss that have

higher remote ceiling not by a non-critical section. That means, the execution of the

critical section always has the higher priority than the normal execution on the local

processor no matter how are the original priority levels they have.

As a consequence of the ceiling raising, the blocking time of a task, not only the local

blocking, the remote blocking where a task is blocked by tasks with any priority executing

on other processors should be included. However, the maximum remote blocking time

of a task is bounded and is a function of the duration of other tasks’ critical sections

[11].

Global critical cannot be nested in local critical sections and vice versa. Global resource

potentially lead to high blocking times, thus tasks sharing the same resources are pre-

ferred to be assigned to the same processor as long as possible. Thus, we have to figure

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 14

out an algorithm that attempts to reduce the blocking times by assigning tasks to ap-

propriate processors [13]. Such partition problem is another complex issue that we will

not involve in our thesis.

2.1.2 Distributed Priority Ceiling Protocol

Distributed Priority Ceiling Protocol (DPCP) [11, 14] extends PCP as well. Unlike

the typical MPCP, under DPCP, resources are assigned to processors, a task accesses a

resource via an Remote Procedure Call RPC-like invocation of an agent on the resource’s

processor that performs the access, which means the task need to migrate to a remote

processor if it requests a resource is locating on another processor. Requests for global

resources cannot appear in nested request sequences, which may cause the deadlock.

Requests for such resources are ordered by priority and execute at elevated priority

levels so that they complete more quickly. Initially, Rajkumar proposed that all global

resources were assigned to a single synchronization processor. In that way, all the critical

sections executed on that processor follow the PCP. This was then generalized in the

same paper to allow multiple synchronization processors, but again each resource was

assigned to one synchronization processor.

The DPCP provides one resource agent for each resource and each task. Resource agents

are subject to priority boosting, which means that they have priorities higher than any

regular task (thus execution for critical section cannot be preempted by any normal

executions). Meanwhile, resource agents acting on behalf of higher-priority tasks may

still preempt agents acting on behalf of lower-priority tasks [14].

A task that is trying to access to a global resource will migrate to the synchronization

processor during the execution of that critical section. After the execution for critical

section, the task will migrate back to the original processor where it is released at. Of

course, tasks request the same resource on its synchronization processor perform the

PCP similar to the situation in the uni-processor [15].

2.1.3 Flexible Multiprocessor Locking Protocol

Flexible multiprocessor locking protocol (FMLP) [16] can be applied to both global and

partitioned scheduling algorithms. In FMLP, resources are categorized into short and

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 15

long resources, and whether a resource is short and long is specified by users. There

is no limitation on nesting resource accesses, however that requests for long resources

cannot be nested in requests for short resources [17].

Under FMLP, deadlock is prevented by grouping resources. A group includes either

global or local resources, and two resources are in the same group if a request for one

is nested in a request for the other one. Similar to other sigle resource, the requests

for the group are also mutual exclusive. A group lock is assigned to each group and

only one task can hold the lock of the group at any time. Meanwhile, the types of the

locks within the FMLP are different. The tasks that are blocked on short resources

perform busy-wait and are added to a FIFO queue. And once tasks that access short

resources, they will hold the group lock and execute non-preemptively. To the contrary,

tasks that access long resources hold the group lock and execute preemptively using

priority inheritance (i.e., is inherits the highest priority among all tasks blocked on any

resources within the group). Tasks are blocked on long resources are also added to a

FIFO queue. The main problem of the FMLP is that, there is no concrete solution on how

to assign a global resource as long or short and it assumed to be user defined [17]. In an

evaluation of partitioned FMLP [18], the authors differentiate between long FMLP and

short FMLP where all global resources are only long and only short respectively. Thus,

long FMLP and short FMLP are suspension-based and spinning-based synchronization

protocols respectively. In both alternatives the tasks accessing a global resource executes

non-preemptively and blocked tasks are added into a FIFO-based queue.

2.1.4 Distributed FIFO Locking Protocol

Distributed FIFO Locking Protocol (DFLP) [12] was inspired by the FMLP+ [19], which

relies on simple FIFO queue to avoid starvation of the resources. Under DFLP, conflict-

ing requests for each serially-reusable resource lq are ordered with a per-resource FIFO

queue FQq. Requests for lq are served by an agent Aq assigned to lq’s cluster C(lq).

Resource requests are processed according to the following rules:

1. When Ji issues a request R for resource lq, Ji suspends and R is appended to FQq.

Ji’s request is processed by agent Aq when R becomes the head of FQq.

2. When R is complete, it is removed from FQq and Ji is resumed.

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 16

3. Agent Aq is inactive when lq’s request queue FQq is empty and active when it is

processing requests. Active agents are scheduled preemptively in order of increas-

ing issue times with regard to each agent’s currently processed request (i.e., an

agent processing an earlier-issued request has higher priority than one serving a

later-issued request). Any ties in request times can be broken arbitrarily (e.g., in

favor of agents serving requests of lower-indexed tasks).

4. Agents have statically higher priority than jobs (i.e., agents are subject to priority-

boosting).

2.2 New Protocols under Consideration

All the protocols that have mentioned above have been proposed for many years. There

are lots of investigations that have been finished both in theory and implementation

aspects. In this section, two new protocol will be introduced, also the implementation

issues will be covered in Chapter 4.

2.2.1 Distributed Non-preemptive Protocol

Distributed Non-preemptive Protocol (D-NP) is a simple protocol which is developed from

the DPCP. Different to the DPCP, under the D-NP, once a task starts the execution

for critical section, it cannot been preempted by any other tasks even those tasks with

the higher priority and request differnt resources. Under thr typical DPCP, the task

which is holding the resource can be preempted by those tasks with the higher ceiling

priority, and resumes after all the higher-ceiling tasks finishing their execution. In the

real implementation, the frequent preemption will cause frequent context switch which

will create large overhead. We notice that such non-preemptive execution can reduce

the context switch overhead obviously which can improve the holistic performance. For

those task-set which all the tasks have tiny critical section length, D-NP will reduce

the average execution time by eliminating several needless context switch overheads. In

that situation, the overhead of the implementation may cause a significant influence to

the performance of the protocol. However, every coin has its two sides, it may increase

the direct blocking time of the task which has the highest priority. We construct one

symbol to indicate the critical section for each task and resource as Sresource id,job number,

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 17

so S3,1 means the length of the critical section which task 1 accesses to the resource 3.

Similar to the PCP [20], under the DPCP, the worst case blocking time for the task Th

which has the highest priority can be defined in the Equation 2.1. That means the worst

case blocking time for each resource access is equal to the longest of other task’s critical

section which accesses to the same resource, and the total blocking time is equal to the

sum of all the single worst case blocking time within the task due to multi-resource

accessing. Under the DNP, the worst case blocking time of the task Th which has the

highest priority has been shown in the in the Equation 2.2. In this equation, we can

conclude that, the task can be blocked by any other tasks’ critical section due to the

non-preemptive execution of the critical section. Thus for each resource access, the worst

case block time is equal to the longest critical section among all the tasks (no matter

which resource it is accessing). So the total blocking time is equal to the number of

critical section within the task multiple to the longest critical section.

BDPCP =
n∑

i=1

(maxSn,j) (2.1)

BDNP = n ∗ (maxS∗,j) (2.2)

From those two equations, we can easily see that BDPCP <= BDNP . However, if such

increase of the blocking time in theory can be eliminated by the reduce of the overheads

caused by frequent context switch in the real implementation, we can still consider the

DNP is better than DPCP under some specific situations. All the evaluation work will

be covered on the Chapter 5.

2.2.2 Multiprocessor Resource Sharing Protocol

Multiprocessor Resource Sharing Protocol (MrsP) was proposed by A. Burns and A.J.

Wellings in [15]. The distinctive nature of this protocol is that tasks waiting to gain

access to a resource must service the resource on behalf of other tasks that are waiting

for the same resource (but have been preempted) on the remote processor. MrsP is a

variant of Multiprocessor Stack Resource Policy (MSRP) [21]. The basic idea of the

protocol can be described as follows:

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 18

1. All resources are assigned a set of ceiling priorities statically, one per processor

(for those processors that have tasks that use the resource), for processor pk it is

the maximum priority of all tasks allocated to pk that use the resource.

2. An access request on any resource results in the priority of the task being imme-

diately raised to the local ceiling for the resource.

3. All the tasks waiting for a resource are dealt with in a FIFO order (are added into

a FIFO queue).

4. While waiting to gain access to the resource, and while actually using the resource,

the task continues to be active and executes (possible spinning) with priority equal

to the local ceiling of the resource (spin-lock).

5. Any task waiting to gain access to a resource must be capable of undertaking the

associated computation on behalf of any other waiting task.

6. This cooperating task must undertake the outstanding requests in the original

FIFO order.

To conclude, there are three distinct features of MrsP:

1. Requests for the same resource are ordered in FIFO queue.

2. Tasks are spinning with priority equal to the local ceiling of the resource while it

is waiting to access the resource. (only when tasks are waiting for the resources as

well as executing the critical section are spinning).

3. Help mechanism: the spin task who is waiting for one resource uses its ‘wasted

cycles’ to help the resource holing task make progress. (when the task who is

holding the resource is preempted on its processor). Meanwhile, the sequence to

find the helper should follow the original requests FIFO order (traverse the FIFO

queue).

The first rule ensures the fairness of the resource requests. The second rule can prevent

the priority inversion phenomenon. The combination of first and second rule can bound

the maximum blocking time of each task. Meanwhile, the third rule can reduce the

average response time by taking full use of the processors’ wasted cycles on the basis

Chapter 2. Scheduling Algorithms and Resource Synchronization Protocols for
Multiprocessor 19

of guarantee the time constraints (without increasing any other tasks’ response time in

theory). These three main features also are the main points that we need to take care

about when we implement the MrsP in Chapter 4.

