
Reliability Optimization on Multi-Core Systems
with Multi-Tasking and Redundant Multi-Threading

Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen
Department of Informatics, TU Dortmund University, Germany

E-mail: {kuan-hsun.chen, georg.von-der-brueggen, jian-jia.chen@tu-dortmund.de}

Abstract—Using Redundant Multithreading (RMT) for error
detection and recovery is a prominent technique to mitigate
soft-error effects in multi-core systems. Simultaneous Redundant
Threading (SRT) on the same core or Chip-level Redundant Mul-
tithreading (CRT) on different cores can be adopted to implement
RMT. However, only a few previously proposed approaches use
adaptive CRT managements on the system level and none of them
considers both SRT and CRT on the task level. In this paper,
we propose to use a combination of SRT and CRT, called Mixed
Redundant Threading (MRT), as an additional option on the task
level. In our coarse-grained approach, we consider SRT, CRT,
and MRT on the system level simultaneously, while the existing
results only apply either SRT or CRT on the system level, but
not simultaneously. In addition, we consider further fine-grained
task level optimizations to improve the system reliability under
hard real-time constraints. To optimize the system reliability, we
develop several dynamic programming approaches to select the
redundancy levels under Federated Scheduling. The simulation
results illustrate that our approaches can significantly improve
the system reliability compared to the state-of-the-art techniques.

I. INTRODUCTION

Due to aggressive technology downscaling, memory and
logic components are now vulnerable to electromagnetic infer-
ence and radiation, leading to transient faults in the underlying
hardware [4, 32]. These transient faults may jeopardize the
correctness of software execution, so called soft errors, or
even lead to a system crash. Redundant Multithreading (RMT)
techniques [21, 30, 35] provide fault detection and recovery by
replicating a task into multiple identical threads and comparing
the produced results. Especially dual modular redundancy
(DMR) and triple modular redundancy (TMR) [20, 21, 30, 34]
are widely used, where DMR only provides fault detection
while TMR can possibly correct the faulty instance as well.
Simultaneous Redundant Threading (SRT) approaches [30, 35]
provide transient fault coverage by running identical copies of
the task on the same processor. However, due to the additional
computation time [21, 30, 35], applying SRT directly on high
utilization tasks may lead to a system overload.

In multi-core systems, redundant cores can be used for
RMT, using approaches like Intel’s Chip-level Redundant
Multithreading (CRT) [7, 21, 25], which provide alternatives to
mitigate soft-error effects. Redundant replicas of a given task
are executed on different cores in parallel and error detection
and recovery approaches are performed by comparing the
threads’ output. Nevertheless, solely adopting CRT with re-
dundant cores is not sufficient, since the number of redundant
cores is limited. Even if the number of cores is adequate to

N

M

U

System Software

Scheduler in OS

R

R

R

R

R

R

R

R

R

C

C

C

C

C

C

C

C

C

Multi-Core Fabric

Architecture

Multiple Compiled

Task Versions

3-D Schedule

Table Generation

(Sec. V)

Redundancy Level Selection (Sec. V)

Ta
sk

s
C

la
ss

if
ic

a
ti
o

n

&
 F

e
a

si
b

il
it
y

 T
e

st

(S
e

c
.
IV

)Greedy Scheduler

Partition-RM Policy

Federated Scheduling

R
e

lia
b

ili
ty

-A
w

a
re

C
o

m
p

ila
ti
o

n

Fine-Grained

Redundancy

(Sec. VI)

Fig. 1: Overview of the considered system, illustrating inter-
actions between different components for dependable system
execution. Our contributions are highlighted in yellow and are
linked to the related section of the paper.

activate CRT for all tasks, the utilization of the dedicated cores
may be unnecessarily low due to low utilization tasks.

Satisfying given design constraints, i.e., limited time and
cores, motivates us to explore if the aforementioned tech-
niques, i.e., SRT and CRT, can be efficiently applied at the
same time in order to fully exploit the system resources.
Existing results typically assume that TMR-based RMT has
to be applied using three cores in parallel, i.e., CRT [7, 25],
or that three replicas are executed on one core sequentially,
i.e., SRT [30]. In this paper, we propose the alternative that
TMR-based RMT executions can also be a mixture of CRT
and SRT, where two threads are executed on the same core
and one is executed on another core in parallel, termed as
Mixed Redundant Threading (MRT). Our scheme minimizes
the overall reliability penalty [7, 25, 29] for a given hard real-
time system by considering RMT with SRT, CRT, and MRT
on multi-core systems at the same time. 1 Some more concrete
motivational examples are given in Section III, in which MRT
provides a better system reliability and applicability comparing
to SRT and CRT.

1Whenever we mention the system reliability, the considered metric is from
the penalty perspective. If the reliability penalty is high, the system is less
reliable. If the reliability penalty is low, the system is more reliable. Details
can be found in Section IV-C.

Penalty Value φ SRT MRT CRT
τ1 R1 ∞ ε+ ∆ ε
τ2 R2 ∞ ε+ ∆ ε

(a) Tasks reliability penalty on different modes

Mappings Total Penalty Max Penalty
SRT(τ1) + φ(τ2) and SRT(τ2) + φ(τ1) ∞ ∞

φ(τ1) + φ(τ2) R1 +R2 max {R1, R2}
CRT(τ1) + φ(τ2) and CRT(τ2) + φ(τ1) R1 + ε or R2 + ε max {R1 + ε, R2 + ε}

MRT(τ1)+MRT(τ2) 2(ε+ ∆) ε+ ∆

(b) Possible selections and overall penalty

TABLE I: Corresponding penalty values and possible mappings for the motivational example in Section III.

Core1

Deadline miss!

Core2

0 2 4 6 8 10

(a) SRT is not feasible due to a deadline miss.

Core1

Core2

0 2 4 6 8 10

(b) MRT can activate TMR with two cores.

Fig. 2: TMR-based RMT on two cores. Grey blocks are the
original execution, green blocks are replicas, and red blocks
represent the workload necessary for forking and joining the
original execution and replicas. CRT is not possible since only
two cores are available. While SRT is not feasible due to a
deadline miss as shown in subfigure (a), MRT can feasible
schedule the task with TMR as shown in subfigure (b).

In this paper, we aim to maximize the system’s reliability
while satisfying the given hard real-time constraint. In this
reliability optimization problem we consider different RMT
options on a multi-core system, i.e., DMR/TMR with SRT,
CRT, and MRT. This reliability optimization problem is tack-
led by adopting Federated Scheduling [18] and R-BOUND-
MP-NFR [2] as the backbone. We propose several dynamic
programming algorithms to optimize the system’s reliability
while guaranteeing the system’s schedulability. Through the
simulation results, we can see that the proposed approaches
can significantly decrease the system reliability penalty up to
54% compared to the state-of-the-art techniques.
Our contributions: Figure 1 illustrates an overview of our
contributions, detailed as follows:

• Typically, SRT and CRT are studied individually in the
literature. In this paper, we propose Mixed Redundant
Threading (MRT) as a mixture of SRT and CRT, i.e.,
the task and one replica are executed on one core and
a second replica is executed on a different core. We
take SRT, CRT, and MRT into consideration at the same
time to improve the system reliability while satisfying the
timing constraints in multi-core systems.

• In Section V we show how Federated Scheduling can be
adopted to assign each task either to dedicated cores, i.e.,
cores only used by one task, or to multi-tasking cores,
under the assumption that all execution levels of all tasks
are given.

• If the execution levels of tasks are not given, we propose
a dynamic programming to find the optimal selection of
redundancy levels while satisfying the timing constraints
in Section VI.

• If different task stages can use different levels of redun-
dancy, we show how to adapt the dynamic programming
algorithm to provide a fine-grained optimization in Sec-

tion VII.
• We evaluate our algorithms in Section VIII by comparing

with a greedy approach used in the two state-of-the-
art approaches [7] and [25] under different execution
scenarios.

II. RELATED WORK

RMT techniques are well-known solutions to provide fault
detection and recovery [21, 30, 35] on uniprocessor or multi-
core systems. The state-of-the-art techniques in [7, 25] assume
that TMR-based RMT should be applied using three cores in
parallel with CRT, or that three replicas are executed on one
core sequentially with SRT [30] . In [8, 9], the main objective
is energy efficiency. However, these works only consider fault
tolerance or the optimization of system reliability without any
real-time constraints.

Scenarios in general similar to our studied problem are
considered in [5, 10, 16], i.e., the objective of these papers
is to schedule tasks with real-time constraints while concern-
ing fault detection/tolerance feature. However, these papers
consider frame-based task systems. Even in such a simplified
setting, the problem explored in this paper is still very different
from the problems explored in [5, 10, 16]. In [5, 10] the energy
efficiency and mean-time to failure under lifetime constraints
is optimized. In [16] the authors present a runtime schedule
strategy to adapt to the occurrence of faults at runtime to
reduce the overhead due to fault tolerance. Those algorithms
are not applicable for our studied problem.

Some related researches for the schedulability problem of
parallel workloads in fork-join and DAG task models are
known, i.e., [3, 17, 18]. Axer et al. [3] focus on worst-
case response time analysis with a fork-join task model. Li
et al. [18] propose a Federated Scheduling strategy to deal
with parallel workloads in partitioned scheduling. However,
most existing research assumes that the parallel workload
distribution is known, i.e., the number of threads per task is
given beforehand, and only analyze the feasibility problem in
terms of timeliness. Kwon et al. [17] tackle the scheduling
problem with the global scheduling algorithm PD2 [33] and
determine the parallel executing options by trivially testing
all possible combinations. The above work focuses on the
scheduling of given parallel workloads, whereas our work
aims to optimize the system reliability by parallelizing the
workloads, scheduling them under given timing constraints on
a given multicore platform.

