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Jian-Jia Chen

Department of Informatics, TU Dortmund University, Germany
https://ls12-www.cs.tu-dortmund.de/

Citation: 10.23919/DATE.2019.8714908

BIBTEX:
@inproceedings{DBLP:conf/date/ChenUBC19,

author = {Kuan{-}Hsun Chen and
Niklas Ueter and
Georg von der Br{\"{u}}ggen and
Jian{-}Jia Chen},

editor = {J{\"{u}}rgen Teich and
Franco Fummi},

title = {Efficient Computation of Deadline-Miss Probability and Potential Pitfalls},
booktitle = {Design, Automation {\&} Test in Europe Conference {\&} Exhibition,

{DATE} },
pages = {896--901},
publisher = {{IEEE}},
year = {2019},
url = {https://doi.org/10.23919/DATE.2019.8714908},
doi = {10.23919/DATE.2019.8714908},

}

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ls12-www.cs.tu-dortmund.de/
10.23919/DATE.2019.8714908


Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
10

.2
39

19
/D

A
T

E
.2

01
9.

87
14

90
8

Efficient Computation of Deadline-Miss Probability
and Potential Pitfalls

Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen
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Abstract—In soft real-time systems, applications can tolerate
rare deadline misses. Therefore, probabilistic arguments and
analyses are applicable in the timing analyses for this class of sys-
tems, as demonstrated in many existing researches. Convolution-
based analyses allow to derive tight deadline-miss probabilities,
but suffer from a high time complexity. Among the analytical
approaches, which result in a significantly faster runtime than
the convolution-based approaches, the Chernoff bounds provide
the tightest results. In this paper, we show that calculating the
deadline-miss probability using Chernoff bounds can be solved
by considering an equivalent convex optimization problem. This
allows us to, on the one hand, decrease the runtime of the
Chernoff bounds while, on the other hand, ensure a tighter
approximation since a larger variable space can be searched
more efficiently, i.e., by using binary search techniques over
a larger area instead of a sequential search over a smaller
area. We evaluate this approach considering synthesized task
sets. Our approach is shown to be computationally efficient for
large task systems, whilst experimentally suggesting reasonable
approximation quality compared to an exact analysis.

Index Terms—Deadline miss probability, Soft real-time systems

I. INTRODUCTION

In embedded and cyber-physical systems, timeliness is an
essential feature. The strongest timeliness requirement is to
provide hard real-time guarantees. That is, all computing
entities must not only be correct functionally, but also compute
the respective outputs within given timing constraints. Hard
real-time constraints are necessary if any deadline miss may
lead to catastrophic consequences. However, many embedded
systems can still be functionally correct for occasional, i.e.,
quantified and bounded, deadline misses. The relevance of
these classes of systems to industry is evident from safety
standards such as IEC-61508 [11] and ISO-26262 [12] that
require (very) low failure probability but not necessarily a
failure probability of zero. Further examples of relevance are
soft-error recovering systems, where soft errors that occur
during a task’s execution trigger error-recovery routines. Based
on the probabilistic characteristic of the soft error occurrences,
the task system exhibits probabilistic behavior. In these cases,
probabilistic task models and analyses can help the system
designer to achieve expectedly high system utilization, whilst
quantifying the probabilistic system behavior using a deadline-
miss metric.

We consider sporadic real-time task systems, in which a
sporadic task τi releases an infinite number of task instances,
called jobs, that are separated by a minimum inter-arrival time
Ti. All tasks are scheduled under a preemptive fixed-priority

algorithm on a uniprocessor system. Suppose that St is the
maximal cumulative amount of workload resulting from τi
and its higher-priority tasks over any interval of length t.
Now, the probability that a task τi is not finished at time t
is given by the probability that St is strictly larger than the
interval, i.e., Pr(St > t). Under the assumption that all jobs
are independent, i.e., the execution times are uncorrelated, the
deadline miss probability can be inferred using convolution
to compose the probability-density function of St. Previous
job-level convolution-based approaches [1], [9], [14], [16] in
probabilistic response-time analyses suffered from their high
time complexity, i.e., only a small number of tasks could be
considered. Recently, von der Brüggen et al. [18] proposed
a task-level convolution-based approach that efficiently de-
creases the number of states that need to be considered. The
authors demonstrate the capability to analyze task systems
with up to 100 tasks. Despite the fact that the task-level
convolution-based approach is more efficient than the job-level
approaches, the time complexity remains exponential with
respect to the number of tasks. Furthermore, the experimental
results presented by von der Brüggen et al. [18] show that
analyzing a task system with 100 tasks can take several
hours. Chen and Chen in [7] proposed to use Chernoff bounds
to safely over-approximate the deadline-miss probabilities of
tasks. Their approach trades a loss of accuracy for improved
runtime efficiency as reported in [18].