Chapter 3

Test-bed Installation and Testing

All the implementation and evaluation in this thesis are based on the LITMUSRT ,

which is abbreviated from the LInux Testbed for MUltiprcessor Scheduling in Real-Time

system [22, 23]. LITMUSRT was originally launched at the University of North Carolina

at Chapel Hill under the direction of James H. Anderson. Now, The maintainer and

main developer behind LITMUSRT is Björn Brandenburg of the Max Planck Institute

for Software Systems (MPI-SWS).

As we all know, besides the LITMUSRT , there are other real-time system test-bed

available (e.g., RTEMS [24], QNX Neutrino [25] and so on). The reasons why we choose

the LITMUSRT as our experiment platform are as follows:

1. LITMUSRT is open source code, which can be downloaded from the official web-

site for free.

2. It is a well-established evaluation platform in the real-time research community.

3. It contains several useful tools can be easily applied for feature tracing, which are

significant for evaluation.

4. It has supported a variety of scheduling and resource synchronization protocols.

There is no need for us to implement all the protocols that we are interested in

from the very beginning.

5. It employs a plug-in based architecture, where different scheduling algorithms can

be plugged activated and changed dynamically at run time.

20

Chapter 3. Test-bed Installation and Testing 21

6. It is well distributed, which makes it convenient for the new developer to implement

their own algorithms as new plug-ins, implement a new protocol inside the existed

plug-in as well.

3.1 Synopsis of LITMUSRT

The LITMUSRT patch is a real-time extension of the Linux kernel with a focus on

multiprocessor real-time scheduling and resource synchronization. The Linux kernel is

modified to support the sporadic task model and modular scheduler plugins. Clustered,

partitioned, and global scheduling are included, semi-partitioned scheduling is supported

as well.

LITMUSRT provides a useful experimental platform for applied real-time systems re-

search. Meanwhile, it services as a proof of concept, showing how algorithms such as

Pfair schedulers and predictable multiprocessor locking protocols can be implemented

on current hardware. All we talk about in this thesis is using the plugin P-FP, which

means partitioned fixed priority, which also supports the semi-partitioned scheduling. All

the resource synchronization protocols are implemented under that environment.

3.2 Installation and Modification

3.2.1 Installation

The general installation guide can be found on the official website of LITMUSRT . But

there are still several points needed to be noticed when installing the LITMUSRT to

the Linux system (take Ubuntu 14.04 as example). First of all, in the latest version of

LITMUSRT based on Linux kernel 4.1.3, however when we compile the kernel, there

are two bugs in the file ’drivers\media\usb\as102\as102 usb drv.c’. We need to add

two ’&’ inside the line 117 and 135. Moreover, to use the trace tool included by Feature

Trace Tools, we need to disable the option Build a relocatable kernel when we configure

the kernel. Such option can not be disabled unless we disabled the other option named

EFI runtime service support at first. Considering the demand for the feature tracing for

each protocols, we should install the Ubuntu into a real computer rather than a virtual

Chapter 3. Test-bed Installation and Testing 22

machine. That because, virtualization is not transparent with regard to timing. Also,

virtualized operating system cannot possibly offer better timing than the underlying

hypervisor for the overheads occurs. While, what we are investigating are those protocols

used for real-time system, which are sensitive to the timing. Thus, we should ensure the

timer of our platform as accurate as possible.

Besides the main patch for the Linux kernel, there are also user space library and feature

trace tools available on the web-page, which can make our work more efficient and go

smoothly. There is one useful tasks allocation tool in the liblitmus named ’rtspin’.

Meanwhile, schedule tracing tool and traced data drawing tool are also available in

ft tools.

3.2.2 Modification

To meet the requirement of our experiment, we need modify the excited tools at first.

The original task allocation tool can set only one critical section within a task. And the

position of that critical section is set randomly. Meanwhile, the critical section can only

be assigned to the processor where the task is assigned. That means we cannot simu-

late the distributed-base protocols’ behavior. In order to verify the existing protocols’

behavior provided by the LITMUSRT , we need set the pattern of task statically by our

own. We should make it possible to define each chunk inside one task, including the

chunk’s length and the type of the chunk (normal execution or critical section) as well

as the resource id (if needed). For the support of the distributed-based protocol, the

critical section’s migration option should be added. So, we need to modify the original

task allocation tool ‘rtspin’ at first. We construct new task allocation format, to support

multi-resources access within one task, and both normal execution and critical section’s

position have to be defined statically under that format. Now, the modified format of

the tasks allocation tool is as follows:

rtspin -w -p 1 -N 3 -M 2 -X DPCP -D 0:10,1:40,0:10 -q 10 60 130 5 &

• -w wait for a synchronous release. The trailing & starts the process in the back-

ground and is useful for scripting the creation of multiple waiting tasks.

• -p task’s partition, indicates which processor this task is assigned to initially.

Chapter 3. Test-bed Installation and Testing 23

• -N the number of chunks that this task contains.

• -M the processor where the resources are assigned to, in order to support for

distributed protocol.

• -X resource synchronization protocol that will be adopted this time.

• -D the task’s format. Each chunk has two parts, divided by colon, first part

indicates the type, 0 means the normal execution, other number indicates the

resource id (critical section naturally), and second part means the length of that

chunk. Different chunks are divided by comma.

• -q task’s priority (1 indicates the highest priority, 512 indicates the lowest priority)

• 60 130 5 last three numbers indicate the: execution time | period | whole run time

Following the manual above, we can explain the sample task allocation as follows: this

task consists of three chunks, the normal execution will be allocated on processor 1; the

critical section will execute on processor 2; these three chunks are connected in series,

first is the 10 ms normal execution, second is the 40 ms for the critical section 1, last is

another 10 ms normal execution; such task has priority 10; the whole execution time of

this task is 60 ms; the period is 130 ms; the run time is 5 s.

Although in the distributed protocols, resources can be allocated in different processor.

That means we need assign a specific processor for each chunk within one task. Maybe

the format of one chunk should be set as type:length:processor. However, to reduce the

migration cost, we assume all the resources (which one task may access) are assigned to

the same processor. So, there is no need for us to add this processor option inside the

task’s format.

3.3 Testing

After the installation, we noticed that in the P-FP plugin, there are several resource

synchronization protocols have been implemented. For the following two reasons, we

designed some experiments to test these protocols. For one thing, we need to verify

whether these protocols can operate as expected. For another, such experiments can

Chapter 3. Test-bed Installation and Testing 24

help us get familiar with the way how the test-bed works as soon as possible. In this

section, the verification for PCP, MPCP and DPCP will be shown.

3.3.1 verification for PCP

It’s known to all, the Priority Ceiling Protocol (PCP) is one of the most famous resource

synchronization protocols used for uni-processor environment. It is applied widely in the

partitioned multiprocessor environment. To simplify the verification, we only consider

one resource shared by three tasks in one processor along with two pure normal execution

tasks. The result has been shown in Figure 3.1. We assume T1 has the highest priority

P1, T2 and T3 have same priority P2, T4 has the middle priority P3, and T5 has the

lowest priority P4.

 Critical section Normal execution

Figure 3.1: PCP’s behavior for one resource.

Time 0 ms 2 ms 5 ms 10 ms 12 ms 14 ms 20 ms

Priority P4 P4 P3 P1 P4 P4 P4

Table 3.1: The priority of the task T5 changes along with time.

From the result, we can see, on 2 ms, T5 enter the critical section, on 5 ms, T4 is blocked

by T5 for the same resource request, so T5 inheritance the priority of T4, but T2 is

released on 6 ms with out resource request, T5 is preempted by high priority task. On

10 ms, T1 is blocked by T5, so T5 inheritance the highest priority from T1. Thus, when

T3 is released on 11 ms, it cannot preempt T5 like what T2 has done on 6 ms. From

the behavior above, the Priority Inheritance (PI) has been proved. The priority of the

Chapter 3. Test-bed Installation and Testing 25

task T5 has shown in Table 3.1, which is dynamic updated according to the resource

request by other higher-priority tasks. When the T5 finishes the critical section on 12 ms,

T1 enter the critical section first even though T4 requests the resource before T1 does.

That because the wait queue for one resource is ordered by tasks’ original priorities.

Meanwhile, the resource ceiling property has shown in Figure 3.2 as well as Table 3.2.

The only thing that we need care about is on 5 ms, T3 wants enter its critical section,

but it is blocked by T5 due to the resource ceiling issue. After that we can draw the

conclude that, the PCP has been implemented correctly.

 Resource 1 Normal execution

 Resource 2

Figure 3.2: PCP’s behavior for two resource.

Time 0 ms 1 ms 5 ms 11 ms

Ceiling for R1 NULL NULL P3 P3

Ceiling for R2 NULL P1 P1 P4

Table 3.2: The ceilings for both two resources.

3.3.2 verification for MPCP

The verification for MPCP will be a little bit complex, for the multiprocessor environ-

ment and multi-resources access(without nested). We consider a two-processors environ-

ment and there are three resources are available. The result is shown in Figure 3.3. T1

to T5 are assigned to processor 1, T1 and T2 have the highest priority, T5 has the lowest

priority on processor 1. T6 to T8 belong to processor 2. T6 has the highest priority and

T8 has the lowest priority on that processor.

Chapter 3. Test-bed Installation and Testing 26

 Resource 1 Normal execution on process 1

 Resource 2 Normal execution on process 2

 Resource 3

Figure 3.3: MPCP’s behavior on two processors for three resources (a).

