
Systems with Dynamic Real-Time Guarantees in Uncertain and
Faulty Execution Environments

Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang, and Jian-Jia Chen
Department of Informatics

TU Dortmund University, Germany

Abstract—In many practical real-time systems, the physical
environment and the system platform can impose uncertain
execution behaviour to the system. For example, if transient
faults are detected, the execution time of a task instance can
be increased due to recovery operations. Such fault recovery
routines make the system very vulnerable with respect to meeting
hard real-time deadlines. In theory and in practical systems, this
problem is often handled by aborting not so important tasks to
guarantee the response time of the more important tasks. However,
for most systems such faults occur rarely and the results of not
so important tasks might still be useful, even if they are a bit
late. This implicates to not abort these not so important tasks but
keep them running even if faults occur, provided that the more
important tasks still meet their hard real time properties. In this
paper, we present Systems with Dynamic Real-Time Guarantees to
model this behaviour and determine if the system can provide full
timing guarantees or limited timing guarantees without any online
adaptation after a fault occurred. We present a schedulability test,
provide an algorithm for optimal priority assignment, determine
the maximum interval length until the system will again provide
full timing guarantees and explain how we can monitor the system
state online. The approaches presented in this paper can also be
applied to mixed criticality systems with dual criticality levels.

1 Introduction
Continuous technology scaling has introduced multiple threats
that reduce the reliability of computing hardware, not only in
the memory hierarchy but also in the logic components [4],
[25], [29]. Such reliability threats include soft errors, aging,
and process variations. Specifically, the soft errors known as
transient faults of the computing hardware or the memory
subsystem are typically due to high-energy particle strikes.
Without fault-tolerance design in mind, a transient fault can
corrupt the correct application execution state, and lead to
wrong execution results or even system failure. There are
several well-known techniques to handle such faulty execution
behaviour, both from hardware and software perspectives.

• Retry/Re-execution [24]: to eliminate the effects of a
fault, re-execution can be adopted. However, the number
of re-executions per job must be limited if hard real-
time guarantees must be provided. One way is to set the
maximal trials based on the acceptable quality of service.

• Checkpoint-based recovery [13]: The idea of checkpoint-
ing is to save the state of task instances at multiple points
within the execution. If faults are detected at a checkpoint,
a rollback to the task’s execution state at the previous
checkpoint is performed. A sanity or acceptance test must
be enforced to check the values of data variables and
contents of registers at every checkpoint. This ensures
that only a smaller part of the task has to be re-executed
but leads to a higher overhead due to more acceptance
tests, checkpoint creation, and possible rollbacks.

• Hardened components: In most hardware-based tech-

niques, the regular component can be hardened to prevent
faults to affect the execution. This requires additional
gates or die area. Such techniques include, for exam-
ple, voting mechanisms [17], instruction set customiza-
tions [8], simultaneous and redundant threads [28].

• Vulnerability-aware adaptation of Dual Modular Redun-
dancy (DMR) and Triple Modular Redundancy (TMR):
DMR and TMR are well-known redundancy approaches
in hardware and software perspectives. With different
amounts of replicas, the protected task can be enhanced
with different levels of dependability.

When the fault rate is usually expected to be low, the
software techniques presented above can be applied; otherwise,
the hardware should have been hardened to be more robust
against the potential faults. Therefore, since faults occur rarely,
we should not consider the additional workload due to the fault
recovery mechanisms as normal execution behaviour.

Consider the following simple execution model. A control
task is protected by a re-execution mechanism. After finishing
the computation, a fault detection mechanism verifies whether
the results are correct. If no fault is detected, the output of the
first run of the task is applied; otherwise, the task is re-executed
and the new output is applied as the result of the computation
without an additional fault detection. Suppose that the worst-
case execution time (WCET) of the first run excluding the time
for fault detection is X time units and that the fault detection
takes additional 20% of WCET. This means that in the normal
situation when there is no fault, the WCET of this task is 1.2X
time units, but the WCET of this task becomes 2.2X time units
when a fault is detected and the task has to be re-executed.

In all fault tolerance and recovery mechanisms mentioned
above, the prolongment of the WCET is generally unavoid-
able. Depending on the applied fault detection, fault recovery,
and checkpointing mechanisms, the ratio of the WCET with
recovery to the WCET without recovery can differ largely. On
the one hand, re-executing the whole task once (or twice) with
a fault detection at the end of the task’s execution will lead to
nearly double (or triple) the WCET if recovery has to be done,
as the whole task has to be re-executed while the fault detection
mechanism will usually have a much smaller runtime than the
task itself1. On the other hand, checkpointing will usually only
lead to a smaller increase of the WCET if error recovery has
to be done, as only a part of the task has to be re-executed.
However, checkpointing may introduce a larger overhead for
the fault detection than in the case where the whole task is
re-executed, as a number of checkpoints have to be created
during the execution and fault detection has to be done for
every checkpoint.

1If not, one could use sequential DMR directly.

Since faults are supposed to happen rarely, it would be
more meaningful not to consider the WCET with recovery
all the time to avoid over-dimensioning the system resources.
However, if so, the problem is to handle the occasional/rare
fault events properly. Specifically, we would like to ensure
that such fault events do not completely destroy the timing
guarantees that can be provided for real-time applications.
Such fault events can be modelled as overshoots. Kumar
and Thiele [21] proposed a Rare-Event with Settling-Time
(REST) model, and explored how to quantify the response
time bound by considering overshoots and the settling-time of
overshoots, based on real-time calculus. Quinton et al. [26],
[27], Hammadeh et al. [19] and Wu et al. [32] developed
methods to compute the worst-case response time and the
number of potential deadline misses in a given sequence
of events with potential rare events that make the system
overloaded. All papers mentioned above assumed that deadline
misses are tolerable and tried to quantify the deadline misses.

In this paper, we consider the alternative to only allow
some predefined tasks to miss their deadline occasionally, if
some tasks overshoot in uncertain or faulty execution environ-
ments. This means, we would like to maintain the deadline
satisfactions for all tasks when the system runs normally.
If faults occur, we allow that some timing tolerable tasks
miss their deadlines while still giving timing guarantees for
the timing strict tasks. The timing tolerable tasks should still
have bounded tardiness even if faults occur. For example, in
an unmanned aerial vehicle (UAV) or a service robot, the
tasks in the flight control system and in the body balancing
system, respectively, are more important than the tasks in the
surveillance system. If the system runs normally, all tasks are
important and should meet their deadlines; however, the tasks
in the surveillance system can tolerate some deadline misses, if
faults take place. As soon as the impact of the faults has been
resolved, the system should return to run all tasks normally
and all deadlines should be satisfied again.

We propose a general model and use error recovery as an
important special case to motivate this paper. However, the
applicability of the model is quite general to consider rare
overshoots and overloaded situations for real-time sporadic
task systems. With different execution behaviour, the system
state may change between normal execution and abnormal ex-
ecution. This leads to a natural connection to mixed-criticality
systems [31]. Identifying whether the system runs normally
or abnormally is needed if the scheduling policy has to be
adaptive. However, such identifications and adaptations can be
costly. A simple solution is to use fixed-priority preemptive
scheduling regardless of the faults, since it is assumed that
faults only occur rarely. If the system behaves correctly, we
only need an online monitor mechanism to safely identify the
execution correctness with respect to timing.

Connections to Mixed-Criticality Systems: Our studied
problem is highly linked to the topic of mixed-criticality
systems that has been widely studied since the seminal research
by Vestal in [31] in 2007. Specifically, in a dual-criticality
system, the system can be in the high-criticality or in the
low-criticality mode. If the system enters the high-criticality
mode, only timing guarantees for tasks that are marked as
high-criticality have to be provided. If the system is in the low-
criticality mode, all tasks have to be guaranteed to meet their
deadlines. Therefore, we can imagine that the system is in the
low-criticality mode if full timing guarantees are needed and in

the high-criticality mode if only limited timing guarantees are
provided. Please refer to the survey by Burns and Davis [9] for
a detailed overview and review of mixed-criticality systems.

However, in most research results regarding mixed-
criticality systems, the identification of the criticality mode
of the system is not considered, i.e., such mode changes are
assumed to be provided. The system only switches from the
low-criticality to the high-criticality mode once, without ever
returning to the low-criticality mode. Moreover, in most stud-
ies, the low-criticality tasks are considered to be second-class
tasks that are either ignored, skipped, or run with best efforts as
background tasks. The model has received criticism as system
engineers claim that it does not match their expectations.
Specifically,

• the low-criticality tasks should not be abandoned, as the
low-criticality tasks are still critical, and

• it should be possible for the system to return from the
high-criticality mode to the low-criticality mode after a
sufficient amount of time.

For such criticism, please refer to Esper et al. [16], Ernst and
Di Natale [15], and Burns and Davis [9, Section 6].

The proposed System with Dynamic Real-Time Guarantees
does not have these drawbacks, as low-criticality tasks are
never abandoned but run with guaranteed bounded tardiness
and the system can dynamically change from the low criticality
mode to the high criticality mode and vise versa as often
as necessary. Furthermore, as neither online adaptation nor
dynamic scheduling decisions or priority changes are part of
the proposed system model, a System with Dynamic Real-
Time Guarantees can be scheduled by using fixed priority
scheduling implementations provided in current Real-Time
Operating Systems.