2

III. MOTIVATION

Assume that we want to activate TMR-based RMT to enable
detection and correction for soft errors. In the literature, either
SRT [7, 21] or CRT [7, 25, 30, 35] is used to provide TMR
but these techniques are not combined. This means, the task
and the two replicas are either executed sequentially on the
same core (SRT) or on three different cores (CRT). The
proposed mixture of SRT and CRT, called Mixed Redundant
Threading (MRT), can balance the amount of used cores and
the additional computation as MRT enables TMR with two
available cores. Furthermore, MRT can exploit the available
cores more efficiently to improve the reliability under the given
time constraints.

First, consider one task and two available cores. Since SRT-
TMR imposes a higher computation demand on one processor,
e.g., 3x the execution time, it may lead to a deadline miss
as shown in Figure 2(a). CRT-TMR is also not possible, as
only two cores are available. However, if we execute the task
and one replica on Core1 sequentially and one on Core2

in parallel like in Figure 2(b), TMR-based RMT is possible
without sacrificing timeliness.

However, the main focus of this paper is not the schedu-
lability problem. We consider that for a given task set the
system reliability should be increased as much as possible by
activating TMR for some (or at best all) tasks. We assume
that the activation of TMR for a task τi has a different
impact on the system reliability for each task, i.e, a reliability
penalty is given for each task that is smaller when TMR is
activated and larger when TMR is not activated. The total
system reliability can be defined by any applicable metric, e.g.,
the sum of reliability penalty or the the maximum reliability
penalty (see Section IV-C), and the goal is to minimize the
systems reliability penalty under the given metric.

Suppose we can only use four homogeneous cores to
execute two tasks τ1 and τ2 and that the corresponding
reliability penalties under different RMT modes for τ1 and τ2
are given as shown in Table Ia. The penalties of task τ1 and τ2
without any redundancy (φ) are R1 and R2, respectively. The
penalty values of τ1 and τ2 for SRT are ∞ due to deadline
misses caused by the additional computing time. ∆ is the
reliability penalty induced by MRT and ε is the negligible
reliability penalty of TMR-based RMT. Typically ∆ and ε
should be much smaller than R1 and R2, i.e., R � ∆ > ε,
R ∈ {R1, R2}. The mappings with two SRT-TMRs and two
CRT-TMRs are not feasible. The mapping with one CRT-TMR
does not provide the optimal reliability penalty under the given
reliability penalty metrics, as only one task can be protected
by CRT. However, using MRT for both tasks allows them to
have redundant executions concurrently, by which the system
penalties in both metrics are lower than the CRT mapping, if
the reliability penalty ∆ is much smaller than R1 and R2.

This shows that MRT provides additional options for bal-
ancing the usage of cores and for reliability optimization.

IV. SYSTEM MODEL AND PROBLEM DEFINITIONS

In this section we introduce the application model, describe
the different redundant multithreading schemes used in the

paper, explain how we quantify the task reliability, and state
the problem definition.

A. Application Model

We consider a hard real-time task system with N sporadic
tasks Γ = {τ1, τ2, . . . , τN}. Each task τi is associated with a
minimum inter-arrival time Ti, also called period, a relative
deadline Di, and a worst case execution time (WCET) Ci.
This means an instance of task τi arriving at time t must be
completed not later than the absolute deadline t+Di and the
next task instance must be released not earlier than t + Ti.
We focus on implicit-deadline task systems throughout the
paper, i.e., Di = Ti ∀τi ∈ Γ, and consider the schedulability
on a multi-core platform with M homogeneous cores that
are connected by a communication fabric, e.g., a network on
chip (NoC). We assume preemptive fixed-priority scheduling,
i.e., a unique priority level is assigned to each task, as this
model is widely used in the industrial practice and also
supported in most real-time operating systems. Furthermore,
we assume preemption overheads to be negligible compared
to the execution time of one task instance.2 Throughout this
paper, we assume that all additional communication overhead
can be integrated into the execution time of tasks, e.g., NoC
overhead, cache coherency traffic, or shared resource accesses.

B. Redundant Multithreading (RMT)

We consider the two well known RMT modes Dual Modular
Redundancy (DMR) [21, 30] and Triple Modular Redundancy
(TMR) [26, 34]. In addition, we propose the mixed usage of
CRT and SRT, called Mixed Redundant Threading (MRT), in
which TMR can also be activated in two parallel cores with
two replicas, i.e., the original execution and one replica are
executed on one core while a second replica is executed on
a second core. Using all possible combinations defines the
following six redundancy levels:
• NON-RMT (φ): The task without any redundancy.
• SRT-DMR : original and 1 replica executed sequentially.
• SRT-TMR : original and 2 replicas executed sequentially.
• CRT-DMR : original and 1 replica executed in parallel.
• CRT-TMR : original and 2 replicas executed in parallel.
• MRT-TMR : original and 1 replica executed sequentially,

1 replica executed in parallel, i.e., original and 2 replicas
in total.

These redundancy levels can be characterized as a set
of directed acyclic graphs (DAGs) [18]. Figure 3 illustrates
the possible DAGs, where each node (sub-task) represents a
sequence of instructions and each edge represents execution
dependencies between nodes. Each node is characterized by
the WCET of the corresponding sub-task. A node is ready to
be executed if all of its predecessors have been executed. Each
box represents a processor, i.e., nodes in the same block are
assigned to the same processor. In Section VI we assume that
each task τi has Ki given levels generated by the reliability-
aware compilation [15, 28], each matching one of the above six

2If the overheads are not negligible they can be integrated into the worst-
case execution time (WCET) of tasks using standard approaches in literature.

3

Non-RMT

CRT-DMR MRT-TMR

CRT-TMR

SRT-DMR SRT-TMR

Fig. 3: DAG abstractions of the different redundancy levels,
where the gray nodes are original executions and the green
nodes are replicas. The red nodes represent the workload
due to the necessary steps for forking the original executions
and replicas, joining, and comparing the delivered results
from DMR/TMR at the end of redundant multi-threading.
The directed edges represent the dependencies between nodes.
Each block represents one core, i.e., the number of cores
differs depending on the redundancy level.

redundancy levels, i.e., τi =
{
τi,1, τi,2, · · · , τi,Ki

}
. For each

task τi ∈ Γ, one of the levels is chosen to be executed, denoted
as θ = {θ1, θ2, . . . , θN}. For each level τi,j , two parameters
are assumed to be given:
• Total execution time Ci,j : The sum of the WCETs of all

the sub-tasks of τi,j .
• Critical-path length Li,j : The WCET of the critical-path

in the given DAG, i.e., sum of the WCETs of the path
with the longest total WCET.

We assume that the correctness of the execution result is
affected by soft-errors (faults). The WCET is profiled in fault-
free system offline and protected by the adoption of watchdog
approaches. Each level τi,j is associated with two cost values:
the utilization ui,j and the number of required cores Hi,j . The
utilization ui,j is given by Ci,j

Ti
and Hi,j is determined by the

scheduling policy detailed in Section V. We assume each task
τi has at least a level τi,φ without any redundancy and that its
total execution time is not larger than its period.

C. Quantification of Task Reliability

We assume that the reliability penalty of each task level
τi,j is given as Ri,j . It describes the probability that a fault
during the execution of level τi,j leads to a visible error
when executing. The probability of failure for each instruction
is estimated by using Instruction Vulnerability Index and
Function Vulnerability Index metrics [7, 27, 28]. The task
vulnerability can be characterized/estimated by the composi-
tion of its instructions. The task level with lower vulnerability
has a smaller reliability penalty, i.e., it has a better reliability.
We use the Overall Reliability Penalty ΨΓ(θ) as the objective
function in this paper to demonstrate our approaches, which
can be defined as:

Definition 1 (Overall Reliability Penalty ΨΓ(θ)):
The overall reliability penalty of task set Γ is
ΨΓ(θ) =

∑
τi∈ΓRi,θi , where Ri,θi is the reliability

penalty of task τi executing at redundancy level θi and the
set θ contains the redundancy levels θi of all tasks τi ∈ Γ.

Please note that the proposed approaches are applicable to
any system reliability metrics, if the optimization can be solved
by a dynamic programming algorithm, i.e., Ri,j can be set to
any reliability penalty. In this work, we directly use the same
metric of reliability penalty as in [7], which is also adopted
in [25, 29] as a part of the linear combination for functional
and timing reliabilities.

D. Problem Definition

Assume a multi-core system with M homogeneous RISC
cores and a task set Γ to be given. The problem we are
analyzing is to get a maximized system reliability, i.e., a
minimized reliability penalty, under the given hard real-time
constraints and a given number of homogeneous cores.

E. Structure of the Paper

As we use Federated Scheduling as backbone for our
approach, it is briefly reviewed in Section V. In Section VI
we provide a dynamic programming algorithm to find the op-
timal selection of redundancy levels θ, assuming the different
redundancy levels to be given. After that, we explain how to
determine the optimal redundancy level for each task stage in
a fine-grained manner without assuming any given Ki task
levels in Section VII. The approaches presented in Section VI
and Section VII are evaluated in Section VIII.

