
Stack Usage Analysis for Efficient Wear
Leveling in Non-Volatile Main Memory

Systems
Christian Hakert, Mikail Yayla, Kuan-Hsun Chen,

Georg von der Brüggen, Jian-Jia Chen,
Sebastian Buschjäger, Katharina Morik,

Paul R. Genssler, Lars Bauer, Hussam Amrouchm, Jörg Henkel
Department of Computer Science, TU Dortmund, Germany

https://ls12-www.cs.tu-dortmund.de/

Citation: https://doi.org/10.1109/MLCAD48534.2019.9142113

BIBTEX:
@inproceedings { mlcad2019stackanalysis,

author = {Hakert, Christian and Yayla, Mikail and Chen, Kuan-Hsun and Br\"uggen, Georg von der
and Chen, Jian-Jia and Buschj\"ager, Sebastian and Morik, Katharina and Genssler, Paul R.
and Bauer, Lars and Amrouch, Hussam and Henkel, J\"org},
title = {Stack Usage Analysis for Efficient Wear Leveling in Non-Volatile Main Memory Systems},
booktitle = {1st ACM/IEEE Workshop on Machine Learning for CAD (MLCAD) },
year = {2019},
address = {Alberta, Canada},
confidential = {n},

}

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ls12-www.cs.tu-dortmund.de/
https://doi.org/10.1109/MLCAD48534.2019.9142113

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
D

O
I

10
.1

10
9/

M
L

C
A

D
48

53
4.

20
19

.9
14

21
13

Stack Usage Analysis for Efficient Wear Leveling in
Non-Volatile Main Memory Systems

Christian Hakert
Dortmund, DAES

Mikail Yayla
Dortmund, DAES

Kuan-Hsun Chen
Dortmund, DAES

Georg von der Brüggen
Dortmund, DAES

Jian-Jia Chen
Dortmund, DAES

Sebastian Buschjäger
Dortmund, AI Group

Katharina Morik
Dortmund, AI Group

Paul R. Genssler
, CES

Lars Bauer
, CES

Hussam Amrouch
, CES

Jörg Henkel
, CES

Abstract—Emerging non-volatile memory (NVM) technologies,
such as Phase Change Memory (PCM), have been considered as
a replacement for DRAM and storage due to their low power
consumption, fast access speed, and low unit cost. Even so,
some NVMs have a significantly lower write endurance and
hence in-memory wear leveling is an important requirement for
practical applicability. Since writes to the stack often target a
small and dense memory region, generic, coarse-grained wear-
leveling mechanisms (e.g. virtual memory page remapping) are
not sufficient. An alternative solution is to relocate the stack
memory regularly, which involves copying of the stack content.
As the stack content changes in size during the execution of an
application, the copy overhead can be significantly mitigated by
performing the relocation when the stack size is small.

In this paper, we investigate two approaches to determine
points in time when the stack is small. First, we analyze the
possibility to fit simple machine-learning models to the stack
usage function. Precise predictions of this function enable the
identification of the minimum stack size during execution. In our
evaluation, the tested models provide accurate estimates of the
future stack usage function for a subset of common applications.

As a second approach, we analyze applications a priori and
determine potential optimal points to perform relocation in
the instruction stream. In detail, we deploy the application in
an analysis environment, which determines a rating for each
executed instruction. Based on this rating, we apply a genetic
algorithm to identify the best points in the instruction stream to
perform the stack relocation. This approach allows to save up to
85% of the write overhead for wear-leveling in our experiments.

Index Terms—Non-Volatile Memory, Wear-Leveling, Genetic
Algorithm, Decision-Tree

I. INTRODUCTION

Recently emerging non-volatile main-memory technologies
result in a need for in-memory wear-leveling. For instance,
while DRAM endures for at least 10 years under a given usage
pattern, phase change memory (PCM) would wear out within
5 minutes under the same pattern [4]. Hence, several wear-
leveling techniques have been studied in literature, exploring
a variety of algorithms, hardware supports, and software
supports. One concept is to realize the wear-leveling without
any special hardware support to save the required chip-space.
It balances the wear-levels by using the virtual memory feature
of the memory management unit (MMU) and maintaining a

mapping of the entire main memory. This approach can be
classified as coarse-grained since its precision is restricted to
the virtual memory granularity of typically 4 kB. Hence, a
highly non-uniform memory usage within the virtual memory
pages cannot be handled properly by this approach.