Our Contributions: This paper focuses on providing
dynamic real-time guarantees in uncertain and faulty execution
environments without any online adaptation.

• We provide a general model called Systems with Dynamic
Real-Time Guarantees to be adopted when uncertain exe-
cution behaviour of tasks is imposed by the environment
and the system platform. We define the system and the
related terms full timing guarantees and limited timing
guarantees in Section 2 and provide an exact schedula-
bility test in Section 3. In Section 4, we prove several
important properties of an optimal priority order, present
an algorithm to determine such a priority order, and prove
its optimality.

• We analyse how to calculate the maximum interval length
until we can return to full timing guarantees again when
the system is only providing limited timing guarantees
due to some abnormal execution behaviour in the past in
Section 5. We provide a way to monitor the system state
and approximate the amount of time needed to go back
to full timing guarantees in Section 6.

• In the evaluations in Section 7, we explore how our
optimal fixed-priority assignment performs compared to
other scheduling policies, i.e., Rate Monotonic, Criticality
Monotonic, and EDF-VD by Baruah et. al. [3], a state-
of-the-art approach with online adaption and dynamic-
priority scheduling for Mixed-Criticality Systems. The
evaluations show that using our optimal priority assign-
ment for Systems with Dynamic Real-Time Guarantees
does not sacrifice much with regards to schedulability

compared to EDF-VD in most settings. For some settings,
especially when the difference between the WCETs in the
high criticality and the low criticality modes is larger, our
approach can schedule more task sets than EDF-VD for
higher utilization values. This suggests that fixed-priority
scheduling without any online adaptation is a sensible
way to schedule Mixed-Criticality Systems as well, if the
priority assignment is done carefully. This suggestion is
supported by the fact that fixed-priority scheduling has
less runtime overhead than dynamic priority scheduling.
Furthermore, our strategy does not drop any low criticality
tasks when only limited timing guarantees are provided,
and still guarantees bounded tardiness. Most Mixed-
Criticality approaches, including EDF-VD, allow to dis-
card low-criticality tasks in the high-criticality mode.

2 System Model
2.1 Task Model and Execution Uncertainty
This paper considers n independent sporadic real-time tasks
T = {τ1, τ2, . . . , τn} in a uniprocessor system. Each task τi
can release an infinite number of jobs (also called task in-
stances) under the given minimum inter-arrival time (temporal)
constraint Ti. This means if at time θa a job of task τi arrives,
the next instance of the task must arrive no earlier than θa+Ti.
The relative deadline of task τi is Di, i.e., a task instance
released at θa must be finished before θa+Di. If Di = Ti ∀τi,
a task set is called an implicit-deadline task set, while a task set
is a constrained-deadline task set if Di ≤ Ti ∀τi. If a task set
has neither implicit nor constrained deadlines, it is called an
arbitrary-deadline task set. We will only consider constrained-
and implicit-deadline task sets in this paper.

We consider a platform with uncertain execution behaviour,
imposed by the physical environment and the execution plat-
form, where tasks have two execution modes. The Worst Case
Execution Time (WCET) differs depending on these modes.
We assume tasks have a smaller WCET most of the time and
a larger WCET for rare special cases. We refer to these two
different execution behaviours of a task as normal executions
and abnormal executions. In an abstract view, each task has
two different versions of WCET, CNi and CAi with CAi ≥ CNi ,
e.g., for tasks with potential error recovery, CNi is the WCET
of τi when no fault occurred during τis execution. The time
that is needed for fault detection is part of CNi , as in our model
the fault detection has to be done every time a job finishes its
calculation or at the predefined checkpoints.

CAi is the worst-case execution time of task τi when the
task runs abnormally, i.e., requires fault recovery. These values
may differ largely, depending on the used fault detection and
recovery model. For example, if we assume the fault detection
to cost 20% of the task execution time, one re-execution would
prolong CAi by 2.2

1.2 ≈ 1.83 compared to CNi , while for two
re-executions we get CAi = 3.4

1.2 ·C
N
i ≈ 2.83 ·CNi . If we adopt

checkpointing, only a smaller part of the task has to be re-
executed, e.g., 20%, but the checkpointing has a higher effect
on the WCET, e.g., 40% of the WCET in normal mode. In this
case CAi = 1.6

1.4 ·C
N
i ≈ 1.14 ·CNi . These are the 3 settings for

the relation between CAi and CNi we use in the simulations.
We assume that we do not know in what manner a job

will be executed at the moment the job arrives or starts its
execution, but at some time point during or at the end of
the execution process, i.e., we do not know if a fault will be
detected and a fault recovery has to be done when the job starts.

We assume that at least for some timing strict tasks missing
a deadline will have catastrophic consequences. This means,
releasing these tasks in a lower rate, allowing some of the jobs
to be abandoned or miss the deadline, and enlarging the tasks
deadline are not valid reactions to abnormal execution. Thus,
for each task, Di and Ti are identical in the normal and the
abnormal mode.

Throughout this paper, we refer to the normal utilization of
task τi as UNi = CNi /Ti and to the abnormal utilization of task
τi as UAi = CAi /Ti. The total or system utilization in the nor-
mal mode will be denoted UNsum =

∑
{τi∈T} U

N
i and the total

utilization in the abnormal mode is UAsum =
∑
{τi∈T} U

A
i .

We assume a fixed-priority scheduling policy where the
tasks’ priorities are the same regardless of the mode the tasks
are executed in. One reason is that many real-time operations
systems only support one fixed priority assigned to a task that
cannot be changed during runtime. Another reason is that it
is not clear if a job will be executed in the normal or the
abnormal mode when it starts executing. This is only clear at
the moment a fault is detected. If different priorities for normal
and abnormal executions are assumed, this means the priority
would be changed during the task execution.

For a job of τi we denote the response time of the j-th job
with Ri,j . The Worst Case Response Time (WCRT) of τi will
be denoted as RNi if all tasks are executed in the normal mode
and as RAi if all tasks are executed in the abnormal mode. The
tardiness of τi is defined as Ei = RAi −Di, i.e., the maximum
amount of time a job of τi stays active after its deadline.

2.2 Dynamic Real-Time Guarantees
When some tasks are executed abnormally in a certain time
interval, informally, we can also say that the system is ab-
normal in that interval. The issues of abnormal executions
are possible deadline misses due to the longer task execution
times in the abnormal mode even if the schedulability in the
normal mode is ensured. In theory and in practical systems this
problem is often handled by aborting timing tolerable tasks to
guarantee the response time of the timing strict tasks. We call
the timing strict tasks TA

hard and the timing tolerable tasks TA
soft

and assume the partition of T in TA
hard and TA

soft to be given.

Generally, aborting tasks is not preferable behaviour for
multiple reasons. The main reason is that the results of the
aborted tasks may still be useful, even if they are a bit late,
as long as the timing behaviour of the timing strict tasks is
not jeopardized. Therefore, in this case, we want to reduce
the guarantees for the timing tolerable tasks from hard real-
time guarantees to bounded tardiness. However, the user should
be informed that the results of timing tolerable tasks may be
late. Another reason is that executing one or more tasks in the
abnormal mode will not necessarily lead to missed deadlines.
Figure 6 in the Appendix gives a concrete example. Lastly,
even if the system is proven safe in the normal mode, the
trivial approach of abandoning the tasks in TA

soft at the moment
a fault occurs that would jeopardize the deadline of a task in
TA

hard only works, if all tasks τi ∈ TA
soft have lower priority

than all tasks τi ∈ TA
hard as shown in Example 1.

Example 1. Assume ε > 0 but very small and two tasks,
τ1 ∈ TA

soft with CN1 = 6, CA1 = 6 + ε, T1 = D1 = 16 and
τ2 ∈ TA

hard with CN2 = 11, CA2 = 12 + ε, T1 = D1 = 24
that are scheduled according to Rate Monotonic (RM), i.e.,
τ1 has the higher priority. This task set is schedulable in the

normal mode but if we assume the critical instant of τ2 and a
fault happening at t ∈ [22, 23], then τ2 will miss its deadline
as the first two jobs of τ1 are already completed.

Based on our argumentation, we will call it a system with
full timing guarantees, if we can guarantee that all tasks that
are currently ready to be executed will always meet their
deadline if no further faults occur. We will call it a system
with limited timing guarantees, if we can only guarantee the
timing behaviour for the timing strict tasks, while for the
timing tolerable tasks we will guarantee bounded tardiness.
This is formalized in the following definition.

Definition 1. [System with Dynamic Real-Time Guarantees]

Consider a set T of tasks under a fixed-priority scheduling.
A job of task τi ∈ T cannot start its execution until all the
jobs of task τi that arrived earlier are completed. The jobs of
all tasks always have to be executed and cannot be aborted.

If the system runs with full timing guarantees, then hard
real-time guarantees hold for each task:

• T: Each task τi ∈ T must meet the hard relative deadline.