V. FEDERATED SCHEDULING

As we use it as backbone to solve the multi-task scheduling
problem on M cores, we give a short, general overview of
Federated Scheduling [18] that includes a short example.

In Federated Scheduling, the tasks in Γ are partitioned into
subsets that are scheduled individually on a multi-core system
with M homogeneous cores. To simplify the presentation,
we assume that the execution levels of all tasks have been
determined, i.e., θi is given ∀τi ∈ Γ, and use the notation
presented in this paper. Obviously a schedule for Γ on M
uniform frequency cores can only exist, if the following two
necessary conditions are met:
• The sum of all task utilizations is not greater than the

number of processors, i.e.,
∑
τi∈Γ ui,θi ≤M .

• No task has a critical path greater than its period, i.e.,
∀τi ∈ Γ, Li,θi ≤ Ti = Di.

Federated Scheduling [18] partitions the tasks into two
disjoint subsets according to their utilization: τBIG contains all
high-utilization tasks, i.e., ui,j ≥ 1, and τLITTLE contains all
low-utilization tasks, i.e., ui,j < 1. We denote the executing
levels of tasks in τBIG with θBIG and the executing levels of
tasks in τLITTLE as θLITTLE. First, the number of cores necessary
to schedule τBIG is determined while τLITTLE will be scheduled
on the remaining cores if possible. Please note that we present
Federated Scheduling in the general case here. Some remarks
regarding our studied problem and some properties that arise
due to the structure of that problem are given in the next
section.
• High-utilization tasks (τi in τBIG): For each task
τi ∈ τBIG, the parallel sub-tasks are scheduled on cores

4

dedicated to the task, called list scheduling in the litera-
ture [12], by any work-conserving parallel scheduler. A
work-conserving list scheduler is a scheduler that never
lets a core idle if there is any sub-task ready to be
executed. As shown in Theorem 2 in [18], the required
number of dedicated cores Hi,θi for τi,θi is at most:

Hi,θi =

⌈
Ci,θi − Li,θi
Ti − Li,θi

⌉
(1)

For the task set τBIG, we denote the sum of dedicated cores
as HBIG =

∑
τi∈τBIG

Hi,θi .
• Low-utilization tasks (τi in τLITTLE): We adopt

R-BOUND-MP-NFR, developed by Andersson et al. [2],
to schedule the tasks in τLITTLE on the number of remaining
cores HLITTLE = M −HBIG. On each core of HLITTLE rate-
monotonic priority assignment is used. According to The-
orem 7 in [2], R-BOUND-MP-NFR feasibly schedules
the tasks in τLITTLE using partioned scheduling if∑

τj∈τLITTLE

uj,θj ≤ HLITTLE/2 (2)

This directly leads to the following sufficient schedulability
test. A prove is therefore omitted.

Lemma 1: Federated Scheduling can schedule the tasks
τBIG∪τLITTLE in Γ on M cores, if the following condition holds:∑

τi∈τBIG

Hi,θi +
∑

τj∈τLITTLE

uj,θj · 2 ≤M (3)

Example for Federated Scheduling: We assume the
redundancy level of the tasks to be given and thus drop
the level indexes for Ci and Li. Consider 5 tasks with
{(T1 = 10, C1 = 12, L1 = 5), (T2 = 2, C2 = 4, L2 = 1),
(T3 = 20, C3 = 2, L3 = 1), (T4 = 30, C4 = 6, L4 = 3),
(T5 = 12, C5 = 6, L5 = 4)}, i.e., utilization values of
u1 = 1.2, u2 = 2, u3 = 0.1, u4 = 0.2, and u5 = 0.5, to
be scheduled on 7 processors using Federated Scheduling.
In Federated Scheduling the tasks are first classified into
τBIG and τLITTLE according to their utilization. Therefore,
τBIG = {τ1, τ2} and τLITTLE = {τ3, τ4, τ5}. We determine
the number of dedicated cores for each task τi ∈ τBIG, i.e.,
H1 =

⌈
12−5
10−5

⌉
= 2 and H2 =

⌈
4−1
2−1

⌉
= 3.

Since HBIG = 2 + 3 = 5, HLITTLE = M −HBIG = 7− 5 = 2.
According to Theorem 7 in [2], the tasks in τLITTLE are schedula-
ble as Eq. (2) holds, i.e., (0.1+0.2+0.5) ≤ 2/2. The tasks are
sorted in an ascending order of their periods, i.e., {τ5, τ3, τ4},
and assigned to the remaining 2 cores in this order according
to R-BOUND-MP-NFR. As a result, τ5 is assigned to core 1,
and {τ3, τ4} are assigned to core 2.

VI. REDUNDANCY LEVELS SELECTION

In this section we show how the overall reliability penalty
can be optimized, assuming that we can choose from dif-
ferent given redundancy levels for each task. Obviously it
is possible to determine the optimal selection of redundancy
levels by checking all possible combinations of redundancy
levels and core assignments, and choosing the combination
that yields the minimum reliability penalty while satisfying the

timing constraints. However this straightforward method has
exponential time complexity. Instead, we propose a dynamic
programming algorithm to determine the optimal redundancy
level for each task while satisfying the feasibility under Feder-
ated Scheduling. We start by calculating the possible solution
for {τ1}, use those results to calculate the possible solution for
{τ1, τ2}, use those results to calculate the possible solution for
{τ1, τ2, τ3} and so on until we calculate the possible solution
for {τ1, τ2, . . . , τN}. From the results for {τ1, τ2, . . . , τN} we
choose the one with the minimum reliability penalty.

When we calculate the possible solutions for
{τ1, τ2, . . . , τi}, those solutions depend on:

• The selection of the redundancy levels θj for the tasks
τj ∈ {τ1, τ2, . . . , τi−1}.

• The number of total required cores m =
∑i−1
j=1Hj,θj for

τj ∈ {τ1, τ2, . . . , τi−1} where uj,θj ≥ 1, i.e., τj that are
in HBIG for there selected redundancy level θj .

• The sum of utilizations k =
∑i−1
j=1 uj,θj for tasks τj ∈

{τ1, τ2, . . . , τi−1} with uj,θj < 1, i.e., τj that are in
HLITTLE for there selected redundancy level θj .

• The redundancy level θi chosen for τi and the resulting
increase of either m or k.

The necessary values are stored in two 3-dimensional ta-
bles G and j∗ to record the sub-optimal reliability values
and the selected redundancy levels, respectively. This means,
G(i,m, k) stores the minimum reliability penalty for the first
i tasks, using m cores for tasks in HBIG and with a total
utilization of k for tasks in HLITTLE, while j∗(i,m, k) stores
the selected redundancy level for task i. Using these values,
the chosen redundancy levels for all other tasks can be traced
back step by step. Those calculations have to be done for all
possible combinations of m and k, i.e., m is an integer with
0 ≤ m ≤M and k is in the range of [0, 0.5 ·M].

When building G(i,m, k) and j∗(i,m, k), we assume ui,j
and Hi,j to be given for all redundancy levels. If this is not
the case, they can be calculated in a preprocessing step.

In the initial step, i.e., when we only consider τ1, for given
values of m and k we calculate j∗(1,m, k) as

j∗(1,m, k) = arg min
j∈{1,2,...,K1}


R1,j if u1,j ≥ 1 and m ≥ H1,j

R1,j if u1,j < 1 and k ≥ u1,j

∞ otherwise
(4)

leading to minimum reliability penalties of

G(1,m, k) = R1,j∗(1,m,k). (5)

For the following steps we calculate the values of G(i,m, k)
assuming G(i − 1,m, k) to be given, where i = 2, 3, . . . , N .
This means, when we select level j for τi, we know that the
minimum reliability penalty for task τ1, τ2, . . . , τi−1 has been
calculated and stored in

• G(i− 1,m−Hi,j , k) when ui,j ≥ 1, or
• G(i− 1,m, k − ui,j) when ui,j < 1.

Let Pj(i,m, k) be the resulting reliability penalty for the

5

selection of level j for task τi, defined as:

Pj(i,m, k)

{
Ri,j +G(i− 1,m−Hi,j , k) if ui,j ≥ 1 and m ≥ Hi,j
Ri,j +G(i− 1,m, k − ui,j) if ui,j < 1 and k ≥ ui,j
∞ otherwise

(6)

Suppose that j∗i is the j which minimizes Pj(i,m, k) for
given values of m and k. This means we know that

G(i,m, k) = Pj∗i (i,m, k) (7)

and j∗(i,m, k) is j∗i . This calculations have to be done for
all i = 2, 3, . . . , n, all integer m with 0 ≤ m ≤ M , and all
utilization values k in the range of [0, 0.5 ·M].

The pseudo-code of the presented level selection can be
found in Algorithm 1, using a scaling factor ω for the
utilization values, i.e., the third dimension of the table. This
is necessary to upper bound the number of entries in the
3-dimensional tables and thus bounding the time needed to
construct those tables. Obviously, the number of values we
have to consider for the first dimension is the number of
tasks N while for the second dimension we only have to
consider up to M integer values. Note, that the maximum
number of dedicated cores is bounded by 3 for each task.3

However, if the utilization values are not discretized, we would
have to consider an infinity number of values for the third
dimension. Therefore, we discretize all utilization values based
on a scale unit ω, i.e., 0 < ω ≤ 1 and all values of ui,j
are replaced with ui,j/ω. Under the assumption that all scaled
utilization values ui/ω are integers, our dynamic programming
approaches in Section VI and Section VII find the solution
with the minimized reliability penalty that is possible when
Federated Scheduling [18] is used and the schedulability of
the task set under a selection of execution levels is tested
based on the sufficient schedulability test in Lemma 1.