The Chernoff bound is a parametric bound that holds true
for any real number s > 0. While the Chernoff bound is an
over-approximation with no non-trivial analytical guarantees
for the approximation quality, the quality varies with the
choice of s. Hence, in order to optimize the approximation
quality, it is beneficial to find the smallest Chernoff bound ef-
ficiently, based on all possible s values. The following example
motivates the studied problem in this paper, and demonstrates
the performance of the aforementioned approaches.
Motivational Example: Consider a real-time embedded sys-
tem with a set of sporadic tasks, i.e., Γ = {τ1, τ2, · · · , τ25}, on
a uniprocessor. We follow a similar setup as described in [7],
[17], [18]. That is, a task has two modes with associated
probabilities, where a mode is characterized by its worst-
case execution time (WCET). Such a setting is common when
software based fault-tolerance techniques are considered, i.e.,
a task τi has a normal execution mode with a related WCET
CN

i and probability PN
i as well as an abnormal execution

mode with WCET CA
i and associated probability PA

i . Further,
CN

i ≤ CA
i , PA

i < PN
i , and PN

i = 1 − PA
i . We use the
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Fig. 1: Derived results comparison: The red diamonds represent the obtained upper bound on the probability of deadline misses
by setting s = 1 with the Chernoff bound approach [7]. The blue curves are drawn by iterating over different s with step 0.5
by using the Chernoff bound approach. The bottom orange lines are the derived results from the task-level convolution-based
approach in [18].
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Fig. 2: Runtime comparison: The average required runtime
with different state-of-the-arts for the selected task sets in the
motivational example.

UUniFast method [4] to synthesize sporadic implicit-deadline
task sets with a given normal mode utilization of 60%, setting
PA
i = 10−4 and CA

i = 1.83 · CN
i for all tasks. The tasks are

scheduled according to rate-monotonic preemptive scheduling,
i.e., tasks with shorter periods have higher priority.

For these task sets, we used the state-of-the-art approaches
to calculate the deadline miss probability (DMP), i.e., the
Chernoff bound approach1 considering a fixed value s = 1
in [7], denoted by Chernoff, and the task-level convolution-
based approach in [18] with the proposed runtime optimization
that prunes out unnecessary states, denoted by Pruning.
Furthermore, we iteratively calculated the Chernoff bound for
different values of s with a step size 0.5, denoted as Seq.

1The scripts were downloaded from https://github.com/kuanhsunchen/EPST
on 23 July 2018. While the script considers multiple s in (0, 1], we modified
it to calculate the Chernoff bound for one given real number s.

Figure 1 displays these results and shows that using Cher-
noff with a fixed value can lead to a large gap compared
to the DMP for Pruning. This also holds true if only a
small interval of possible values for s can be considered, i.e.,
in [7] s ∈ (0, 1] and in [18] s ∈ (0, 3] was considered to
achieve a good runtime. When Chernoff is used iteratively
for multiple real number s to find out a suitable s, the gap to
Pruning may be reasonably small as Seq shows. Regarding
the required runtime for analyses, shown in Figure 2, Pruning
is orders of magnitude slower than Chernoff. However, the
required runtime for finding a suitable s iteratively as in Seq
highly depends upon the step size and the considered interval.
Unfortunately, the results in Figure 1 suggest 1) that the actual
value of s differs largely based on the considered task set, and
2) that being slightly off from the best value may lead to a
large difference from the value obtained by Pruning. However,
Figure 1 also suggests that for a given task set the Chernoff
bound is a convex function with respect to s.