If the system runs with limited timing guarantees, the service
level guarantees are downgraded from hard real time guaran-
tees to bounded tardiness for some of the tasks:

• TA
hard ⊆ T: Each task τi ∈ TA

hard is required to meet the
hard relative deadline.

• TA
soft ⊆ T: Each task τi ∈ TA

soft must have bounded
tardiness, i.e., 0 ≤ Ei < γ for a fixed value γ.

Each task in T has to be placed either in TA
hard or in TA

soft,
thus TA

hard ∩TA
soft = ∅ and TA

hard ∪TA
soft = T.

We assume the partition into TA
hard and TA

soft to be given,
as a computer cannot decide whether deadline misses will lead
to potentially catastrophic consequences. We will call a task
set feasible or feasibly schedulable as a System with Dynamic
Real-Time Guarantees, if for the given partition and the given
priority ordering, the conditions for full timing guarantees and
limited timing guarantees both hold. While this definition can
be used for both preemptive and non-preemptive scheduling,
we only consider preemptive fixed priority scheduling here.

We already know that executing tasks in the abnormal
mode will not necessarily lead to deadline misses. On the other
hand, after faults occurred, some task instances may still miss
their deadlines even if no abnormal job is still in the system and
all tasks are executed normally, as some remaining workload,
which was postponed due the abnormal execution of higher
priority tasks or an earlier job of the tasks itself, can push back
the time intervals where the job executes as shown in Figure 1.
Faults are marked by E and CAi = 2 · CNi . The first jobs of
τ2 and τ3 miss their deadlines directly due to the additional
workload created by the faults in the jobs of τ1 and τ2. The
workload that is executed after the deadline is labeled with
a black cross. After the first job of τ2 finishes, all remaining
tasks in the system execute normally. However, the second job
of τ3 (purple) misses its deadline due to the workload added
by the late execution of the first job of τ2 and τ3. Note that the
amount of workload created by higher priority tasks and the
second job of τ3 in [12, 24] would not be large enough to let
the second job of τ3 miss its deadline. This only happens due
to the remaining workload from the first job of τ3 in [12, 24]
and thus is called a self-pushing phenomenon.

E EE
τ1 = (1, 4) ∈ TA

hard

τ2 = (3, 9) ∈ TA
soft

τ3 = (2, 12) ∈ TA
soft

Fig. 1: Tasks can miss a deadline due to self-pushing.
The first jobs of τ2 and τ3 miss their deadlines due to this additional workload.
A black cross labels the late executions. The purple job of τ3 misses its
deadline due to the self-pushing by its earlier instance.

We assume a fixed priority ordering P of the tasks and let
P (τi) denote the priority of task τi. P (τi) < P (τj) means τi
has a higher priority than τj . For brevity we define:

• hp(τk) as the set of tasks with higher priority than τk.
• hep(τk) = hp(τk) ∪ τk.
• lp(τk) as the set of tasks with lower priority than τk.
• ΘA

soft :=
{
τi ∈ TA

soft | τi ∈ hp(τj), τj ∈ TA
hard

}
The question remains what information should be displayed

to the system user at which point in time. In general, the user
will not be interested in the information that faults happened
and fault recovery is performed as long as the timing behaviour
is not affected and all results can be trusted. In this paper, we
will focus on the timing behaviour and assume that the results
of tasks can always be trusted, i.e., that in the abnormal mode
the error recovery mechanism will always lead to a correct
result or to a partially incorrect but still acceptable result. The
information that the currently displayed result may have some
delay should be displayed, as well as the actual delay and
the time interval until the moment the system will return to
provide full timing guarantees if no further faults occur.

2.3 Fault-Tolerance and Mixed-Criticality
As explained in Section 1, our studied problem has a clear link
to mixed-criticality systems. However, the existing results in
the literature of mixed-criticality systems typically abandoned
the low-criticality tasks and assumed that the criticality mode
of the system is given. These features are not suitable for
providing a System with Dynamic Real-Time Guarantees.

As reported by Burns and Davis in their survey paper
[9, Section 6], instead of ignoring the low criticality tasks
during a criticality mode change, there have been several
research efforts that focused on changing properties of the low
criticality tasks, e.g., reduce their priorities, increase their peri-
ods/deadlines, impose only weakly hard real-time constraints
on them, decrease their computation times, etc. Specifically,
the concept to impose only weakly hard real-time constraints
studied in [18] is related to the problem studied here, as the
performance is downgraded for the low criticality task by using
the (m, k)-firm real-time property; i.e., (k−m) out of k jobs
have to meet their deadlines. However, the approaches in [18]
and others reported in [9, Section 6] require online adaptive
scheduling to handle the scheduling properly.

“Although there is this clear link between fault-tolerant
systems (FTS) and mixed-criticality systems (MCS) there has
not yet been much work published that directly addresses
fault-tolerant mixed criticality systems,” is reported in the
survey by Burns and Davis [9, Section 5.2]. Related researches
also considered mixed-criticality systems combined with fault
tolerance. For example, Thekkilakattil et al. [30] used EDF
scheduling to ensure that 1) the high criticality tasks are
feasible under the presence of an error burst and 2) the low
criticality jobs/tasks are feasible if they are not hit by the error
burst. Huang et al. [20] modeled the impact of the hardware

transient faults as mixed-criticality behaviour and presented
analysis techniques to bound the effects of task killing and
service degradation on the system with online adaptation.

To the best of our knowledge, there was no previous
research discussing whether such adaptive scheduling policies
are always needed. The important property of the problem
studied in this paper is not to provide any run-time (online)
adaptation. This leads to the nice consequence that the schedul-
ing algorithm can be robust regardless of mode changes,
if the schedule is verified offline to be always feasible to
provide dynamic timing guarantees. The impact on the system
behaviour, i.e., the impact due to the tardiness of the tasks in
TA

soft, can be analysed in advance without disturbing the run-
time system. The system arbitrarily changes between normal
and abnormal execution due to the impact of the physical
environment, e.g., transient faults are encountered or not. If
such an impact is acceptable in the system behaviour, e.g.,
guaranteeing bounded tardiness instead of hard deadlines in
TA

soft is sufficient as long as this affects only 1% of the system
runtime, then there is no need for any run-time adaptation.

3 Schedulability Test
Assume to be given: a task set T, a partition of T into
two subsets TA

hard and TA
soft, and a fixed priority order P . A

sufficient schedulability test to determine if T is a System with
Dynamic Real-Time Guarantees (Definition 1), if scheduled
according to P , must test the following three conditions:

1) Each task τi ∈ T meets its hard deadline if all tasks are
executed in the normal mode.

2) Each task τi ∈ TA
hard meets its hard deadline if some (or

all) tasks are executed in the abnormal mode.
3) Each task τi ∈ TA

soft has a bounded tardiness if some
(or all) tasks are executed in the abnormal mode.

To test the schedulability of a preemptive task set with
constrained deadlines under a fixed priority assignment, we can
apply Time Demand Analysis (TDA) [22] as an exact test with
pseudo-polynomial runtime. It determines the schedulability of
a task τk assuming the priority order of the task set is given
and the schedulability of all tasks in hp(τk) is ensured already:

Definition 2 (Time Demand Analysis [22]). τk is schedulable
if the following equation holds:

∃t with 0 < t ≤ Dk and Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (1)

If this holds true for all τk ∈ T, the task set is schedulable
under the preemptive fixed-priority scheduling. We can use the
following schedulability tests to determine the schedulability
as a System with Real-Time Service Level Guarantees.

Theorem 1 (Exact Schedulability Test for Constrained Dead-
lines). For a given fixed priority ordering P , a task set T is
a System with Dynamic Real-Time Guarantees as defined in
Definition 1, if the following three conditions hold:

1) Full timing guarantees hold, if T can be scheduled
according to Time Demand Analysis (TDA) [22] when all
tasks are executed in the normal mode, i.e., Ci = CNi ∀τi.

2) When the system runs with limited timing guarantees, all
τi ∈ TA

hard will meet their hard deadlines, if they can be
proven to be schedulable by TDA [22] when all tasks are
executed in the abnormal mode, i.e., Ci = CAi ∀τi.

3) Each task τi ∈ TA
soft has bounded tardiness if UAsum ≤ 1.

Proof: We only sketch the proof here and give some
details in the Appendix.

1) Follows directly, as making sure that all tasks meet their
deadline when no faults occur is identical to tasks having
only one WCET where TDA is an exact test.

2) When the system runs with limited timing guarantees only
τi ∈ TA

hard have to be tested. The workload created by
tasks in hep(τi) is maximized if all jobs of all tasks are
affected by a fault as we assume CAi ≥ CNi ∀τi ∈ hep(τi).

3) If UAsum ≤ 1 the maximum total workload created in
one hyperperiod2 is smaller or equal to the period length.
Thus the latest possible time for a job to finish is one
hyperperiod after its release if UAsum ≤ 1.

These are the 3 conditions we have to match for a System with
Dynamic Real-Time Guarantees (Definition 1).

However, the given definition of bounded tardiness seems
to be far too restrictive for some practical cases. When many
executions are affected by faults, hardened hardware should
be used instead of recovery mechanisms. To successfully use
recovery mechanisms, a low fault rate is usually expected.
Without restricting ourselves to a specific fault model, we
consider two general possibilities:

1) Faults happen as a burst in an interval with a small length
and with a very low probability.