Analyses of the memory usage of typical applications show
that the stack segment is responsible for the majority of
non-uniform memory usage within virtual memory pages.
Thus, a wear-leveling technique that specifically targets the
application’s stack has considerable advantages. One approach
is to copy the stack memory within a fixed memory region,
i.e., multiple virtual memory pages, in a circular manner,
distributing the non-uniform memory usage over this region.
The main overhead of this method is caused by copying
the current stack memory. The size of an application’s stack
memory is controlled by the positioning of the stack pointer.

To minimize the overhead of the stack relocation mech-
anism, it is necessary to perform the stack relocation when
the applications stack is small. As the stack usage cannot be
deduced manually in most cases, advanced analysis is required
to determine the points in time when the stack is small and
aid the wear-leveling with this information. We present two
approaches to identify these time points in this paper. One is
to fit specialized machine learning models to the stack usage
during the application execution and to predict the future stack
usage based on these models. Defining such a specialized
model requires precise knowledge about possibly recurring
patterns in the stack usage of typical applications. The second
approach is to analyze the stack usage of a concrete application
prior to the application execution. As this does not require a
specialized model which has to fit the current stack usage, no
further knowledge about stack usage patterns is required. The
drawback of this approach is the need to perform the analysis
for every application before its execution.

We perform a generic analysis of typical stack usage pat-
terns in ?? and determine three classes of stack functions for
our benchmark applications, which can be used to classify the
application. Second, we propose a genetic algorithm based
method, which determines optimal stack relocation points a
priori in ??. Subsequently, we evaluate the usability of simple
machine-learning models to predict a subset of classes of stack
functions properly in ??. Such a model could later be deployed978-1-7281-5758-0/19/$31.00 ©2019 IEEE

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
D

O
I

10
.1

10
9/

M
L

C
A

D
48

53
4.

20
19

.9
14

21
13

as a special hardware controller, which makes the analysis and
annotation of the application needless as discussed in ??.

The novel contributions of this paper are:
1) An analysis framework to run an application and extract

the size of the stack at any executed instruction.
2) The analysis of a set of benchmark applications to

investigate the stack functions. Three classes of stack
functions are deduced and the applications are catego-
rized accordingly.

3) A generic analysis and annotation mechanism to allow
efficient wear-leveling with an a priori analysis of an
application.

4) An evaluation of simple machine-learning algorithms to
determine how suitable they are to predict specific stack
functions.

II. RELATED WORK

The area of in-memory wear-leveling is targeted in the
literature at different levels. Some approaches aim to perform
the wear-leveling entirely in hardware [6], [12], others propose
a combined hardware-software solution [10], and some works
propose software-based wear-leveling [8], [9], [13]. Some of
the software-based approaches consider specialized solutions
for the stack memory in their work, i.e., a memory allocation
is performed for the stack of each function call [8], [9]. They
also mitigate the caused overhead for stack wear-leveling by
only hooking in the wear-leveling algorithm for new memory
requests. Thus, copying of old content is omitted. However,
these approaches rely on the application’s corporation to, for
instance, perform a sufficient amount of function calls. The
mechanism presented in this paper is more generic and hence
requires different strategies to reduce the overhead.

III. STACK USAGE ANALYSIS FRAMEWORK

In order to determine the stack sizes during the execution of
an arbitrary application, a specialized framework is required.
The size of the stack can be determined by reading out the
stack pointer spcurrent and compare it to the stack pointer
at the beginning of the application execution spbase. The
difference of these values determines the amount of valid stack
memory. Thus, the main purpose of the analysis framework is
to determine the stack pointer after the execution of certain
instructions, i.e., the instructions which should be currently
evaluated. This section gives a brief overview of how our
analysis framework determines these stack pointers.

A. Ptrace Based Execution

The stack pointer is a CPU register, which can either be read
and modified by the application itself or by the supervising
operating system. As a monitoring of the stack pointer inside
of the application requires, for instance, an instrumentation of
the application code, this would influence the usage of the
stack itself and lead to different results. Hence, we access the
stack pointer from the supervising operating system. Linux
provides an API, called ptrace, which can be used to debug
an user level application, including the possibility to read the

CPU

x0, x1,
x2, ...

sp , pc

machine
registers,

...