In this paper, we show that finding the smallest Chernoff
bound based on all possible s values in fact poses a convex
optimization problem. This allows to increase the precision
of the Chernoff bound compared to the results in [7], since a
wider range of possible s values can be covered. The reason
is that the convex property allows to search the possible
interval of s values more efficiently. Hence, the reduced
runtime directly leads to a more precise DMP estimation.
Furthermore, the task-level convolution-based approach in [18]
has a runtime complexity that is exponential in the number of
considered tasks for each point in time, while the Chernoff
bounds have a runtime complexity that is linear with respect
to both the number of tasks and the number of values that
are considered for s. Therefore, Chernoff bounds are the only
method to determine the deadline miss probability for really
large task sets, e.g., 1000 tasks, while still resulting in a
reasonable approximation quality.
Our Contributions: Despite the fact that the Chernoff bound

https://github.com/kuanhsunchen/EPST
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offers no specific approximation quality guarantees, the loss
of approximation quality compared to [18] can be reasonably
small, whilst the analysis is significantly faster. In summary,
our contributions are as follows:
• To efficiently compute the upper bound on the deadline-

miss probability, we first show that the Chernoff-bound
approach is a convex optimization problem, and provide
an equivalent logarithm equation to mitigate the compu-
tational difficulty as detailed in Section V.

• Throughout several numerical simulations, we demon-
strate that the upper bound of the deadline-miss proba-
bility derived by the proposed optimization is reasonably
small compared to the state-of-the-art while reducing the
necessary runtime in Section VI.

Our result enables the possibility to analyze the probability
of deadline misses with sufficient accuracy whilst keeping the
time complexity in pseudo-polynomial time2.

II. RELATED WORK

Several approaches that calculate the deadline-miss proba-
bility based on probabilistic response-time analyses are known
from the literature [2], [9], [14], [16], [18]. For instance, Diaz
et al. [9] provided a framework to determine the deadline-
miss probability. Another approach was presented by Tanasa
et al. [16] that applies a customized decomposition procedure
based on the Weierstrass Approximation in order to derive the
deadline-miss probability. Unfortunately, both approaches are
only suitable for small problem instances, i.e., task systems
with at most 7 to 25 jobs in the hyper-period. That constraint
holds true, even for the simplest task model, i.e., periodic real-
time task systems.

In the research context of sporadic real-time task systems,
Axer et al. in [2] derived the response-time distribution for
non-preemptive fixed-priority scheduling iteratively with re-
spect to the activations of released jobs.

Maxim and Cucu-Grosjean [14] proposed a probabilistic
response time analysis exploiting a (job-level) convolution-
based approach, which can handle task sets with up to 10
tasks [7], [18]. By changing from a job-level to a task-level
perspective, von der Brüggen et al. [18] reduced the time
complexity of the convolution-based approach and introduced
several techniques to efficiently decrease the runtime. While
it was shown in [18] that their approach can handle sets with
100 tasks, it still has a very high runtime. The approaches
in [14] and [18] are tight for computing the deadline miss
probability. Hence, to the best of our knowledge, the approach
by von der Brüggen et al. in [18] presents the state-of-the-art
with respect to tightness and time complexity amongst the
class of convolution-based response time analyses.

For improving the time complexity of probabilistic response
time analyses, Chen and Chen [7] proposed to derive the
deadline-miss probability based on Chernoff bounds. Other
analytical bounds, i.e., the the Hoeffding inequality and the
Bernstein inequality, were applied by von der Brüggen et

2The Chernoff bound approach in [7] deriving the probability of deadline
misses still requires the time complexity in pseudo-polynomial time.

al. in [18] to derive the deadline-miss probability. As shown
in [18], the Chernoff bound approach leads to the tightest
results among the analytical bounds.

Based on the Chernoff bound approach [7] or the task-
level convolution approach [18], Chen and Chen [8] presented
the first analytical upper bound for the deadline miss rate of
sporadic constrained-deadline task systems. Since in their ap-
proach the deadline miss probability has to be determined not
only for the first but also for consecutive jobs, this introduces
an additional need for a fast and tight over-approximation of
the deadline miss rate. We believe that improving the efficiency
of the Chernoff bound approach may bring the value of such
probabilistic timing analyses into focus in the future.

