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Abstract

In the real time system, several tasks may request a shared resource currently. However

such resource accesses are required to be mutual exclusive. One sound way is to use

resource synchronization protocols to prevent from race condition without deadlock and

starvation . Several resource synchronization protocols are proposed for many-core systems.

Generally, they are developed from the basic protocols for uniprocessors. The proposed

approaches on multiprocessor inherit the proved advantages of synchronization protocols

on uniprocessors.

In this thesis we concentrate on four speci�c multiprocessor resource sychronization

protocols: the Multiprocessor Priority Ceiling Protocol (MPCP), the Distributed Prior-

ity Ceiling Protocol (DPCP), the Distributed Non-Preemptive Protocol (DNPP), and the

Multiprocessor Resource Synchronization Protocol (MrsP). Most of them use a general-

ization of the Priority Ceiling Protocol (PCP) on the multicore systems. However these

protocols provide totally di�erent mechanisms to synchronize a resources access in practice.

In this thesis, we implement three resource synchronization protocols, for multi-core sys-

tems on a real-time operating system called the Real-Time Executive for Multiprocessor

Systems (RTEMS). As far as we know, it has only some available resource synchronization

protocols: the Priority Inheritance Protocol (PIP), the Priority Ceiling Protocol (PCP),

and the Multiprocessor Resource Sharing Protocol (MrsP). Towards our perspective, we

consider to use Symmetric Multiprocessing (SMP) RTEMS in this thesis. We implement

our own SMP schedulers to handle the executions of tasks for each protocols, because the

schedulers which are already supported in RTEMS don't provide the appropriate mech-

anisms for new protocols. Finally, we verify our implementation with the Application

Programming Interface (API) RTEMS.

Keywords: RTEMS, real-time, MPCP, DPCP, resource synchronization.
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1 Introduction

Using multiprocessors and many-core systems has dramatically increased in the last few

years due to the several advantages in compare with uniprocessor systems. In particular,

many-core systems reduce power consumption due to using of multiple processing units

with a lower frequency and provide high computational capability. The good scheduling

algorithm is one of the most important factors which can guarantee the timeliness of

the system. Therefore, researches on multiprocessor real-time scheduling has increased

the last few years. However, the transition to multicores makes necessary to devise the

new solutions which are more e�cient than the paradigms for the uniprocessors. After

researching for several years, there are still several issues due to the task migrations and

the necessity to part the execution of the tasks between processors.

In this thesis we focus on real time operating system (RTOS) with multiprocessor. The

di�erence between the RTOS and the general-computing operating system is the pre-

dictability of the timing behavior. The implementation in the real-time applications is

generally a complicated task. The developers need to follow not only the application logic

but also the ful�llment such temporal requirements as deadlines [10]. We will discuss it in

detail in the next chapters.

In this thesis, the resource synchronization protocols have been implemented and an-

alyzed on Real-Time Executive for Multiprocessor Systems (RTEMS). There are several

protocols requirements which we have to consider while implementing. These requirements

specify the blocked tasks behavior in case the resource is occupied by other tasks (e.g. sus-

pending, spinning), the tasks migrations between processors, order to a resources access

(e.g. FIFO, priority based), and the allocation of resources on the processors.

The main goal of this thesis is to implement the MPCP, the DPCP, and the DNPP on the

latest version of RTEMS [9] and �nally to verify them with the appropriate applications.

We will discuss the details in the next chapters.

1.1 Thesis Structure

The thesis is divided into 6 chapters. In chapter 1 we will introduce the basics of resource

sharing and the most known uniprocessor resource synchronization protocols, which princi-

ples are used for the implementation in the multiprocessor. Chapter 2 describes multipro-

cessor resource synchronization protocols, in particular the Multiprocessor resource sharing

1



Chapter 1. Introduction 2

Protocol (MrsP), the Distributed Priority Ceiling Priority Protocol (DPCP), the Multipro-

cessor Priority Ceiling Protocol (MPCP), and the Distributed Non-Preemptive Protocol

(DNPP). The MrsP is already implemented in RTEMS and will be used for the analyzing

of the multiprocessor resource synchronization protocols development on the same RTOS.

The scheduling process and the structure of RTEMS are described in Chapter 3. Chapters

4 and 5 focus on the implementation and veri�cation of the new protocols. Finally, the

results of this thesis and the future work are summarized in Chapter 6.

1.2 Basics of Resource Sharing

At �rst, we introduce some basic knowledge about resource synchronization. The resources

imply the �les, data structures or a set of variables that are used for tasks to complete

the execution [14]. In concurrent program running, where several tasks need to access the

same resource, some program sections must be protected. For enforcing exclusive access,

this piece of code is called critical section [14]. The protocols de�ne the way how the tasks

share the resources. The task cannot use the resource while any other tasks hold it. In

this case, the task is blocked and waits until the resource is free to use.

One of the most known technique is semaphore which is used to protect the execution

in the critical section. It uses only two primitives which called signal and wait. When we

use the semaphore shown in Figure 1.1 [12] two tasks t1 and t2 access an exclusive resource

Rk via the semaphore Sk. Each critical section must start with a wait (Sk) primitive and

close with a signal (Sk) primitive [12]. Therefore, each exclusive resource must be used

Figure 1.1: The semaphores structure [12]

with its own semaphore during the critical section. The tasks which are blocked on the

same resource are ordered in the waiting queue. When a task executes a wait primitive on

a semaphore which is already locked, this task moves to the waiting queue and waits until

the task holding this resource executes a signal primitive. It means that the resource is



3 1.2. Basics of Resource Sharing

available and the �rst task in the queue can use the resource. There are several paradigms

in the scheduling algorithms which manage the order of the task's execution. We will

discuss some of them later in Chapter 2.

There are several problems when tasks try to use the same resource concurrently. Some of

them can be a reason for the increasing of the systems response time or can cause a system

crash in the case of deadline misses which are forbidden in some real-time systems [12]. If

the resource synchronization is not carefully handled, the most important issue which may

lead to deadline misses is priority inversion.The priority inversion happens when the lower

priority job blocks a higher priority job. The priority inversion phenomenon is presented

in Figure 1.2 when the task T1 with the highest priority blocks during the time interval [3,

9].

Figure 1.2: Priority inversion phenomenon

Priority inversion phenomenon destroys the predictability of the RTOS. However when

we analyze the schedulability of the system, the worst case is when the middle task has

extremely long execution time, the highest priority task must miss it's deadline. However

with a good synchronization protocols, this crucial situation can be avoided. In the liter-

ature [12, 14] can be found two types of priority inversion. In the �rst one, called direct

blocking, the blocking time of the high priority task is the equal to the time that needed for

the execution of critical section by low priority task. This type of priority inversion is not

avoidable. The second type of priority inversion, called indirect blocking, happens when

other medium level priority task, which doesn't use an exclusive resource blocks the low

priority task by its critical section. So in this case, the blocking time of the high priority

task doesn't directly depend only on the execution time of critical section by low priority
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task but also on the worst-case execution time of medium level task. This type of priority

inversion can cause the critical problems with the response time [12].

There are several approaches that can help to decrease the in�uence of the priority

inversion on the systems. Some of them use the raising of the jobs priority by entering of the

critical section. As the next we review into the resource synchronization protocols which are

used in uniprocessor. Then we will introduce the multiprocessor resource synchronization

protocols which use the basic principles of the uniprocessor protocols.

1.3 Resource Synchronization Protocols in Uniprocessors

In this chapter we study the most known uniprocessor resource synchronization protocols

which were developed to solve the problem discussed above. The �rst solution that can

help to avoid the indirect priority inversion is the disallowing of the preemption when the

task enters a critical section.

This solution proposes a protocol called as Non-Preemptive Protocol (NPP). The priority

of task that enters the critical section should be increased to the highest priority level in

the system. NPP solves the problem of the indirect priority inversion but at the same

time it can be cause unnecessary blocking [12]. For example, we have three tasks and only

two with the lower original priority have to share one exclusive resource. In this case, the

task with the highest priority must be blocked by other tasks in the critical sections. To

guarantee the correct execution of the non-preemption part we need to increase the priority

of the tasks which enter the critical section to the highest priority level in the system.

The second protocol that solves the problem of the indirect priority inversion in unipro-

cessor is the Priority Inheritance Protocol (PIP). This protocol changes the priority only

of those tasks that can generate blocking. For example, if the lower priority task blocks the

task with the higher priority, it temporarily raises to this level priority. The PIP bounds

the priority inversion phenomenon, but it can cause a chained blocking, the situation when

a higher priority task is blocked twice by a lower priority tasks by sharing two resources

[18].

The third protocol that can protect from the chained blocking and bounds the priority

inversion problem is the Priority Ceiling Protocol (PCP). The concept of the PCP is widely

used in the multiprocessor to access to an exclusive resource. The idea of the PCP is similar

to the PIP. The task cannot be blocked during its critical section, because the priority of

the task is raised to the ceiling priority that must be higher than the highest priority level

of all tasks that use the same resource [12]. Moreover, the critical section can be preempted

by another critical section with the higher ceiling priority. This ceiling priority is assigned

to each semaphores and the priority of each task that enters a critical section inherits to the

ceiling level. Figure 1.3 presents the execution of three tasks with the di�erent priorities

that share two resources under the PCP.
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Figure 1.3: PCPs behavior

The ceiling priority of the second resource is 1 because the tasks T2 and T3 use the

resource 2 for their execution. The ceiling priority of the resource 1 is equal to the priority

level of T1. The execution of T1 is blocked during the time intervals [1; 3] and [4; 6] due to

the normal execution of tasks which regular priorities are higher than ceiling priority level

of the resource 1.

The concepts of these resource synchronization protocols in uniprocessor are used as the

basic for protocols on multi-core. We will discuss in detail some of them in next Chapter.