Linux

App

E

Result

stack
size,

#calls,

time-
points of
calls

Fig. 1. Ptrace based analysis framework for instruction evaluation

CPU registers at any point in time [2]. Ptrace can be con-
figured to interrupt the application execution either after each
instruction (single-step mode) or after a breakpoint instruction.
The latter version requires an instrumentation of the code
with breakpoint instructions, which, however, have no further
influence on the application behavior. Whenever the breakpoint
instruction is executed, it has to be replaced with the original
instruction and the execution has to be continued. At every
interrupt of the application, our framework reads out the CPU
register set (including sp) with the ptrace API and determines
the stack size after the execution of the current instruction.

B. Analysis Workflow

Whenever the analysis framework is called by, for instance,
the training phase of a machine-learning model, the target
application and an instruction address of interest are passed
to the framework. The framework then initializes the ptrace
environment and ensures that the application is interrupted
after the execution of the instruction of interest by replacing
it with a breakpoint instruction. The framework executes the
application subsequently until termination or a timeout and
returns a rating for the instruction of interest, including, e.g.,
the cumulative stack size over all executions of the instruction,
the number of executions, and the points in time when the
instruction is called. This workflow is illustrated in ??.

This way of analysis is trivially parallelizable. The calling
algorithm aims to always evaluate a set of instructions. To
handle this, multiple instances of the analysis framework can
be started, i.e., one for each instruction. We specifically target
ARMv8 CPUs in our analysis [1]. For the execution of the
analysis framework, we use an ARMv8 based Linux Server
(2x Cavium Thunder X2), which offers 224 logical CPU
threads.

IV. STACK USAGE PATTERN ANALYSIS

To follow our first approach of fitting simple machine-
learning models to the stack usage function, we first analyzed
the stack functions of typical applications. We investigated
several applications from the MiBench suite [7], but also self-
written benchmarks. The stack function f : N0 → N0 maps
one instruction, identified by the clock cycle and thus called

2

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
D

O
I

10
.1

10
9/

M
L

C
A

D
48

53
4.

20
19

.9
14

21
13

0 1E6 2E6 3E6 4E6 5E6 6E6 7E6

0
10

20
30

40
50

60
bitcount

instruction

st
ac

k
si

ze
(b

yt
e)

0 2E4 4E4 6E4 8E4 1E5

40
60

80
10

0
12

0

dijkstra

instruction
0 5E4 1E5 1.5E5 2E5 2.5E5 3E5

0
20

0
40

0
60

0
80

0
10

00
12

00

jpeg

instruction
0 1E4 2E4 3E4 4E4 5E4

20
0

40
0

60
0

80
0

pfor

instruction

Fig. 2. The plots of four example applications, one out of every category (1. constant, 2. irregular, 3. constant, 4. periodic) in Table 2.

point in time, to its corresponding stack size during execution.
We investigated the stack functions of various applications to
abstract them to classes of stack functions. This allows us
to decide which model should be used to model the stack
function of an application. ?? depicts the recorded stack
functions of a small subset of applications and thus shows
examples for different classes of stack functions. The y-axis
shows the amount of used stack over each executed instruction
(x-axis). As a result, we deduced three different classes of
stack functions: 1) constant, 2) periodic, and 3) irregular. The
categorization of the investigated applications is presented in
Table I1.

1) Applications with constant stack functions allocate stack
memory once and then do not change the stack pointer
any more. Hence, the amount of stack never changes
and the stack function is constant.

2) For periodic stack functions, the stack pointer is in-
creased and then decreased repeatedly, following a fixed
pattern. The pattern repeats at a certain frequency. In
between those changes, the function may also stay
constant for extended periods of time.

3) In rare cases, the stack function is irregular, i.e., no reg-
ularity can be trivially identified while further analysis
may still be able to identify regularities.

For certain applications, not only one of the aforementioned
classes can be observed, but also a change of the class at
a certain point in time. The dijkstra benchmark (??), for
instance, first has a constant stack usage, but then switches
to an irregular stack usage.

Our ultimate goal is to predict time points at which the stack
size is minimal, just by having knowledge about the past stack
usage. The analysis provides us with an overview of how stack
sizes progress during the execution of common embedded
applications. The results in ?? indicate that most applications
have stack functions with regularities that can be identified by
machine-learning models. When choosing a machine learning
model based on this observations, two key requirements should
be respected. First, features have to be extracted from the stack
usage, reflecting the periodic usage patterns also as periodic
patterns in the features to enable the model to adopt these

1Bitcount and Pfor are self-written benchmarks, the other benchmarks are
from the MiBench suite.