III. SYSTEM MODEL

In this paper, we consider a real-time system with n
independent sporadic tasks Γ = {τ1, τ2, · · · , τn} on a uni-
processor. Each task τi is modeled by a tuple (Ci,Pi, Di, Ti)
where Ci is a random variable that is distributed ac-
cording to a sampled (discrete) probability-density function
Pi(u) =

∑Ki

k=1 Pk
i · δ(u− Ck

i ), where the Ck
i denotes the

possible execution times, Ki is the total number of possible
values, and δ function here is a Dirac delta function.

Each task releases task instances (or jobs) to the system
according to the minimal inter-arrival time constraint Ti such
that if a job is released at time ti then the next job may be
released no earlier than ti + Ti, and the job should finish its
execution before ti + Di in order to meet the deadline, i.e.,
Di is the relative deadline of τi. Furthermore, the execution
time for each job is drawn according to the probability-density
function at each job release. In this paper, we consider implicit-
deadline task sets, i.e., Di = Ti ∀τi ∈ Γ, and constrained-
deadline task sets, i.e., Di ≤ Ti ∀τi ∈ Γ.

We assume that all realizations of the jobs execution times
are independent and identically distributed (i.i.d.) in order to
make it analytically tractable, which aligns with the usual
assumption in the literature when modeling multiple possible
execution times, e.g., [3], [7]–[9], [14], [18]. Despite the
known limitations with this assumption, we hope our results
to be useful in foresight of possible techniques that may
approximate the task sets statistical characteristics by a family
of i.i.d. random processes or for problem instances where the
i.i.d. assumption is reasonable enough.

We further assume the system is scheduled by a preemptive
fixed-priority scheduling policy. Namely each task set Γ is
ordered according to the task priorities such that for any two
instances of two distinct tasks τi and τj that are eligible to
execute at a given time t, the execution of τi precedes the
execution of τj if i < j.

Moreover, we comply with the common assumption that
the system is reset once a deadline-miss of any job occurred.
By this property, it is ensured that no task suffers backlog,
i.e., multiple jobs of the same task are not pending at any
time. Nonetheless, if this assumption does not hold, the here
presented approach can be used in conjunction with the
analysis proposed by Chen et al. in [7] or the task-level
convolution-based approach by von der Brüggen et al. [18].
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IV. SAFE BOUND OF DEADLINE-MISS PROBABILITY

We consider the computation of a safe upper bound of the
deadline-miss probability for a specific task τj . More precisely,
we want to derive an upper bound Φj such that

sup
σ∈S
{Pr(τj misses deadline in schedule σ)} ≤ Φj (1)

where S denotes the set of all possible schedules.
In the literature, it is demonstrated that this upper bound can

be derived by considering the maximal amount of workload
that every task with higher priority task than τj in the task set
under analysis can contribute in any interval of length t.

As shown in [14], [18], the maximal amount of workload
that each task can contribute to any interval of length t
is a random variable whose probability-density function can
be computed using the convolution-theorem of independent
and equally-distributed random variables. The problem with
such convolution-based approaches is that the time complexity
of these methods is very high and hence the computation
takes a lot of time for the task-level convolution and is
infeasible for the job-level convolution if larger task systems
are considered [18]. To reduce the time complexity, Chen and
Chen [7] proposed to adopt the moment-generating function
(MGF) to represent the probabilistic characteristics of such
workloads. The MGF is defined as follows:

Definition 1 (Moment-Generating Function). The moment-
generating function of a random variable Xi is defined by
the expected value of eXi·s for any non-negative real number
s, i.e., MGF(Xi) = E

[
eXi·s

]
.

We use MGFi to denote the MGF of the execution time of
task τi. Based on the theory of Chernoff bound [6], [15], it is
possible to compute an upper bound of a task’s deadline-miss
probability without computing the joint-probability density
function using convolution. Note, that the Chernoff bound
holds for any non-negative real-value s, and thus poses an
optimization problem to find the smallest upper bound.