Theorem 1: Let ω with 0 < ω ≤ 1 be given and
let ui,j

ω be an integer ∀ui,j . For all i ∈ {1, 2, . . . , N},
m ∈ {1, 2, . . . ,M}, and k ∈

{
1, 2, . . . , 0.5M

ω

}
, Eq. (4),

Eq. (5), Eq. (6), and Eq. (7) compute the optimal task
redundancy level selection j∗(i,m, k) and the optimal so-
lution overall reliability penalty G(i,m, k) achievable under
Federated Scheduling when the sufficient schedulability test
in Lemma 1 is used.

Proof: This can be proved using mathematical induction:
Base case (i = 1): Eq. (4) calculates the optimal level for

each m and k and Eq. (5) calculates the resulting minimal
reliability penalty, stored in j∗(1,m, k) and G(1,m, k), re-
spectively. Thus G(1,m, k) and j∗(1,m, k) are optimal.

Inductive step (i ≥ 2): Assume that G(i − 1,m, k) and
j∗(i − 1,m, k) are optimal for the sub-problem considering
the first i − 1 tasks for all values of m ≤ M and k, i.e.,
G(i−1,m, k) stores the minimal reliability penalty value and

3In the general case (explained in Section V) the number of cores needed
for the execution of a single task can be arbitrary large, depending on the
relation of Ci,θi − Li,θi to Ti − Li,θi . However, the number of processors
needed to activate CRT-TMR is bounded by 3 due to the assumption that
Li,θi ≤ Ti and at most 3 instances are executed in parallel. If the fine-
grained selection in Section VII is used, still none of the sequential stages
will be executed more then 3 times in parallel and thus the bound of 3 still
holds.

Algorithm 1 Offline Table Construction
Input: N tasks, M cores, ω scale unit
Output: j∗ level selection table

1: for m← 0, . . . ,M do
2: for k ← 0, . . . ,

⌈
0.5M
ω

⌉
do

3: if m+ 2k · ω > M then
4: j∗(1,m, k)←∞
5: G(1,m, k)←∞
6: else
7: calculate j∗(1,m, k) and G(1,m, k) by using Equa-

tions (4) and (5)
8: end if
9: end for

10: end for
11: for i← 2, 3, . . . , N do
12: for m← 0, . . . ,M do
13: for k ← 0, . . . ,

⌈
0.5M
ω

⌉
do

14: if m+ 2k · ω > M then
15: j∗(i,m, k)←∞
16: G(i,m, k)←∞
17: else
18: for each j ∈ possible redundancy levels do
19: calculate Pj by using Equation (6)
20: end for
21: j∗(i,m, k)← argminj=1,2,...,Ki Pj
22: G(i,m, k)← Pj∗(i,m,k)
23: end if
24: end for
25: end for
26: end for

the selected version j∗ of τi−1 is stored in j∗(i− 1,m, k) for
each m and k. Suppose for contradiction that G(i,m, k) is not
optimal. This means, that at least one of the level selections for
τ1, . . . , τi is not optimal. For each version of τi the penalty
Pj(i,m, k) for a given m and k can be calculated by adding
the reliability penalty Ri,j to either G(i− 1,m−Hi,j , k)
for a version where ui,j ≥ 1 or G(i− 1,m, k − ui,j) if
k ≥ ui,j . If the version is not applicable, i.e., m < Hi,j

for versions with ui,j ≥ 1 or k < ui,j/ω for versions with
ui,j < 1, Pj(i,m, k) is set to ∞. As we take the version
j∗ that minimizes Pj(i,m, k) we know that G(i,m, k) and
j∗(i,m, k) are calculated correctly based on G(i − 1,m, k)
and j∗(i− 1,m, k). Therefore, if G(i,m, k) or j∗(i,m, k) is
wrong for any combination of m and k, at least one of the
previously selected i − 1 task levels is not optimal, which
contradicts the induction hypothesis.

After the tables G and j∗ are calculated, the minimum
value stored in G(N,m, k) is the minimum penalty value. We
denote this position by m∗N and k∗N . The redundancy level
of θN can be found in the related entry of table j∗, i.e., at
j(N,m∗N , k

∗
N). From this value, we can easily trace back the

redundancy levels selected for τN−1, τN−2, . . . , τ1 iteratively,
i.e., if the utilization of the selected level uN,θN < 1, for τN−1

the selected version is stored at j∗(N − 1,m∗, k∗ − uN,θN
ω),

otherwise it is the version at j∗(N − 1,m∗−HN,θN , k
∗), and

so on. As k is defined as M/(2 ∗ ω), the time complexity
of Algorithm 1 is O((

∑N
i=1|Ki|) · M2/ω) and the space

complexity is O(NM2/ω).
If the scaling factor that is necessary to ensure that all

6

utilization values are integers is too small, the number of
entries that have to be considered in the table would be too
large. To avoid this, a ceiling function can be used when
calculating the utilization values for a given scale unit ω, i.e,
all values of ui,j are replaced with

⌈
ui,j/ω

⌉
. This leads to a

trade-off between the accuracy of our dynamic programming
approach on one hand and the space and the time complexity
on the other hand.

That the dynamic programming finds the optimal solution
under Federated Scheduling using the schedulability test in
Lemma 1 implicates that better reliability penalties can be
achieved if other scheduling approaches or tighter schedu-
lability tests are used. This also means that in some cases
other scheduling strategies can perform better as shown in
Section VIII. However, our approach in general is not lim-
ited to Federated Scheduling and the schedulability test in
Lemma 1. It can be applied for other strategies and tests by
reformulating Eq.(4), Eq.(5), Eq.(6), and Eq.(7) accordingly if
the suboptimality to construct an optimal solution to schedule
the first i tasks on m cores can be achieved by referring to
the optimal schedules of the first i− 1 tasks on m′ processors
(with m′ ≤ m) in a similar manner.

One specific example is to adopt semi-partitioned schedul-
ing instead of partitioned scheduling for both the tasks in τBIG

and τLITTLE. Rate-Monotonic Scheduling with Task Splitting
(RM-TS) as proposed in [13] can be applied for the tasks in
τLITTLE under Federated Scheduling. In this case, Eq.(2) should
be reformulated as∑

τj∈τLITTLE

uj,θj ≤ HLITTLE ·
2Θ(Γ)

1 + Θ(Γ)
(8)

where Θ(Γ) = N(21/N − 1). Eq. (8) directly leads to the
following sufficient test. A prove is therefore omitted.

Lemma 2: Federated Scheduling can schedule the tasks
τBIG∪τLITTLE in Γ on M cores, if the following condition holds:∑

τi∈τBIG

Hi,θi +
∑

τj∈τLITTLE

uj,θj ·
1 + Θ(Γ)

2Θ(Γ)
≤M. (9)

Please note that Eq.(4), Eq.(5), Eq.(6), and Eq.(7) should be
reformulated accordingly. The corresponding results derived
by using Federated Scheduling with Eq.(8) and Eq.(9) are also
presented in Section VIII for completeness.

For the tasks in τBIG it is possible that nearly 50% of the
utilization of 3 cores is wasted when CRT is used, i.e., when
one activation of a task has a utilization slightly bigger than
0.5.4 In this case using MRT-TMR directly is not possible as
two complete activations of the task cannot be placed on the
same core. However, using MRT-TMR under semi-partitioned
scheduling is possible as long as the total utilization of 3
activations is below 2, i.e, by starting the original on core
1 and one replica on core 2, preempting the replica on core 2
after 50% of the replica is executed, starting the second replica
on core 2 and finishing the previously preempted first replica
on core 1 after the original task is finished.

4We neglect the workload due to the synchronization in this example as it
only adds additional complexity in the description without adding any insight.

In addition, using MRT-TMR for tasks in τBIG may also re-
sult in unbalanced utilization of CPUs and the waste of nearly
50% of the utilization of two CPUs in a similar scenario. This
utilization could be used by other tasks. However, balancing
the utilization of CPUs is not the main focus of this work.
Our goal is to explain the approach in general and to show its
effectiveness. Therefore we use well known techniques, i.e.,
Federated Scheduling and list scheduling.

VII. FINE-GRAINED SELECTION

In this section we extend our approach from selecting
among given redundancy levels to a more fine-grained ap-
proach where different stages of the task execution can be
hardened individually. For each given task τi, we assume that
it has Si sequential stages, e.g., a function or a basic block,
that can be hardened by redundancy individually as in the
fork-join task model adopted by Axer et al. [3]. This means,
we can decide whether we run a stage of a task with TMR,
DMR, or without any redundancy. If a stage is executed with
redundancy, the task execution is forked at the beginning of
this stage and joined at the end of this stage.

If task τi’s stage s is executed in the redundancy level
θi,s ∈ {φ,DMR,TMR} we assume its critical-path length,
WCET, and reliability penalty are all given with corresponding
mapping functions, i.e., Li(s, θ), Ci(s, θi,s), and Ri(s, θi,s),
respectively, thus its utilization Ui(s, θi,s) is Ci(s, θi,s)/Ti.
Our objective is to select the redundancy level θi,s for each
task’s stage that minimize the overall reliability penalty while
satisfying the given timing constraints.