Constant: Bitcount (0), Susan (10224), Jpeg (1072), Patricia (240),
CRC32 (1072), Blowfish (304)

Periodic: Basicmath (688), Stringsearch (64), Adapcm (112)
Pfor (752), Sha (176), FFT (176)

Irregular: Dijkstra (688)
Table I. CATEGORIZATION OF 13 EMBEDDED APPLICATIONS2

patterns. Second, the switching of the stack usage classes
should also be detectable by the model. Decision trees [5]
seem a good candidate for this purpose, since the stack usage
could be determined in the upper levels and specialized sub-
trees can adopt the actual pattern subsequently.

V. EFFICIENT WEAR-LEVELING BY PREDETERMINED
STACK SIZES

An alternative solution is to analytically determine minimas
in the stack usage in advance. By analyzing the stack usage
with our analysis framework (??) and identifying points during
the program execution where the currently used stack is small,
the stack relocation can be triggered at these optimal points
and the overhead of copying can be reduced. This analysis
can be performed in advance and the result can be deployed
together with the application.

A. Optimal Stack Usage Determination

To figure out the points during the program execution with
the smallest stack, we apply a genetic algorithm that takes
the needs for wear-leveling into account. The first important
aspect is the target wear-leveling frequency fwl. This value
determines the average time distance between two relocations
of the stack. For example, fwl = 5000 means that in average
5000 instructions should be executed between two relocations
of the stack. The second important aspect is the way the
determined optimal relocation points are deployed to the wear-
leveling algorithms. This is handled by hints, which are placed
into the program’s source code. A hint is a small set of
instructions, which is placed into the original source code and
triggers the wear-leveling algorithm. Nevertheless, the wear-
leveling implementation decides based on the target frequency
fwl if a relocation is performed when a hint is given.

2The applications are categorized based on their stack functions. The
numbers in the brackets describe the difference between the minimal and
maximal stack size in byte.

3

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
D

O
I

10
.1

10
9/

M
L

C
A

D
48

53
4.

20
19

.9
14

21
13

The determination of the optimal relocation points is per-
formed by executing a specialized genetic algorithm with post-
processing steps. The population of the algorithm is a set of
assembly instructions P = {a0, a1, ..., an}, where n denotes
the fixed population size. The analysis framework (??) is
executed for each element of the population at the beginning
of each iteration, resulting in a mapping of instructions to
instruction ratings R : P → R. In our case, the average
stack size (cumulative stack size

number of calls) is used as a fitness value for each
instruction. Instructions which are not called at all result in a
null value. Subsequently, a strategy of elitism is applied, and
only the k instructions with the best rating are kept in the
population P . After this, the current population is checked
according to the target frequency fwl. The analysis result for
each instruction includes the points during the execution when
the instruction was called. This is used to check if multiple
instructions are in the population which are called within the
same time-frame of the target frequency. In this case, only
the best rated instruction of each time-frame is kept. The
other instructions are either removed from the population or
kept in the population, depending on whether they also are
the optimal instruction in another time-frame. At the end of
each iteration, a mutation and recombination is performed.
Only empty slots in the population are filled with mutated
or recombined instructions. Mutations are achieved by adding
a bounded random offset to an instruction address from the
population. Recombinations are achieved by selecting two
random instructions from the population and calculate the
arithmetic mean of the instruction addresses. A subsequent
sanity check ensures that the calculated address is actually
a valid instruction. For the final iteration, the mutation and
recombination step is omitted.

B. Deployment of Relocation Hints

After the termination of the genetic algorithm, the output
is a set of instruction addresses, which were identified as
instructions with an optimal stack size during the execution of
the genetic algorithm. These addresses are transformed into
the corresponding source code locations by using additional
debug information in the compiled binary file. This debug in-
formation allows to determine the source file and the line in the
source code a specific assembly instruction belongs to. After
the source code position is determined for each instruction in
the result of the genetic algorithm, the aforementioned hints
are placed and the program is deployed back into the original
environment. Some special scenarios have to be handled with
a special mechanism during this process. For instance, if the
genetic algorithm determines the very first instruction of a
function as an optimal relocation point, it is pointless to put
a hint at the beginning of the function, because the compiler
always generates some instructions before the first line of a
function. Instead, the hint is placed before each call of the
corresponding function in this case.

