
PASS: Priority Assignment of Real-Time Tasks with Dynamic
Suspending Behavior under Fixed-Priority Scheduling

Wen-Hung Huang and Jian-Jia Chen
Department of Computer Science
TU Dortmund University, Germany

{wen-hung.huang, jia.chen}@tu-dortmund.de

Husheng Zhou and Cong Liu
Department of Computer Science
The University of Texas at Dallas

{husheng.zhou,cong}@utdallas.edu

ABSTRACT
Self-suspension is becoming an increasingly prominent char-
acteristic in real-time systems such as: (i) I/O-intensive
systems, where applications interact intensively with I/O
devices, (ii) multi-core processors, where tasks running on
different cores have to synchronize and communicate with
each other, and (iii) computation offloading systems with
coprocessors, like Graphics Processing Units (GPUs). In
this paper, we show that rate-monotonic (RM), deadline-
monotonic (DM) and laxity-monotonic (LM) scheduling will
perform rather poor in dynamic self-suspending systems in
terms of speed-up factors. On the other hand, the proposed
PASS approach is guaranteed to find a feasible priority as-
signment on a speed-2 uniprocessor, if one exists on a unit-
speed processor. We evaluate the feasibility of the proposed
approach via a case study implementation. Furthermore,
the effectiveness of the proposed approach is also shown via
extensive simulation results.

Keywords
Self-suspension, schedulability, priority assignment

1. INTRODUCTION
In many real-time and embedded systems, tasks may be

suspended by the operating system when accessing external
devices such as disks, graphical processing units (GPUs),
or synchronizing with other tasks. This behavior is often
known as self-suspension. Self-suspensions are even more
pervasive in many emerging embedded cyber-physical sys-
tems in which the computational components frequently in-
teract with external and physical devices [8, 9]. Typically,
the resulting suspension delays range from a few microsec-
onds (e.g., a write operation on a flash drive [8]) to a few
hundreds of milliseconds (e.g., offloading computation to
GPUs [9, 15]). Such suspension delays negatively impact
the timing predictability and cause intractability in hard
real-time (HRT) schedulability analysis [18].

The unsolved problem of efficiently supporting self-sus-
pensions in real-time systems has impeded research progress
on many related research topics such as predictably sup-
porting I/O-intensive applications and computation offload-
ing. Since the problem of scheduling HRT self-suspending

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15 June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06..$15.00.
http://dx.doi.org/10.1145/2744769.2744891.

task systems on a uniprocessor is NP-hard in the strong
sense [18], it is unlikely that an optimal polynomial-time
solution exists. As an appealing choice, approximation al-
gorithms, particularly those based on speed-up factors, have
attracted much attention [16]. If a scheduling algorithm A
has a speed-up factor α, then A guarantees to produce a
feasible schedule (i.e., all task deadlines are met) for a given
input task set on a processor with speed α, if this task set
admits a feasible schedule on a unit-speed processor. Thus,
designing scheduling algorithms with provable speed-up fac-
tors ensures their qualities for such NP-hard problems.

Classical fixed-priority scheduling algorithms, such as
rate-monotonic (RM) and deadline-monotonic (DM) which
are widely used in practice, have been shown to be ef-
fective in supporting ordinary non-suspending real-time
task systems [12]. Unfortunately, their quality in handling
self-suspending tasks is generally unknown. In this work,
we show that classical fixed-priority scheduling algorithms
become rather pessimistic for supporting self-suspending
task systems. As a better alternative, we propose PASS: a
Priority Assignment algorithm for Self-Suspending systems.
We also present the corresponding analysis of PASS and
show that PASS yields strong performance in terms of non-
trivial speed-up factors.
Overview of related work. An overview of work on
scheduling self-suspending task systems can be found in [14].
In [14], a general interference-based analysis framework was
developed that can be applied to derive sufficient utilization-
based tests for self-suspending task systems on uniprocessors
when RM scheduling is applied. [4] shows that the category
of fixed-relative-deadline schedulers may yield non-trivial
resource augmentation (speed-up factor) performance guar-
antees. However, the result in [4] can only be applied to
a special self-suspending task model, where each task is
allowed to suspend for at most once and has a fixed interleav-
ing pattern between computation and suspension phases.
Given that the occurrence of most I/O-induced suspensions
is unpredictable, the result from [4] can hardly be put into
practice. In [11], an integer linear programming (ILP)-based
priority assignment algorithm is proposed for scheduling self-
suspending task systems with pre-fixed phase interleaving
patterns on a uniprocessor under fixed-priority scheduling.
However, this approach cannot be applied to the general
self-suspending task model, and may incur excessively high
runtime complexity due to the ILP-based solution. In sum-
mary, most of the existing schemes suffer from two major
problems: (i) the fully general self-suspending task model
(defined in Sec. 2) is not supported, and/or (ii) the quality
of these tests is unknown.
Contribution. In this paper, we advance the state of the
art on supporting HRT self-suspending task systems on a
uniprocessor under fixed-priority scheduling. We first prove