2 Resource Synchronization Protocols for

Multiprocessor

In this thesis, the resource synchronization protocols have to be implemented and analyzed

for multi-core. The assignments of the tasks to several processors di�er the protocols

implementation for uniprocessor and multiprocessor. Also some protocols allow the tasks

migrations between di�erent processors to access a resource. Furthermore, we have to

consider how the resources should be allocated on the processors. It means the global

resource synchronization is also managed by the corresponding protocols on multi-core.

In this chapter, we will present the theories of three multiprocessor resource synchro-

nization protocols, i.e., MPCP, DPCP, and DNPP, the detailed implementation will be dis-

cussed in Chapter 4. Also we review the Multiprocessor resource sharing protocol (MrsP),

which has been already implemented on the real-time operation system used in this thesis.

2.1 Basics of Resource Synchronization Protocols for

Multiprocessor

The resource synchronization protocols can be classi�ed into several groups according such

factors as locks mechanism, migrations of tasks, and resources allocation.

At �rst, we discuss di�erent locks techniques, which are used to block the task while

it can access a resource. The multiprocessor protocols can use suspending and spinning

mechanisms for the locks. The suspension-based protocol blocks the task if the resource is

already obtained by another task. It means, that the processor can execute another task

at the time when the higher-priority task is blocked by the execution of the critical section

on another processor. In other words, the suspension-based protocols can guarantee the

full usage of the processors, even the higher-priority tasks wait for the access to a resource.

However, the spinning-based multiprocessor use a busy waiting for the blocking tasks. It

means, that these tasks keep the processor and any other tasks cannot start the execution.

We will discuss the di�erences between the suspending and spinning locks in detail in

Chapter 4.

There are three classes of the multiprocessor scheduling algorithms, which characterize

the migrations of the tasks: global, partitioned, and semi-partitioned. Global approach

uses one queue for tasks which wait for the execution. In this case a job can migrate

6



7 2.1. Basics of Resource Synchronization Protocols for Multiprocessor

between processors. Partitioned and semi-partitioned paradigms divide the multiprocessor

problem into uniprocessor problems, where standard solutions can be used. The tasks

are ordered in the separated queues for each processor in partitioned scheduling. In these

queues, tasks can be scheduled using uniprocessor algorithms. The basic characteristics

for semi-partitioned approach are equal to partitioned paradigm. The tasks migrations

between processors di�er the semi-partitioned from the partitioned approach. On the

one hand, the partitioned approaches are simpler as global solution in implementation,

but on the other hand partitioning is an NP-hard problem and it can be a reason for

the decreasing of systems performance. Figure 2.1 presents the work�ow of the di�erent

scheduling approaches.

Figure 2.1: Work�ow of di�erent scheduling approaches

The protocols in multiprocessors can be also categorized by the type of the allocation

resources into processor. In the shared-memory protocols, tasks are executed during the

critical sections in their own processors. This type of the resources allocation is mostly used

by the synchronization protocols in multiprocessor. The second type called distributed-

based is used when resources are executed on the designated processor and the tasks have

to migrate to this processor in the case of the critical sections executions. The most

known protocols which are used the distributed-based type of the resources allocation are

the Distributed Priority Ceiling Protocol (DPCP) and the Distributed Non-Preemptive

Protocol (DNPP) [2], which will be discussed in the details in Section 2.3 and Section 2.4.

Several global resource sharing protocols can be found in the literature. In this thesis

we concentrate on the Multiprocessor Priority Ceiling Protocol (MPCP), the Distributed

Priority Ceiling Protocol (DPCP), and the Distributed Non-Preemptive Protocol (DNPP).

Also we will analyze the Multiprocessor resource sharing Protocol (MrsP) which has been

implemented in the targeted platform used in this thesis. These protocols use partitioned
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and semi-partitioned, �xed-priority scheduling (it means that each task has a unique pri-

ority). We will start our consideration from a review of the MPCP, the DPCP, and the

DNPP. Then we introduce the MrsP, which will be used to analyze our development.

2.2 Multiprocessor Priority Ceiling Protocol (MPCP)

The multiprocessor priority ceiling protocol was developed by Rajkumar over 20 years ago

when multiprocessor real-time application wasn't used in practice [12]. The basic MPCP

concept allowed nested resource access, but it was forbidden with the generalization of this

protocol. The MPCP is a suspension-based protocol, i.e., a task relinquishes its assigned

processor when it tries to get the resource that was already used by other task [2]. In this

thesis we concentrate only on global resources. The local resources can be accessed via the

Priority Ceiling Protocol (PCP). When the task is blocked to access a global resource, the

process becomes available for the local resources. The tasks that use the same resource

order in the queue by the priority and execute with the ceiling priority that is greater than

the highest tasks priority in this queue. It means, that the critical section is executed

with the priority higher than the nominal priorities of the tasks in the waiting queue. The

critical section can been preempted only by other critical section with the higher ceiling

priority.

At �rst, we consider two processors environment and two global resources. We synchro-

nize the access for four tasks with di�erent priorities to these resources. The priorities are

ordered as the following P (T1)>P (T2)>P (T3)>P (T4), i.e the priority of T1 is the highest

and the priority T4 is the lowest. We assign T1 and T3 to the �rst processor and T2 and

T4 to the second processor. The result is presented in Figure 2.2

Figure 2.2: MPCPs behavior
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The task T2 is blocked at time 3 due to the critical section of the task T3. Meanwhile,

T4 is also suspended until it accesses a resource at time 6 as the less important priority

task from all tasks that execute with this resource. We can see that once a task enters a

critical section it cannot be blocked. For example, T1 cannot preempt T3 on the processor

1 despite of the highest original priority. The same situation is on the processor 2 when

T2 cannot preempt T4 during its critical section. Figure 2.3 shows the order of the ceilings

assignment.

Figure 2.3: Ceilings assignment in MPCP

Similar to the previous example, we have four tasks with the di�erent priorities and

two resources that are assigned on two processors. The task T1 with the priority P1 and

the task T3 with the priority P3 want access to the resource 1. It means that the ceiling

priority of the resource 1 is P1, which is equal to the highest priority level of the tasks

waiting for the same resource. Similarly, the ceiling priority of the resource 2 is P2. The

ceiling priority of the resource 1 is accepted by T3 at the time unit 3, in the similar way T2

gets the ceiling priority of the resource 2 at the time unit 2 when the task enters a critical

section. Both ceiling levels are presented in Table 2.1.

Time 0 1 2 3 4 5 6 7 8

Resource 1 - - - - - - 1 1 1

Resource 2 - - 2 2 2 2 2 2 2

Table 2.1: Assignment of MPCP ceiling priority

The MPCP uses shared memory to access global resources. It means, that all processors

access to the resources directly. It is the contrast to the Distributed Priority Ceiling

Protocol (DPCP), where global resources are assigned to the particular processors. We

will discuss the DPCP in detail as the next.
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2.3 Distributed Priority Ceiling Protocol (DPCP)

The Distributed Priority Ceiling Protocol (DPCP) was developed by Rajkumar in [20].

In contrast to the MPCP, the DPCP provides RPC-like invocation of an agent on the

resource's processor [2]. It means, that each task has to migrate to the special proces-

sor during obtaining of resource. The task has to migrate back after the critical sections

execution on its own processor where it was released. The DPCP de�nes two types of

the processors. All critical section are assigned to the processor, called synchronization

processor. Meanwhile, the tasks with the normal execution run on the processor, called

application processor [4]. The tasks are accessed a resource on the synchronization pro-

cessor perform PCP on the uni-processor system. Similar to the MPCP, it is forbidden

to request for the global resources with the nesting. It can guarantee that the protocol

avoids deadlock situation. The tasks are ordered by the priority to access a resource. The

DPCP uses one local agent for each task. These agents have a higher priority than any

normal task. It is important for the DPCP due to the preemption of any normal tasks

execution by the critical sections on the same processor. Similar to the MPCP, the DPCP

uses suspending for the blocked tasks, it means that another task can execute during the

blocking time on the same processor.

Figure 2.4 depicts the execution of three tasks under the DPCP on two processors.

The resource is assigned to the synchronization processor, where the tasks T1, T2, and T3

migrate to access a resource. The agents are provided for the critical sections of the tasks,

which are executed on another processor. A3 starts at time 5 when T3 enters a critical

section. Similarly, A1 and A2 become active at time 8 when T1 and T2 want access a

resource which is already obtained by T3. T1 as the highest priority task obtains a resource

one time unit later when A3 releases the resource.

Figure 2.4: DPCPs behavior
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The DPCP as a protocol of resource-oriented scheduling has one important advantage

in compare with the MPCP and the MrsP. Using resource-oriented scheduling guaranties

to avoid of the chained blocking: the normal execution of the higher priority tasks cannot

be preempted by any critical sections of other tasks [4].

As the next we will discuss the DNPP, which uses the similar principles of the tasks

execution as the DPCP.

2.4 Distributed Non-Preemptive Protocol (DNPP)

The behavior of the Distributed Non-preemptive Protocol (DNPP) is similar to the DPCP.

The task is migrated to execute its critical section on the synchronization processor. The

tasks in the normal execution are running on the application processors.

The tasks execution within the critical section is di�erent for the DPCP and the DNPP.

In particular, the task cannot be preempted during its execution in the critical section

under the DNPP. The DPCP allows the preemption of the tasks during critical section

by another task with the higher ceiling priority. In this case, the task resumes after the

blocking task releases the resource. Figure 2.5 presents the execution of three tasks with

di�erent priorities under DNPP. The resource is assigned to the synchronization processor,

where the tasks T1, T2, and T3 migrate to access a resource. The task T2 can not be

preempted during its critical section by the task T1 despite of the higher priority of the

task T1. The task T1 can access a resource only after �nishing of the critical section for

T2.