VI. EVALUATION

To evaluate the proposed approaches, we considered two
benchmarks. ?? discusses the evaluation of the approximation
of stack functions with machine-learning models. If a stack
function can be approximated properly, it can also be predicted
properly, which allows to determine local minimas in time.
Furthermore, we examine our second approach that analyzes
the application in advance and deploys the results for the
execution in ??. The evaluation focuses on the saved overhead
as well as possible negative effects on the wear-leveling.

A. Model Approximation of Stack Usage

To evaluate the fitting of machine-learning models to the
stack function, we used supervised learning algorithms to
predict the future stack size in a fixed forward distance. A
model was inferred from labeled training data {(~xi, y)}. The
value y is a continuous quantity, thus it is a regression problem.

We utilized decision trees (DTs) [5] to predict the future
stack size. DTs provide a model to predict values of unseen
data, based on the learned information from the training data.
A DT is a data structure with nodes, where a node represents
a test on a certain attribute. The leaves of the trees provide
information about the inferred value.

First, we created features from the application execution,
which are used as inputs to the DTs later on. ~I denotes a
vector of all instructions that the CPU has already executed.
Given the vector ~I = (i0, i1, ...)

T of executed instructions,
we determined the size of the stack after each executed
instruction, using our analysis framework (??). This results
in an intermediate vector ~S = (s0, s1, ...)

T of stack sizes. We
subsequently determined the indexes x0, x1, ..., at which the
stack size changes, such that sxi

= sxi+1 = ... = sxi+1−1

and sxi 6= sxi+1 for all xi. We stored δSSi = sxi − sxi−1 ,
which is the amount of change to the stack value when the
stack size is modified, and #Instri = xi−xi−1, which is the
number of instructions where the stack size did not change,
as as a single feature fi = (δSSi

,#Instri). In our analysis,
we extracted 128 value pairs from ~I to form a feature vector
~X = (f0, f1, ..., f127)

T , where the pair f0 is the least recent
one, and f127 the most recent one. These features represent a
part of the stack function in a compressed way.

Four different regression DTs were investigated, which pre-
dict the stack size after Sn = 250, 500, 750, 1000 instructions.
During runtime, the predicted stack sizes of the model can be
monitored. Whenever the predicted, future stack size is smaller
than the current stack size, relocations should be delayed
further, if possible. Once the predicted stack size increases, the
relocation should be triggered after additional Sn instructions.

The datasets to train the models were generated while
executing the application in our analysis framework (??), by
sampling at random time points to determine the future stack
size relative to those random time points. In our experiments,
the sampling was realized as follows: Before the application
execution, a random number Nr ∈ {0, ...,maximum value} is
generated. We used maximum value=1000 in our evaluation.
The application was executed until the first feature vector ~X

4

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
D

O
I

10
.1

10
9/

M
L

C
A

D
48

53
4.

20
19

.9
14

21
13

was filled with 128 elements. Additionally, the stack size after
Sn additional instructions, denoted as y, was recorded and
(~X, y) was stored as one training sample. During the subse-
quent N1 instructions, the feature vector ~X was updated by
discarding old and adding new feature pairs. Thus, the length
of the feature vector was always 128 elements. When N1

instructions were executed, the stack size Sn instructions later
was stored together with the current ~X as a training sample.
The process was repeated with a new random number N2

3.
This procedure continued until a certain number of instructions
was reached. In our experiments, we recorded several thousand
training samples of the application execution. The test samples
were recorded from disjoint execution intervals. This allowed
us to train a model with samples, recorded by executing the
application for a limited time, and we can apply the model for
indefinite time when deploying the application in a production
setting.

Afterwards, we loaded the recorded samples into
sklearn [11], and trained and tested a decision tree for
every application scenario. The trees had a depth no greater
than eight. The dataset consist of thousands of samples, e.g.,
to train a DT that predicts the stack size after 250 instructions
for the Pfor application, and we used 5797 training samples
and 3803 test samples.

We estimated the precision of the trained models using the
mean absolute error (MAE), the mean squared error (MSE),
and the coefficient of determination (R2). The results for two
applications are presented in Table II, .

For the Pfor application, the measures indicate high predic-
tion accuracy for all Sn values shown, since the MAE is at
most 1.12 while the maximum stack size is 848. Hence, the
error ranges at 0.13% of the stack size.

For Dijkstra, the MAE is approximated one order of
magnitude larger compared to Pfor (MAE is at most 11.94,
the maximum stack size is 160, thus the error ranges at 7.46%).