that classical fixed-priority scheduling algorithms, RM, DM,
and laxity-monotonic (LM), have a speed-up factor of ∞,
which implies that their corresponding priority assignment
schemes are ineffective when self-suspensions are present.
To better support self-suspending task systems, we present a
new fixed-priority scheduling algorithm PASS for the general
self-suspending task model. PASS is proven to yield a speed-
up factor of two, and thus guarantees to find a feasible
priority assignment on a speed-2 uniprocessor in pseudo-
polynomial time, if one exists on a unit-speed processor. The
effectiveness of PASS has been validated via both a GPU-
offloading case study implemented on top of real hardware
and extensive simulation results using traces as well as ran-
domly generated workload parameters.

To the best of our knowledge, this is the first technique
that can efficiently analyze the general self-suspending task
system with non-trivial speed-up factors.
Organization. The rest of this paper is organized as
follows: Section 2 describes the system model. Section 3
presents a motivational example of well-known scheduling
and our proposed priority assignment as well as its speed-
up factor analysis. Section 4 studies the real-time matrix
calculation read-write application, and Section 5 describes
our extensive experiments. Finally, Section 6 concludes this
paper.

2. SYSTEM MODEL
The general self-suspending sporadic (SSS) task model

extends the conventional sporadic task model by allowing
tasks to suspend themselves. Similar to sporadic tasks, a
self-suspending sporadic task releases jobs sporadically, but
each job of the task can alternate between computation and
suspension phases.

We consider a real-time system to execute a set of n
independent, preemptive, self-suspending real-time tasks
τ = {τ1, τ2, ..., τn} on a uniprocessor. Each task can release
an infinite number of jobs under the given minimum inter-
arrival time (temporal) constraint. A self-suspending task
τi is characterized by a 4-tuple (Ci, Si, Ti, Di), Ti denotes
the minimum inter-arrival time of τi, each of job of τi has a
relative deadline Di, Ci denotes the upper bound on total
execution time of each job of τi, and Si denotes the upper
bound on total suspension time of each job of τi. We assume
that Ci + Si ≤ Di for any task τi ∈ τ .

The utilization of task τi is defined as Ui = Ci/Ti. We
further assume that

∑n
i=1 Ui ≤ 1. Task system τ is said

to be an implicit-deadline system if Di = Ti holds for each
τi, and a constrained-deadline system if Di ≤ Ti holds for
each τi; otherwise, an arbitrary-deadline system. We restrict
our attention here to constrained-deadline task systems. A
system τ is said to be feasible if there exists a scheduling al-
gorithm that can schedule the system without any deadlines
being missed.

This model allows tasks to suspend with an unlimited
number of suspensions and at arbitrary locations, within
each job. (Starting or ending with a suspension phase, of
each job, is also permitted.) The number of suspension and
their locations can also vary, with respect to job releases.
From application perspectives, such a general suspension
model is more appropriate due to the unpredictable nature
of I/O operations.

In this paper, we focus on fixed-priority scheduling, in
which each task is associated with a unique priority. More
precisely, all the jobs of a task have the same priority level,
and the system always selects the job in the ready queue

with the highest-priority level to execute. Clearly, if a job
suspends itself, it is no longer in the ready queue. On the
other hand, when a job resumes from its self-suspension, it
is put into the ready queue again.

3. PRIORITY ASSIGNMENT
In this section we propose our priority assignment ap-

proach for self-suspending systems as well as its processor
speed-up factor.