Figure 2.5: DNPPs behavior

We will use the implementation of the DPCP to develop the DNPP, due to the similar

behavior of these two protocols. The only issue that we need to consider is the implemen-

tation of non-preemptive feature for the DNPP. It means we have to guarantee that the
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priority of the task in the critical section is always higher than priority of any other tasks

in the system. We will discuss more details about implementation of the DNPP in Chapter

4.

As the next we will discuss the theory of the MrsP, which is used to analyze the imple-

mentations �ow of the multiprocessor resource synchronization protocols in RTEMS.

2.5 Multiprocessor Resource Sharing Protocol (MrsP)

The Multiprocessor Resource Sharing Protocol (MrsP) was presented by A.Burns and A.J.

Wellinls in [1].

The idea of the MrsP is the following: the nominal priority of the task has been raised to

the ceiling priority when this task requests a resource. When the resource has already been

used by another task, the requesting task was added in the queue according to a FIFO

ordering and busy waits until it holds the resource. The ceiling priority level is de�ned

as the highest priority of tasks that can require access to the same resource. The main

di�erence between the MrsP and the MPCP (or the DPCP) is the helping mechanism

between owner of the resource and the spinning tasks. It means if the current owner is not

executing, the spinning task of the same resource can help the owner to make a progress.

One of the main problem by the helping mechanism is a tasks migrations. The MrsP solves

this problem by updating the priority of the migrated task to the level higher than priority

of the spinning task in this partition (it is the equal to the ceiling priority in this partition)

[1, 3]. The helping mechanism can reduce the execution time due to the full usage of

processors performance. We can conclude three features of the MrsP which di�er it from

the resource synchronization protocols that we have introduced above in this chapter.

• The tasks which are waiting for the same resource order by FIFO in the waiting

queue.

• The MrsP is the busy waiting protocol. It means it uses spinning instead of suspend-

ing for the blocked tasks.

• The helping mechanism is the most challenging part of this protocol. It is used for

the tasks migration between processors. The tasks migration means that we used

semi-partitioned approach under priority-�xed scheduling.

The helping mechanism should take place only in the case when a resource holder is not

executing and there is the task spinning on the own processor until it can get the same

resource [3]. When the semaphore owner uses the help of the spinning task, it has to

migrate to the processor of the helping task. After the migration the priority of the task

should be updated to the level higher than the current ceiling priority on this processor,

it makes a possible to preempt the spinning task and start of the execution.
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Figure 2.6 presents how FIFO ordering in the waiting queue and spinning for the blocked

tasks works for the MrsP. We consider three processors and four tasks sharing one resource.

Figure 2.6: FIFO and spinning mechanisms in MrsP

The task T1 accesses a resource at time 2 on processor 1, T4 starts to spin for this resource

on time unit later on processor 3. Meanwhile, T3 wants to get the same resource at time

4 on the processor 2. After T1 releases the resource at time 5, the task T4 obtains it as

the next, in despite of its nominal priority is less important than the priority of T3. The

tasks execution on the processor 2 shows us the principles of the spinning lock. T2 is

blocked during the spinning time of T3. It means, that spinning task saves the control of

the corresponding processor and other tasks cannot be executed during the blocking time.

Figure 2.7 presents how works the helping mechanism under the MrsP. We consider three

tasks with the di�erent priorities on two processors. The task T1 with the priority P1 and

the task T3 with the priority P3 want access the resource 1, the resource 2 is needed for

the execution of the task T2 with the priority P3. At the time 7, the task T2 can migrate

to the processor 2 due to spinning of the task T3. At the same time the task T1 can start

its execution of the processor 1. The task T2 has to migrate back to the processor 1 after

the execution in the critical section.
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Figure 2.7: Helping mechanism in MrsP

The MrsP has been already implemented in RTEMS, the real time operation system

which is used in our thesis. We will discuss more details how aforementioned protocols are

implemented in Chapter 4.



3 RTEMS Operation System

This chapter introduces RTEMS, the real-time operating system used in this thesis. Section

3.1 presents the basic principles of RTEMS. Introduction for SMP Support in RTEMS is

made in Section 3.2. Section 3.3 describes the process scheduling and basics about the

integrated schedulers in RTEMS. Finally, Section 3.4 focuses on the Application Program

Interface in RTEMS.

3.1 Basics of RTEMS

In this thesis we focus on implementation and analyzing the resource synchronization proto-

cols in multiprocessor in RTEMS, which is the abbreviation from the Real-Time Executive

for Multiprocessor Systems. RTEMS is managed by OAR Corporation in cooperation

with Steering Committee [8]. The RTEMS code is written in C and Ada. We will con-

centrate only on C in this thesis, since Ada is not supported by SMP RTEMS (Symmetric

Multiprocessing RTEMS) [11].

Figure 3.1 [22] presents the architecture a real-time operation system on the RTEMS

basis.

Figure 3.1: RTEMS architecture [22]

As an operation system, RTEMS works between the hardware and application layers.

This RTOS uses the hardware resources with the providing I/O Interface. RTEMS uses

their own software libraries to support di�erent object types. These types are the special

objects to control and modify all features of the system. For example, these objects are

15
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tasks, semaphores, timers, or message queues. Each object is assigned to its identical ID

called rtems_id which is used for the identi�cation. This identical ID is a thirty-two bit

entity which contains of index, node, and class. Figure 3.2 presents the structure of the

identical ID.

Figure 3.2: Structure of the identical id

We provide not only the identical ID for each object, but also the objects name which

is connected with the ID in the name table.

The following example presents how to create an object name within the directive

rtems_task_create [9]:

rtems_task_create (rtems_build_name (`T','A','S','K'), 2, RTEMS_MINIMUM_SEIZE,

RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES, &id). The direc-

tive rtems_build_name returns the thirty-two bits by de�ning of the four characters.

RTEMS source tree structure is presented in Figure 3.3

Figure 3.3: RTEMS source tree structure

The content of the directories under the RTEMS_TREE looks as follows [9]:

• testsuites/smptests/

This directory contains the tests for the RTEMS Classic API on the multiprocessors.

• testsuites/sptests/

The testsuites for the RTEMS Classic API are implemented in this directory.

• cpukit/posix/

This directory contains the implementation of the Posix API.

• cpukit/rtems/

RTEMS Classic API is developed in this directory.



17 3.2. Introduction for SMP Support in RTEMS

• cpukit/score/

RTEMS SuperCore is included in this directory. The source and header �les are

implemented here.

RTEMS provides all information about each task in the corresponding data structure

called the Thread Control Block (TCB) which can be found in cpukit/score/include/rtem-

s/score/thread.h [9]. The TCB is created with the rtems_task_create directive and is

removed with rtems_task_delete directive. Each Thread Control Block contains a tasks

name, object ID, nominal priority, resource count, pointers to the chains, the boolean

attributes which de�ne the object as preemtible and global.

The chain manager in RTEMS is responsible for the queues building. The chain is

structured as a double-linked list of the nodes. The chain is controlled by a structure

Chain_Control in the header �le cpukit/score/include/rtems/score/chain.h [9]. This struc-

ture includes the pointers to the �rst, last, previous, and next elements in the queue. The

chain manager provides the operations for initializing, inserting of new element, and ex-

tracting of an element. The tasks are allocated to the ready queue until the processor

is available for their execution. The ready queue provides the lists where each layer is

assigned to the corresponding priority level [9, 11]. The tasks which have an equal priority

are ordered by FIFO within their priority group. The current running task is the �rst

element of the highest priority level group. A task is deleted from the queue after the

completing of its execution or the blocking by another task. Then the scheduler selects the

next tasks in the ready queue and allocates a processor for it.

RTEMS has some advantages in compare with other Real Time Operation Systems

(RTOS). It supports many interface standards and open standard application programming

interfaces such as Classic and POSIX [11]. Each of them can con�gure set of tasks that are

automatically started after RTEMS initialization. In this thesis we will use Classic API

due to its better integrating feature set in compare with other standards.

There are many features that can characterize RTEMS as a competitive and a modern

RTOS: it provides symmetric, asymmetric, and distributed multiprocessing, priority inver-

sion avoidance protocol for uniprocessor such as the PIP, the PCP, etc. Depending upon

the design requirement, the unnecessary managers can be removed from each application

according to its own requirements to decrease the code size of RTEMS.

3.2 Introduction for SMP Support in RTEMS

In this thesis we use the symmetric multiprocessor support (SMP) in RTEMS for the imple-

mentation of the resource synchronization protocol. The SMP support has to be enabled

in the con�guration with the option �enable-smp. The SMP application must be con�g-

ured with the corresponding macros [9]. RTEMS API provides several symmetric multi-
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processing directives rtems_get_processor_count, rtems_scheduler_ident, rtems_task_

set/get_scheduler, rtems_scheduler_add/remove_processor, etc.

The SMP framework has a structure like as plugin. A set of operations (e.g. obtain/re-

lease semaphore, create/delete object) can be called within the API. Also an application

can be executed with several schedulers on di�erent processors. As far we know, there are

three implemented scheduling algorithms for multiprocessor in RTEMS. We will discuss

more details about it in the next chapter.

The important entity which is used to contain all scheduled and ready tasks is the sched-

uler node. So, we can say that the scheduler node is the special box which is implemented

in each scheduler with the tasks information. A scheduler instance consists of a scheduler

algorithm which provides the scheduler operations (e.g. block/unblock thread, asking for

help), and a data structure, which de�nes a scheduler name, operations, and context of

scheduler instance [3].

Overall, RTEMS is a good choice for the implementation and evaluation for the resource

synchronization protocols on many-core systems due to the integrated SMP support.

3.3 Process Scheduling in RTEMS

The main point that we need to understand before we start the implementation in RTEMS

is the process scheduling. The process scheduling in the real-time kernel is similar to the

process scheduling in the Linux kernel. We have several task states, semaphores that

protect its execution during the critical sections, and the waiting queue for the tasks which

cannot immediately access a resource.

RTEMS provides �ve states which can be entered by a task during its execution: NON-

EXIST, DORMANT, READY, EXECUTING, and BLOCKED (see Figure 3.4). We de-

scribe these states in the details [11].