From the result shown in Figure 3.3, we can notice, once a task enters the critical section,

it cannot be preempted by the normal execution. We can see, on 3 ms and 12 ms, two

normal execution tasks T1 and T2, who have the highest priority on processor 1 are

released. But they cannot interrupt the critical section executed by T3 and T4. The same

situation happens on processor 2. The feature that the critical section always having the

higher priority than normal execution no matter what the original priorities they have.

This experiment only proof the behavior within each processor, to verify the behavior

of requesting global resource between processors, we designed another experiment, the

result is shown in Figure 3.4. Now we have two sharing resource between two processors.

T1 has the higher priority on processor 1 and T3 is the only one task assigned to processor

2.

From the result, we can see, although the normal execution task cannot interrupt the

critical section, but the critical section can be preempted by other critical section when

it has the higher ceiling than the task under executing. Thus, on 5 ms, when T3 releases

the resource, T1 resumes to execute, T2 is preempted by T1. Such preemption can happen

because the T1’s critical section has the higher ceiling than T2’s. Now, we need to design

Chapter 3. Test-bed Installation and Testing 27

Resource 1 Normal execution on processor 1

 Resource 2 Normal execution on processor 2

Figure 3.4: MPCP’s behavior on two processors for three resources (b).

Resource 1 Normal execution on processor 1

 Resource 2 Normal execution on processor 2

 Normal execution on processor 3

Figure 3.5: MPCP’s behavior on two processors for three resources (c).

another experiment to verify how the ceiling works. The result is shown in Figure 3.5.

Similar to last experiment, but in this experiment, we have another task T4 which is

assigned to processor 3 and has the highest priority among all the tasks.

Unlike to the last experiment, this time the T1 cannot interrupt the execution of T2,

that because there is another task T4 also wants access to the resource 2. That means

Chapter 3. Test-bed Installation and Testing 28

resource 2 has the ceiling priority equals to P1, which is the highest priority among

all the tasks. Once T2 enters the critical section, it has the resource ceiling priority.

Thus, T1 cannot interrupt the T2 any more, both resources’s ceilings have been shown in

Table 3.3. Now, all the properties of MPCP have been verified. For one thing, normal

execution cannot preempt the critical section. For another, the resource’s ceiling priority

works for multiprocessor environment to prevent the priority inversion phenomenon.

Time 0 ms 2 ms 3 ms 4 ms 5 ms

Ceiling for R1 NULL P2 P2 P2 P2

Ceiling for R2 NULL NULL NULL P1 P1

Table 3.3: The ceilings for both resources under MPCP.

3.3.3 verification for DPCP

We assume that all the resources are allocated to one specific processor. Thus, the

behavior of DPCP in the processor where the resources are assigned to is the same to

PCP under uni-processor environment. The most different feature of DPCP is that the

normal execution and the critical section are executed on different processors. Thus

the migration within a task will be introduced. Considering the behavior of PCP has

been verified in advance, the main purpose of this experiment is to verify the migration,

and the behavior after migration. The result has been shown in Figure 3.6. T1 has the

highest priority, T4 has the lowest priority. Only T2 accesses the resource 2, other three

tasks only access to resource 1.

The result has shown in Figure 3.6 contains two periods, the first period used to present

the resource access, the second one is to present the processor where the normal execution

and critical section execute on. In the first period, T2 cannot preempt T5 on 5 ms, because

T5 has the higher resource ceiling due to T1 is requesting the same resource. But T1 can

preempt the T2 on 8 ms for the higher resource ceiling it has. Meanwhile, the access

to the same resource ordered by priority like what PCP should act as. In the second

period, comparing to the first period, we can easily see, all the critical section have been

migrated to processor 2 where is different to the normal execution. Thus, the DPCP

has been verified on both the PCP-like performance aspect and the migration aspect.

Chapter 3. Test-bed Installation and Testing 29

Resource 1 Normal execution on processor 1

 Resource 2 Critical section on processor 2

Figure 3.6: DPCP’s behavior on two processors for two resources.

Until now, all those PCP based protocols implemented on the LITMUSRT have been

verification, and we are familiar with the test bed as well.

Chapter 4

Implementation for New

Protocols

After the verification of the existing protocols which have been implemented on the

LITMUSRT , we need to implement two resource synchronization protocols which haven’t

been implemented on the test-bed. That because the evaluation for these existing proto-

cols have been made by others. That is meaningless for us to repeat other’s job. Thus we

need to implement several new protocols which we are interested in on the LITMUSRT

in order to construct a new evaluation. There are two protocols that we want implement

in this thesis: Distributed Non-Preemptive (D-NP) protocol and Multiprocessor Resource

Sharing Protocol (MrsP). The theories of them have been discussed in Chapter 2, we

only focus on the implementation issues on this chapter.

4.1 Introduction for the Process Scheduling in the kernel

Before we beginning the real implementation, we need to get familiar with procedure

how the process scheduling works in the kernel. We start with the original Linux kernel.

The state field of the process descriptor describes the current condition of the process

(see Figure 4.1). Each process on the system is in exactly one of five different states.

This value is represented by one of five flags: [26]

30

Chapter 4. Implementation for New Protocols 31

1. TASK RUNNING : The process is runnable, it is either currently running or on a

runqueue waiting to run.

2. TASK INTERRUPTIBLE : The process is sleeping (that is, it is blocked), waiting

for some condition to exist.

3. TASK UNINTERRUPTIBLE : This state is identical to TASK INTERRUPTIBLE

except that it does not wake up and become runnable if it receives a signal.

4. TASK TRACED : The process is being traced by another process, such as a

debugger, via ptrace.

5. TASK STOPPED : Process execution has stopped; the task is not running nor

is it eligible to run.

Existing task
calls fork() and
creates a new

progress

Task is
terminated

TASK_RUNNING
(running)

TASK_RUNNING
(ready but not

running)

TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE

(waiting)

 ②

 ① ③ ① Task forks

 ② Scheduler dispatch task to run:

 schedule() calls context_switch()

 ③ Task exits via do_exit

 ④ Task is preempted by higher

 priority task

 ⑤ Task sleeps on wait queue for a

 specific event

 ④ ⑥ Event occurs and task is woken-up

 ⑥ ⑤ and placed back on the run-queue

Figure 4.1: Flow chart of process states in the original Linux kernel.

Figure 4.1 has explained the process states of original Linux kernel clearly. Due to the

resources sharing, the Linux kernel provides the semaphore to do the resource synchro-

nization just like we have mentioned in Chapter 1, all the tasks want to access a resource

which is locked by other task under the suspension-based locking will be added to the

Chapter 4. Implementation for New Protocols 32

associating wait queue. So now we come to the issue how a task sleeps and is woken up.

The Figure 4.2 depicts the relationship between each scheduler state. [26].

TASK_

RUNNING

TASK_INT

ERRUPTIB

LE

__add_wait_queue() adds task to a wait queue, sets the task’s state

to TASK_INTERRUPTIBLE, and call the schedule(). Schedule()

calls deactivate_task() which removes the task from the runqueue.

Event the task is waiting for occurs, and try_to_wake_up() sets the

tasks to TASK_RUNNING, calls activate_task() to add the task to

a runqueue, and calls the schedule(). _remove_wait_queue()

removes the task from the wait queue.

Receives a signal, task’s state is set to

TASK_RUNNING and task executes signal handler.

Figure 4.2: Sleep and waking up of a task.

After introducing the procedure how the preemptible Linux kernel works, now it comes

to the real-time system. Actually, the process states are similar to to the Linux kernel,

but it just simplifies the diagram and makes it clear for the reader to understand all the

states of one task in the real-time kernel. In this section, we describe the structure of a

small real-time kernel, called DICK (DIdactic C Kernel)[1]. The essential functions of

the kernel have been shown in Figure 4.3. The possible states in which a task (or process)

can be during its execution as well as how a transition from one state to another can be

performed have been described. In any kernel that supports the execution of concurrent

activities, there are at least three states in which a task can enter: RUN, READY

and WAIT. But in our LITMUSRT kernel, the periodic tasks as well as synchronized

tasks releasing are supported. Thus the states IDLE and SLEEP should be mentioned.

Also, the state named ZOMBIE may be entered by a task. Those six states have been

described in detail as follows: [1]

1. RUN : A task enters this stats as it starts execution on the processor.

Chapter 4. Implementation for New Protocols 33

terminate

IDLE

SLEEP

WAIT

ZOMBIE
READY

RUN

 create

 sleep

 active

 signal

 wait

 dispatching

 preemption

 end_cycle

 resume FREE

 TIMER

Figure 4.3: State transition diagram in DICK.

2. READY : This is the state of those tasks that are ready to execute but cannot be

executed because the processor is assigned to another task (due to the priority is

lower than the task which is scheduled on). All tasks that are in this condition are

maintained in a queue, called the ready queue (ordered by the priority mostly).

3. WAIT : A task enters this state when it executes a synchronization primitive to

wait for an event. When using semaphores, this operation is a wait primitive on

a locked semaphore. In this case, the task is inserted in a queue associated with

the semaphore (ordered either by priority or FIFO). The task at the head of this

queue is resumed once the semaphore is unlocked by another task that executed

a signal on that semaphore. When a task is resumed, it is inserted in the ready

queue at first.

4. IDLE : A periodic job enters this state when it completes its execution and has

to wait for the beginning of the next period. In order to be awakened by the

timer, a periodic job must notify the end of its cycle by executing a specific system

call end cycle, which puts the job in the IDLE state and assigns the processor to

another ready task. At the right time, each periodic job in the IDLE state will be

Chapter 4. Implementation for New Protocols 34

awakened by the kernel and inserted in the ready queue. This operation is carried

out by a routine activated by a timer.