3.1 Speed-Up Factor of DM and LM
In the light of simple implementation in kernels, fixed-

priority scheduling has been widely adopted in commercial
real-time systems. Classical deadline-monotonic (DM)/rate-
monotonic (RM) scheduling algorithm is optimal in the
sense that if there exists a feasible fixed-priority assignment
in a sporadic constrained-deadline/implicit-deadline real-
time system without self-suspensions, then it can be sched-
uled by DM/RM. Nevertheless, in self-suspending systems
it has been shown in [4] that no lower bound on processor
speed-up factor is guaranteed for RM scheduling.

The alternative, called laxity-monotonic (LM) scheduling,
assigns the highest priority to the task with the least laxity,
that is, Di − Si. This algorithm can effectively relieve the
problem that the long-suspension-length task is prone to
miss its deadline under RM scheduling, and seems to provide
better performance than RM.

Unfortunately, the following theorem shows that the
above algorithms yield rather poor performance in the
presence of self-suspensions with respect to the speed-up
factors.

Theorem 1. The speed-up factor for RM, DM, and LM
scheduling is ∞.

Proof. Consider the following implicit-deadline task set
with one SSS task and one sporadic task:

• C1 = 1− 2ε, S1 = 0, T1 = 1

• C2 = ε, S2 = T − 1− ε, T2 = T

where T is any natural number larger than 1 and ε can be
arbitrary small. It is clear that this task set is schedulable
if we assign higher priority to task τ2 than task τ1.

Under either RM, DM, and LM scheduling, task τ1 has
higher priority than task τ2. Thanks to the harmonic sys-
tem, the schedulability of task τ2 can be analyzed by ex-
amining the demand from task τ1 together with its upper
bound on total execution time and suspension length at its
deadline, as the two tasks release simultaneously. Thus, jobs
of τ2 will miss deadlines since T (1−2ε)+ε+(T −1−ε) > T .

In order to be schedulable upon this system under RM,
DM, or LM on α-speed processor the following must hold1:

T (1− 2ε) + ε

α
+ (T − 1− ε) ≤ T

After reformulation, we have α ≥ T (1−2ε)+ε
1+ε

. Thus, α→∞
as T →∞.

Apart from the poor performance of RM, DM, and LM
scheduling, considering all n! possible priority ordering for
finding a feasible priority assignment is computationally in-
tractable.

1On a speed-α uniprocessor the worst-case execution times
Ci become Ci

α
. However, Si remains the same.

3.2 Sufficient Condition and Proposed Test
Before proceeding with our approach, we formally define a

priority assignment that determines the precedence of tasks
under fixed-priority scheduling, as follows:

Definition 1 (priority assignment). Let π be the
priority assignment as a bijective function π : τ → {1, 2, . . . , |τ |}
to define the priority level of task τi ∈ τ . Priority levels are
numbered from 1 to |τ | where 1 is the highest and |τ | the
lowest.

We here provide a sufficient condition that checks whether
a priority assignment π in a self-suspending system τ is
feasible or not, in the following theorem.

Theorem 2. A priority assignment π is feasible in a sys-
tem τ consisting of periodic, independent, preemptable, self-
suspending tasks if for all tasks τi ∈ τ , there exists a time-
instant t with 0 < t ≤ Di such that

Ci + Si +
∑

j:π(τj)<π(τi)

Ŵj(t) ≤ t (1)

where

Ŵj(t) =

⌈
t+Dj
Tj

⌉
Cj (2)

Proof. Let t0 denote the release time of task τi. In the
interval [t0, t0 + Di], the total capacity occupied by task τi
is at most Ci + Si.

Within the interval [t0, t0 + t], the demand from higher-
priority task τj can be decomposed into two parts: (i) a
carry-in job: a job of τj having the release time prior to t
and the absolute deadline after t, and (ii) body jobs: jobs
of τj having the release time within [t0, t0 + t]. The releases
are also illustrated in Figure 1.