• NON-EXIST: The task is not created or is already deleted.

• DORMANT: This state describes the task when it was created but is not started.

This task cannot compete for resources.

• READY: The task is started and it can be assigned to the processor. Also the

task can get this status after the unblocking operation or the yielding operation on

processor.

• EXECUTING: The task is assigned to the processor and can access a resource. The

scheduling algorithms have several criteria's that select the order of tasks execution.

RTEMS SMP provides one executing thread per core.
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• BLOCKED: The task takes this state after a blocking action and it cannot be al-

located to the processor. The task is unblocked only after such actions as resume,

release of resource, or timeout.

The Figure 3.4 [11] shows the connections between each task state in RTEMS.

Figure 3.4: RTEMS task states [11]

The directives rtems_task_suspend,rtems_wake_after, rtems_semahore_obtain, and

rtems_wake_when can change the state of the task to BLOCKED. Meanwhile, using of

such directives as rtems_task_resume, rtems_semaphore_release, and rtems_task_resume

unblocks the task and the state is set as READY. The possible states transitions can be

found in the header �le rtems-smp/cpukit/score/include/rtems/score/statesimpl.h [9].

RTEMS uses a new scheduler that provides a virtual table of functions pointers to

connect scheduler-speci�c code with the existing thread management [5]. The main idea of

scheduler can be de�ned as the management of the tasks in the ready state and the solution

which of the tasks will be run as the next on the processor. The scheduler algorithms are

strictly coupled with the structure de�ned for each processor in the Per_CPU_Control

within the cpukit/score/include/rtems/score/percpu.h [9]. The �elds which are used by a

scheduler in this structure are the pointer to the executing task and to the next task that

is ready to execute.

The scheduler algorithm should provide the connections between the process states. The

multiprocessor scheduling algorithms which are already implemented in SMP have the same
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behavior as the Deterministic and Simple Priority Schedulers. Moreover, they provide the

helping mechanism to force the tasks migration between processors.

We will discuss more details about it in the next Chapter.

3.4 RTEMS Application Programming Interface

We have discussed in Section 3.1 that RTEMS provides two application programming inter-

faces. We use in this thesis one of them called Classic API, because it is already supported

by the system. Meanwhile, the second API called POSIX is still under development [11].

Figure 3.5 [22] presents the managers of RTEMS API.

Figure 3.5: RTEMS Managers [22]

To verify the implemented protocols,the used directives are from the following RTEMS

managers [11]:

• Initialization Manager: it initializes RTEMS, device drivers, the root �lesystem, and

the applications.

• Semaphore Manager: this manager supports synchronization and mutual exclusion.

• Interrupt Manager: techniques for the handling of externally generated interrupts

are provided by this manager.

• Task Manager: it supports all necessary directives to administer tasks.

• Event Manager: this manager provides a mechanism to handle communication and

synchronization among objects in RTEMS.

• User Extension Manager: extension routines are handled by this manager.

• Clock Manager: it provides the time related capabilities.

We will discuss the implementation of the tests application in RTEMS API in Chapter 5.



4 Implementation for New Protocols on

RTEMS

In this thesis we need to implement three resource synchronization protocols which have

not been implemented in RTEMS. There are the Multiprocessor Priority Ceiling Protocol

(MPCP), the Distributed Priority Ceiling Protocol (DPCP), and the Distributed Non-

Preemptive Protocol (DNPP) which we have introduced in Chapter 2.

4.1 Challenges in the Implementation of MPCP

Before we start to discuss the challenges that are in the MPCP implementation in RTEMS,

we need to review the most important features of this protocol. Since the MrsP has been

already implemented under SMP RTEMS, we can leverage on it to quickly get the idea of

the protocol design in RTEMS.

At �rst, the MPCP like the MrsP accesses the global resources directly, we don't need

to use the �xed processors to assign the resources. Furthermore, each semaphore uses a

ceiling priority for each processor. There are three variations between both protocols:

• The MPCP is a suspension-based protocol. The MrsP uses a spinning for the blocked

tasks.

• The waiting queue in the MPCP is ordered by priority of the waiting tasks. The

MrsP uses FIFO ordering.

• The MrsP unlike the MPCP provides a help mechanism to force the tasks migration

between the processors.

The tasks migration is strictly coupled with the scheduling algorithms in RTEMS. The

tasks can migrate between processors due to the several reasons [11]:

• The task can change assigned scheduler using rtems_task_set_scheduler directive

in API.

• Each task can move to another scheduler after unblocking operation.

• By using such protocols as the MrsP or the MPI (Migratory Priority Inheritance).

21
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The integrated tasks migration follows the rules that disable the tasks execution on dif-

ferent processors at the same time. It is performed due to using special indicator in the

task context [11]. The challenge in the implementation of the MPCP is a new scheduler

algorithm that can support MPCP features and avoid the integrated tasks migration in

RTEMS. We will discuss it as the next.

4.2 Implementation of Scheduler for the MPCP

We have introduced the main characteristics of the MPCP in Chapter 2 and presented the

challlenges of the MPCP implementation in Section above. As the next we are going to

describe the scheduler of the MPCP in detail. First, we will discuss how a new scheduler is

con�gured in Subsection 4.2.1. As the next, Subsection 4.2.2 describes the concept which

is used for the implementation of the new scheduler algorithm in the SMP RTEMS.

4.2.1 Con�guring SMP Schedulers

We have discussed in Chapter 3 that it is possible to assign di�erent schedulers to di�erent

processors in RTEMS. Also it is important for an application to divide processors into

clusters. Such clusters with a cardinality of one are called as partitions, which we have

described in Chapter 2. At �rst, a user has to de�ne which scheduler is more preferable for

the application. To date, there are three integrated schedulers in SMP RTEMS: Determin-

istic Priority A�nity SMP Scheduler, Simple Priority SMP Scheduler, and Deterministic

Priority SMP Scheduler [8]. The communication diagram for SMP Scheduler is presented

in Figure 4.1 [8].

Therefore, Deterministic Priority A�nity SMP Scheduler extends Deterministic Priority

SMP Scheduler by threads adding to core a�nity support. The design of SMP Schedulers

is based on the priority scheduling algorithms. It means, that the algorithm will always

select the highest priority task to execute. In general, the priority based algorithm for

the Deterministic Priority SMP Scheduler is implemented as an array of FIFOs with a

FIFO per priority. The Simple Priority SMP Scheduler has the same behavior as the

Deterministic Priority SMP Scheduler, but it proposes only one linked list for all ready

tasks [11]. Our new scheduler extends the Deterministic Priority Scheduler SMP because

we need to implement priority based scheduler that has to include the FIFO ordering per

each priority group of the tasks. RTEMS SMP supports 256 priority levels where the

priority level of one (1) is the highest in the system.

RTEMS as the real-time operation system must been con�gured as Time-Triggered Sys-

tem to guarantee a real-time execution [10]. We need to use the Clock Manager that

provides an abstract parameter Tick. The duration of the ticks in the microseconds and

the number of microseconds for the milliseconds value are con�gured as follows [9]:
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Figure 4.1: Communication diagram for SMP scheduler [8]

1 CONFIGURE_MICROSECONDS_PER_TICK 1000 // 1000 us pro Tick

2 RTEMS_MILLISECONDS_TO_MICROSECONDS(10)

In the case when the scheduler is provided by the user, the following macros have to be

con�gured [9, 11]:

1 CONFIGURE_SCHEDULER_USER

2 CONFIGURE_SCHEDULER_CONTEXT CONFIGURE_SCHEDULER_USER_PER_THREAD

As discussed above, we implement own scheduler for the MPCP which is di�erent from

built-in SMP schedulers. Since the MPCP supports the priority based queue for the ready

tasks, the MPCP scheduler should extend the Deterministic Priority SMP Scheduler. The

scheduler of the MPCP in our implementation is con�gured as follows:

1 CONFIGURE_SCHEDULER_NAME rtems_build_name ( 'M' , 'P ' , 'C ' , ' ' )

2 CONFIGURE_SCHEDULER_CONTEXT \

3 RTEMS_SCHEDULER_CONTEXT_MPCP_SMP( d f l t , \ CONFIGURE

4 _MAXIMUM_PRIORITY + 1 \ )

5 CONFIGURE_SCHEDULER_CONTROLS \

6 RTEMS_SCHEDULER_CONTROL_MPCP_SMP( d f l t , \ CONFIGURE_SCHEDULER_NAME\ )

Furthermore, the scheduler has to be called with the de�nition of the entry points, i.e. the

functions which are developed in the RTEMS core for the scheduling algorithm. We de�ne

these functions for MPCP scheduler as follows:

1 # de f i n e SCHEDULER_MPCP_SMP_ENTRY_POINTS \

2 {

3 _Scheduler_prior ity_SMP_Init ia l ize , /∗ i n i t i a l i z e s chedu l e r entry po int ∗/
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4 _Scheduler_MPCP_SMP_Yield , /∗ y i e l d s chedu l e r node entry po int ∗/
5 _Scheduler_MPCP_SMP_Block , /∗ block thread entry po int ∗/
6 _Scheduler_MPCP_SMP_Unblock , /∗ unblock thread entry po int ∗/
7 _Scheduler_MPCP_SMP_Update_priority , /∗ update p r i o r i t y o f node∗/
8 _Scheduler_default_Map_priority ,

9 _Scheduler_default_Unmap_priority ,

10 _Scheduler_default_Reconsider_help_request ,

11 _Scheduler_default_Ask_for_help ,

12 _Scheduler_MPCP_SMP_Withdraw_node , /∗ withdraw schedu l e r node ∗/
13 _Scheduler_MPCP_SMP_Add_processor , /∗ add proc e s s o r entry po int ∗/
14 _Scheduler_MPCP_SMP_Remove_processor , /∗ remove p roc e s s o r entry po int ∗/
15 _Scheduler_MPCP_SMP_Node_initialize , /∗ i n i t i a l i z e node entry po int ∗/
16 _Scheduler_default_Node_destroy ,

17 _Scheduler_default_Release_job ,

18 _Scheduler_default_Cancel_job ,

19 _Scheduler_default_Tick ,

20 _Scheduler_SMP_Start_idle /∗ s t a r t i d l e task entry po int ∗/
21 SCHEDULER_OPERATION_DEFAULT_GET_SET_AFFINITY

22 }

Unfortunately, there is no document in RTEMS which describes how to properly design

a scheduler. We have to examine condefs.h and scheduler.h [9] to �gure out how the

con�guration of SMP schedulers works. We will discuss more details about it as the next.