2) Faults happen with a given, low probability at each point
in time.

In both cases UAsum > 1 is tolerable for short intervals if
UNsum < 1 and if the intervals where no faults occur are
significantly longer than the intervals where faults occur. Thus,
in both scenarios, the setting itself will lead to a bounded
tardiness for most practical cases. If we assume that a burst
of faults only affects a small number of jobs compared to
the number of jobs between two bursts of faults, the system
should have a sufficient amount of time to return to full timing
guarantees after each burst of faults. The length of the interval
with limited timing guarantees for a given task set can be upper
bounded if we suppose the maximum length ∆ of a burst
interval to be known, as shown in Section 5. If we assume the
faults to happen with a given rate, this rate needs to be high
to affect a sufficient number of tasks to lead to limited timing
guarantees over a longer time interval.

Due to this consideration, we drop the condition that
UAsum ≤ 1 in the experiments regarding the acceptance rate
in Section 7. We analyse the amount of time in which we can
only give limited timing guarantees for task sets with a high
utilization in the experiments in Section 7.2 to validate if our
decision to drop the condition will have a high impact on the
stability of the system for reasonable fault rates.

4 Properties of Priority Assignments
As we know how to test if a given priority ordering for a
given task set will result in a System with Dynamic Real-
Time Guarantees, we now explain how to construct such a
priority ordering for a given task set, if one exists. We start
by showing that existing or trivial priority orderings, namely
Deadline Monotonic order and Criticality Monotonic order, are
not optimal for System with Dynamic Real-Time Guarantees.

2The hyperperiod of a task set is the least common multiple of the periods
of all tasks in the set.

Lemma 1 (Deadline Monotonic ordering is not optimal). For
a System with Dynamic Real-Time Guarantees (Definition 1)
Deadline Monotonic priority order for constrained-deadline
task sets is not an optimal scheduling algorithm.

Proof: This is proven by providing an example task set
with two tasks that is schedulable as a System with Dynamic
Real-Time Guarantees if the tasks are not in DM order but not
schedulable if the tasks are in DM order. Such a task set can
be found in the Appendix.

As mentioned in Example 1, in general, aborting the
execution of τi ∈ TA

soft is only able to keep up hard real
time guarantees for TA

hard, if all the tasks in TA
soft have lower

priorities than all the tasks in TA
hard.

Definition 3 (Criticality Monotonic). We say a task set T
with two subsets TA

hard and TA
soft has a Criticality Monotonic

ordering, when all tasks τ∈TA
hard have higher priority than all

tasks in TA
soft, i.e., ΘA

soft = ∅.

For the following lemma the internal order of TA
hard and

TA
soft is not important. However, in general, we assume that

TA
hard and TA

soft are internally ordered according to DM.

Lemma 2 (Criticality Monotonic Ordering is Not Optimal).
For a System with Dynamic Real-Time Guarantees (Defini-
tion 1), Criticality Monotonic order is not an optimal schedul-
ing algorithm.

Proof: It is sufficient to provide a task set with two
tasks that is schedulable as a System with Dynamic Real-Time
Guarantees if the tasks are not in Criticality Monotonic order
but not schedulable if the tasks are in Criticality Monotonic
order. Such a task set can be found in the Appendix.

As we now know that neither DM nor Criticality Mono-
tonic scheduling is optimal for System with Dynamic Real-Time
Guarantees, we have to look at a more general approach. Aud-
sley’s Algorithm [2], also called optimal priority assignment
(OPA), can be applied to find a feasible fixed priority assign-
ment if the used schedulability test S is OPA compatible [12],
i.e., the following three conditions all hold [12]:

1) The schedulability of a task τk, according to test S, may
be dependent on the set of hp(τk), but not on the relative
priority ordering of hp(τk).

2) The schedulability of a task τk, according to test S, may
be dependent on the set of lp(τk), but not on the relative
priority ordering of lp(τk).

3) When the priorities of any two tasks of adjacent priority
levels are swapped, the task being assigned the higher
priority cannot become unschedulable according to test
S, if it was previously schedulable at the lower priority.

Lemma 3. The Schedulability Test in Theorem 1 is OPA
compatible.

Proof: We will only sketch the proof here.

1) As TDA sums up the workload of all jobs from tasks
in hp(τk), the order of those tasks has no impact on
the result, as this only changes the order in which the
workload is summed up. This holds true for both the
normal and the abnormal case in Theorem 1. The task
order has no impact on the condition UAsum ≤ 1.

2) The workload of tasks in lp(τk) is not considered in the
TDA at all, thus the order has no impact. The order of
the tasks has no impact on the condition UAsum ≤ 1.

3) If τk is assigned a higher priority due to a swap with τk−1,
the workload of the higher priority tasks in the TDA will
only be reduced and thus τk remains schedulable. The
switch has no impact on the condition UAsum ≤ 1 either.

Thus, we reach the conclusion.

In the next step, we will show that if a feasible priority
assignment exists, the tasks in TA

hard and TA
soft can both be

ordered according to DM.

Lemma 4 (TA
hard in Deadline Monotonic Order). If for a given

task set T a feasible priority assignment P for a System with
Dynamic Real-Time Guarantees (Definition 1) exists, the tasks
in TA

hard can be reordered according to Deadline Monotonic
order and Dynamic Real-Time Guarantees are still provided.

Proof: We will only sketch the proof here as it is very
similar to the prove for the optimality of DM [23]. We use the
interchanging argument and look at the first two consecutive
tasks τj and τk in the internal priority order of TA

hard that are
not in DM order, i.e., Dj > Dk and P (τj) < P (τk). If τj and
τk are direct successors in P , we can directly swap them due
to the optimality of DM for constrained-deadline task sets.

The case that τj and τk are not direct successors in P re-
mains, i.e., S :=

{
τi ∈ TA

soft | P (τj) < P (τi) < P (τk)
}
6= ∅.

We increase the priority of each τi ∈ S by 1 and set the
priority of τj to P (τk−1), thus τj and τk are direct successors
in P again. All tasks in S remain schedulable as their priorities
are increased, while τj remains schedulable because Dj > Dk

due to the precondition that τj and τk are not in DM order
and the workload created by all tasks in hp(τj)∪ τj ∪ τk up to
Dk is smaller than Dk, as τk is schedulable. This means, we
can swap τj and τk due to the optimality of DM and continue
until all tasks in TA

hard are in DM order.

Lemma 5 (TA
soft in Deadline Monotonic Order). If a feasible

priority assignment for a System with Dynamic Real-Time
Guarantees (Definition 1) exists, the tasks in TA

soft can be
reordered according to Deadline Monotonic ordering while all
Dynamic Real-Time Guarantees still hold.

Proof: The proof is similar to the proof of Lemma 4.

We now know that we can reorder both subsets TA
hard and

TA
soft to be in Deadline Monotonic order.

Theorem 2 (TA
hard and TA

soft in DM order). If a feasible
priority assignment for System with Dynamic Real-Time Guar-
antees (Definition 1) exists, a feasible priority assignment
where the tasks in TA

hard and TA
soft are internally ordered

according to the Deadline Monotonic order also exists.

Proof: We know that TA
hard and TA

soft can be reordered
according to DM individually while still obtaining feasibility.
As reordering TA

hard does not change the internal order of TA
soft

and vice versa, we can first reorder the tasks in TA
hard to be

in DM order and then reorder the tasks in TA
soft to be in DM

order, without changing the internal priority order of TA
hard.

After reordering the two sets, we still obtain a feasible priority
ordering for a System with Dynamic Real-Time Guarantees.

We can use Theorem 2 to find a feasible priority assignment
for a System with Dynamic Real-Time Guarantees, if one

Algorithm 1 Feasible Priority Assignment

Input: TA
hard, TA

soft
Output: Feasible Order P of TA

hard ∪TA
soft or NOT POSSIBLE

Sort TA
hard by Di increasingly

Sort TA
soft by Di increasingly

Find Assignment(TA
hard, TA

soft)
procedure FIND ASSIGNMENT(TA

hard, TA
soft)

for (n = |TA
hard ∪TA

soft|; n > 0; n := n− 1) do
τt := last element of TA

hard
if (Try Priority(τt,

{
TA

hard ∪TA
soft

}
\ {τt},n,hard)) then

P (τt) := n
TA

hard := TA
hard\ {τt}

else
τt := last element of TA

soft
if (Try Priority(τt,

{
TA

hard ∪TA
soft

}
\ {τt},n,soft)) then

P (τt) := n
TA

soft := TA
soft\ {τt}

else
return NOT POSSIBLE

return List of TA
hard ∪TA

soft ordered by P (τt)

procedure TRY PRIORITY(τt, hp(τt), priority, task type)
P (τt) := n
Assign hp(τt) to priorities 1, . . . , n− 1
if (task type==hard) then

Ci := CA
i , ∀τi ∈ hp(τt) ∪ τt

else
Ci := CN

i , ∀τi ∈ hp(τt) ∪ τt
if (τt is schedulable according to TDA) then

return true
else

return false

exists by using the priority assignment algorithm presented in
pseudo-code in Algorithm 1. The idea is similar to OPA [2]:
Find a task that can take the lowest priority under the as-
sumption that all other tasks have higher priority. If such
a task is found, assign it to the lowest priority (among the
tasks), remove it from the task set, and redo the process
with the remaining tasks. If for some priority no suitable task
is found, we return NOT POSSIBLE, otherwise we return a
feasible priority assignment. The main difference to OPA is
that Algorithm 1 has to test at most two candidates for each
priority: the remaining tasks in TA

hard and in TA
soft with the

longest relative deadline, respectively. Hence, the tasks in TA
hard

and TA
soft are ordered according to DM order in a preprocessing

step. Note that regarding Dynamic Real-Time Guarantees it
does not matter if the task with the longest deadline in TA

hard
or TA

soft is assigned to the priority if TDA returns schedulable
for both tasks.