5. SLEEP : This state is introduced to handle the activation and suspension of a-

periodic tasks. Meanwhile, task creation and activation are separated in DICK.

The creation primitive create allocates and initializes all data structures needed

by the kernel to handle the task. However, the task is not inserted in the ready

queue, but it is left in the SLEEP state, until an explicit activation is performed.

6. ZOMBIE : A task can be said in that state when it is in the interval of time between

the abort operation and the end of its period, since it does not exist in the system,

but it continues to occupy processor bandwidth.

The reason why we introduce the basic knowledge about the tasks’ states and the tran-

sition between states is that the essential of the resource synchronization protocol is to

control the tasks’ transition followed by some specific rules. The implementation of the

protocol is to build such rules.

4.2 Debug

As we all known, any improper operation in the kernel may cause the whole system

down. Thus we need to build one appropriate develop environment as well as debug

environment to make the our work more efficient. There are two approaches that can

be used to debug for the LITMUSRT kernel. For one thing is the trace and log tool

provided by the developer of the LITMUSRT . For another, there is a common kernel

debug tool named Kernel GUN DeBugger (KGDB) [27].

4.2.1 Tracing and Logging

The debug tracing mechanism is available in LITMUSRT , that exposes one device file

named litmus log. This trace contains text message created by the TRACE() that

convey information useful for debugging. There is one global litmus log buffer for the

whole system. The litmus log facility is essentially a replacement for printk(), which

cannot be invoked from scheduling code without risking deadlock. Debug tracing must

Chapter 4. Implementation for New Protocols 35

be enabled at compile time. Note that debug tracing creates significant overhead because

string formatting takes place. The litmus log buffer can be read by simply opening the

file and reading its contents using the following command:

cat /dev/litmus/log > my_debug_log

Kill the cat process to stop recording debug messages. Note that messages may appear

in an order that differs from the sequence of events at runtime. If order is important

(for example when debugging race conditions), then recorded messages can be sorted

offline with the help of the sequence number at the start of each recorded message. All

the information is available on [28].

sort -n my_debug_log > my_sorted_debug_log

However, the ’tracing and logging’ can only work for the condition that the kernel is

runnable. If there is something wrong appears in the very beginning, we even don’t

have the chance to use the tool. Meanwhile, that is impossible for us to add the trace

command for every kernel operations which can make the trace file too large to read,

large lateness of the whole system as well. We believe such tool is useful when we debug

for the problems on the inner logic as well as the operation sequences.

4.2.2 KGDB

We need one more powerful tool to debug from the very beginning of the implementation.

KGDB is a debugger for the Linux kernel. It requires two machines that are connected

via a serial connection. The serial connection can be built via the UDP/IP network

protocol. The target machine (the one being debugged) runs the patched kernel and

the other (host) machine runs gdb. The gdb remote protocol is used between the two

machines (build the connection). Before we can use the KGDB, we need to build the

environment for these two machine. We use QEMU to run a Kernel-based Virtual

Machine (KVM) which installed the LITMUSRT kernel using the following code:

#!/bin/bash

qemu-system-x86_64 \

-enable-kvm \

-cpu host \

Chapter 4. Implementation for New Protocols 36

-smp 2 \

-hda litmus.qcow \

-m 1024 \

-name "ubuntu-qemu-cjk" \

-gdb tcp::12345 \

-net nic \

-net user,hostfwd=::2222-:22,smb=/home/litmus/shared

We use the disk image based on xubuntu which has the LITMUSRT kernel default that

is available on: http://www.litmus-rt.org/tutor16/litmus-2016.1.qcow.gz. Now,

our host (Ubuntu system) and guest (xubuntu with the LITMUSRT kernel) can be

connected in serial via tcp network protocol on port: 12345.

Further more, besides building the virtual machine, we need to build another powerful

communication between the host and guest to transport the files. We use the Server

Message Block (SMB) to build that transport communication. The KGDB on the host

need to read the copy of one file named vmlinux located on the guest, where contains

the Linux kernel in one of the object file formats. Such file will be rewritten every time

after recompiling of the kernel. Thus, after rewriting the kernel file on the guest and

compiling, we need to update the vmlinux file for the host. Such file is almost 200mb,

we should find an efficient way to update the file between host and guest. That is the

reason why we need the SMB to communicate between the host and guest. After install

the SMB, we need to configure some file so that SMB can work as expect. The processes

are as follows:

// come to the following path in host to add new configuration:

// etc/samba/smb.conf

[qume]

comment = xubuntu space with litmus-rt

path = /home/litmus/shared

read only = no

available = yes

force user = litmus

public = yes

writable = yes

browseable = yes

create mask = 0644

http://www.litmus-rt.org/tutor16/litmus-2016.1.qcow.gz

Chapter 4. Implementation for New Protocols 37

directory mask = 2777

// set the folder in that path as a ’shared’ folder

// do the following command to restart the server

/sbin# service smbd restart

// now this folder is shared between the host and guest,

// you can access this folder in the following path:

smb://10.0.2.2/shared/

All the preparation has been finished at present, we can come to the real implementation

in the next section.

4.3 Implementation of Distributed Non-Preemptive Pro-

tocol

Similar to the DPCP, under the Distributed Non-Preemptive (DNP) scheduling, the

resources are assigned to fixed processors. Each task want access to the specific resource,

should migrate to the processor where the resource is assigned to. However, the behavior

in the critical section is different to the DPCP. Once a task has locked the resource starts

to execute the critical section, it cannot be preempted by any other tasks until it finishes

the section even by those tasks which have the higher priorities. Meanwhile, there is

another important attribute that, no normal execution will be allowed to execute when

there is at least one critical section is assigned to that processor and waiting for other

task to release the processor. In the other word, the critical section always has the higher

priority than the normal execution no matter what the base priorities of them are.

Thanks to the LITMUSRT , the DPCP has been implemented inside the P-FP plug-in.

Because the migrations for the the critical sections are the same between DPCP and

DNP protocol. Thus, the only issue that we need consider about is how to implement the

non-preemptive part. As far as we are concerned, there are two options to implement the

non-preemptive execution. For one thing, the non-preemptively execution is similar to

the virtual spin lock of MPCP. The processor is occupied by one task, all the tasks come

Chapter 4. Implementation for New Protocols 38

later than that task will be added into a wait queue which is associated to the processor.

That means each processor has their own wait queue used to realize the non-preemptive

virtual spin lock. Fortunately, the LITMUSRT provides such non-preemptive virtual

spin lock as well. In that sense, our work is to combine both two attributes into a new

protocol. For another, we can raise the task’s priority to 1, which is the highest priority

among all the tasks, when the task begins its critical section. After the rise, no task

can preempt it since it gets the highest priority. Further more, the user space library

liblitmus provides a pair of flags named ’enter np()’ and ’exit np()’ to bound the non-

preemptive execution fragment, but that choice can only handle the non-preemptive

attribute rather than the relationship between normal execution and critical section.

However, if we choose the option that raise the priority may cause some problem if the

race condition occurs, when a task is enter to the critical section and the priority is

raised to the highest priority, at the same time, another another task wants execute

another critical section which has the highest priority is migrated to the same processor.

Under that situation, the scheduling decision may be different for each period. Thus,

we choose the option which applies the non-preemptive virtual spin lock to implement

the non-preemptive execution.

The flowchart of one task is migrated to access the resource on the specific processor is

shown in Figure 4.4. The first step of the task when it wants to enter the critical section

is boost the priority of itself. Which can ensure the task cannot be preempted by the

normal execution task which has the higher priority. The spin task is a task structure

acts as a container for the task which is occupying the processor right now. Before

occupying the processor, each task need to check whether the container is empty or not.

If the container is empty, then write itself task structure to the container, and starts the

execution. If the container is not empty, that means there is one task is occupying the

processor. To guarantee the non-preemptive execution, the new task will be added into

a wait queue which is ordered by task’s priority. When one task finished its execution,

it will clean the container, and send a signal to the wait queue. That signal means the

task which occupies the processor has finished its execution, after receiving that signal,

the task which has the highest priority in the wait queue will be woken up and come

to the conditional judgment again as a new coming task. Such mechanism can ensure

that there is only one task can occupy the task to execute its critical section without

preemption. Other tasks come later will be added into the wait queue before they can

Chapter 4. Implementation for New Protocols 39

preempt the task under executing.

Added to the wait

queue

Leave

Finish the execution

Occupies the processor

signal

N

Y

spin_task = NULL

Write to spin_task = t
W

ait q
u

eu
e

(O
rd

ered
 b

y
 p

rio
rity

)

Do the execution

Write to spin_task = NULL

Boost at first New task release t

The task with the

highest priority

will be woken up

Figure 4.4: The flowchart when a task enters its critical section under DNP protocol.

After implementing and debugging, we need to verify such new protocol by running

simulated task-set. The result has been shown in Figure 4.5. Task T1 has the highest

priority among all the tasks, and it is the only one task that only has the normal execu-

tion and assigned to the process 2. All the other tasks contain both normal execution

and critical section, and normal executions are only assigned to processor 1, critical

sections are only assigned to processor 2. From the Figure 4.5 we can see, all the critical

sections are executed non-preemptively and the normal execution can not be executed

before the critical section even though it has the higher priority. But, we still notice

that there are several gaps on the task T5’s critical section, and each gap occurs when

a new critical section is migrated to that processor. That means, each time when a

new task is released to the processor, the processor will allocate some time to handle

that new coming task, to execute the commands in the kernel. After that, continues

to execute the previous one. Although such suspend and resume operations may not

cause large overhead, we still try to reduce it. So, we add the enter np() and exit np()

for each critical section, which can guarantee all the critical sections within these two

labels are executed non-preemptively that means there is no gaps due to the release of

new tasks. Remarkable, that solution doesn’t eliminate these gaps, but just delays all

Chapter 4. Implementation for New Protocols 40

the operations for the new coming tasks until the current task is finished. The result

has been shown in Figure 4.6. Such solution to collect all the operation together, can

reduce the overhead of the context switch. That is why we choose this plan as the final

implementation to do the evaluation in Chapter 5.