Definition 2 (Overall Reliability Penalty Ψ′Γ): The overall
reliability penalty of task set Γ, denoted by Ψ′Γ, is the sum
of the tasks’ reliability penalties given by Ψ′Γ =

∑
τi∈ΓRi,θi ,

where Ri,θi is the reliability penalty of task τi for a given
selection θi =

{
θi,1, θi,2, . . . , θi,s

}
of stage redundancy levels.

A. Preprocessing

To make the final scheduling/task partition decision, the
number of cores for τBIG and utilization for τLITTLE are both
required. We prepare two reference tables Û and Ĉ to record
the optimal reliability penalty under given resource constraints
and refer to both tables to obtain the best redundancy for each
task stage. When for a stage s of τi a redundancy level θi,s is
selected, we have to consider two possibilities: 1) τi ∈ τLITTLE

and the constraint is the utilization of the task, or 2) τi ∈ τBIG

and the constraint is the number of dedicated cores.
Utilization Demand Table: For the first case, we prepare

a table Û(i, k) to record the optimal reliability penalty of
τi with given utilization k and a corresponding cost table
K(i, k) for recording the exact required utilization of Û(i, k).
Again we use ω to scale the utilization values and assume
that all the scaled utilization values ui/ω are integers. To
find the optimal reliability penalty in Û(i, k), we use a
stage-wise dynamic programming algorithm. Therefore, we
construct two 2-dimensional tables sui (s, k) and qui (s, k). The
first dimension saves the considered stages and therefore is in
the range [1, Si] while the second dimension depends on the
corresponding utilization values k in the range of [0, 1/ω]. In

7

Algorithm 2 Preprocessing-utilization
Input: N tasks
Output: Utilization-grained table Û

1: for i← 1, 2, . . . , N do
2: for k ← 0, 1, . . . , 1/ω do
3: sui (1, k)← by using Eq.(10)
4: qui (1, k)← Ri(1, sui (1, k))
5: for s← 2, 3, . . . , Si do
6: calculate sui (s, k) by using Eq.(11)
7: qui (s, k)← Ri(s, j) + qui (s− 1, k − Ui(s, j))
8: end for
9: Û(i, k)← qui (Si, k)

10: K(i, k)← backtrack with table sui and Ui
11: end for
12: end for

Algorithm 3 Preprocessing-cores
Input: N tasks, M cores
Output: Cores-grained table Ĉ

1: for i← 1, 2, . . . , N do
2: calculate ξmax

i and lmax
i with all stages in TMR

3: for s← 1, 2, . . . , Si do
4: for ξ ← 0, 1, . . . , ξmax

i do
5: for l← 0, 1, . . . , lmax

i do
6: calculate sci (s, ξ, l) by using Eq.(12) and Eq.(13)
7: qci (s, ξ, l)← Ri(s, sci (s, ξ, l))
8: end for
9: end for

10: end for
11: Ĉ(i, 0)← ∞
12: H(i, 0)← ∞
13: for m← 1, . . . ,M do
14: Ĉ(i,m)← by using Eq.(14)
15: H(i,m)← by

⌈
ξ′−l′
Ti−l′

⌉
with corresponding ξ′ and l′

16: end for
17: end for

each stage s, all levels j ∈ {φ,DMR,TMR} are considered
with their corresponding utilization Ui(s, j) and reliability
penalty Ri(s, j). The pseudo code of the preprocessing is
provided in Algorithm 2. For the first stage, we find the level
j∗i,1 with the minimal reliability penalty for each k in [0, 1/ω]
and record j∗i,1 in the sui (1, k) entry:

sui (1, k) = arg min
j∈{φ,DMR,TMR}

{
Ri(1, j) if k ≥ Ui(1, j)
∞ otherwise

(10)

The corresponding reliability penalty Ri(1, sui (1, k)) is
recorded in qui (1, k). For the following stage s = 2, 3, . . . , Si

sui (s, k) = arg min
j∈{φ,DMR,TMR}{

Ri(s, j) + qui (s− 1, k − Ui(s, j)) if k ≥ Ui(s, j)
∞ otherwise

(11)

After all the entries in table qui are calculated, we can find the
optimal selection for each task with utilization k and record
the exact utilization demand (scaled up by ω) in K(i, k).
Both the time and the space complexity of Algorithm 2 are
O((
∑N
i=1 Si) ·N/ω).

Core Demand Table: For the second case, we prepare
a core-level table Ĉ(τi,m) to record the optimal reliability

penalty and record the number of required cores in table
H(i,m). Similarly, we prepare a stage-wise table sci (s, ξ, l)
to find the stage redundancy j ∈ {φ,DMR,TMR} with the
minimal reliability penalty under the critical length l and
the worst-case execution time ξ constraints, where ξ ≥ l ≥
Li(s, s

c
i (s, ξ, l)). As each task τi in τBIG is assigned to

⌈
Ci−Li
Ti−Li

⌉
cores in Federated Scheduling, we intend to find the optimal
redundancy selection for each stage s by which the sum of the
critical length l and the total execution time ξ among all the
stages does not exceed Li and Ci, respectively. The pseudo
code is shown in Algorithm 3. Here we calculate the maximal
critical length lmax

i and the maximal total execution time ξmax
i

by profiling each task τi’s critical length
∑Si
s=1 Li(s, θi,s) and

total execution time
∑Si
s=1 Ci(s, θi,s) with TMR, respectively,

on all its stages. We start from the first stage with the
minimal reliability penalty and record the redundancy level
in sci (1, ξ, l):

sci (1, ξ, l) = arg min
j∈{φ,DMR,TMR}{

Ri(1, j) if ξ ≥ Ci(1, j) and l ≥ Li(1, j)
∞ otherwise

(12)

Its corresponding Ri(1, s
c
i (1, ξ, l)) reliability penalty is

recorded in qci (1, ξ, l). For the following stage s = 2, 3, . . . , Si

sci (s, ξ, l) = arg min
j∈{φ,DMR,TMR}{

Ri(s, j) + Rti if ξ ≥ Ci(s, j) and l ≥ Li(s, j)
∞ otherwise

(13)

where Rti = qci (s − 1, ξ − Ci(s, j), l − Li(s, j)) and the
reliability penalty is recorded in qci (s, ξ, l). After all the entries
in qci are calculated, we can find a certain combination of ξ′

and l′ under the condition that ξ ≥ l ≥ Li,φ to obtain the
minimal reliability penalty Ĉ(i,m), defined as:

Ĉ(i,m) = min

qci (Si, ξ, l) if m ≥
⌈
ξ−l
Ti−l

⌉
and ξ ≥ l ≥ Li,φ

∞ otherwise

(14)
where Li,φ is the critical length of task τi without any
redundancy. For each m and i combination, those ξ′ and l′

are recorded to ξmi = ξ′ and lmi = l′. The time complexity of
Algorithm 3 is O((

∑N
i=1 Si) · ξl) while the space complexity

is O(NMξl).

B. Selecting and Scheduling
Using the reference tables Û and Ĉ, our fine-grained

approach builds two 3-dimensional tables j∗(i,m, k) and
G(i,m, k) to record the sub-optimal selections of task τi
and the resulting penalty values, respectively, for m dedicated
cores and utilization, presented as pseudo-code in Algorithm 4.
We use the tables Û and Ĉ to find the selection with the
minimal reliability penalty between the fine grained versions
that are in τBIG or τLITTLE, i.e., with utilization > 1 and
utilization ≤ 1, respectively. Again, all the possible combi-
nations of utilization value k and number of available cores
m have to be checked for all tasks, i.e., 0 ≤ k ≤ 1/ω and
1 ≤ m ≤M .

8

Algorithm 4 Fine-Grained Table Construction

Input: N tasks, M cores, Û and Ĉ fine-grained tables;
1: for m← 0, . . . ,M do
2: for k ← 0, . . . ,

⌈
0.5M
ω

⌉
do

3: G(1,m, k)← min
{
Û(1, k), Ĉ(1,m)

}
4: j∗(1,m, k)← θ1,m,k
5: end for
6: end for
7: for i← 2, 3, 4, . . . , N do
8: for m← 0, . . . ,M do
9: for k ← 0, . . . ,

⌈
0.5M
ω

⌉
do

10: if m+ 2k · ω > M then
11: G(i,m, k)←∞;
12: else
13: P ∗BIG(i,m, k)←∞
14: for m′ ← 0, . . . ,m do
15: P (i,m′, k) = Ĉ(i,m′)+G(i−1,m−H(i,m′), k)
16: P ∗BIG(i,m, k) = min

{
P ∗BIG(i,m, k), P (i,m′, k)

}
17: end for
18: P ∗LITTLE(i,m, k)←∞
19: for k′ ← 0, . . . , k do
20: P (i,m, k′) = Û(i, k′)+G(i− 1,m, k−K(i, k′))
21: P ∗LITTLE(i,m, k) =

min
{
P ∗LITTLE(i,m, k), P (i,m, k′)

}
22: end for
23: G(i,m, k) = min

{
P ∗BIG(i,m, k), P

∗
LITTLE(i,m, k)

}
24: j∗(i,m, k)← θi,m,k
25: end if
26: end for
27: end for
28: end for

For the first task τ1 (lines 1-5 in Algorithm 4) the minimum
reliability penalty for each m and each k can be calculated as:

G(1,m, k) = min
{
Û(1, k), Ĉ(1,m)

}
(15)

For the other tasks, i.e., τi with i > 1 (lines 6-26 in Algo. 4),
for each combination of m and k we need to consider all
possible k′ with 0 ≤ k′ ≤ k to select the best achievable
penalty when a selection θi with Ui(s, θi,s) ≤ 1 is chosen and
all possible m′ with 1 ≤ m′ ≤ m to select the best achievable
penalty when a selection θi with Ui(s, θi,s) > 1 is chosen.