Theorem 3 (Feasible Priority Assignment). If a feasible pri-
ority assignment for a given System with Dynamic Real-Time
Guarantees exists, Algorithm 1 will find a feasible assignment.

Proof: Theorem 2 proves that, if a feasible priority
assignment exists, there also is an assignment where TA

hard and
TA

soft are internally in Deadline Monotonic order. Assume such
a priority assignment S to be given, e.g., an OPA where the
tasks in TA

hard and TA
soft are reordered to be in DM ordering in

the way presented in Lemma 4 and 5. We will reorder S until
it has the same order as provided by Algorithm 1 to conclude
the proof. An important observation is that the tasks in TA

hard
and TA

soft will always have the same internal order in S and
in the priority assignment provided by Algorithm 1, as S was
reordered to have DM order in both subsets, and Algorithm 1

only tries to assign the task TA
hard and TA

soft with the longest
relative deadline.

Let τj ∈ TA
hard be the task in TA

hard with the lowest priority
in S, i.e., the task in TA

hard with the longest period. We use
the interchanging argument again and try to exchange τj with
tasks that have lower priority in S until τj would not be
schedulable at its new priority. This means that S remains
schedulable, as for all other tasks the priority is only increased.
Let T jlow denote all tasks that have lower priority than τj after
the priority of τj was decreased. We have two cases:

1) T jlow = ∅: the new position of τj is the lowest.
2) There are T jlow ⊆ TA

soft that have lower priority than τj .
All τi ∈ T jlow are schedulable, as P was schedulable and
the priority of those tasks was not changed.

Now τj and τi ∈ T jlow are in the same order as Algorithm 1
provides, as Algorithm 1 only schedules a tasks in TA

soft to a
priority if the task in TA

hard cannot be assigned. In the next
step we take the task τk ∈ TA

hard that has the lowest priority
in TA

hard\ {τj} and decrease its priority until it would not be
schedulable anymore or we would exchange it with a tasks
in TA

hard. Now τk and all tasks with a priority lower then τk
are in the same order as Algorithm 1 provides with the same
argument. We repeat this until all tasks in TA

hard are in the same
order as provided by Algorithm 1.

One could apply Audsley’s Algorithm [2] (OPA) directly
to find a feasible priority assignment. However, in general,
Algorithm 1 has a much better runtime than OPA. Assume the
task set contains n tasks. In the worst case TDA has to test
a pseudo-polynomial number of time points to determine if a
task is schedulable on a given level. Each of these tests has a
runtime of O(n) to sum up the workload of the higher priority
tasks. Due to this, we will denote the time needed to test the
schedulability of a task at a priority level with O(n ·TDA(n))
where TDA(n) is the number of tests for that level.

In the Worst Case, we have to test O(n) tasks with TDA
on each priority level if we use OPA. The time complexity of
OPA is O(n2 · n · TDA(n)) = O(n3 · TDA(n)), as there are
n priority levels. When Algorithm 1 is used, for each priority
level only at most two tasks have to be considered. This leads
to a time complexity of O(2n·n·TDA(n)) = O(n2 ·TDA(n))
to find the assignment. Ordering TA

hard and TA
soft according

to the relative deadlines can be done in O(n log n) which is
dominated by O(n2 · TDA(n)). Thus, the time complexity of
Algorithm 1 is a power less than the one of OPA when as-
signing priorities to give Real-Time Service Level Guarantees.

5 System Mode Analysis
In this section, we analyse the system mode, assuming that
faults occur as a burst during an interval and that this interval
length ∆ is known. We will calculate the maximum time the
system will provide only limited timing guarantees under the
assumption that no more faults will occur. Let θb be the latest
time instant at which a fault is detected. Our objective is to
find the time when the system will give full timing guarantees
again, i.e., all jobs of all tasks will meet their deadlines.

Let θ0 denote the latest time-instant ≤ θb at which the
processor is idle, and θa be the time instant at which a fault
is first detected over [θ0, θb]. Let θb − θa = ∆, as illustrated
in Figure 2. To provide full timing guarantees again after a
fault interval, it is sufficient that the system is idle at a point
θf ≥ θb as no fault that happened before θf can affect any

θb θ0 + tθaθ0

proc. idled

first fault detected last fault detected

∆

Fig. 2: The illustration of an busy interval of length t under-
going an interval of burst fault [θa, θb] equal to length ∆.

task that is realised at a time t ≥ θf . If we can show that the
interval length during which a system is busily executing for a
given ∆ is no more than some value, we know that after this
interval the system will provide full timing guarantees again.

We denote Ω(t) as the maximum total amount of execution
time from the tasks in T in [θ0, θ0 + t). Clearly, the interval
length during which a system is busily executing is no more
than the smallest value of t satisfying Ω(t) ≤ t.
Theorem 4 (Computing Ω(t)). Let Γ donate the interval over
[θ0, θ0 + t) except [θa, θb]. An upper bound on Ω(t) can be
calculated as:

Ω(t) = ∆ + F + I(t) (2)

where the terms are as described below.

• I(t): the work from all tasks executed normally over the
interval [θ0, θ0 + t).

• F : the work of all tasks performing recovery actions over
the interval Γ.

• ∆: the interval length during which faults are detected.

To prove Theorem 4, we first derive equations for each of
the aforementioned terms and show that we account for the
maximum possible amount of workload.

Lemma 6. In the interval [θ0, θ0 + t), there are at most
⌈
t
Ti

⌉
jobs of task τi released over [θ0, θ0 + t).

Proof: As the processor is idle at θ0 by definition, it is
clear that there are at most

⌈
t
Ti

⌉
jobs of task τi, released over

[θ0, θ0 + t), which concludes this lemma.

By Lemma 6, it follows that I(t) =
∑
τi∈τ Wi(t) where

Wi(t) =
⌈
t
Ti

⌉
CNi . We know that the amount of recovery time

of a task instance is at most CAi − CNi .

Lemma 7. Outside the interval ∆, there is at most one job of
each task performing recovery actions where the workload for
this recovery actions is upper bounded by CAi −CNi . Therefore,

F =
∑
τi∈τ

(
CAi − CNi

)
(3)

Proof: We prove this lemma by considering two cases:

• Recovery in [θ0, θa]. By definition of θa as the first time
a fault is detected after the last idle time, no recovery
action is performed over [θ0, θa].

• Recovery after θb. As each task may have at most one job
executed at any time instant, we know that each task has
at most one job that has been partially executed and is not
yet completed. As, by the definition of θb, no further faults
occur after θb, there is at most one recovery part possibly
carried out after θb, upper bounded by CAi − CNi ∀τi.

Hence, we can conclude this lemma.

Lastly we need a simple observation about ∆.

Observation 1. The abnormal workload executed in the time
interval [θa, θb] is no more than ∆, regardless of whichever
job is executing.

Now we can prove Theorem 4.

Proof (Theorem 4): We have to show that we accounted
for all possible workload in the time interval [θ0, θ0 + t). We
account for all normal executions in I(t). This includes normal
executions that are done in ∆. For abnormal executions, we
also account for the part up to CNi in I(t), regardless if they
are executed in ∆ or outside as shown in Lemma 6. The
recovery part can only be executed once outside ∆ as shown
in Lemma 7. Thus, we get the most amount of additional
workload in ∆ if only recovery operations are executed in ∆.
This amount of work is bounded by ∆ due to Observation 1.

Please note that it is not possible that only recovery
operations will be performed in ∆, as the faults happen in
this interval as well, and in our model faults will only prolong
the execution time if they happen before CNi . However, tasks
may only be executed for a very small part of CNi during ∆
and thus we use ∆ as an upper bound.

6 System Monitor Design
Up to this point, all essential analysis in terms of system
scheduling is provided. However, as faulty-aware system de-
sign is desirable in the industrial practice, having an online
monitor to reflect the system status is also important. The
monitor should trigger warnings if the system can only give
limited timing guarantees for an individual task or the whole
system, and display the next time the task/system will return
to full timing guarantees, i.e., the monitored task or all tasks
in TA

soft will meet their hard deadline. We propose to use
approximation to detect the change from full timing guarantees
to limited timing guarantees, and for the calculation of an
upper bound of the next time instance the system will return
to full timing guarantees.