 Normal execution on processor 1

 Critical section on processor 2

 Normal execution on processor 2

Figure 4.5: The result of the first attempt of the DNP protocol.

 Normal execution on processor 1

 Critical section on processor 2

 Normal execution on processor 2

Figure 4.6: The result of the second attempt of the DNP protocol.

Chapter 4. Implementation for New Protocols 41

4.4 Implementation of Multiprocessor Resource Sharing

Protocol

We also need to implement the second protocol which is more complex and different to

the existing protocol on the LITMUSRT . Just like we have discussed in Chapter 2.

There are three main features of the MrsP.

1. FIFO queue for the requests of the resources over different processors.

2. Tasks are spinning at local ceiling priority on the processor only when they are

waiting for some resources.

3. Help mechanism between the semaphore’s owner and waiting tasks.

All these three attributes will be discussed in detail in this section. Meanwhile, imple-

mentations for all of these three attributes contribute for the complete implementation

of MrsP.

4.4.1 FIFO Queue

FIFO queue for the resource requests is the most easy part among all these three features.

Although here are two protocols which have been implemented on the P-FP in the

LITMUSRT used the FIFO queue to organize the resource access requests. We cannot

use such structure directly for all the protocols implemented on P-FP currently are

suspension-based. However, our MrsP’s implementation is based on the spin lock. Thus,

to implement such FIFO queue, we add a task structure named next for each task’s

parameter that points to the next task which requests the same resource. After one task

finishing its critical section, the semaphore will be allocated to the next task which the

parameter next points to. This next structure will be useful when we implement the

help mechanism as well. Meanwhile such FIFO queue for one resource only works for

the requests from the different processors, and those requests from the same processor

will be managed in a priority based queue.

The way to implement the FIFO spin lock named ticket − basedspinlock. Briefly, the

ticketlock [29] consists of two words, a ticket variable and a grant variable. Arriving

Chapter 4. Implementation for New Protocols 42

threads atomically fetch− and− increment the ticket and then spin, waiting for grant

variable to match the value returned by the fetch−and− increment primitive. At that

point the thread is said to own the lock and may safely enter the critical section. The

Yan Solihin’s pseudo code example [30] has shown as follows:

ticketLock_init(int *next_ticket, int *now_serving)

{

*now_serving = *next_ticket = 0;

}

ticketLock_acquire(int *next_ticket, int *now_serving)

{

my_ticket = fetch_and_inc(next_ticket);

while(1) {

*now_serving == my_ticket;

break;

}

}

ticketLock_release(int *now_serving)

{

*now_serving++;

}

The most advantage of the ticket lock is that it is fair which can ensure the FIFO queue

comparing to other spin locks. Also, such spin lock is suitable for our implementation

for MrsP’s FIFO queue.

4.4.2 Spinning at Local Ceiling

To achieve the object that we have mentioned in the last subsection (there are at most

m tasks are waiting in the FIFO queue), we need to raise the task’s priority to the

resource ceiling in the current processor where the task can request the resource. We

have explained in the Chapter 2, the resource ceiling for each processor is equals to the

highest priority of the task among all the tasks in that processor which will access that

resource. That means once a task gets the semaphore and executes the critical section,

Chapter 4. Implementation for New Protocols 43

it cannot be preempted by other tasks which request the same resource. Such resource

ceilings are set in advance by the users.

To explain how it works, we take a simple example combining the FIFO queue and

resource ceiling. We use Tp,j to indicate the tasks, p indicates the processor where the

task is allocated to, j indicates the task’s number as well as the priority of each task

(the bigger the number is the lower the priority it has). For example, there are 5 tasks

and 2 processors T1,1, T1,3, T1,5, T2,2, T2,4, so the resource ceiling on processor p1 is 1

on p2 is 2. On t0, T1,5 is released, it raises its priority to 1 on processor 1, and get the

semaphore. On t1, T2,4 is released, it raises its priority to 2, and is spinning on processor

2. On t2, all the other tasks are released, however all these three will be added to the

ready queue corresponding to processor where they are allocated to without getting any

ticket. That because one task can get the ticket, it should be allowed to execute some

normal execution for the kernel commands on that processor. Unfortunately, due to the

ceiling raising, no tasks can execute that commands in our example. On t3, T1,5 releases

the resource and lowers its priority, so T1,1 is woken up and tries to lock the resource, but

it comes latter than T2,4, now T2,4 gets the semaphore and T1,1 is spinning on processor

1. On t4, T2,4 releases the semaphore, T1,1 gets the semaphore, T2,2 is woken up and

is spinning on processor 2. On t5, T1,1 releases the semaphore, T2,2 gets the semaphore

and T1,3 is spinning on processor 1. On t6, T2,2 releases the semaphore, and T1,3 gets the

semaphore. All the ticket information has shown in Table 4.1, Only when sem.ticket

is equal to the task’s ticket, the task can get the semaphore and execute the critical

section. From that simple example, we can notice that, only m tasks can get the tickets

T1,1 T1,3 T1,5 T2,2 T2,4 sem.ticket

t0 NULL NULL 0 NULL NULL 0

t1 NULL NULL 0 NULL 1 0

t2 NULL NULL 0 NULL 1 0

t3 2 NULL NULL NULL 1 1

t4 2 NULL NULL 3 NULL 2

t5 NULL 4 NULL 3 NULL 3

t6 NULL 4 NULL NULL NULL 4

Table 4.1: The ticket table for FIFO spin lock.

from the semaphore structure where m is the number of all the processors that have the

Chapter 4. Implementation for New Protocols 44

tasks will access to that semaphore. Thus, the task with the highest priority comes later

will be blocked at most m times of the critical sections caused by the tasks with lower

priorities (but request the resource earlier).

4.4.3 Help Mechanism

Actually, the help mechanism is the most challenging part. The flowchart of the help

mechanism has been shown in Figure 4.7. And there are several points that need to be

underlined. First, only those tasks are spinning at their own processors can help the

semaphore’s owner which they are waiting for. Second, when the semaphore’s owner is

helped by another task, it should migrate to the processor belonged to this task who

does the help. Third, the task should migrate back to the original processor if it is

helped by others. Last but not least, when the task which is preempted while waiting

becomes the next semaphore owner, it also deserves the help by others if possible.

Y
Y

Y

Y

Y

Y

N

N N

N

N

N

Save info.

Get ticket

Raise ceiling

Link to the FIFO list

sem.owner =

NULL

Ticket =

sem.ticket

Sem.owner

preempted

Do the help

Sem.owner = current

Owner is

preempted

Waiter can

help

Add to ready queue

Get help on

remote cpu

Completed

Current.cpu =

saved.cpu

Release lock

Sem.ticket ++

Migrate back

Figure 4.7: The flowchart for the help mechanism.

From the Figure 4.7, we can see, before entering the lock progress, all the information of

the task will be stored. So, they can come back to the original state after the execution

Chapter 4. Implementation for New Protocols 45

for critical section. We add a variable named sem owner preempted in the semaphore

to indicate the semaphore owner’s current state (running or preempted). All the tasks

waiting for the semaphore will read this variable to decide whether the owner needs help.

Meanwhile, we have another variable named preempted while waiting for each task to

indicate the task’s state while it is waiting for the owner releases the semaphore, in order

to make some scheduling decision after getting the semaphore.

Based on the P-FP plugin, we need to modify three main parts to support the help

mechanism. Firstly, we need to modify the function named pfp schedule() which makes

the scheduling decision. The original function is used to find the proper next task,

the previous task will be added to the ready queue. But in our implementation, if the

previous task is the owner of one semaphore, some specific steps will be taken. If the

function notices that the previous task is the semaphore’s owner, the variable cpu in this

task’s task structure will be set to −511. Once the system detects the cpu in the task’s

task structure is different to the current processor, the function named finish switch ()

will be called. In this function, the semaphore’s owner will try to find the help task via

task’s parameter next that we have discuss in the subsection FIFO Queue. If the owner

can find one helper, it will be migrated to the helper’s processor. The owner’s priority

will be set as the helper’s priority minus one, in order to preempt the helper which is

spinning on its processor. If the owner cannot find any helper, it will be requeued to the

saved cpu’s ready queue and the variable sem owner preempted will be set to 1. Also, in

the function pfp schedule(), if the previous task is waiting for the semaphore and added

to the ready queue, the variable preempted while waiting will be set to 1. Secondly,

the semaphore lock function will be modified. In the spinning while loop, the variable

sem owner preempted will be read and check whether the owner is preempted by others

at present. If the owner is preempted, the spinning task can let the owner migrate to the

current processor and modify the priority to take over the current processor. Thirdly, we

will modify the semaphore unlock. Just like what we have mentioned, if the semaphore’s

next owner is preempted while waiting, when the previous owner unlock the semaphore,

it should set the sem owner preempted to 1. In that way, the spinning task can notice

the semaphore owner is preempted, and needs help. The new semaphore owner will get

help if possible once it gets the semaphore.

Chapter 4. Implementation for New Protocols 46

4.4.4 verification for the implementation

After implementation all of those three attributes, we need to verify all of them as

well to check whether the MrsP has been implemented correctly as expected. In order

to analyze the results clearly and easily, we suppose each task can only access to one

resource at most.