4.2.2 Implementation for New SMP Scheduler

We have introduced the basic principles of the MPCP and SMP RTEMS scheduling in

Chapter 3 and 4 respectively. In this Subsection we will introduce the concept of im-

plementation for MPCP scheduler. We have discussed in Section 3.2 that the scheduler

node is important entity in the scheduling concept. The scheduler nodes management in

RTEMS is presented in Figure 4.2 [5].

Figure 4.2: Scheduler node managment in RTEMS [5]
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The scheduler uses two queues of threads to order them by the states. The scheduler

solves which of the scheduler nodes will be executed as the next according the thread

priority and the position in the ready chain. The node from the ready chain can moved to

the executing chain by using of dispatch operation. Conversely, the scheduler node can be

changed from executing to ready state by such functions as preempt and yield. The set of

the blocked threads is protected by the semaphore which is used to control the execution

in the critical section. We will discuss the implementation of functions for the scheduler

in next Subsection.

The count of the scheduler nodes is equal to the count of processors which are used within

this scheduler instance. Each scheduler node provides the tasks execution for exclusive one

processor. The scheduler node can provide the execution of three kind of tasks: owner, user,

and idle. The idle task is a special task with the lowest priority in the system (it is equal 255

for RTEMS) executing when no other tasks are ready to run on the processor. The owner

of the scheduler node is de�ned with a task creation and it cannot be changed during the

living time of the scheduler node [11]. SMP RTEMS provides a special scheduler helping

protocol, which is responsible for the task migrations, it means the user of the scheduler

node can be changed. In the MPCP such tasks migrations have to be avoid.

We have introduced the task states in RTEMS in Chapter 3. RTEMS provides also

scheduler nodes sets to manage nodes that have a scheduler state READY, EXECUTE, and

BLOCKED [9]. The di�erence among these states is important for our implementation. If

the corresponding thread is not ready to execute, a scheduler node has a state BLOCKED.

A scheduler node is in the state SCHEDULED if the corresponding thread is ready and

the processor was already allocated for its execution. The state READY for a scheduler

node means that the corresponding thread is ready, but the processor is not yet allocated

for its execution. Figure 4.3 [9] presents the connections between the scheduler states.

Figure 4.3: Connections between the scheduler nodes states in RTEMS [9]

The states of the scheduler nodes can be changed via the functions: Enqueue_ordered,

Enqueue_scheduled_ordered, and Block. The scheduler node is transformed from the

state READY to the state SCHEDULED only when the executing node was blocked.
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Furthermore, the state node can be switched from SCHEDULED to READY via En-

queue_scheduled_ordered, i.e. when the thread with the higher priority waits for the

execution. The node state can be switched to BLOCKED from both other states by

directly or indirectly blocking.

We will discuss the implementation of these functions in the details.

The main goal of each scheduler is to determine which thread should be executed on

the processor as the next. We call such thread as heir and the thread which is currently

running on the same CPU as executing. The structure that protects the connection between

the heir and executing threads in RTEMS is Per_CPU_Control. RTEMS provides a

special structure called Thread Control Block (TCB) that presents the information about

each thread. TCB includes such important properties of threads as state, priority, and

count of resources. Thread Control Block connects with the related scheduler by using

Thread_Scheduler_control that provides the following properties of the scheduler [9]:

1 typede f s t r u c t {

2 ISR_lock_Control Lock ;

3 Thread_Scheduler_state s t a t e ;

4 const s t r u c t Scheduler_Control ∗home ;
5 s t r u c t Per_CPU_Control ∗cpu ;
6 Chain_Control Wait_nodes ;

7 Chain_Control Scheduler_nodes ;

8 Scheduler_Node ∗ r eque s t s ;
9 Scheduler_Node ∗nodes ;

10 } Thread_Scheduler_control ;

The pointers to Scheduler_Node structure are important to handle the scheduler node

of this thread. The queues for the waiting and scheduling nodes are integrated via

Chain_Control.

RTEMS SMP has already integrated task priority queues that consist of two queues

levels [9, 11]. The �rst level queue is a global queue that provides FIFO order and contains

priority queues of the second level. Each priority queue can be assigned to a single scheduler

instance and holds only the tasks from this scheduler instance. The scheduler instances

select the highest priority task from the �rst priority queue to dequeue in the global queue.

It means, that the concept of integrated task priority queues can be applied to implement

the MPCP that uses the priority order to access a resource and the FIFO order by tasks

of the equal priority.

We have to provide two important scheduler structures for the new MPCP scheduler.

There are Scheduler_MPCP_SMP_Node and Scheduler_MPCP_SMP_Context. Since

we develop the MPCP scheduler based on the Deterministic Priority SMP Scheduler,

the MPCP scheduler uses the structures Scheduler_Priority_SMP_ Node and Sched-

uler_Priority_SMP_Context. These structures provide the following attributes of the

scheduler [9]:
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1 typede f s t r u c t {

2 Scheduler_SMP_Context Base ;

3 Priority_bit_map_Control Bit_map ;

4 Chain_Control Ready ;

5 } Scheduler_priority_SMP_Context ;

1 typede f s t r u c t {

2 Scheduler_SMP_Node Base ;

3 Scheduler_priority_Ready_queue Ready_queue

4 } Scheduler_priority_SMP_Node ;

The attribute Ready_queue in the Scheduler_priority_SMP_Node di�ers the Deter-

ministic Priority SMP Scheduler from the Simple Priority SMP Scheduler.

Now we present the main functions which are provided in MPCP SMP scheduler. The

ready queue of the tasks is controlled by the scheduler rules where the priority order is

speci�ed. The scheduler uses the call-out functions [9] from Subsection 4.2.1 to handle the

scheduling decision.

As discussed in Chapter 3, the scheduler has to prepare several operations that pro-

tect the transactions between tasks. There are Scheduler_MPCP_SMP_Yield, Sched-

uler_MPCP_SMP_Block, Scheduler_MPCP_SMP_Unblock, _Scheduler_MPCP _Al-

locate_processor. These functions for the MPCP SMP scheduler work the same as the

corresponding functions from the Deterministic Priority SMP Scheduler. The function

Scheduler_MPCP_SMP_Block changes the state of the thread from READY or SCHED-

ULED to BLOCKED. It works as the following: at �rst, we call the function Sched-

uler_Block_node to block the own node of our thread, after that we check the status of

the node before the blocking operation and depending on this state the node has to be

removed from the corresponding queues. The function Scheduler_MPCP_SMP_Unblock

executes by the following way. At �rst, we call the function that unblocks the thread on

the corresponding scheduling node, after that the status of the scheduler node should be

checked. If our node has the state READY or BLOCKED, the updating priority opera-

tion has to be provided. We call Scheduler_MPCP_SMP_Yield function in case when

a task voluntarily releases control of the processor. This function is invoked by using the

rtems_task_wake_after directive which blocks the task for the given time interval [11].

The function has to check the status of the node and remove it from the corresponding

queues.

The original function _Scheduler_SMP_Allocate_processor_lazy in score/scheduler-

smpimpl.h [9] forces the tasks migration between processors. The function _Scheduler_MPCP

_Allocate_processor is strictly connected with the function _Thread_Dispatch_update

_heir that can change the status of the node from SCHEDULED to READY.

The previous operations are provided for the tasks transactions, but there are several op-

erations that control the scheduler nodes behavior. These function are Enqueue_ordered,

Enqueue_scheduled_ordered, and Withdraw_node. The Enqueue operations provide the
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updating of two queues that are used in the scheduler: queues of the ready and running

tasks. Withdraw_node in RTEMS is used to change the state of the node from SCHED-

ULED or READY to BLOCKED, it means that this node doesn't have ready tasks for

the execution. The function Withdraw_node is strictly coupled with the function Sched-

uler_block that blocks a thread with respect to the scheduler.

4.3 Implementation of the MPCP

One way to protect the symmetrical access to an exclusive resource is to use semaphores in

RTEMS. The system provides three types of the semaphore: binary, simple, and counting.

The binary semaphore allows nested access that is a di�erence between the simple and

binary semaphores. The counting semaphore is used to protect access not only for the

exclusive resource but also for the multiunit resources [11]. We de�ne the MPCP as binary

semaphore to provide the nested access during its execution.

We have discussed in Chapter 1 the principle of the semaphores construction which

contains of the two main primitives: wait and signal. Each resource can be assigned to

the �xed semaphore. It means that obtaining already blocked semaphore is not allowed

until the targeted resource is available. The processors communicate during their execution

using RTEMS Message Manager. Event and Signal Managers are also used to synchronize

an access to resources in RTEMS. In this case, the blocking processors wait for the special

signal or event from the processors which hold the corresponding resource. In the general

case, two concepts called spinning and suspending can be used for the implementation of

the wait primitive.

Table 4.1 depicts the main characteristics of these types blockings implementation.

Suspending Spinning

Concept

If the resource is not available, the task

is added to the waiting queue.

The processor can run during blocking

time another task.

If an exclusive resource is not

available, the task uses busy

waiting to get a resource.

Use case

The task can be put to sleep. There will

be signi�cant time before the task can

access a resource.

The task has to be always active.

The resource will be available in

reasonably short time.