As a result, the best possible selection P ∗LITTLE(i,m, k) for a
solution with Ui(s, θi,s) ≤ 1 can be found as:

P ∗LITTLE(i,m, k) = min
0≤k′≤k

{
Û(i, k′) +G(i− 1,m, k −K(i, k′))

}
(16)

The best possible selection P ∗BIG(i,m, k) for a solution with
Ui(s, θi,s) > 1 can be found as:

P ∗BIG(i,m, k) = min
1≤m′≤m

{
Ĉ(i,m′) +G(i− 1,m−H(i,m′), k)

}
(17)

Therefore, for τi with i > 1 the best possible selection for
m and k is:

G(i,m, k) = min
{
P ∗BIG(i,m, k), P ∗LITTLE(i,m, k)

}
(18)

Please note, that P ∗BIG(i,m, k) and P ∗LITTLE(i,m, k) and therefore
G(i,m, k) may be∞ for some values of m and k. The number
of dedicated cores or the utilization of the chosen reliability

selection θ∗i is stored in j∗(i,m, k).
Afterwards, the table G(i,m, k) contains the optimal relia-

bility values for each combination of i, m, and k. It contains
entries with value ∞ if the condition of the schedulability
test in Lemma 1 does not hold, i.e., m + 2k · ω > M .
Note, that some other values may be ∞ as well, if the
combination of the number of processors m and the utilization
value k is too small to schedule any selection redundancy
stages, i.e, if m = 0 and the sum of the utilizations of
the tasks versions with no redundancy at all is larger than
k. We search for the entry G(N,m∗, k∗) with the minimal
reliability penalty. Based on the related entry in j∗(N,m∗, k∗)
we know the chosen selection θ∗N and can backtrack to the
entry in j∗(N − 1,m, k) etc. The time and space complexity
of Algorithm 4 both are O(NM2/ω). To schedule tasks in Γ
with their redundancy selection the tasks are classified in τBIG

and τLITTLE and scheduled using Federated Scheduling.

VIII. RESULT AND DISCUSSION

We analyzed the performance of both the coarse-grained and
the fine-grained approaches compared to the greedy approach
dTune [25] with respect to the number of feasible configura-
tions and by comparing the best resulting reliability penalties
among those feasible configurations, using real tasks from an
embedded benchmark.

A. Experimental Setup

In this subsection we describe the setup we use for the
embedded benchmark when evaluating our approaches and the
greedy approach dTune [25] we compare to.

For the task set we analyzed, seven tasks were chosen
from the embedded benchmark MiBench [14]: (1) SAD,
(2) ADPCM, (3) CRC, (4) SusanS, (5) SHA, (6) SATD, and
(7) DCT. All tasks were compiled with a reliability-driven
GCC-based compiler and extended with several reliability-
driven transformations [24, 28] and instruction scheduling
algorithm [27], by which redundancy levels of each task
were generated based on its DAG abstraction. For each com-
piled level, we determined the WCET by a large number
of measurements and estimated the reliability penalty values
under two different fault rates η, i.e., η = 10−6 and 10−7

fault/cycles, as adopted in [15, 19]. Similarly to [15, 19],
the reliability penalty for each function/task is estimated using
the same metrics as in [23, 28]. The time overhead of the
synchronization for DMR and TMR redundancy levels are
integrated into the total execution time Ci,j and the critical-
path length Li,j for level τi,j . From those values we generated
the tasks period using two different approaches:
• Random Periods: We randomly drew Ti in the range of

[1.65 ·Ci,φ, (1.65+ρ) ·Ci,φ] using a uniform distribution,
i.e., analyzing task sets with smaller / larger periods
compared to the execution time and therefore larger /
smaller utilization values. The ρ values we used in the
experiments were 0.6, 1.2, and 1.8, leading to upper
bounds of 2.25, 2.85, and 3.45, respectively, for the
periods compared to the execution time. We generated
500 task sets for each ρ to get a sufficient sample size.

9

Applica'ons�

Reliability0Driven4
Compila'on�

Applica'ons4
Executables�

TSMC445nm4
Library�

Processor4
Synthesis�

Error4Masking4
Es'ma'on�

Reliability)Aware-Mul0)Cores-Simulator�

Mul'0
Cores4ISS�

Fault4
Injec'on�

Error4Logging�

Vulnerability4Es'ma'on�

Performance4Es'ma'on� Sy
st
em

4S
oI

w
ar
e�

Fig. 4: Experimental setup with reliability-driven compilation,
system software, and multi-cores simulator

• Given Total Utilization: We applied the UUnifast-Discard
method proposed by Davis et al. [11] to generate task sets
of size N with a given total utilization U∗ for the exe-
cution without any redundancy, i.e., U∗ =

∑
τi∈Γ ui,φ.

Each task τi is assigned with a utilization value ui,φ and
the period is Ti = Ci,φ/ui,φ, i.e., the the execution time
of the non-RMT level divided by the assigned utilization
from the UUnifast-Discard method. We evaluated using
three different values of U∗, i.e., 250%, 300%, and 350%
creating 500 task sets for each utilization value.

As dTune only can decide to activate CRT-TMR or not, it
needs at least 9 cores to activate CRT-TMR for one task and
21 cores to activate CRT-TMR for all tasks. Therefore, we
evaluated the range of 9 to 21 cores.

For the setting of U∗, we choose the range of 250% to
350% due to the following reasons: (1) When U∗ is larger
than 350%, the average utilization of a task is more than
50%. Therefore most tasks cannot activate SRT-TMR or MRT-
TMR due to the additional computations for replicas and
synchronization. (2) If the total utilization is less than 250%,
the average task utilization is below 33% and therefore most
tasks can activate SRT-TMR.

We adopted a reliability-aware many-core simulator, inte-
grated with fault generation and injection modules, i.e., exactly
the same simulator as in [7]. For each core, the SPARC-v8 ISA
is implemented for synthesizing the LEON3 processor. The
Synopsys Design Compiler with the TSMC 45 nm library was
used to obtain area, frequency, and logical masking probabili-
ties to get an accurate estimation. As detailed in [23, 28], these
probabilities are used to obtain the instruction vulnerabilities
that can estimate the reliability penalty for each task. The
fault model (e.g., fault rate, fault distribution, etc.) and the
processor synthesis information were used as the input to
the many core simulator in the fault scenario generations.
Those realistic fault rates were obtained by using the neutron
flux calculator [1] and coordinates of a given location, fault
distribution, etc. During the execution of a given function
version, transient faults are randomly injected in different
processors as done in [22, 31]. The impacts of faults on the
application output are monitored, and soft errors are classified
by the severity from the user’s perspective. Overall, the results
of the fault injection experiments are analyzed to accomplish
two objectives: (1) estimating the software-level vulnerability
and masking properties; (2) analyzing the main reasons for
system failures. An overview of the experimental setup is

provided in Figure 4.
We implement our dynamic programming approaches with

C++, i.e., Algorithm 1 and Algorithm 4, using an Intel Core
i7-4770 CPU with 16GB DDR3 RAM for the evaluations. The
derived reliability penalties of Algorithm 1 and Algorithm 4
with Lemma 1 (partitioned scheduling) and Lemma 2 (semi-
partitioned scheduling) are compared with dTune [25]5 by
evaluating the number of feasible configurations and the deliv-
ered overall reliability penalties ΨΓ(θ). The greedy approach
dTune [25] works as follows:
• The tasks are sorted by their reliability penalty Ri,φ.
• The

⌊
M−N

2

⌋
tasks with the highest reliability penalty are

selected to activate CRT-TMR.
• The remaining tasks are executed in NON-RMT.

B. Evaluation of the Coarse-Grained Approach

To show that Mixed Redundant Threading (MRT) provides
additional possibilities for reliability optimization we adopted
a similar comparison as in [7]. We restrict the coarse-grained
approach to only use Triple Modular Redundancy (TMR) with
partition scheduling and semi-partition scheduling, as dTune
can only choose between CRT-TMR and no redundancy as
well. For each of the seven tasks, TMR can be activated
individually, leading to 27 = 128 configurations. We report the
number of feasible configurations for both the coarse-grained
approach (Algorithm 1) and dTune [25]. The average analysis
duration for one run of the coarse-grained approach consider-
ing 7 tasks was 0.22 seconds. As results under different fault
rates η are similar, we only present the results for η = 10−6.

Figure 5 shows the number of feasible configurations with
respect to ρ and the number of cores M . A log scale with
base-10 is used for the Y-axis to improve the readability. The
number of feasible configurations using the coarse-grained
approach is generally not less than for the greedy approach.
Some exceptions are the cases using partitioned-scheduling
under tight constraints, e.g., 9 cores and ρ = 0.6. This is due
to the limitation of the sufficient bound of the partitioned-
scheduling. As all tasks without redundancy are by construc-
tion in τLITTLE and the sufficient bound only accepts tasks with
a total utilization of

∑
τi∈τLITTLE

ui,φ ≤ M/2 some task sets
are barely schedulable without any redundancy. When the
parameter ρ is increased, i.e., the utilization of tasks are rel-
atively lower, the coarse-grained approach adopts SRT/MRT-
TMR to exploit the spare utilization of cores, while the greedy
approach can only decide if CRT-TMR should be activated or
not without any adaptation.