Firstly, the FIFO queue will be verified. The result has been shown in Figure 4.8. From

the figure, we can see, task T2 with the higher priority comes later than T3 with the

lower priority. Both of them are spinning on their own processor, because the resource

is occupied by the task T1. After T1 releasing the resource, T3 gets the resource rather

than T2. Although T2 has the higher priority than T3, but T2 comes latter, thus T3 can

get the resource at first. That is the FIFO queue.

 Critical section Normal execution on processor 1

 Spinning Normal execution on processor 2

 Normal execution on processor 3

Figure 4.8: The verification for the FIFO queue.

Secondly, the attribute ’spinning at the local ceiling’ will be verified. We only have one

resource on this experiment. The resource ceiling on processor 2 is set as 2. From the

Figure 4.9, we can see, when the task T5 is released with the original priority, there

is no other tasks here, so T5 occupies the processor. But the resource is occupied by

task T1, thus T5 is spinning at the processor 2. To verify whether T5 is spinning at the

local ceiling, we release a new task T4 with the priority higher than T5 but lower than

the resource ceiling. We notice that, T4 cannot preempt the T5, for T5 has the higher

Chapter 4. Implementation for New Protocols 47

priority than T4 currently. Thus, the task will spin at the local ceiling when the resource

is occupied by other task on other processor.

 Critical section Normal execution on processor 1

 Spinning Normal execution on processor 2

Figure 4.9: The verification for the spinning.

Thirdly, we need to verify the behavior of the task with the highest priority but comes

later.The result has been shown in Figure 4.10. From the figure we can see, the task

T2 has the highest priority. When T2 is released on process 1, the T1 has locked the

resource, and the priority of T1 has been raised to the resource ceiling which is equal to

the priority of T2. Thus, T2 cannot preempt T1 to execute its normal execution, and is

put into the ready queue directly. Before the T2 can try to lock the resource and get

the ticket, there is another task T4 on processor 2 has get the next ticket in advance.

When T1 finishes its critical section, the priority will come back to the original one, so

the T2 can preempt it to execute the normal execution. But the resource is occupied by

the T4 on the processor 2, T2 is spinning and waiting for the resource. Thus, the highest

priority task can be blocked by m times (m equals to the total number of processors

where the tasks can access to the same resource).

Lastly, the help mechanism need to be verified. Actually, the help operation will be taken

under two situation. For one thing, there is a waiting task spinning on its processor,

when the semaphore owner is preempted by others. For another, one task is released

and trying to get the semaphore and spinning on its processor after the semaphore

owner has been preempted. In the first situation, the semaphore will migrate to the

Chapter 4. Implementation for New Protocols 48

 Critical section Normal execution on processor 1

 Spinning Normal execution on processor 2

Figure 4.10: The direct blocking for the task with the highest priority.

helper’s processor by itself using the function finish switch. In the second situation, the

semaphore owner has been en-queued to its ready queue, that means it cannot migrate

to the helper’s processor by itself. Thus, in that situation, the spinning helper task

will get the run-queue lock of the semaphore owner, and help the owner to migrate to

the proper processor. From the Figure 4.11, we can see, when task T1 is preempted

by the task T3 with the higher priority on processor 1, there is a task T2 is spinning

for waiting the resource on processor 2. Then, T1 can migrate to the processor 2 and

continue execute the critical section directly. However, on the Figure 4.12, there is no

task spinning on other processor when the owner of the semaphore T1 is preempted.

Luckily, before the blocking is ended, there is one task T2 on processor 2 also need to

the same resource as T1. When T2 is trying to lock the resource, it notices the resource

is occupied by T1, but T1 is not under execution. So T2 helps the T1 to migrate to the

processor 2 for reducing the waiting time of T2 its own.

After all the verification experiments above, we believe that the protocol MrsP has been

implemented correctly. However we have no idea about how is the performance under

huge tasks comparing to other protocols. We will discuss the performance of several

protocols that we are interested in in the next chapter.

Chapter 4. Implementation for New Protocols 49

 Resource 1 Normal execution on processor 1

 Resource 2 Normal execution on processor 2

 Spinning Critical section under helping

Figure 4.11: The verification for the help mechanism (a).

 Resource 1 Normal execution on processor 1

 Resource 2 Normal execution on processor 2

 Critical section under helping

Figure 4.12: The verification for the help mechanism (b).

Chapter 5

Evaluation

The hardware platform used in our experiment is a cache-coherent SMP consisting of

four 64-bit AMD Phenom(TM) processors running at 2.3 GHz, with 256K L1 instruction

and data caches, and a 512K L2 cache per processor, and 3.5 GB of main memory. Before

we can do the evaluation among all the candidate protocols, we should construct several

reasonable task set at first. The performance of those protocols should be reflected

by the ability to handle the tasks. Different choice of task-sets may cause different

result. Meanwhile, there are two main indicators to show the performance of protocols

in practice: overheads and response time. In the following sections, we will discuss these

three parts in detail.

5.1 Task-set construction and verification

Of course, under our partitioned-based scheduling algorithm, the performance of proto-

cols dependent on the task-set and the partitioned. We need task sets that are neither

too simple nor too complicated, so that our problem models can highlight the algorithm

benefits and won’t be impossible to analyze.[31]

5.1.1 Construction

In our thesis, we apply the task-set from [32]. Such task-set is modeled from the real

world real-time system, which can make our evaluation more reasonable and acceptable.

50

Chapter 5. Evaluation 51

The average execution times (ACET), best case execution times (BCET) and worst

case execution times (WCET) can be described in the Table 5.1. After acquiring the

execution time, we need to find the some kind of distribution to generate the complete

task set. Although, the execution times showing on the table may not fulfill any kind of

classic distribution, we just assume that we can use Gaussian distribution to generate

our task set. Actually, the Gaussian distribution only need one variable: the ACET,

thus the BCET and WCET act as the lower bound and upper bound for the distribution.

After that, we need come to the sharing resources allocation. The whole resource part

will occupy the 5%-15% of the actual execution time for each task. We start from only

one resource available, that means all the task will access to the unique resource.

Period
Average Execution Time in us

Min. Avg. Max.

1 ms 0,34 5,00 30,11

2 ms 0,32 4,20 40,69

5 ms 0,36 11,04 83,38

10 ms 0,21 10,09 309,87

20 ms 0,25 8,74 291,42

50 ms 0,29 17,56 92,98

100 ms 0,21 10,53 420,43

200 ms 0,22 2,56 21,95

1000 ms 0,37 0,43 0,46

Table 5.1: The runnable average execution times.

5.1.2 Verification

After finishing all the preparation, we tried to run one task set on two processors to

verify our experiment design. We select one task for each periodic with only one sharing

resource. Unexpected performance of DPCP occurs, which has shown in Figure 5.1 with

red box. Within some time interval, all the tasks disappear. Except the first one, all

the following wired performance will repeat every 50 ms with the same shape like the

Figure 5.2 has shown. Such failure period won’t change according to different task sets,

but the length of the failure interval will decrease along with the decrease of the number

of tasks. Meanwhile, the period of the failure will be 200 ms, when we change the timer

Chapter 5. Evaluation 52

frequency from 1000 Hz to 250 Hz. We consider such periodic failures are caused by the

frequent migration with some time quantum. The reason why we make such assumption

is because MPCP has no such failure problem and all the distributed-based protocols

are suffered by that problem.

Figure 5.1: The fist interval of the failure under DPCP.

Figure 5.2: The rest of the failure’s performance under DPCP.

Finally, we find out the reason why such periodic failure occurs is rely on the limited

size of the tracing buffer. To decrease the overhead which is caused by the tracing tool,

the LITMUSRT uses the buffer to store the tracing events temporarily. These buffers

Chapter 5. Evaluation 53

are statically allocated as per-CPU data. Too large buffers can cause issues with the

per-cpu allocator (and waste memory). Too small buffers can cause scheduling events

to be lost which has shown above. After increase the buffer size in the configuration file,

such periodic problem can be eliminated.

However, we still face to another problem. In the task set provided previous subsection,

the utilization for each task is too small, that means we need a huge number of tasks

to achieve the high utilization. However, if there are too much tasks, we still will suffer

from the periodic failure, although we have increase the buffer size. We need make a

compromise between the buffer size and tasks number. To solve the problem caused

by the conflict, we have no choice but to increase the WCET for each task which can

raise the utilization of each task. Meanwhile, considering to the limited size of the hard

disk, it is impossible for us to run the task set for a long time(over one hour). The files

generated by the tracing tool are very big. In order to reach the worst case as soon as

possible, we increase the ACET to close to the WCET. After the modification, our task

sets are shown in the Table 5.2.

Period
Average Execution Time in us

Min. Avg. Max.

1 ms 0,34 58,00 60,11

2 ms 0,32 178,20 180,69

5 ms 0,36 393,04 420,38

10 ms 0,21 830,09 860,87

20 ms 0,25 1728,74 1741,42

50 ms 0,29 1752,56 1769,98

100 ms 0,21 1775,53 1784,43

200 ms 0,22 1785,56 1790,95

1000 ms 0,37 1760,43 1770,46

Table 5.2: The task-sets used for evaluation.

We will build several experiments, the number of different tasks chosen for those ex-

periments are different to reach different processor utilization. Meanwhile, when we

construct the real experiments, we will vary the WCET and ACET a little bit for those

tasks have the same period. Also, we have two kind of sharing resources assumptions: (i)

There is only one resource available, each task will request for that resource for 15% of

Chapter 5. Evaluation 54

it’s actual execution time. (ii) There are 5 resources available, each task will request 3 of

them in order, the total critical section still contains 15% of the whole actual execution

time.