As we guarantee the timing behaviour of the timing
strict tasks offline, we only have to monitor timing toler-
able tasks. Assume we want to monitor τk ∈ TA

soft. For
notational brevity, we define hp(τk)H := hp(τk) ∩TA

hard and
hp(τk)S := hp(τk) ∩TA

soft, i.e., the subset of the tasks with
higher priority than τk in TA

hard and TA
soft, respectively. Assume

for each task is known if a job of this task is ready to be
executed at the time we analyse, and that the current execution
mode of the task is known as well.

We know that the interference from tasks in hp(τk) and/or
self-pushing (e.g., Figure 1) can prolong the execution of a job
of τk. Due to this interference, multiple deadline misses may
happen once the system switched to limited timing guarantees.
The next time we can guarantee that τk meets its deadline, if
no further faults occur, is the moment a lower priority task
is executed, i.e., the end of the level k busy period, denoted
with busyk. Let |busyk| be the length of busyk. If |busyk| is
smaller than the time the current job of τk has left to finish its
execution, we can give full timing guarantees for τk; otherwise
τk may miss its deadline, we can only give limited timing
guarantees, and full timing guarantees for τk can be provided
again at the end of busyk.

Similar to Section 5, we will denote the maximum total
amount of execution time from hep(τk) in an interval from
[θ0, θ0+t) as Ωk(t) and look for the smallest value of t where
Ωk(t) ≤ t. To apply the the formula from Section 5 directly,
we would have to keep track of the last time the processor
executed a tasks in lp(τk) for each τk, and the amount of
additional interference due to higher priority tasks during this
interval. We use an alternative approach here by setting θ0
to the current time, then calculate the carry in and the future
workload due to tasks in hep(τk). The reason is not to have
additional, potentially high, overhead for keeping track of the
interference of tasks in hep(τk) in busyk for each τk ∈ TA

soft.

Let Ik(t) denote the maximum workload due to jobs of
tasks in hep(τk) with normal executions in [θ0, θ0 + t], i.e.,

Ik(t) =
∑

τi∈hep(τk)

Wi(t) =
∑

τi∈hep(τk)

⌈
t

Ti

⌉
CNi (4)

The carry in workload from task in hep(τk) must be taken
into account as well. We denote the carry in workload of τi
by G(τi). To determine G(τi), we need to know how much
workload remains for a job of τk that is currently executable.
This can be estimated by keeping track of the time the job
already ran. Depending on the mode of the job we subtract
that value from CNi or CAi to get G(τi); thus we also need
to know if a job is currently in normal or abnormal mode.
If keeping track of the time a task has been executed would
be too much overhead, depending on τis mode CNi or CAi
can directly be used as an upper bound on G(τi). At most
one job of each task in hp(τk)H can be in the system, as
hp(τk)H will always meet their deadline by system design.
For tasks in hp(τk)S ∪ τk there can be carry in from more
than one postponed execution, thus we may have to sum this
up with the remaining workload of a currently active job to
get G(τi) for τi ∈ TA

soft. The total carry in can be calculated
as Gk =

∑
τi∈hep(τk)G(τi).

We have to look for the smallest t with:

Ωk(t) =
∑

hep(τk)

⌈
t

Ti

⌉
CNi +

∑
τi∈hep(τk)

G(τi) ≤ t (5)

As we do not know how many jobs of τk will be executed
before busyk ends, we create a virtual task τk′ with Ck′ = Gk
and with the virtual priority k + 1. We now calculate an
upper bound on the WCRT of τk′ using Theorem 1 in [6]
by Bini et al. This states that for each sporadic task τi in a
fixed priority system the WCRT Ri will be upper bounded

by Ri ≤
Ci+

∑i−1
j=1Cj(1−Uj)

1−
∑i−1

j=1Uj
. In our case, we have to take the

future jobs of all tasks in hep(τk) into account and have the
carry in Gk as the execution time of our virtual task. This
means we can calculate an upper bound for the length of the
level k busy period busyk as |busyk|∗ and get:

|busyk| ≤
Gk +

∑
j∈hep(τk)C

N
j (1− UNj)

1−
∑
j∈hep(τk)U

N
j

= |busyk|∗ (6)

Only the tasks that already started may have abnormal
execution behaviour, thus we assume normal execution for
all future tasks and use CNj and UNj in the formula. The
related workload is explicitly summed up in Gk. We can
provide full timing guarantees for τk at θ0 if |busyk|∗ ≤ Dk.
If |busyk|∗ > Dk we only provide limited timing guarantees,
and |busyk|∗ is an upper bound on the time the systems needs

to go back to to full timing guarantees for τk, assuming no
further faults occur.

Note that we could also tighten the analysis, e.g., using
the tighter bounds provided in [7], [10] that require to sort the
tasks in hep(τk) by their periods.

The remaining question is when to check if timing guar-
antees have changed. There are two general approaches. One
is to check periodically, where the period of this check can be
determined depending on the needed granularity during system
design. The other is to check in an event-driven manner. The
moment a fault is detected is a natural choice for an event,
as this is the only point in time a change from full timing
guarantees to limited timing guarantees may happen for the
affected tasks. This is an important observation, as no checks
are needed while all tasks are with full timing guarantees if no
faults occur. A change from limited timing guarantees back to
full timing guarantees for a task τk may happen when a task
with higher priority than τk or an instance of τk itself finishes.

7 Evaluations
We focused on two questions. First we determined the possible
acceptance rates for Systems with Dynamic Real-Time Guar-
antees under different scenarios in a schedulability analysis in
Section 7.1. In addition, we provided a system state analysis
where we explored the behaviour of tasks sets with high
utilization under different fault rates in Section 7.2, i.e., we
analysed the percentage of time where full timing guarantees
are provided for these task sets under different fault rates.

7.1 Schedulability Analysis
We generated random implicit-deadline task sets with a given
UNsum according to the UUniFast method [5], using the ap-
proach suggested by Emberson et al. [14] to generate the task
periods according to a log-uniform distribution with two orders
of magnitude, i.e., [1ms − 100ms]. Specifically, log10 Ti is
a uniform distribution in the defined range. The WCET in
the normal mode was set according to the utilization, i.e.,
CNi = Ui · Ti. We analysed task sets of 5 different cardinal-
ities, i.e., 5, 10, 20, 50 and 100 tasks, where we randomly
picked 30%, 40%, 50%, 60% and 70% of these tasks to
be in TA

hard. We calculated CAi for τi ∈ TA
hard according to

3 different ratios, called WCET-Factors, to simulate the 3
scenarios presented in Section 2.1, where we assumed that
for re-execution the fault detection takes 20% of the WCET
without fault detection (only one detection at the end) and for
the checkpointing case we assumed 40% overhead:

• Re-Execution: CAi ≈ 1.83 · CNi as 2.2
1.2 ≈ 1.83

• Two Re-Executions: CAi ≈ 2.83 · CNi as 3.4
1.2 ≈ 2.83

• Checkpointing: CAi ≈ 1.14 · CNi as 1.6
1.4 ≈ 1.14

We used two different values for the relation of CAi to CNi for
τi ∈ TA

soft: The same value as used for TA
hard or 1.0, i.e., just

fault detection without any kind of fault recovery.

For each of these in total 5 · 5 · 3 · 2 = 150 settings, we
analysed 1000 randomly generated task sets for each utilization
value UNsum ∈ [1%, 100%] (step size 1%). We tested the
schedulability of the task sets as a System with Dynamic
Real-Time Guarantees using 4 fixed priority orderings: Rate
Monotonic (RM), Criticality Monotonic (CM), Optimal Pri-
ority Assignment (OPA) [2], and the ordering provided by
Algorithm 1, all tested by the schedulability test in Theorem 1.
In these tests, we dropped the condition UAsum ≤ 1 according

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100
Ac

ce
pt

an
ce

 R
at

e
(%

)
Hard Tasks: 50.0%, WCET-Factor: 1.83, Runs: 1000, Tasks/Run: 10

Rate Mon.
Criticality Mon.
Optimal Assign.
EDF-VD

Fig. 3: Acceptance rate for 10 tasks/run.

20 30 40 50 60 70 80 90 100
Utilization Normal Mode (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
e

(%
)

Hard Tasks: 50.0%, Runs: 1000, Tasks/Run: 10

OA, WCET-F.=1.14
EDF-VD, WCET-F.=1.14
OA, WCET-F.=1.83
EDF-VD, WCET-F.=1.83
OA, WCET-F.=2.83
EDF-VD, WCET-F.=2.83

Fig. 4: Comparison of Optimal Assignment and EDF-VD.
For a WCET-Factor of 1.14 EDF-VD is always superior to Optimal Assign-
ment while for WCET-Factors of 1.83 and 2.83 Optimal Assignment is better
than EDF-VD for Utilizations higher then 71% and 56% respectively.

to the arguments at the end of Section 3. We analysed
the behaviour of some task sets with high utilization under
different fault rates in the Section 7.2 to support this argument.
In addition to the acceptance test, we monitored if RM, CM or
OPA were able to schedule a task set that was not schedulable
by Algorithm 1. That case never occurred and Algorithm 1
and OPA always provided an identical acceptance rate which
strongly supports our claim that Algorithm 1 provides an
optimal assignment (Theorem 3). Due to this, only one curve,
labeled Optimal Assignment (OA), is used to represent OPA
and Algorithm 1 in Figure 3, showing the results for sets with
10 tasks, 5 of them in TA

hard, and a WCET-Factor of ≈ 1.83
for both TA

hard and TA
soft. We also tested if the task sets are

schedulable with EDF-VD [3] according to the schedulability
test provided by Baruah et. al in [3, Section 3]. EDF-VD is
the dynamic state-of-the-art scheduling algorithm for Mixed-
Criticality Systems. Contrary to a System with Dynamic Real-
Time Guarantees, EDF-VD does not provide any guarantees
for low-criticality tasks in high-criticality mode.