As shown in Figure 6, for different U∗ settings, the number
of feasible configurations using the the coarse-grained ap-
proach are generally superior to the greedy approach when
the number of available cores is less than 18. However, we
can see that our approach does not always outperform the
greedy approach if the number of available cores is sufficient
to activate CRT-TMR for many tasks. For example, when the

5Although the task mapping approach in [7] outperforms the greedy
approach in [25] under variation-performance multi-cores, the approaches
from both papers will perform the same in our studied problem as all the
cores in the considered system are homogeneous.

10

Lo
g(

#)
 o

f
Fe

as
ib

le
 C

o
n

fi
gu

ra
ti

o
n

s
ρ = 0.6 ρ = 1.2 ρ = 1.8

1

10

100

9 10 11 12 13 14 15 16 17 18 19 20 21 9 10 11 12 13 14 15 16 17 18 19 20 21 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Cores M Coarse-Partition Coarse-Semi-Partition Greedy

Fig. 5: Number of feasible configurations for different ρ.

9 10 11 12 13 14 15 16 17 18 19 20 21

Lo
g(

#)
 o

f
Fe

as
ib

le
 C

o
n

fi
gu

ra
ti

o
n

s

U* = 250% U*=300% U*=350%

1

10

100

9 10 11 12 13 14 15 16 17 18 19 20 21 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Cores M Coarse-Partition Coarse-Semi-Partition Greedy

Fig. 6: Number of feasible configurations for different U∗.

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0.4

0.6

0.8

1

1.2

1.4

9 10 11 12 13 14 15 16 17 18 19 20 21

ρ=0.6

ρ=1.2

ρ=1.8

Coarse-Grained Partitioned

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0.4

0.6

0.8

1

1.2

1.4

9 10 11 12 13 14 15 16 17 18 19 20 21

ρ=0.6

ρ=1.2

ρ=1.8

Coarse-Grained Semi-Partitioned

Fig. 7: Comparison of the coarse-grained approach and the greedy approach under different ρ.

number of available cores is 21 and U∗ is close to 350%,
the coarse-grained approach does not outperform the greedy
approach. However, these results strongly support our claim
that using Mixed-Redundant Threading is able to increase the
schedulability for given selections of TMR.

Figure 7 shows the normalized ratio of overall system
reliability, which is calculated as ΨΓ of the resulting solution
divided by ΨΓ of the greedy approach. To generate the
reliability penalties, η = 10−6 was used. Instead of using the
given redundancy configurations in the previous evaluation,
the greedy approach decides which task can be executed with
CRT-TMR. Our coarse-grained approach determines the exe-
cuted redundancy level of each tasks. For the sake of fairness,
we only compare those task sets where both approaches are
able to provide feasible mappings. By the definition of the
penalty value, lower values are better. Generally, most of the

results delivered by the coarse-grained approach are better
than the greedy approach results. However, when M is 9,
we can see that our approach cannot outperform the greedy
approach when partitioned scheduling is used in the coarse-
grained approach. From the previous evaluation we know that
our approach can find some feasible mappings, but the best one
it can find is limited by the sufficient condition of Federated
Scheduling and in this case the coarse-grained approach can
barely execute the tasks without redundancy. For 12 up to
20 cores the coarse-grained approach achieves a significantly
better reliability penalty than the greedy approach. For the
normalized reliability penalty ratio displayed in Figure 8, we
observe that the gain by using the coarse-grained approach
is larger when the overall utilization is smaller. If semi-
partitioned scheduling is used, the gain is higher when the
number of available cores is in the range between 9 to 11

11

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0

0.2

0.4

0.6

0.8

1

1.2

9 10 11 12 13 14 15 16 17 18 19 20 21

U*=250%

U*=300%

U*=350%

Coarse-Grained Partitioned

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0

0.2

0.4

0.6

0.8

1

1.2

9 10 11 12 13 14 15 16 17 18 19 20 21

U*=250%

U*=300%

U*=350%

Coarse-Grained Semi-Partitioned

Fig. 8: Comparison of the coarse-grained approach and the greedy approach under different U∗.

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0.8

0.85

0.9

0.95

1

9 10 11 12 13 14 15 16 17 18 19 20 21

ρ=0.6

ρ=1.2

ρ=1.8

Fine-Grained Partitioned

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0.8

0.85

0.9

0.95

1

9 10 11 12 13 14 15 16 17 18 19 20 21

ρ=0.6

ρ=1.2

ρ=1.8

Fine-Grained Semi-Partitioned

Fig. 9: Comparison of the fine-grained approach and the coarse-grained approach under different ρ.

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0.8

0.85

0.9

0.95

1

9 10 11 12 13 14 15 16 17 18 19 20 21

U*=250%

U*=300%

U*=350%

Fine-Grained Partitioned

N
o

rm
al

iz
ed

 R
el

ia
b

ili
ty

 P
en

al
ty

 R
at

io

Number of Cores M

0.8

0.85

0.9

0.95

1

9 10 11 12 13 14 15 16 17 18 19 20 21

U*=250%

U*=300%

U*=350%

Fine-Grained Semi-Partitioned

Fig. 10: Comparison of the fine-grained approach and the coarse-grained approach under different U∗.

especially for U∗ = 350. Overall, as our approach can fully
exploit the available cores with SRT or MRT rather than solely
using CRT, it specifically performs well when the number of
available cores is in the most interesting region, i.e., TMR can
be activated for some tasks but not for most/all.

C. Evaluation of the Fine-Grained Approach
We compare the results of the fine-grained approach (Algo-

rithm 4) with the coarse-grained approach to show the possible
benefit if the stage redundancy can be determined arbitrarily.
We show the comparison to the coarse-grained approach here
as the fine-grained approach will always perform at least
as good as the coarse-grained approach when compared to
the greedy approach and the coarse-grained approach already
performs at least as good as the greedy approach in all settings
beside M = 9 and ρ = 0.6. That the fine-grained approach
performs as least as good as the coarse-grained approach is
due to the fact that the option to harden the complete task,
which is the only option of the coarse-grained approach, is
always considered by the fine-grained approach as well.

Figure 9 and Figure 10 show the average system reliability
values achieved by the fine-grained approach over 500 runs,
normalized by the values achieved by the coarse-grained
approach. The number of task stages Si was drawn uniformly
distributed in the range of 2 to 5. Generally, the more stages
a task has, the more flexibility for using redundancy it has.
Please note, that when Si is 1 for each task τi, the fine-
grained approach is the same as the coarse-grained approach.
The average analysis duration for one run of the fine-grained
approach considering 7 tasks was 3.8 seconds.

In Figure 9, we see that the fine-grained approach improves
the results of the coarse-grained approach more when ρ is
smaller. While the coarse-grained approach with partitioned
scheduling suffers from the small number of available cores
which does not allow to harden many complete tasks if the
utilization is high, i.e., M = 9 and ρ = 0.6, the fine-grained
approach can harden some stages of the tasks with redundancy.
In this case, the normalized ratio between the fine-grained
and the coarse-grained approaches is 0.6292, but the bar is

12

not shown due to the scale of Y-axis. However, we choose to
use the scale from 0.8 to 1.0 as it improves the readability
for the other settings. Under semi-partitioned scheduling the
gain of the fine-grained approach is not as large as under the
coarse-grained approach, since the coarse-grained approach
can activate some redundancy already for some tasks due to a
larger sufficient bound in Lemma 2.

In Figure 10, we observe that the benefit of using the fine-
grained approach is not as large as in Figure 9, especially
under semi-partitioned scheduling. The reason is that if the
coarse-grained approach can already activate TMR for most
complete tasks, the fine-grained approach can only perform as
good as the coarse-grained approach for those tasks.

Overall, the results of the two proposed approaches are
generally better than the greedy approach in terms of reliability
when the number of available cores is too limited to activate
CRT-TMR for all tasks. Furthermore, since the fine-grained
approach has more flexibility to harden tasks in stage-level,
the decrease of the system reliability penalty is at least as
good as for the coarse-grained approach. When the resources
are more limited, the benefit of adopting the fine-grained
approach is more significant. While our approach already
performs better than the greedy approach in most cases if
partitioned scheduling is used for the tasks in τLITTLE, using
semi-partitioned scheduling can increase the gain even further.

IX. CONCLUSION AND FUTURE WORK

As multi-core systems have become the mainstream pro-
cessors, exploiting redundant cores to mitigate soft-error ef-
fects by using RMT is a reasonable solution. This work
provides software synthesis methodologies for real-time em-
bedded system designers to efficiently exploit mixed redun-
dancy techniques to decrease the system reliability penalty
while satisfying the timing constraints in multi-core systems.
We provide a combination of CRT and SRT called Mixed-
Redundant Threading to achieve these goals. In addition, we
provide two reliability optimization approaches to decrease
the system reliability penalty with different granularity while
scheduling the hard real-time tasks on multi-cores.

To the best of our knowledge, this paper provides the first
solid foundation for using mixed redundancy techniques in
multi-core systems. The methodologies in this paper are not
limited to the mixture of two redundancy levels but also
applicable to multiple redundancy levels up to the designer’s
choice. However, our study is limited to implicit-deadline real-
time tasks under federated scheduling in homogeneous multi-
core systems. It has been recently shown by Chen [6] that
Federated Scheduling does not perform well for constrained-
and arbitrary-deadline real-time task systems. Nevertheless,
the proposed Mixed-Redundant Threading can directly be used
for other scheduling strategies while the applicability of the
proposed optimization techniques depends on the scheduling
strategy that is used.