5.2 Overheads evaluation

Protocols are designed upon the assumption that run-time overheads are negligible.

However, in practice, this is very unlike to be the case, because the kernel will spend

several cpu cycles to do the operations that are introduced by the protocol (e.g., en-queue

one task to the ready queue, migrate one task from one processor to another and so on).

Some of these overheads may waste too much time that can impact the performance

of some protocols. Thus, we need to figure out how much the overhead can affect the

performance of those protocols under LITMUSRT . At first, we need to understand

what is the overhead, and how’s the overhead occurs. In the beginning, the overhead is

defined as those costs required to run a business, but which cannot be directly attributed

to any specific business activity, product, or service in the business field. After that,

we introduce the overhead to the computer since field. In computer science, overhead is

any combination of excess or indirect computation time, memory, bandwidth, or other

resources that are required to attain a particular goal. In our thesis, the overhead is

defined as the time cost by the system between the task should be executed and the

task is real executed.

We should consider the percentage of the overheads in the whole response time, oth-

erwise, the major influence factor for the performance of each protocols will be the

overheads rather than the protocols’ scheduling decisions. So we need try to minimize

the effects from the overheads and focus on the protocol itself. The feature trace tools

inside the LITMUSRT provides the main overheads’ tracing, the symbols can be defined

as follows:

• SEND RESCHED : inter processor interrupt latency.

• SCHED : make a scheduling decision (scheduler to find the ’next’).

• CXS : context switch (schedule-¿next to the real current).

Chapter 5. Evaluation 55

• SCHED2 : perform post-context-switch clean up and management activities (deal

with the schedule-¿prev staff).

• RELEASE : time spent to enqueue a newly released job in a ready queue.

• RELEASE LATENCY : the difference between when a timer should have fired and

when it actually did fire.

• PLUGIN SCHED : only the time spent by the active scheduling plugin (use the

plugin to find the next).

Because all the resource synchronization protocols that we are interested in are imple-

mented based on the P-FP plugin, the most of the overheads are the same, such as

RELEASE and RELEASE LATENCY. What we care about are those overheads which

may cause significant impact to the performance between different protocols. There are

four main overheads that should be taken into consideration are shown as follows:

1. The migration overhead for DPCP, DNP and MrsP, which is MPCP never has.

2. The IPI overhead for MPCP (to check whether the remote resource is available).

3. The added overhead when make a scheduling decision caused by the help mecha-

nism for MrsP.

4. The context switch overhead where DNP has its advantage over DPCP.

The overheads traced by the tool have been shown on the Table 5.3. For each over-

head, we have both the worst case and average case to indicate the results, and the

SCHED(MrsP) only indicates the more overhead introduced by the help mechanism

comparing to other protocols.

Migration IPI(MPCP) SCHED(MrsP) CXS

Worst case 26 us 5.2 us NON 9.56 us

Average case 8 us 1.3 us NON 1.3 us

Table 5.3: The different overheads caused by protocols.

From the results shown on the table, we can conclude several points. Firstly, the mi-

gration overhead is the most drawback for those distributed-based protocols. Secondly,

Chapter 5. Evaluation 56

the MPCP has the lowest overheads comparing to other protocols. Thirdly, the more

scheduling decision overhead caused by the help mechanism can be neglected. Lastly,

the context switch overhead may not affect the protocols’ performance largely.

5.3 Response times evaluation

After knowing all the external influencing factors to the performance of our protocols, we

need to construct the real experiments. As we all known, the most important indicator

of one protocol’s performance is the worst case response time in the real-time system.

That because, in the hard real-time system, the miss of deadline can cause a disaster.

Thus, the worst case response time plays the most important role on the setting of task’s

deadline. The worst case response time is the only criterion during our evaluation.

In our thesis, we are interested in these four protocols: Multiprocessor Priority Ceil-

ing Protocol (MPCP), Distributed Priority Ceiling Protocol (DPCP), Distributed Non-

preemptive Protocol (DNP), and Multiprocessor Resource Sharing Protocol (MrsP). So

we will evaluate those four protocols’ performance using the same specific task-set. How-

ever, it is impossible for us to analyze each task over the dozens of tasks, we only monitor

the performance of the task with the highest priority.

At first, we have built 6 experiments for double processors environment and 6 experi-

ments for quad processors environment with different processors’ utilization and resource

sharing assumptions. To reach different utilization for different number of feasible pro-

cessors, we need select different number of tasks from the tasks warehouse showing in

Table 5.2. The number of each task with different period for different utilization has

been shown in Table 5.4, for each utilization, we have two kinds of sharing resources

assumptions what we have mentioned above.

Besides the total utilization set and the tasks chosen, the partition can have a significant

impact in the performance of those protocols. In our evaluation, we are trying to disperse

the utilization to each processor. However, according to the distributing character, under

DPCP and DNP, we assign all the tasks to the first three processors, and all the critical

sections on the processor 4. In the DPCP and DNP, there are only three processors

available for the normal partition. In the MPCP and MrsP, we have whole four processor

for partitioning. So, the DPCP and DNP share the same partition, MPCP and MrsP

Chapter 5. Evaluation 57

P. Ut. 1 ms 2 ms 5 ms 10 ms 20 ms 50 ms 100 ms 200 ms 1000 ms

2

60% 1 1 1 1 2 2 1 1 1

80% 1 1 1 2 3 2 3 1 1

100% 1 1 1 2 4 4 4 3 1

4

120% 1 1 1 3 5 5 4 3 1

160% 1 1 1 5 7 6 5 3 1

195% 1 1 2 6 8 8 6 2 2

Table 5.4: The tasks chosen from the task-set.

share one partition scheme as well. Now we take the 195% utilization with 4 processors

for example, which has 36 tasks. The first thing that we need to do before the partition,

is to sort all these 36 tasks and give them the priority according to its period, the smaller

the period is the higher the priority it has. Under this rule, task T1 has the smallest

period and highest priority, T36 has the longest period and the lowest priority. Due to

the load sharing principle, our partition can be shown in Table 5.5.

DPCP and DNP MPCP and MrsP

Processor 1 T1-T8 T1-T6

Processor 2 T9-T16 T7-T12

Processor 3 T17-T36 T13-T18

Processor 4 critical sections T19-T36

Table 5.5: The partition for all the tasks.

Under our task-set, the results (in us) of the experiments have been shown in Table 5.3,

5.4, 5.5 and 5.6. Due to some technical problems, we do not have the results for MrsP

under the four processor and five available resources case.

According to the theory that we have mentioned and the included overheads, the WCRT

in practice should be larger than the WCRT in theory. But But that does not seem to

be the case in our results. For one thing, under the distributed-based protocols, all the

critical sections should be executed on the same processor, which makes the executions

tight. Thus, it easy to reach the worst case within limited time. For another, the worst

cases under the MPCP and MrsP are harder to reach in a short time. That because

the executions for critical sections are allocated on different processors, which makes the

Chapter 5. Evaluation 58

0

100

200

300

400

500

600

60% 80% 100%

DPCP DNP MPCP MRSP

Figure 5.3: The result with two processors and only one resource.

0

100

200

300

400

500

600

700

800

120% 160% 200%

DPCP DNP MPCP MRSP

Figure 5.4: The result with four processors and only one resource.

executions loose. It needs tasks on all the four processors meet some critical conditions

at the same time to reach the worst case response time in theory.

When the response time and the overheads has been confirmed, we can measure what

is the proportion of overheads in whole response time. We choose the case (two proces-

sors and one sharing resource) which the overheads occupies the largest share of whole

Chapter 5. Evaluation 59

0

100

200

300

400

500

600

700

800

60% 80% 100%

DPCP DNP MPCP MRSP

Figure 5.5: The result with two processors and five resource available.

0

200

400

600

800

1000

1200

1400

1600

120% 160% 200%

DPCP DNP MPCP MRSP

Figure 5.6: The result with four processors and five resource available.

response time. The results have been shown, DPCP in Figure 5.7 and MPCP in Figure

5.8.

After the evaluation, all the analysis and the conclusions will be discussed in Chapter

6.

Chapter 5. Evaluation 60

15.96%

79.79%

4.25%

WCET Blocking Overhead

Figure 5.7: The pie chart for migration overhead of DPCP.

13.77%

85.93%

0.30%

WCET Blocking overheads

Figure 5.8: The pie chart for IPI overhead of MPCP.

Chapter 6

Conclusion

Known to all, the performance of one protocol depends on both the theory itself and the

implementation. Besides the way how the protocol is implemented, the platform where

the protocol is implement on and the machine where the implementation run can affect

the performance as well. Thus, all the conclusions that we will draw on this chapter are

based on the current implementation on the current platform running on our machine.

6.1 Results based on this current implementation

According to the evaluation that we have in Chapter 5 as well as the analysis for the

theories in Chapter 2, we can arrive at several conclusions.

Firstly, the overheads caused by the LITMUSRT kernel can be neglected comparing to

the big number of execution time as well as blocking time.Including of the overheads

will not destroy the protocols’ essences. Although the MPCP has less overheads than

DPCP, MPCP still cannot perform better than DPCP under heavy load system, due to

the blocking time is much lager than the benefit from the less overheads. For the task

with the highest priority, under MPCP, it can be preempted by any other critical section

on the local processor as well as the same resource accessing (direct blocking) on the

remote processor. However, under DPCP, because of the distribution, the task with the

highest priority cannot be preempted by any other of the tasks on the local processor.

It can only be blocked once on the remote processor due to the mutual exclusion for

each resource access. Thus, the MPCP can never perform better than DPCP in theory.