In conclusion, due to the periodicity of many embedded
applications, simple models are able to produce accurate
predictions. In the case of highly irregular stack usage, our
models are unable to provide an accurate prediction. However,
we believe that machine learning models in general will suffer
from predicting data without identifiable patterns.

Alternatively, we trained smaller fully connected neural
networks (FCNNs), i.e., multi-layer perceptrons with a few
layers and less than 100 neurons. The results indicate errors
that are larger by an order of magnitude compared to the DT
results.

We limited our evaluation to two example applications (Pfor
and Dijkstra). These applications represent two classes of stack
functions, i.e., periodic and irregular stack usage. Performing
the evaluation for constant stack functions is a trivial setup for
all our tested models and, hence, omitted in the evaluation.

3To only execute the application once and omitting the need to roll back in
the instruction stream, the implementation used a set of overlapping timers,
which count Nr and Sn

R2 MAE MSE
Pfor
250 0.98 0.91 207.20
500 0.99 0.39 38.74
750 0.99 0.70 65.05
1000 0.96 1.12 337.3

Dijsktra
250 0.45 5.97 276.6
500 −0.27 11.84 639.60
750 −0.28 11.94 645.7
1000 −0.66 7.42 284.80

Table II. THE RECORDED ACCURACY MEASURES FOR THE TWO
APPLICATIONS PFOR AND DIJKSTRA, EACH PREDICTING THE STACK SIZE

IN 250,500,750 AND 1000 INSTRUCTIONS

B. A Priori Application Analysis

To evaluate our approach that combines a genetic algorithm
with the analysis framework to determine optimal time points
to perform a stack relocation (i.e. a less usage of the stack), we
set up a benchmark application and performed an end-to-end
evaluation. In detail, the application was separated from the
original execution environment and analyzed by the genetic
algorithm. The resulting hints were integrated into the source
code, the application was deployed back into the original
environment, and executed again. As the original execution
environment we chose a simulator (gem5 [3]), which allowed
us to measure the total amount of memory accesses. Hence,
we evaluated the total amount of memory write accesses for
the wear-leveling algorithm without hints and compared them
to the same setup with the hints, provided by the genetic
algorithm. This setup also includes several overheads, caused
by the additional source code for the hinting itself.

We used a data decompression benchmark application,
which processes lightweight compressed data (PFOR compres-
sion [14]) in a stream-like manner and decompresses and ag-
gregates them into a local data structure. The genetic algorithm
was configured with a population size of n = 200 elements,
and the elitism strategy kept the best k = 100 elements in
each iteration. The target frequency for stack relocations was
configure to fwl = 10000 and the boundary of the random
mutation offset was 50 instructions into each direction. The
final results of the genetic algorithm were inserted into the
application source as hints for the wear-leveling system. A hint
is a simple call to the responsible wear-leveling function in the
runtime environment. ?? shows the end-to-end result of the
wear-leveling, when the genetic algorithm is used to determine
the best relocation points. We observed that the placing of the
hints had no negative effect on the wear-leveling itself, but
that the write count is dropped down overall the memory on
the blue plot (with hints), compared to the green plot (without
hints). More detailed, the wear-leveling caused a total write
overhead of 9.96% without any optimization. Applying the
method that is presented in this paper reduced the overhead
to 1.41%, which is a saving of 85.83% on the total write-

1The figure shows the memory write count distribution of wear-leveling
with and without hints. The x axis displays the memory space, the y axis the
total write count to the memory.

5

Pr
ep

ri
nt

V
er

si
on

.C
ita

tio
n

In
fo

:
D

O
I

10
.1

10
9/

M
L

C
A

D
48

53
4.

20
19

.9
14

21
13

10
00

15
00

20
00

25
00

pfor
w

ri
te

co
un

t

stack

wear-leveling without hints
wear-leveling with hints

Fig. 3. Memory write access distribution1

overhead. As mentioned before, the wear-leveling quality is
not affected by our method and the optimization is achieved
by carefully choosing the points in time to perform a stack
relocation.

VII. FUTURE OUTLOOK

The necessity to analyze an application a priori to perform
efficient wear-leveling (??) is a significant drawback and may
not be possible in every scenario. Furthermore, our results
in ?? show that simple machine-learning models are capable
of estimating the stack function of most applications accurate
enough to deliver a meaningful prediction. This motivates the
design of an adaptive online controller, which aids the process
of wear-leveling.