ACKNOWLEDGMENTS
This research is supported in parts by the German Research

Foundation (DFG) as part of the priority program ”Dependable
Embedded Systems” (SPP 1500 - spp1500.itec.kit.edu). The

authors thank our partner, Prof. Dr.-Ing. Muhammad Shafique,
for providing the simulator and the data. Furthermore, we
thank the anonymous reviewers for their suggestions on im-
proving this paper.

REFERENCES

[1] Flux calculator. http://www.seutest.com/cgi-bin/FluxCalculator.cgi.
[2] Andersson, B. and Jonsson, J. (2003). The utilization bounds of

partitioned and pfair static-priority scheduling on multiprocessors are 50%.
In Real-Time Systems, 2003. Proceedings. 15th Euromicro Conference on,
pages 33–40.

[3] Axer, P., Quinton, S., Neukirchner, M., Ernst, R., Dbel, B., and Hrtig, H.
(2013). Response-time analysis of parallel fork-join workloads with real-
time constraints. In Real-Time Systems (ECRTS), 2013 25th Euromicro
Conference on, pages 215–224.

[4] Baumann, R. (2005). Radiation-induced soft errors in advanced semicon-
ductor technologies. Device and Materials Reliability, IEEE Transactions
on.

[5] Bolchini, C., Carminati, M., Miele, A., Das, A., Kumar, A., and Veer-
avalli, B. (2013). Run-time mapping for reliable many-cores based on
energy/performance trade-offs. In IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS),
pages 58–64.

[6] Chen, J.-J. (2016). Federated scheduling admits no constant speedup
factors for constrained-deadline dag task systems. Real-Time Systems,
52(6):833–838.

[7] Chen, K. H., Chen, J. J., Kriebel, F., Rehman, S., Shafique, M., and
Henkel, J. (2016). Task mapping for redundant multithreading in multi-
cores with reliability and performance heterogeneity. IEEE Transactions
on Computers, 65(11):3441–3455.

[8] Cui, X., Mills, B., Znati, T., and Melhem, R. (2014). Shadow replication:
An energy-aware, fault-tolerant computational model for green cloud
computing. Energies, 7(8):5151–5176.

[9] Das, A., Kumar, A., and Veeravalli, B. (2013a). Reliability-driven task
mapping for lifetime extension of networks-on-chip based multiprocessor
systems. In Proceedings of the Conference on Design, Automation and
Test in Europe, pages 689–694.

[10] Das, A., Kumar, A., and Veeravalli, B. (2013b). Reliability-driven task
mapping for lifetime extension of networks-on-chip based multiprocessor
systems. In 2013 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 689–694.

[11] Davis, R. I. and Burns, A. (2011). Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor real-time
systems. Real-Time Syst., 47(1):1–40.

[12] Graham, R. L. (1966). Bounds for certain multiprocessing anomalies.
Bell System Technical Journal, 45(9):1563–1581.

[13] Guan, N., Stigge, M., Yi, W., and Yu, G. (2012). Parametric utilization
bounds for fixed-priority multiprocessor scheduling. In IEEE 26th Inter-
national Parallel and Distributed Processing Symposium, pages 261–272.

[14] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T.,
and Brown, R. B. (2001). Mibench: A free, commercially representative
embedded benchmark suite. In WWC-4. IEEE International Workshop.

[15] Hu, J., Wang, S., and Ziavras, S. (2006). In-register duplication:
Exploiting narrow-width value for improving register file reliability. In
DSN.

[16] Izosimov, V., Pop, P., Eles, P., and Peng, Z. (2012). Schedul-
ing and optimization of fault-tolerant embedded systems with trans-
parency/performance trade-offs. pages 261–272.

[17] Kwon, J., Kim, K. W., Paik, S., Lee, J., and Lee, C. G. (2015). Multicore
scheduling of parallel real-time tasks with multiple parallelization options.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2015 IEEE, pages 232–244.

[18] Li, J., Chen, J. J., Agrawal, K., Lu, C., Gill, C., and Saifullah, A. (2014).
Analysis of federated and global scheduling for parallel real-time tasks. In
Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on, pages
85–96.

[19] Li, L., Degalahal, V., Vijaykrishnan, N., Kandemir, M., and Irwin, M.
(2004). Soft error and energy consumption interactions: A data cache
perspective. In ISLPED.

[20] Lyons, R. E. and Vanderkulk, W. (1962). The use of triple-modular
redundancy to improve computer reliability. IBM J. Res. Dev., 6(2):200–
209.

13

[21] Mukherjee, S. S., Kontz, M., and Reinhardt, S. K. (2002). Detailed
design and evaluation of redundant multithreading alternatives. In ISCA,
pages 99–110.

[22] Mukherjee, S. S., Weaver, C., Emer, J., Reinhardt, S. K., and Austin,
T. (2003). A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor. In IEEE/ACM
MICRO.

[23] Rehman, S., Chen, K., Kriebel, F., Toma, A., Shafique, M., Chen, J.,
and Henkel, J. (2016). Cross-layer software dependability on unreliable
hardware. Computers, IEEE Transactions on.

[24] Rehman, S., Kriebel, F., Shafique, M., and Henkel, J. (2014a).
Reliability-driven software transformations for unreliable hardware.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on.

[25] Rehman, S., Kriebel, F., Sun, D., Shafique, M., and Henkel, J. (2014b).
dtune: Leveraging reliable code generation for adaptive dependability
tuning under process variation and aging-induced effects. In DAC, pages
1–6.

[26] Rehman, S., Shafique, M., Aceituno, P. V., Kriebel, F., Chen, J. J., and
Henkel, J. (2013a). Leveraging variable function resilience for selective
software reliability on unreliable hardware. In DATE.

[27] Rehman, S., Shafique, M., and Henkel, J. (2012). Instruction scheduling
for reliability-aware compilation. In DAC.

[28] Rehman, S., Shafique, M., Kriebel, F., and Henkel, J. (2011). Reliable
software for unreliable hardware: embedded code generation aiming at
reliability. In CODES+ISSS.

[29] Rehman, S., Toma, A., Kriebel, F., Shafique, M., Chen, J. J., and Henkel,
J. (2013b). Reliable code generation and execution on unreliable hardware
under joint functional and timing reliability considerations. In IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 273–282.

[30] Reinhardt, S. K. and Mukherjee, S. S. (2000). Transient fault detection
via simultaneous multithreading. In ISCA, pages 25–36.

[31] Saggese, G. P., Wang, N. J., Kalbarczyk, Z., Patel, S. J., and Iyer, R. K.
(2005). An experimental study of soft errors in microprocessors. IEEE
Micro, 25(6):30–39.

[32] Shivakumar, P., Kistler, M., Keckler, S., Burger, D., and Alvisi, L.
(2002). Modeling the effect of technology trends on the soft error rate
of combinational logic. In DSN.

[33] Srinivasan, A. and Anderson, J. H. (2005). Fair scheduling of dynamic
task systems on multiprocessors. Journal of Systems and Software,
77(1):67 – 80. Parallel and distributed real-time systems.

[34] Vadlamani, R., Zhao, J., Burleson, W., and Tessier, R. (2010). Multicore
soft error rate stabilization using adaptive dual modular redundancy. In
Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’10, pages 27–32, 3001 Leuven, Belgium, Belgium. European
Design and Automation Association.

[35] Vijaykumar, T. N., Pomeranz, I., and Cheng, K. (2002). Transient-fault
recovery using simultaneous multithreading. In Computer Architecture,
2002. Proceedings. 29th Annual International Symposium on, pages 87–
98.

Kuan-Hsun Chen received his M.Sc. degree from
Department of Computer Science from National Ts-
ing Hua University, Hsinchu, Taiwan, in 2013, and is
pursuing the Ph.D. degree from the Chair for Design
Automation of Embedded Systems, TU-Dortmund,
Germany, supervised by Prof. Dr. Jian-Jia Chen.
His research interests include dependable comput-
ing, embedded systems, reliability-aware resource
management, and real-time operating systems.

Georg von der Brüggen received his Diploma
degree in computer science from TU Dortmund
University, Germany, in 2013 and now is a PhD
student at the Chair for Design Automation of
Embedded Systems at TU Dortmund University,
supervised by Prof. Dr. Jian-Jia Chen. His research
interests are in the area of embedded and real-time
systems with a focus on real-time scheduling. His
main research topics are non-preemptive schedul-
ing, speedup-factors, self-suspension, and mixed-
criticality systems.

Jian-Jia Chen is Professor at Department of Infor-
matics in TU Dortmund University, Germany. He
was Juniorprofessor at Department of Informatics
in Karlsruhe Institute of Technology, Germany from
May 2010 to March 2014. He received his Ph.D.
degree from Department of Computer Science and
Information Engineering, National Taiwan Univer-
sity, Taiwan in 2006. Between Jan. 2008 and April
2010, he was a postdoc researcher at ETH Zurich,
Switzerland. His research interests include real-
time systems, embedded systems, energy-efficient

scheduling, power-aware designs, temperature-aware scheduling, and dis-
tributed computing. He received Best Paper Awards at CODES+ISSS 2014,
RTCSA 2005 and 2013, and SAC 2009. He has involved in Technical
Committees in many international conferences.

14