61

Chapter 6. Conclusion 62

Under the real evaluation, the conclusion may not come to easily under low utilization

for per processor situation which is treated as light load system. Considering the low

percentage of the largest overheads of DPCP (less than 5%), we still consider that, the

overheads caused by implementation cannot broke the protocol’s theory.

Secondly, the high utilization can reflect the protocols’ essences preferably in our eval-

uation. From the results of our experiments, we notice, those experiments with high

utilization can demonstrate the protocol’s essence preferably. To the contrary, those ex-

periments with low utilization per processor, due to the executions for critical sections

are loose, they can behave in a different way. The experiment for two processors with

five resources available, the MPCP can perform better than DPCP, which is impossible

in theory appears on our result. That because the limited of our design for the total

execution time. Under the loose situation, the worst case in theory is hard to reach.

Last but not least, the summary based on observation is that the MPCP is sensitive to

the utilization and the MrsP is sensitive to the number of processors.From the theories

of those two protocols, the blocking time under MPCP mostly caused by other tasks’

critical sections on the local processor, MrsP is mainly caused by the FIFO access to the

resource on the remote processors. For the MPCP, if there are huge of critical sections

on the local processor, the task with the highest priority will have very long blocking

time. For the MrsP, if there are a lot of processors are available, and all of them contain

the tasks will access to the resource as same as the task with the highest priority, it will

be blocked m times (m equals to the number of the processor available).

6.2 Further Development

Although we have drawn some conclusions, there are still several aspects under consid-

eration.

First of all, due to the average of the utilization, MPCP has the better performance in

the average response time as well as those tasks with lower priority. That means it is

valuable for the soft real-time system. The partition of the MPCP will have a significant

influence to the performance. Thus, one efficient partition rule is pregnant.

Chapter 6. Conclusion 63

Secondly, DNP may perform better than DPCP if the lengths of critical sections for

each task are similar, and each critical section is reasonable short. Such condition can

enlarge the effect caused by the context switch overhead. Also the situation if the task

with the highest priority also request the longest critical section also need to be verified.

Thirdly, in the help mechanism under MrsP, it also need to migration, which will suffer

from large overhead. So do we have any efficient partition algorithm to reduce such

helping situation which can also reduce the overhead for whole system. Also, if one

task which is helped by others, is preempted once it migrates to the remote processor.

Under that situation, the help mechanism is just contribute to the overheads. Thus, if

we set the task is non-preemptive once it is helped, can we reduce the possibility of more

overheads?

Bibliography

[1] Giorgio Buttazzo. Hard real-time computing systems: predictable scheduling algo-

rithms and applications, volume 24. Springer Science & Business Media, 2011.

[2] Andrea Bastoni, Bjorn B Brandenburg, and James H Anderson. An empirical

comparison of global, partitioned, and clustered multiprocessor edf schedulers. In

Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pages 14–24. IEEE, 2010.

[3] Andrea Bastoni, Bjorn B Brandenburg, and James H Anderson. Is semi-partitioned

scheduling practical? In 2011 23rd Euromicro Conference on Real-Time Systems,

pages 125–135. IEEE, 2011.

[4] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling framework for

virtual clustering of multiprocessors. In 2008 Euromicro Conference on Real-Time

Systems, pages 181–190. IEEE, 2008.

[5] Michel Raynal. Concurrent programming: algorithms, principles, and foundations.

Springer Science & Business Media, 2012.

[6] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority inheritance proto-

cols: An approach to real-time synchronization. IEEE Transactions on computers,

39(9):1175–1185, 1990.

[7] Wen-Hung Huang, Maolin Yang, and Jian-Jia Chen. Resource-oriented partitioned

scheduling in multiprocessor systems: How to partition and how to share?

[8] Rajib Mall. Real-time systems: theory and practice. Pearson Education India, 2009.

[9] Theodore P Baker. A stack-based resource allocation policy for realtime processes.

In Real-Time Systems Symposium, 1990. Proceedings., 11th, pages 191–200. IEEE,

1990.

64

Chapter 6. Conclusion 65

[10] Ragunathan Rajkumar. Real-time synchronization protocols for shared memory

multiprocessors. In Distributed Computing Systems, 1990. Proceedings., 10th In-

ternational Conference on, pages 116–123. IEEE, 1990.

[11] Ragunathan Rajkumar. Synchronization in real-time systems: A priority inheri-

tance approach. 1991.

[12] B Brandenburg. A note on blocking optimality in distributed real-time locking

protocols,”, 2012.

[13] Farhang Nemati, Moris Behnam, and Thomas Nolte. Multiprocessor synchroniza-

tion and hierarchical scheduling. In 2009 International Conference on Parallel

Processing Workshops, pages 58–64. IEEE, 2009.

[14] Ragunathan Rajkumar, Lui Sha, and John P Lehoczky. Real-time synchronization

protocols for multiprocessors. In RTSS, volume 88, pages 259–269, 1988.

[15] Alan Burns and Andy J Wellings. A schedulability compatible multiprocessor re-

source sharing protocol–mrsp. In 2013 25th Euromicro Conference on Real-Time

Systems, pages 282–291. IEEE, 2013.

[16] Robert I Davis and Alan Burns. Resource sharing in hierarchical fixed priority pre-

emptive systems. In 2006 27th IEEE International Real-Time Systems Symposium

(RTSS’06), pages 257–270. IEEE, 2006.

[17] Farhang Nemati. Resource sharing in real-time systems on multiprocessors. 2012.

[18] Marko Bertogna and Michele Cirinei. Response-time analysis for globally sched-

uled symmetric multiprocessor platforms. In Real-Time Systems Symposium, 2007.

RTSS 2007. 28th IEEE International, pages 149–160. IEEE, 2007.

[19] Björn B Brandenburg. Scheduling and locking in multiprocessor real-time operating

systems. PhD thesis, Citeseer, 2011.

[20] John B Goodenough and Lui Sha. The priority ceiling protocol: A method for

minimizing the blocking of high priority Ada tasks, volume 8. ACM, 1988.

[21] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory utilization

of real-time task sets in single and multi-processor systems-on-a-chip. In Real-

Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE, pages 73–

83. IEEE, 2001.

Bibliography 66

[22] John M Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C Devi,

and James H Anderson. Litmusˆ rt: A testbed for empirically comparing real-time

multiprocessor schedulers. In 2006 27th IEEE International Real-Time Systems

Symposium (RTSS’06), pages 111–126. IEEE, 2006.

[23] Linux testbed for multiprocessor scheduling in real-time systems (LITMUSRT).

URL https://www.litmus-rt.org/.

[24] Real-time executive for multiprocessor systems (RTEMS). URL http://www.

rtems.org/.

[25] QNX Neutrino RTOS. URL http://www.qnx.com/products/neutrino-rtos/

neutrino-rtos.html.

[26] Robert Love. Linux kernel development. Pearson Education, 2010.

[27] D Grothe. Kgdb: linux kenrel source level debugger, 2001.

[28] Tracing-litmus. URL https://wiki.litmus-rt.org/litmus/Tracing.

[29] David Dice. Brief announcement: a partitioned ticket lock. In Proceedings of the

twenty-third annual ACM symposium on Parallelism in algorithms and architec-

tures, pages 309–310. ACM, 2011.

[30] Yan Solihin. Fundamentals of parallel computer architecture. Solihin Publishing

and Consulting LLC, 2009.

[31] Scuola Superiore S Anna. Reality check: the need for benchmarking in rts and cps.

[32] S Kramer, D Ziegenbein, and A Hamann. Real world automotive benchmark for

free. In Workshop on Analysis Tools and Methodologies for Embedded and Real-

Time Systems (WATERS), 2015.

https://www.litmus-rt.org/
http://www.rtems.org/
http://www.rtems.org/
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
https://wiki.litmus-rt.org/litmus/Tracing

	Declaration of Authorship
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Organization
	1.2 Scheduling Algorithms for Multiprocessor
	1.3 The Necessity of Resource Synchronization
	1.4 Resource Synchronization Protocols in Uni-processor

	2 Resource Synchronization Protocols for Multiprocessor
	2.1 Resource Synchronization Protocols for Multiprocessor
	2.1.1 Multiprocessor Priority Ceiling Protocol
	2.1.2 Distributed Priority Ceiling Protocol
	2.1.3 Flexible Multiprocessor Locking Protocol
	2.1.4 Distributed FIFO Locking Protocol

	2.2 New Protocols under Consideration
	2.2.1 Distributed Non-preemptive Protocol
	2.2.2 Multiprocessor Resource Sharing Protocol

	3 Test-bed Installation and Testing
	3.1 Synopsis of LITMUSRT
	3.2 Installation and Modification
	3.2.1 Installation
	3.2.2 Modification

	3.3 Testing
	3.3.1 verification for PCP
	3.3.2 verification for MPCP
	3.3.3 verification for DPCP

	4 Implementation for New Protocols
	4.1 Introduction for the Process Scheduling in the kernel
	4.2 Debug
	4.2.1 Tracing and Logging
	4.2.2 KGDB

	4.3 Implementation of Distributed Non-Preemptive Protocol
	4.4 Implementation of Multiprocessor Resource Sharing Protocol
	4.4.1 FIFO Queue
	4.4.2 Spinning at Local Ceiling
	4.4.3 Help Mechanism
	4.4.4 verification for the implementation

	5 Evaluation
	5.1 Task-set construction and verification
	5.1.1 Construction
	5.1.2 Verification

	5.2 Overheads evaluation
	5.3 Response times evaluation

	6 Conclusion
	6.1 Results based on this current implementation
	6.2 Further Development