V. OPTIMIZATION PROBLEM

The objective of this work is to show how to efficiently
compute the smallest upper bound of each task’s deadline-
miss probability, using the Chernoff bound approach in [7]
and to evaluate the precision loss compared to the convolution-
based approach. That is, the following optimization problem
transformed from Eq. 7 in [7] must be solved

Pr(St ≥ t) ≤ inf
sj>0

{(
j∏

i=1

MGFi(sj)
dt/Tie

)
· e−sj ·t

}
(2)

where

MGFi(sj) =

Ki∑
k=1

eC
k
i ·sj · Pk

i . (3)

This means, for each task τj in the task set, a non-negative
real value sj must be identified that minimizes Eq. (2) for
some given time t and a given set of all higher-priority
tasks τ1, τ2, . . . , τj−1. In the following, we show that this
optimization problem shown in Eq. (2) is log-convex. It thus

exhibits a unique minimum and is efficiently solvable by
various numerical algorithms.

Theorem 1 (Boyd [5]). Let y ∈ Y then if a function f(x, y) is
log-convex in x for each y ∈ Y and f(x, y) ≥ 0, the function
g(x) =

∫
Y
f(x, y) dy is log-convex.

Lemma 1. The moment-generating function of a task τi

MGFi =

∫ ∞
−∞

eu·s · Pi(u) du, (4)

for a given probability density function Pi(u) and any s ∈ R+,
is log-convex.

Proof. By definition of a probability density function,
Pi(u) ≥ 0 for any u ∈ R and thus satisfies the conditions
stated in Theorem 1. Since the logarithm of the integrand,
i.e., s · u+ ln(Pi(u)), is linear in s for any u ∈ R, it is
convex. Therefore, by the arguments of Theorem 1, MGFi is
log-convex.

Theorem 2. The moment-generating function of the cumula-
tive execution time of a given number of job-releases is log-
convex.

Proof. By the i.i.d assumption, we know that the moment-
generating function of the cumulative execution time of a
given number of job-releases can be given as the multiplication
of the individual moment-generating functions of each job
instance, i.e.,

∏j
i=1 MGFi for j job releases. By the property

of the logarithm function, the logarithm of the cumulative
moment-generating function, i.e., ln(

∏j
i=1 MGFi) is equivalent

to
∑j

i=1 ln(MGFi). Since convexity is closed with respect to
addition and Lemma 1, we know that the moment-generating
function of the cumulative execution time of a given number
of job-releases is log-convex.

In order to minimize Eq. (2), we use the common approach
to minimize the logarithm of the equation instead. Since the
logarithm is strictly monotonically increasing, the minimum
will be the same for both equations. In conclusion, for each
task τj , we solve the following convex optimization problem

inf
sj>0

(
j∑

i=1

dt/Tie · ln(MGFi(sj))

)
− sj · t (5)

where t is given from a finite set of values Lj [7]. The
probability that task τj misses its deadline is thus upper
bounded by

Φj = min
t∈Lj

 inf
sj>0


 j∑
i=1

dt/Tie · ln(MGFi(sj))

− sj · t


 . (6)

Since this optimization problem is a set of finitely many
convex optimization problems, it can be efficiently and un-
equivocally solved by |Lj | binary search techniques.

Another problem in the numerical computation of the min-
imal sj is the sum of exponential functions in MGFi that may
lead to over or underflow if not handled properly.
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Numerical Issues: With respect to an implementation of
the above optimization problem, the floating-point arithmetic
is of special concern due to overflow and underflow problems.
There are two types of floating-point arithmetics that can be
used, namely either finite-precision with hardware support (by
default), or arbitrary-precision with software supports, e.g., the
mpmath library in Python [13]. In the former case, the com-
putation may suffer from over- and underflow problems since
Ck

i · s varies with the parameter range of s. In the latter case,
the number of digits that can be used for numeric presentation
is only limited by the available memory of the computing
system. Note that truncation and approximation errors are
unavoidable in both arithmetics due to the limitations of
binary representation. Although arbitrary-precision arithmetic
is considerably slower than finite-precision arithmetic due to
the incurred software overhead, we still adopt it to evaluate the
proposed approach to avoid any over- and underflow problems.

VI. EVALUATIONS

In this section, we experimentally evaluate the approxima-
tion quality and the runtime of the deadline-miss probability
computation of the proposed approach compared to the state-
of-the-art, i.e., [18], for different experimental settings.