Cons
The tasks context switch and scheduling

cost.

The wasting of CPU cycles when

the processor uses busy waiting.

Table 4.1: The types of blocking

We need to implement the suspending locking and priority waiting queue for the MPCP.

In RTEMS, there are two variants to order task in the waiting queues based on the FIFO
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and the priority aspects. We can con�gure a new semaphore as _Thread_queue_Operations

_FIFO, _Thread_queue_Operations _priority_inherit, or _Thread_queue_Operations

_Priority. The �rst two con�gurations de�ne the corresponding waiting queues based on

the FIFO ordering. The MPCP has to be con�gured with the variant where we use the

priority waiting queue. The standard operations with the waiting queues are implemented

in the �le src/threadqops.c.

Futhermore, there are several important attributes which characterize the execution in

the critical section under the MPCP. At �rst, the priority of the tasks waiting for a re-

source has to be raised to the ceiling priority of resource. Also we need to guarantee that

priority of the critical section is always higher than the priority of the normal execution

despite of the nominal tasks priorities. The importatnt issue that we consider about is

how to implement the suspending locks and how to protect the highest priority for the

critical sections. We allocate the blocked tasks into the priority based waiting queue that

is assigned to the each resource. We have used for it such function from the thread handler

as _Thread_queue_Enqueue that provides the insertion to the waiting queue without the

busy waiting. For another, we add to the Thread_Control structure the new attribute

called boost. This attribute is set to 1 when the task obtains a resource and set to 0 by re-

leasing of it. Also we have modi�ed the function _Scheduler_SMP_Enqueue_to_schedule

to _Scheduler_SMP_Enqueue_to_scheduled_MPCP. We have implemented the mecha-

nism which disables the normal execution of other tasks when the attribute boost of other

tasks within corresponding processor is not equal to 0. After it, the task entering a crit-

ical section cannot be preempted by any normal tasks execution. Figure 4.4 presents the

�owchart of the tasks which want to access a resource.

At �rst, each task must check whether the owner of the resource is set to NULL or not.

If the owner is NULL, then we raise the priority of the task to the ceiling level. Then we

need to set our task as the owner of the resource and start to execute it. In the case when

the resource is already used by another task, we raise the priority to the ceiling level and

put it to the waiting queue that is ordered by the priority. The prohibition of the nested

resource access is implemented as the updating of the resources status as UNAVAILABLE.

Such design can ensure that only one task can access a resource with the ceiling priority

at the same time. All other tasks will be inserted into waiting queue where the tasks are

suspended until the receiving of a signal.

The directive rtems_semaphore_obtain is used to acquire the corresponding semaphore.

Figure 4.5 depicts the UML sequence diagram which presents the sequence of the functions

starting from the application calling rtems_semaphore_obtain directive.

The semaphore calls the function get_owner, which receives the owner of the resource

and calls the thread handler to add the corresponding thread to the priority node. The

thread calls then Update_priority to provide the changes in the scheduler. The alt label

de�nes if/else operator. When the owner of the resource is equal to NULL, the thread is set
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Figure 4.4: The �owchart of critical section under MPCP

as the owner by the semaphore handler. The thread executes the function Dispatch_thread

and changes the state of the thread to EXECUTE. If the resource is already used by another

thread, the blocked thread is inserted in the waiting queue by the thread queue handler.

The semaphore calls the Thread Queue handler to protect the forbidden of the nested

resource access. When the executing task calls the directive rtems_directive_release the

semaphore dequeues the �rst task from the waiting queue and adds it in the ready chain.

Then the priority of the calling task is returned to the nominal priority. Figure 4.6 presents

the UML sequence diagram which shows the functions sequence starting from the applica-

tion calling rtems_semaphore_release directive.

After the application executes rtems_semaphore_release, the semaphore calls the func-

tion, which de�nes the actual owner of the resource and changes its priority from the ceiling

to the nominal level. As the next the Thread Queue handler returns the next task in the

queue which is ready to execute. The semaphore executes the extract_critical function

from the Thread Queue Handler which calls the function Unblock to the scheduler. As the

result, the state of this task is changed from the BLOCKED to EXECUTE and the header

task starts its execution.

According to the MPCP theory that was discussed above in Chapter 2, the tasks priority

is raised to the ceiling priority after the task obtains a semaphore. This feature is provided

by calling MPCP_Raise_priority function which increases the real priority level of the
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Figure 4.5: UML sequence diagram rtems_semaphore_obtain method

calling task to the ceiling priority. The ceiling priority is de�ned for the each semaphore

after the execution of the directive rtems_semaphore_set_priority.

We have discussed that the tasks migration is forbidden in the MPCP scheduler. The

assignment of the tasks on the processors is executed with the directive task_set_sched

uler, where are de�ned the task, corresponding processor and the nominal priority of the

task. In the application we have to connect the schedulers and the processors with the

directive rtems_scheduler_ident.

Figure 4.7 depicts the UML sequence diagram which presents the sequence of the func-

tions starting from the application calling task_set_scheduler directive.

The application calls the function task_set_scheduler, which assigns the tasks to the

processors and calls the thread handler to add the corresponding thread to the scheduler.

The thread calls Scheduler_Block and Scheduler_Unblock to provide the changes in the

scheduler. These functions are executed only for the tasks in the READY state. The

Scheduler calls the function Chain_Extract_Unprotected and Chain_Initialize to set the

new scheduler which must be not equal to the previous one.
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Figure 4.6: UML sequence diagram rtems_semaphore_release method

The directive task_set_scheduler can be used also to provide a new tasks priority. The

scheduler runs the function Scheduler_node_set_priority to set up the new priority.

After the MPCPs implementation in the header �les score/mpcpimpl.h and score/m-

pcp.h we need to con�gure the new semaphore. MPCP is con�gured as follows:

1 RTEMS_BINARY_SEMAPHORE|RTEMS_PRIORITY|RTEMS_MULTIPROCESSOR_PRIORITY_CEILING

It means that we use the semaphore to access a single resource where the tasks are ordered

by priority in the waiting queue. The attribute RTEMS_MULTIPROCESSOR _PRI-

ORITY_CEILING is connected with the functions from score/mpcpimpl.h. In general,

the semaphores attributes are connected with each other by a bitwise OR operator. It is

important to de�ne a new attribute in the header �le rtems/attr.h correctly. We set the

MPCP attribute as follows:

1 #de f i n e RTEMS_MULTIPROCESSOR_PRIORITY_CEILING 0x00000072
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Figure 4.7: UML sequence diagram set_scheduler method

After the determination of all attributes we have check the identity of the implemented

protocol, i.e. there are any already existing objects with the equal check sum. For ex-

ample, if we de�ne RTEMS_MULTIPROCESSOR _PRIORITY_CEILING attribute as

0x00000068 the check sums of the MPCP and the PCP will be equal through the initial-

ization of the attribute RTEMS_PRIORITY_CEILING as 0x00000080. Such con�icts

problem has the signi�cant impact to both protocols execution and should be avoided by

de�nition of the new attributes. The con�guration for directive rtems_semaphore _cre-

ate is provided in the rtems/src/semcreate.c. We connect the calling rtems_semaphore

_create in API with the core function _MPCP_Initialize as the following [9]:

1 case SEMAPHORE_VARIANT_MPCP:

2 s chedu l e r = _Thread_Scheduler_get_home ( execut ing ) ;

3 p r i o r i t y = _RTEMS_Priority_To_core ( scheduler , p r i o r i t y_c e i l i n g , &va l i d ) ;

4 i f ( v a l i d ) {

5 s t a tu s = _MPCP_Initialize (
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6 &the_semaphore−>Core_control .MPCP, scheduler , p r i o r i t y , execut ing , count ==0

7 ) ;

8 }

9 e l s e {

10 s t a tu s = STATUS_INVALID_PRIORITY;

11 }

12 break ;

The direktives rtems_semaphore_obtain, rtems_semaphore_release, rtems_semaphore

_delete, rtems_semaphore_set_priority, and rtems_semaphore_�ush are connected with

the corresponding MPCP functions by the same way.

The correct con�guration of the semaphore is the key point to the protocols execution.

Unfortunately, RTEMS provides no document about the con�guration of new semaphore.

We refer to the design of the MrsP to con�gure the MPCP. The corresponding changes

have to be done for each semaphore in the following kernel �les [9]:

• rtems/src/: semcreate.c, semobtain.c, semrelease.c, sem�ush.c, semdelete.c, semset-

priority.c

• sapi/include/confdefs.h

• libmisc/monitor/mon-sema.c

• rtems/include/rtems/rtems/semimpl.h, sem.h

• rtems/include/rtems/rtems/attr.h, attrimpl.h.

We need to verify that the protocol works as expected. The veri�cation of the MPCP

will be described in next Chapter.

4.4 Challenges in the Implementation of the DPCP

As we have discussed in Chapter 2, the DPCP uses the PCP as the base for the execu-

tion on each processor. It means that we can use the MPCP to implement the DPCP.

The di�erence between these two protocols is the migration of the critical section to

the speci�c processor, called synchronization processor [4]. The most important issue

that we have is to implement such migrations mechanism dynamically. The new API

directive rtems_task_create_dpcp with the special attribute scheduler_id should be cre-

ated. The corresponding task is connected with the processor by the function _Sched-

uler_Get_by_id. To date, RTEMS initializes the threads statically. It means, that all

threads are assigned to the processor with the index 0 automatically by their creation (see

cpukit/score/src/threadinitialize.c [9]). So we have to change the �les which are connected

with the Thread handler. Due to the limited time execution for the bachelor thesis, we

implement the DPCP statically. The development of the corresponding directives for the

dynamic execution can be considered as the future work.
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4.5 Implementation of the DPCP

We have discussed the principles of the DPCP in Chapter 2. Based on that, we have to

implement the migration mechanism, which is provided for the execution of the critical

sections on the synchronization processor. The type of the tasks blocking and the ordering

within the waiting queues are equal to the corresponding features in the MPCP. The mi-

gration mechanism for the DPCP includes two parts. The �rst one is provided for the tasks

migration to the synchronization processor. Then we have to consider the mechanism to

migrate back on the application processor after the execution in the critical section. When

the tasks calls the directive rtems_obtain_semaphore, the corresponding task migrates to

the synchronization processor with the function _DPCP_Migrate, which assigns the task

to the speci�c CPU with calling of the directive _Thread_Set_CPU.