Realized as a hardware controller close to the CPU, the
CPU internal state (e.g. the stack pointer) is easy to acquire.
This can be used to train a simple machine-learning model
(e.g. a decision tree) during the application execution. Again,
sampling can be used instead of training the model with every
executed instruction to relax the timing requirements for the
controller. Once the model inside of the controller is trained
with a reasonable amount of data, it can predict the future
stack size. Now, a wear-leveling algorithm may interact with
the controller to determine the most efficient points to perform
stack relocation. The wear-leveling algorithm could also be
integrated further into the controller. The controller can keep
track of the future stack size automatically and only interrupt
the CPU whenever a good point for a stack relocation is
reached. The interrupt handler has to decide subsequently if
a wear-leveling action really should be performed during the
interrupt handling.

A further hybrid solution to omit the initialization phase of
the controller is to ship the application with a parameter set of
a pre-trained model. Thus, the model can be used immediately
to predict future stack sizes. Still, the model can be trained
from time to time on the execution data to react to a changed
behavior of the application and to make the prediction more
precise.

We plan to prototype the hardware controller on a CPU /
FPGA combination to evaluate the online trainability of the
previously evaluated machine-learning models.

ACKNOWLEDGEMENT

This paper has been supported by Deutsche Forschungs-
gemeinshaft (DFG), as part of Project OneMemory (Project
number 405422836), and the Collaborative Research Center
SFB 876 ”Providing Information by Resource-Constrained
Analysis”, project A1 (http://sfb876.tu-dortmund.de).

REFERENCES

[1] Arm architecture reference manual armv8, for armv8-a architecture
profile. https://developer.arm.com/docs/ddi0487/latest/arm-architecture-
reference-manual-armv8-for-armv8-a-architecture-profile.

[2] ptrace(2) Linux Programmer’s Manual, October 2019.
[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.

[4] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. Emerg-
ing nvm: A survey on architectural integration and research challenges.
ACM Trans. Des. Autom. Electron. Syst., 23(2):14:1–14:32, November
2017.

[5] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen.
Classification and regression trees. Routledge, 1984.

[6] Sangyeun Cho and Hyunjin Lee. Flip-n-write: A simple deterministic
technique to improve pram write performance, energy and endurance. In
Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, pages 347–357, New York, NY, USA,
2009. ACM.

[7] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. Mibench: A free, commercially
representative embedded benchmark suite. In Proceedings of the Fourth
Annual IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. No. 01EX538), pages 3–14. IEEE, 2001.

[8] Q. Li, Y. He, Y. Chen, C. J. Xue, N. Jiang, and C. Xu. A wear-leveling-
aware dynamic stack for pcm memory in embedded systems. In 2014
Design, Automation Test in Europe Conference Exhibition (DATE), pages
1–4, March 2014.

[9] Wei Li, Ziqi Shuai, Chun Jason Xue, Mengting Yuan, and Qingan
Li. A wear leveling aware memory allocator for both stack and heap
management in pcm-based main memory systems. In Proceedings of
the 2019 Design, Automation & Test in Europe (DATE), 2019.

[10] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha. Curling-
pcm: Application-specific wear leveling for phase change memory based
embedded systems. In 2013 18th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 279–284, Jan 2013.

[11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard
Duchesnay. Scikit-learn: Machine Learning in Python. J Mach Learn
Res, 12:2825–2830, 2011.

[12] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling. In 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 14–23,
Dec 2009.

[13] Songping Yu, Nong Xiao, Mingzhu Deng, Yuxuan Xing, Fang Liu,
Zhiping Cai, and Wei Chen. Walloc: An efficient wear-aware allocator
for non-volatile main memory. In 2015 IEEE 34th International
Performance Computing and Communications Conference (IPCCC),
pages 1–8, Dec 2015.

[14] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter A Boncz. Super-
scalar ram-cpu cache compression. In Icde, volume 6, page 59, 2006.

6

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

	Introduction
	Related Work
	Stack Usage Analysis Framework
	Ptrace Based Execution
	Analysis Workflow

	Stack Usage Pattern Analysis
	Efficient Wear-Leveling by Predetermined Stack Sizes
	Optimal Stack Usage Determination
	Deployment of Relocation Hints

	Evaluation
	Model Approximation of Stack Usage
	A Priori Application Analysis

	Future Outlook
	References