A. Experimental Setup

We generated sporadic constrained-deadline task sets where
the utilization values of the individual tasks are generated
using the UUniFast method [4]. Following the suggestion
proposed in [10], we generated each tasks period according
to a log-uniform distribution within two orders of magnitude,
i.e., Ti ∈ {10ms, 1000ms}.

Similar to the evaluation in [18] where the task-level convo-
lution based approach was introduced, we consider tasks with
two distinctive execution modes and corresponding probabil-
ities, i.e., a normal execution

{
CN

i , P
N
i

}
and an abnormal

execution
{
CA

i , P
A
i

}
, where CA

i = 1.83 · CN
i ∀ τi ∈ Γ,

PA
i = {2.5%}, and PN

i = 1−PA
i . This system setup is inspired

by software based fault-tolerant techniques to handle soft-
errors. In such systems, in order to account for the resulting
overhead of error recovery, i.e., re-execution, we assume the
error detection costs 20% of the task execution time and set
CA

i by 2.2
1.2 ≈ 1.83 · CN

i for all tasks. Details regarding this
setup can be found in [17].

Further, we only calculated the resulting deadline-miss
probability of the lowest-priority task under the rate-monotonic
scheduling policy in each setting in order to speed up the
experimental evaluations and for simplified presentation.

We considered the following approaches: Chernoff refer-
ring to the Chernoff bound based approach that uses the
golden-section search to find an optimal s value, and Pruning
referring to the task-level convolution-based approach with
the pruning technique described in [18]. The evaluations are
deployed on an Intel Core i7-4770 and 16GB DDR3 RAM.

B. Results

In the following evaluations, we compare the computed
deadline-miss probabilities of the lowest-priority tasks and the
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Fig. 3: Average runtime time for the Chernoff and Pruning
method for soft-error implicit-deadline task sets with 50%
utilization. The soft-error probability is set to 2.5%.
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Fig. 4: Average runtime time for the Chernoff and Pruning
method for soft-error implicit-deadline task sets with 70%
utilization. The soft-error probability is set to 2.5%.

required runtime by Chernoff and Pruning. Further, we used
task sets with a varying number of tasks, i.e., {10, 15, 20, 25}.
Due to the high runtime required by Pruning, we created a
varying number of task sets depending on the number of tasks,
i.e., 100 sets with 10 tasks, 50 sets with 15 tasks, 25 sets with
20 tasks, and 5 sets with 25 tasks. We considered two normal-
mode utilizations, namely 50% and 70%.

Fig. 3 and Fig. 4 show that the average computation time
used for the Chernoff bounds is 1 − 3 magnitudes faster
than Pruning. Additionally, unlike Pruning, the runtime of
Chernoff is insensitive to the task set utilization. With a larger
number of tasks per task set, i.e., 100 tasks, Pruning cannot
derive any results even over 24 hours, whereas Chernoff can
finish the computations in average 507.5 sec over 5 sets.

With respect to the approximation quality, Fig. 5 displays
the calculated deadline-miss probabilities of the lowest-priority
tasks in each analyzed task set consisting of 20 tasks each
with cumulative utilization of 50%. As expected, due to the
lack of an analytical bound on approximation performance
of Chernoff, the difference between the two methods can be
arbitrarily large. Moreover, the differences are larger for task
sets where the deadline-miss probability is already very low.
By contrast, in the cases where the deadline-miss probability
is higher, e.g., 10−3 to 10−1, the differences are relatively
smaller. Fig. 5 also shows that the optimal value of s depends
on the specific settings of the task set, e.g., the utilization,
which empirically shows that testing only a specific range as
in [7] is not enough.

VII. CONCLUSION

In this paper, we demonstrated how to compute an up-
per bound on the deadline-miss probability by convex-
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Fig. 5: Approximation quality for the Chernoff and Pruning method for soft-error recovering implicit-deadline task sets with
50% Fig. (a) and 70% Fig. (b) utilization for different task sets. The bars are annotated with the computed optimal value of s.

optimizing the parametric Chernoff bound using the golden-
section search. It could be shown that the computations are
substantially faster than the state-of-the-art convolution-based
approaches. Further, it could be shown that in the cases where
the cut-off deadline miss probability of interest is in the region
of 10−3 to 10−1, the differences in approximation quality are
reasonable in light of the runtime improvement.
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