1 RTEMS_INLINE_ROUTINE void _DPCP_Migrate(

2 Thread_Control ∗ execut ing ,

3 Per_CPU_Control ∗cpu
4 )

5 {

6 _Thread_Set_CPU( execut ing , cpu ) ;

7 }

The tasks migrate to the synchronization processor only in the cases when the current

owner of the resource is NULL or the resource is obtained by other task at the moment. It

means, that the tasks are in the states EXECUTING or BLOCKED on the synchronization

processor. So we have modi�ed the code [9] of the function _Size which is connected with

rtems_semaphore_obtain directive as follows:

1 RTEMS_INLINE_ROUTINE Status_Control _DPCP_Seize(

2 DPCP_Control ∗dpcp ,
3 Thread_Control ∗ execut ing ,

4 bool wait ,

5 Thread_queue_Context ∗queue_context

6 )

7 {

8 const Scheduler_Control ∗ s chedu l e r ;
9 Status_Control s t a tu s ;

10 Thread_Control ∗owner ;
11 Scheduler_Node ∗ scheduler_node ;

12 Per_CPU_Control ∗cpu_semaphore = _Per_CPU_Get_by_index(1 ) ;

13

14 _DPCP_Acquire_critical ( dpcp , queue_context ) ;

15 owner = _DPCP_Get_owner( dpcp ) ;

16

17 i f ( owner == NULL )

18 {

19 s t a tu s = _DPCP_Set_new( dpcp , execut ing , queue_context ) ;
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20 _DPCP_Migrate( execut ing , cpu_semaphore ) ;

21 }

22 e l s e i f ( owner == execut ing )

23 {

24 _DPCP_Release ( dpcp , queue_context ) ;

25 s t a tu s = STATUS_UNAVAILABLE;

26 }

27 e l s e i f ( wait )

28 {

29 s t a tu s = _DPCP_Wait( dpcp , DPCP_TQ_OPERATIONS, execut ing , queue_context ) ;

30 _DPCP_Migrate( execut ing , cpu_semaphore ) ;

31 }

32 e l s e

33 {

34 _DPCP_Release( dpcp , queue_context ) ;

35 s t a tu s = STATUS_UNAVAILABLE;

36 }

37 re turn s t a tu s ;

38 }

The function _DPCP_Surrender which is connected with rtems_semaphore_release di-

rective is modi�ed by the same way. We de�ne the processor assigned by the tasks cre-

ation as the application processor and execute the function _DPCP_Migrate. We have

created a new scheduler Scheduler_Priority_DPCP, which uses the functions from Sched-

uler_Priority_MPCP with the exception of boosting function. We have discussed in Sec-

tion 2.3 that the normal execution of the higher priority tasks cannot be preempted by

any critical sections of other tasks [4]. It means that the boosting function is redundant

for the DPCP.

For the con�guration of the DPCP will be applied the similar way described in Section

4.3 After the implementation of the new protocols in RTEMS core we have to verify their

correct behavior. We describe the tests execution for the DPCP in detail in next Chapter.

4.6 Implementation of the DNPP

As we have discussed in Section 2.4, the DNPP works similar to the DPCP. The resources

assigned to the speci�c synchronization processors. Meanwhile, the normal execution is

running on the application processors, where the tasks order by priority.

To implement the DNPP we concentrate only on non-preemption part during execu-

tion in the critical section. It means, that the priority of the tasks executing critical

section has to be raised to the highest priority level in the system. After releasing of

the resource the task is running with its nominal priority. We implement a new function

_DNPP_Set_Ceiling, which increases the ceiling priority to the 1 (that is the highest

priority level in RTEMS) when the task enters a critical section.
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1 RTEMS_INLINE_ROUTINE void _DNPP_Set_Ceiling (

2 DNPP_Control ∗dnpp ,
3 const Scheduler_Control ∗ s chedu l e r
4 )

5 {

6 uint32_t scheduler_index ;

7

8 scheduler_index = _Scheduler_Get_index ( s chedu l e r ) ;

9 dnpp−>c e i l i n g_p r i o r i t i e s [ scheduler_index ] = 1 ;

10 }

The function _DNPP_Set_Ceiling is called from the function _DNPP_Seize. It means

that the priority of the task is raised to 1 when it obtain a semaphore and moves to the

synchronisation processor for the execution. Increasing of priority to the highest level can

guarantee that once a task enters a critical section, it can not be preempted by any other

tasks. Futhermore, the task is updated with the new priority after adding of the task in

the waiting queue in the case when the resource is not available now. It guarantees that

the tasks are ordered in the waiting queue according their nominal priorities. Due to the

similarities with the DPCP we use Scheduler_Priority_DPCP for the DNPP. After the

implementation of DNPP we should con�gure it in RTEMS. Due to the similarities to the

DPCP, the con�guration of the DNPP looks as follows:

1 RTEMS_BINARY_SEMAPHORE | RTEMS_PRIORITY |RTEMS_DISTRIBUTED_NO_PREEMPTIV

1 #de f i n e RTEMS_DISTRIBUTED_NO_PREEMPTIV 0x00000081

All other con�guration are the same as by the MPCP and the DPCP (see Section 4.3).

After the implementation of the DNPP we need to verify that the protocol works as we

need. We will discuss the veri�cation of the speci�c DNPP features in Section 5.4.
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The veri�cation of the implemented protocol takes important place in this thesis. It helps

to verify whether the protocol executes properly. At �rst we present the veri�cation for the

general routine in Section 5.1. Section 5.2 describes the veri�cation for the MPCP. Then

we report on the testing of the DPCP in Section 5.3. Section 5.4 represents the veri�cation

for the DNPP. Finally, we describe the overheads measurement in Section 5.5.

5.1 Veri�cation for the General Routines

As was presented in Chapter 2, we consider the global resources without nested access.

The local resources which are accessed via the PCP protocol on each processor are not

the part of this thesis. We execute the test to control of the nested access as follows. The

resource is obtained more than once by one task at a time. After it we should get the

status RTEMS_UNSATISFIED if the protocol was implemented correctly.

Also we have to consider how to check the prohibition to unblock of all tasks waiting for

the same resource. The protocol has to return the status RTEMS_NOT_DEFINED after

the execution of the �ush directive.

We provide a test case that has to check the protocols behavior by obtaining of the

initially locked semaphore. In the test example initially_locked_error we create the

semaphore with the count attribute equal to zero. It means that this resource was al-

ready obtained by another task which has decremented the count attribute by one, i.e the

resource is become available only by the positive value. The protocol has to set the status

code to RTEMS_INVALID_NUMBER.

We have implemented the applications smpmpcp01/init.c, smpdpcp01/init.c, and sm-

pdnpp01/init.c which veri�cate the implemented protocols for the routines described above,

respectively the results of the all test cases are successful. The veri�cations of the speci�c

protocols features are described as the next.

5.2 Veri�cation for the MPCP

We have implemented the application mpcp02/init.c that includes such test examples as

multiple_obtain, obtain_critical, ceiling_priority, block_critical, and critical_semaphore.

The setting of the same starting time for the tasks is necessary condition for several tests ex-

38
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ecution. The symmetrical tasks execution can be obtained with using rtems_task_suspend

and rtems_task_resume directives. The directive rtems_task_suspend blocks the task

speci�ed by id. The directive rtems_task_resume removes the corresponding task from

the suspended state. The symmetrical execution can be provided by additional using of

the rtems_task_wake_up directive, which obtains a sleep timer for the calling task. The

sleep timer allows a task to sleep for a corresponding time interval in ticks. The task is

blocked by the scheduler for the given interval, after which the task is unblocked. The

state of the calling task is changed to BLOCKED and then is returned to READY.

We use Event and User Extensions Managers to track the �ow of the protocols exe-

cution. The applications for the MrsPs veri�cation provide the mechanism which traces

the protocols execution. Each test case includes the functions reset_switch_events and

reset_print_events. The �rst one is used to reset the switch_index argument for each

test case. The function reset_print_events has to give out such parameters as cpu in-

dex, executing thread, heir thread, heir node, and the priority. The initial extensions are

con�gured as follows [9]:

1 #de f i n e CONFIGURE_INITIAL_EXTENSIONS \

2 { . thread_switch = switch_extens ion } , \

3 RTEMS_TEST_INITIAL_EXTENSION

We will use the CPU usage statistic manager to control the executing time of the tasks

on each processor. The directives rtems_cpu_usage_report and rtems_cpu_usage_reset

are provided to check the report of the processors usage by the tasks. This report contains

the following information:

• task id

• task name

• execution time in ticks

• percent's of the execution time for each task

The �rst feature to veri�cate is a preemption the critical section by another critical

section with the higher ceiling priority. It is implemented in the block_critical example.

For this test case we created two tasks and two semaphores with the di�erent ceiling

priority. The tasks obtain the semaphores consequentially. If the MPCP was implemented

correctly, the critical section with the lower ceiling is blocked. Figure 5.1 shows the expected

behavior of the MPCP for this test case.

This application executes correctly for the MPCP. Figure 5.2 presents the report of the

CPU usage for the tasks and the execution �ow for the test block_critical. This report

indicates that the system has two processes due to two IDLE tasks, which are the lowest

priority tasks in RTEMS. Thery are executed on the CPU when there are any other tasks

ready to run on this processor.