The most interesting part of Figure 3 is the comparison of
EDF-VD [3] and our optimal assignment (OA). The curve for
OA starts dropping earlier than that for EDF-VD (Utilization
52% and 61% respectively) but EDF-VD drops faster. From
72% onwards, OA can schedule more task sets than EDF-VD.
In this area

∑
τi∈TA

hard
UAi can be too large to find values for

the virtual deadlines in EDF-VD as those virtual deadlines
are generated from the original deadlines by multiplying with
a factor ≤ 1. As OA performs an exact test with the actual
deadlines it is still able to find a feasible schedule. Similar
behaviour could be observed in most of the settings.

In Figure 4 we compared the optimal assignment (OA) and
EDF-VD for the three different WCET-Factors. For a WCET-
Factor of 1.14 EDF-VD always outperforms OA. It can be
seen that EDF-VD only performs better than OA up to a

10−4 3 · 10−4 10−3 3 · 10−3 10−2

Average Fault Rate (faults/ms)

65
70
75
80
85
90
95

100

Fu
ll

Ti
m

in
g

Gu
ar

an
te

es
 (%

)

40 Task Sets, Hard Tasks: 50.0%, Utilization: 70.0%, WCET-Faktor: 1.83

Median
First to Third Quartiles
Whiskers

Fig. 5: Percentage of Time with Full Timing Guarantees for
task sets with critical utilization under different fault rates.

utilization of 71% and 56% for WCET-Factors of 1.83 and
2.83, respectively. For higher utilization values OA is able
to schedule more task sets than EDF-VD. In addition, the
gap between EDF-VD and OA in the acceptance rate for a
given utilization seems reasonable if we consider that OA does
not drop any tasks when only limited timing guarantees are
provided and that the scheduling overhead of EDF is in general
larger than the overhead of fixed-priority scheduling.

Figures displaying the acceptance rates depending on the
percentage of timing strict tasks and the impact of the set size
are presented in the Appendix.

7.2 System State Analysis
Figure 3 shows an acceptance rate of 44.4% for task sets
with 10 tasks, 50% tasks in TA

hard, WCET-Factor of ≈ 1.83,
and UNsum = 70%, which means UAsum ≈ 128.1%. EDF-
VD [3] was able to guarantee schedulability for 53.7% of these
task sets. As both algorithms can only provide schedulability
for roughly 50% of the task sets and the acceptance rate
is decreasing fast around 70% utilization we assume those
sets have a critical utilization. We analysed the system state,
regarding the percentage of time, where we can give full timing
guarantees and limited timing guarantees for 40 of these
critical sets that are schedulable according to Algorithm 1.

We used QEMU emulators under Real-Time Executive for
Multiprocessor Systems (RTEMS) [1] version 4.11 where the
used kernel is enhanced by the pending patch #2772 [11],
enabling only one processor. The chosen board support pack-
age was RealView Platform Baseboard Explore for Cortex-
A9. For each testing instance, the system ran for one hour
under different fault rates, i.e., on average 10−4, 3 · 10−4,
10−3, 3 · 10−3 and 10−2 faults per millisecond (f/ms). If the
executed instance of τi is faulty, the corresponding WCET CNi
becomes CAi . If the system can give full timing guarantees
or only limited timing guarantees is decided by the system
monitor presented in Section 6. The results, i.e., the percentage
of time the system was running with full timing guarantees,
are shown in Figure 5. The median of those 40 sets is colored
red. The blue box represents the interval from the first to the
third quartile, while the black whiskers show the minimum and
maximum of all of the data.

At a fault rate of 10−4 and 3 · 10−4 f/ms the system
always provides full timing guarantees. When the fault rate
is increased to 10−3 and 3 · 10−3 the median value decreases
to 98.6% and 94.9%, respectivaly, while the third quartile is
at 99.6% and 97.6%, respectivaly, and the first quartile is at
96.91% and 91.4%, respectivaly. If the fault rate is increased
further to 10−2 we got 93.7%, 83.4%, and 78.2% for third
quartile, median, and first quartile, respectively. This shows

that even for higher fault rates under an, in general, difficult
setting we are still able to provide full timing guarantees for a
reasonable percentage of time. However, for some of the task
sets the percentage of time where full timing guarantees can
be given drops faster as can be seen by the comparatively long
lower whiskers for 3 · 10−3 and 10−2.

8 Conclusion and Extensions
We provide the definition of a System with Dynamic Real-
Time Guarantees to model real-time task sets in an uncertain
or faulty execution environment. We present a schedulability
test, a way to find an optimal assignment of fixed-priorities for
such systems and show how to monitor the system state. The
evaluations provide good supports to our claim that uncertain
and faulty execution environments can be reasonably handled
without any online adaptation if certain properties can be
provided offline. We showed that, if the fault rate and task
settings are given, the percentage of time where the system
only provides limited timing guarantees can be approximated.
For a concrete system, this can be used to decide whether
additional online adaptation might be needed.

As we only consider implicit- and constrained-deadline
task sets under preemptive scheduling on a uniprocessor, we
plan to extend our model to cover arbitrary deadlines, non-
preemptive scheduling, and multiprocessor platforms.
Acknowledgement: This paper has been supported by DFG, as
part of the Collaborative Research Center SFB876 (http://sfb876.tu-
dortmund.de/), and the priority program ”Dependable Embedded
Systems” (SPP 1500 - http://spp1500.itec.kit.edu).

References
[1] Rtems: Real-time executive for multiprocessor systems. http://www.

rtems.com/, 2013.
[2] N. Audsley. Optimal priority assignment and feasibility of static priority

tasks with arbitrary start times, 1991.
[3] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-

Spaccamela, S. van der Ster, and L. Stougie. Preemptive uniprocessor
scheduling of mixed-criticality sporadic task systems. J. ACM, 62(2):14,
2015.

[4] R. Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. Device and Materials Reliability, IEEE Transactions on,
2005.

[5] E. Bini and G. C. Buttazzo. Measuring the performance of schedula-
bility tests. Real-Time Systems, 30(1-2):129–154, 2005.

[6] E. Bini, T. H. C. Nguyen, P. Richard, and S. K. Baruah. A response-
time bound in fixed-priority scheduling with arbitrary deadlines. IEEE
Trans. Computers, 58(2):279–286, 2009.

[7] E. Bini, A. Parri, and G. Dossena. A quadratic-time response time
upper bound with a tightness property. In RTSS, pages 13–22, 2015.

[8] U. Bordoloi, B. Tanasa, M. Tahoori, P. Eles, Z. Peng, S. Shazli, and
S. Chakraborty. Reliability-aware instruction set customization for asips
with hardened logic. In RTCSA 2012.

[9] A. Burns and R. Davis. Mixed criticality systems-a review. Technical
report, University of York, 2016. 7th edition.

[10] J.-J. Chen, W.-H. Huang, and C. Liu. k2Q: A quadratic-form response
time and schedulability analysis framework for utilization-based analy-
sis. In Real-Time Systems Symposium (RTSS), 2016.

[11] K.-H. Chen. #2772 ticket: Enhancement for more general real-time
model. http://devel.rtems.org/ticket/2772, 2016.

[12] R. Davis and A. Burns. Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. In IEEE
Real-Time Systems Symposium, pages 398–409, 2009.

[13] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems. The Journal of Supercomputing,
65(3):1302–1326, 2013.

[14] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In proceedings 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), pages 6–11, 2010.

[15] R. Ernst and M. D. Natale. Mixed criticality systems - A history of
misconceptions? IEEE Design & Test, 33(5):65–74, 2016.

[16] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. How realistic is the
mixed-criticality real-time system model? In RTNS, pages 139–148,
2015.

[17] R. Garg, N. Jayakumar, S. Khatri, and G. Choi. A design approach for
radiation-hard digital electronics. In Design Automation Conference,
2006.

[18] O. Gettings, S. Quinton, and R. I. Davis. Mixed criticality systems with
weakly-hard constraints. In RTNS, pages 237–246, 2015.

[19] Z. A. H. Hammadeh, S. Quinton, and R. Ernst. Extending typical
worst-case analysis using response-time dependencies to bound deadline
misses. In EMSOFT, pages 10:1–10:10, 2014.

[20] P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant
mixed-criticality systems. In The 51st Annual Design Automation
Conference, DAC, pages 131:1–131:6, 2014.

[21] P. Kumar and L. Thiele. Quantifying the effect of rare timing events
with settling-time and overshoot. In RTSS, pages 149–160, 2012.

[22] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
Real-Time Systems Symposium’89, pages 166–171, 1989.

[23] J. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation, 2:237–
250, 1982.

[24] F. Many and D. Doose. Scheduling analysis under fault bursts. In RTAS,
pages 113–122, 2011.

[25] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin.
A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor. In ACM MICRO, 2003.

[26] S. Quinton, M. Hanke, and R. Ernst. Formal analysis of sporadic
overload in real-time systems. In DATE, pages 515–520, 2012.

[27] S. Quinton, M. Negrean, and R. Ernst. Formal analysis of sporadic
bursts in real-time systems. In DATE, pages 767–772, 2013.

[28] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via
simultaneous multithreading. SIGARCH Comput. Archit. News.

[29] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of
combinational logic. In DSN, 2002.

[30] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Fault tolerant schedul-
ing of mixed criticality real-time tasks under error bursts. In The Inter-
national Conference on Information and Communication Technologies.
Elsevier Procedia Computer Science, December 2014.

[31] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS, pages 239–243,
2007.

[32] W. Xu, Z. A. H. Hammadeh, A. Kröller, R. Ernst, and S. Quinton.
Improved deadline miss models for real-time systems using typical
worst-case analysis. In ECRTS, pages 247–256, 2015.

Appendix
Example: abnormal execution does not necessarily lead to
a deadline miss (Figure 6): The tasks are characterized by
CNi and Di = Ti with CAi = 2 · CNi . Three faults occur,
represented by the E, and lead to a prolonged execution time
for the first two jobs of τ1 and the first jobs of τ2. However,
τ3 ∈ TA

soft and τ4 ∈ TA
hard still meet their deadlines and thus

aborting τ2 and τ3 to ensure the timingness of τ4 would be
unnecessary.

E EE
τ1 = (1, 4) ∈ TA

hard

τ2 = (2, 9) ∈ TA
soft

τ3 = (1, 14) ∈ TA
soft

τ4 = (3, 23) ∈ TA
hard

Fig. 6: Faults will not necessarily lead to deadline misses.
Tasks characterization: (CN

i , Ti), with CA
i = 2 · CN

i and Di = Ti.
Three occurring faults (E) lead to prolonged execution for the red colored jobs
of τ1 and τ2 due to error recovery. However, τ4 still meets its deadline.

Proof of Theorem 1: Exact Schedulability Test for Con-
strained Deadlines. As TDA is an exact schedulability test
for any preemptive fixed priority scheduling schema if the
critical instant theorem holds, 1) follows immediately. If no
faults occur, all tasks are executed in normal mode and the
situation is identical to the case that all tasks have only one
possible execution time

In 2), we only have to test the tasks in TA
hard with TDA,

as we only want bounded tardiness for τi ∈ TA
soft; this will be

tested in the next step. However, tasks in ΘA
soft can contribute

workload to the Worst Case Response Time of tasks in TA
hard.

The tasks in TA
soft do not have hard real-time constraints

anymore, but they are executed with the same priority as in
the normal mode and thus can be handled as hard real-time
tasks in the analysis, as they contribute the same workload
as tasks in TA

hard would. The possibility that these tasks may
miss their deadlines does not have impact on the analysis, as
TDA tests every task individually and we only care about the
workload those tasks contribute if they are executed, and not
about the concrete execution order of higher priority tasks or
if the tasks meat or miss their deadline. The worst case for
τk ∈ TA

hard will happen when it is released together with all
higher priority tasks, all subsequent jobs of these tasks will
be released as early as possible, and all tasks are executed
in abnormal mode. Using CNi instead of CAi in the analysis
would only decrease the workload generated by tasks in hp(τk)
or the task itself.

For the tasks in TA
soft, only bounded tardiness has to be

provided. If UAsum ≤ 1, for the critical instant of each task the
total workload in one hyperperiod3 is smaller than or equal to
the hyperperiod length. Thus the latest possible time for a job
to finish is one hyperperiod after its release if UAsum ≤ 1. This
leads to an upper bound on the Worst Case Response Time for
all tasks in T and thus to a bounded tardiness.

If UAsum > 1, the maximum amount of workload in one
hyperperiod, due to jobs that arrive in the hyperperiod but
are not fully executed in the hyperperiod, is larger than the
length of the hyperperiod. Let this extra amount of workload
be γ > 0. As for each value β a number of hyperperiods m
with γ ·m > β exists, the tardiness is not bounded.

This are the 3 conditions we have to match for a System
with Dynamic Real-Time Guarantees (Definition 1).

Proof of Lemma 1. Assume ε > 0 but very small and two
tasks τ1 ∈ TA

soft with CN1 = 1, CA1 = 1 + ε, T1 = D1 = 4
and τ2 ∈ TA

hard with CN2 = 3, CA2 = 4, T1 = D1 = 6 that
are scheduled according to DM, i.e., P (τ1) < P (τ2). In normal
mode both tasks will meet their deadlines with WCRTs of
RN1 = 1 and RN2 = 4. In the abnormal mode, the total
utilization UAsum = 1+ε

4 + 4
6 = 22+6·ε

24 < 1 for small values of
ε > 0, which leads to bounded tardiness for τ1 in the abnormal
mode. For the abnormal mode, RA2 = 2 · (1 + ε) + 4 > 6 and
thus τ2 will miss its deadline.

If the priorities of τ1 and τ2 are switched, UAsum remains
the same and thus τ1 has bounded tardiness in abnormal mode.
Both tasks are schedulable in normal mode as RN1 = 4 and
RN2 = 3. In abnormal mode the WCRT of τ2 is 4 < 6.

Proof of Lemma 2. Assume ε > 0 but very small and two
tasks τ1 ∈ TA

soft with CN1 = 1, CA1 = 1 + ε, T1 = D1 = 3
and τ2 ∈ TA

hard with CN2 = 3, CA2 = 3 + ε, T1 = D1 = 6.
Assume these two tasks to be scheduled according to Criti-
cality Monotonic, i.e., P (τ1) > P (τ2). In ormal mode we get
RN1 = 4 and RN2 = 3 and thus τ1 will not meet its deadline.

If the priorities of τ1 and τ2 are switched, τ1 and τ2 will
both meet their deadlines in normal mode, i.e., RN1 = 1 and
RN2 = 4. In abnormal mode τ2 will still meet its deadline, as
RN2 =2 · (1 + ε) + 3 + ε= 5 + 3 · ε < 6. Here τ1 has bounded
tardiness, as UAsum = 1+ε

3 + 3+ε
6 = 5+3·ε

6 < 1.

3The hyperperiod of a task set is the least common multiple of the periods
of all tasks in the set.

50 60 70 80 90
Utilization Normal Mode (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
e

(%
)

Tasks per Set: 50, WCET-Factor: 1.83, Runs: 1000
30 %
40 %
50 %
60 %
70 %

Fig. 7: Acceptance Rate for Percentages of timing strict tasks.
The acceptance rate drops earlier if the percentage of hard tasks is higher.

45 50 55 60 65 70 75
Utilization Normal Mode (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
e

(%
)

Hard Tasks: 60.0%, WCET-Factor: 1.83, Runs: 1000
5 Tasks
10 Tasks
20 Tasks
50 Tasks
100 Tasks

Fig. 8: Acceptance Rate for Different Set Sizes.
Larger task sets starts decreasing later but will decrease faster. Only the task
sets with 5 tasks behave a bit differently due to the randomness effects.

Algorithm 1: Feasible Priority Assignment: TA
hard and

TA
soft are ordered according to Deadline Monotic order in a

preprocessing step and the ordered task sets are the input for
Find Assignment, which tries to assign the τt ∈ TA

hard with
the largest relative deadline to the lowest priority by assuming
that all other tasks have higher priority. If τt can be assigned,
it is given the lowest priority and removed from TA

hard. If not,
τt ∈ TA

soft with the largest relative deadline is tested. If it can be
assigned, it is given lowest priority and removed from TA

soft. If
not, NOT POSSIBLE is returned. This procedure is continued
until either all priorities are assigned or for one priority no task
can be assigned. To keep the pseudo code short we do not take
care of the case that either TA

hard or TA
soft will be empty at some

point during the algorithm. In that case only the lowest priority
task of the not empty set will be tested.

Evaluations
We analysed the schedulability under the Optimal Assignment
(OA) with relation to the percentage of timing strict tasks and
the size of the task set.

Schedulability under OA related to the percentage of
timing strict tasks (Figure 7). When we consider different
rates for the percentage of timing strict tasks and only display
the interesting utilization interval [45%, 95%]. The acceptance
rate drops earlier when the percentage of timing strict tasks
is higher. This is due to the fact, that we have to give hard
real-time guarantees for a higher percentage of tasks.

Schedulability under OA with relation to different set
sizes (Figure 8). We analysed the impact of different set
sizes and only the interesting utilization interval [45%, 75%]
is displayed. If only the sets with 10, 20, 50 and 100 tasks are
consider, the curve for the larger sets starts decreasing later
but decrease faster and vice versa. Only the sets with 5 tasks
behave a bit different due to the randomness of the input.