Moreover, we have the initialization task which is con�gured in the �le sapi/include/-

confdefs.h as the task with the name UI1 with the priority equal to 1. This task is respon-
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Figure 5.1: The timeline of block_critical test for MPCP

sible for the creation of other tasks in the application. The user can change the name and

the priority of this task with the following de�nitions [9]:

1 #de f i n e CONFIGURE_INIT_TASK_NAME

2 #de f i n e CONFIGURE_INIT_TASK_PRIORITY

In our test examples we con�gured the initial task UI1 as the task named MAIN with the

nominal priority 3.

In the next tests we present only the �ow of tasks execution without CPU usage statistic

report.

We have implemented the example critical_semaphore where we test the execution of

the tasks which access a resource on two processors. We check the case when these two

tasks obtain a semaphore at the same time and the resource is accessed by a task with the

higher nominal priority. The test critical_semaphore runs as was expected. The behavior

of MPCP is correct for this test case.

Also we have to check the behavior of MPCP for the multiple resources. We create the

test function multiple_obtain to control the access to several resources by the tasks on

the di�erent processors. The task named �RUN� is set to CPU 1 and acesses a resource.

Meanwhile the task �MAIN� accesses two resources on CPU 0. The task �MAIN� obtains

the resources with the ceiling priority 1 and 2 consequentially. Figure 5.3 presents the

exepted tasks execution.
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Figure 5.2: The output of block_critical test for MPCP

Figure 5.3: The timeline of multiple_access test for MPCP

Figure 5.4 presents the results of multiple_obtain tests execution. As the next we check

that the critical section has higher priority than any normal execution of the same processor

in the function obtain_critical. We have created several tasks with the di�erent priorities

and one semaphore. The task with the lower nominal priority obtaines a semaphore that

is already updated with the ceiling priority. Meanwhile, the task with the higher priority
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Figure 5.4: The output of multiple_access test for MPCP

is started to execute on the same processor. The task obtaining a semaphore should block

the task in the normal execution. Figure 5.5 depicts the exepted tasks execution.

Figure 5.5: The timeline of obtain_critical test for MPCP

The results are presented in Figure 5.6. The task called HIGH is blocked during the

critical section of task LOW, despite of the higher nominal priority. As the next we will

discuss the veri�cation for the DPCP.
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Figure 5.6: The output of obtain_critical test for MPCP

5.3 Veri�cation for the DPCP

Because the behavior of the DPCP on the each core is the same as by the PCP (as was

discussed in Section 4.5), we can concentrate only on the speci�c features of the DPCP. We

have implemented two applications to test the DPCP. The application called test_normal

checks the execution of two tasks with the di�erent priorities. One of the tasks obtains

the resource and migrates on processor 1, which is de�ned as synchronization processor.

After the execution in the critical section, the task returns to the application processor.

Meanwhile, the second task runs on the application processor, due to the exclusively normal

execution. Figure 5.7 represents the �ow of the tasks execution under test_normal.

Figure 5.7: The timeline of normal_test for DPCP
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Figure 5.8 shows the execution of test_normal for the DPCP.

Figure 5.8: The output of normal_test for DPCP

The second application test_critical is used to test the protocols behavior when two tasks

access two resources. The mechanism of the execution on the synchronization processor

is the same as on the application processor. It means that the critical section can be

preempted other critical section with the higher ceiling level. We have created two tasks

with the di�erent priorities. The task called LOW obtains the resource 1 with the higher

ceiling than by the resource 2 which is accessed by the task HIGH. The execution of HIGH

task on the synchronization processor should be blocked by LOW task, despite of the

nominal tasks priorities. The expected tasks execution is represeted in Figure 5.9

Figure 5.9: The timeline of critical_test for DPCP

The results which we have after execution critical_test are presented in Figure 5.10
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Figure 5.10: The output of critical_test for DPCP

We can notice that the behavior of the DPCP is correct for the test cases described

above. The veri�cation for the DNPP will be presented as the next.

5.4 Veri�cation for the DNPP

In this Section we concentrate on veri�cation of the speci�c DNPPs feature, which di�ers

the DNPP from the DPCP. As we have discussed in Section 2.4 the preemprion of task

in the critical section is strictly forbidden in the DNPP. Meanwhile, the DPCP allows the

critical sections preemption by other critical sections with the higher ceiling priority. We

implement application for the veri�cation of this DNPPs feature. Two resources with the

di�erent ceiling priorities are obtained by two tasks. The task named LOW which obtains

a resource with the lower ceiling priority (equal to 6) can not be preempted by a task

accessed a resource with the higher ceiling (equal to 2). The priority of the tasks which

enter a critical section are raised to the level equal to 1, that quarantees the non preemption

part of the DNPP. The tasks which obtain a semaphore migrate to the synchronization

processor (CPU 1). Meanwhile, the normal execution of tasks are run on the apllication

processor (CPU 0). It means, that the DNPPs features which cover DPCPs behavior

and speci�c non preemprion part of DNPP are executed correctly. Figure 5.11 shows the

DNPPs behavior for the case described above.
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Figure 5.11: The timeline of DNPP_critical test

The results of applications execution are presented in Figure 5.12.

Figure 5.12: The output of DNPP_critical test

These examples are executed for the DNPP correctly.

5.5 Overheads Measurement

In practice, run-time overheads have signi�cant impact on the protocols performance.

The processors can consume signi�cant overhead to provide the operations like obtain
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resource, release resource, tasks migration between processors, etc. We use two direc-

tives to measure the protocols performance in RTEMS: rtems_semaphore_release and

rtems_semaphore_obtain. Obtaining resource updates the priority of the calling task to

the ceiling level and initializes the MCS lock. The procedure of releasing resource returns

the tasks priority level to the nominal and updates the resource holder [3].

We have prepared special test called test_mpcp_overhead, which is created to measure

the overhead by the execution of rtems_semahore_obtain and rtems_semaphore_release

directives. The current tick's value can be returned by using of rtems_clock_get_ticks

_since_boot directive. We call it two times to measure ticks value at the start and the

end of the corresponding directives execution. This experiment is provided several times

de�ned by the counter. The duration of the ticks in the microseconds is con�gured for

these expreriments as follows [9]:

1 CONFIGURE_MICROSECONDS_PER_TICK 30 // 30 us pro Tick

The test will be executed with one exclusive resource for each task. We measure the

minimum, maximum, and average of the time that is needed by the task to obtain and to

release a resource.

The results for the MPCP are presented in Table 5.1:

max. min. avg.

obtain procedure 56 ms 0,02 ms 12 ms

release procedure 54 ms 0,01 ms 18 ms

Table 5.1: The overhead of obtaining and releasing procedures for MPCP

We provide the same experiments for the MrsP. The results are presented in Table 5.2.

max. min. avg.

obtain procedure 65 ms 0,05 ms 18 ms

release procedure 72 ms 0,04 ms 23 ms

Table 5.2: The overhead of obtaining and releasing procedures for MrsP

Table 5.3 and 5.4 depicts the overheads results for the DPCP and the DNPP respectively.

max. min. avg.

obtain procedure 85 ms 0,03 ms 21 ms

release procedure 93 ms 0,03 ms 34 ms

Table 5.3: The overhead of obtaining and releasing procedures for DPCP
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max. min. avg.

obtain procedure 92 ms 0,05 ms 26 ms

release procedure 102 ms 0,08 ms 42 ms

Table 5.4: The overhead of obtaining and releasing procedures for DNPP

From the results shown on the tables, several points can be concluded. Firstly, the

MPCP has the lower overheads than the MrsP. Secondly, the higher overhead by the

MrsP can be caused by the help mechanism which forces the tasks migration between

processors. And �nally, the DPCP and the DNPP have the highest overheads due to

tasks migration between application and synchronization processors during obtaining and

releasing procedures.



6 Conclusion

The goal of this thesis is to analyze and implement resource synchronization protocols for

multiprocessor system based on RTEMS. We have analyzed the theories of the most known

resource synchronization protocols and the implementation of already integrated protocols

in RTEMS to �nd out the way for the new development.

6.1 Summary and Future Work

To make the implementation of the resource synchronization protocols better to under-

stand, we introduced in Chapters 2 and 3, the theory of these protocols and the basic

knowledges about real-time operation system RTEMS. RTEMS is a competitive and a

modern RTOS, which provides the symmetric, asymmetric, and distributed multiprocess-

ing. In Chapter 4 , we focused on the structure and the features of the SMP support in

RTEMS. Unfortunately, the work on the SMP features is still in a progress and there is no

o�cial RTEMS document which describes the implementation for the SMP in the details.

We have to examine the current code of SMP to �nd out how the protocols and schedulers

have to be implemented in RTEMS.

We have analyzed the already implemented protocols for the resource synchronization

access for the uni- and multiprocessors. In particular, we have learned the MrsP imple-

mentation to �nd out the way to develop new protocols, the MPCP, the DPCP, and the

DNPP.

We have provided the new schedulers to avoid tasks migrations during its execution

between processors, priority ordering for the waiting queue, suspending instead of the

spinning for the locking, and the mechanism which supports migrations of the critical sec-

tions to the speci�c processor. The new implemented protocols are veri�ed in Chapter

5. We provided various test cases which obtain the general concepts of resource synchro-

nization protocols and the speci�c features of the corresponding protocols. Also we have

measured the overhead of the procedures of obtaining and releasing for each considered

protocols.

Overall we can notice that RTEMS is a good choice for the implementation of the resource

synchronization protocols for the multiprocessor due to the integrated SMP support. But

there are many open areas in the SMP research in RTEMS, in particular the integrated

49
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tools for the worst time analysis and system tracing. Also the implementation of new SMP

scheduling algorithms is an important evolution for RTEMS [5].

As mentioned in Section 4.4, the development of the DPCP has to be continued, in

particular switching from the static to the dynamic execution. The new API directive

rtems_task_create_dpcp has to be created, where the user can de�ne the speci�c proces-

sor for the tasks execution.
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