Due to the fact that each job can at most contribute to
its upper bound on total execution time, we can bound the
interference from the carry-in job and body jobs by Cj and⌈
t
Tj

⌉
Cj , respectively, as the releases of body jobs demand

completely all their execution times.
Let tcj denote the release time of the carry-in job of task τj ,

and ∆j denote t0 − tcj . Since the carry-in job must execute
Cj units prior to tcj +Dj in order to meet its deadline, there
is no interference from task τj within [tcj +Dj , t

c
j + Tj].

We then consider the demand from τj within the interval
with respect to ∆j : ∀t > 0, ∀0 < ∆j ≤ Di,⌈

t+Dj
Tj

⌉
Cj ≥

⌈
t− (Tj −∆j)

Tj

⌉
Cj + Cj

which implies that releasing the carry-in job at time t0−Dj
results in the maximum demand, for any t. At any time
0 < t ≤ Di the demand from each higher-priority task τj is

bounded above by Ŵj(t), and the capacity occupied by task
τi is at most Ci + Si. From Eq. (1) it therefore follows that
all tasks meet their deadline, and priority assignment π is
feasible in system τ , which concludes the proof.

It is clear that the sufficient test by Theorem 2 runs in
pseudopolynomial time O(nDi).
Priority assignment. It has been shown in [2] that it suf-
fices to examine a polynomial number of priority orderings
in periodic systems for finding a feasible priority ordering.
Checking the fixed-priority feasibility of a self-suspending
task set can be achieved by using the method, called Op-
timal Priority Assignment (OPA) Algorithm [1, 2, 5]. The

tcj + Tj tcj + 2Tj

τj
tcj + Dj

body jobscarry-in job

t0 t0 + ttcj

∆j

Figure 1: The illustration of releases for the
sufficient condition.

OPA algorithm assigns each priority level k to one of unas-
signed tasks that has no deadline miss along with the other
unassigned task assumed to have higher priorities. The
iterative priority assignment terminates as soon as either
no unassigned task can be assigned at priority level k or all
priority levels are assigned. For a schedulability test to be
compatible with the OPA algorithm, it must comply with
three conditions provided in [5]. For completeness, we state
these conditions as follows:

• Condition 1. The schedulability of a task τi may,
according to test S, depend on any independent prop-
erties of tasks with priorities higher than k, but not
on any properties of those tasks that depend on their
relative priority ordering.

• Condition 2. The schedulability of a task τi may,
according to test S, depend on any independent prop-
erties of tasks with priorities lower than k, but not
on any properties of those tasks that depend on their
relative priority ordering.

• Condition 3. When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned
the higher priority cannot become unschedulable ac-
cording to test S, if it was previously schedulable at
the lower priority.

It is not difficult to see that the sufficient schedulability test
by Theorem 2 complies with the required conditions for the
OPA algorithm. We state this with the following lemma.

Lemma 1. The sufficient schedulability test by Theorem 2
complies with Condition 1-3.

Proof. Inspection of Eq. (1) shows that the schedulabil-
ity of τi depends on the set of higher-priority tasks but not
on their relative priority ordering, hence Condition 1 holds.

It is obvious that the schedulability of τi testing by Eq. (1)
has no dependency on the set of tasks with lower priority
than k, hence Condition 2 holds.

Consider two tasks τa and τb initially at priorities k and
k+1, respectively. If task τb is schedulable, it is still schedu-
lable when it is shifted up one priority level to priority k,
since the only change of higher-priority task demand is the
removal of task τa from the set of tasks that have higher
priority than task τb. Hence, Condition 3 holds.

Algorithm 1 shows the proposed PASS approach adopting
the OPA algorithm for the feasible priority assignment in
self-suspending systems.
Computational complexity. Checking the feasibility for
each priority assignment (“if” statement) is computable in
pseudo-polynomial time. Like in [2], at most n(n + 1)/2
priority orderings need to be checked until either a feasible
priority assignment is found or does not exist. Therefore,
PASS runs in pseudo-polynomial time.

Lemma 1 suggests the following corollary that is useful
for deriving the speed-up factor of the proposed PASS in
the remaining section.

Algorithm 1: PASS Approach

input : A set of self-suspending tasks τ
output: Priority assignment π and the feasibility of

system τ
π ← ∅;
for each priority k from |τ | to 1 do

for each unassigned task τi do
if task τi is schedulable at priority k with all
unassigned tasks (assume them as higher-priority
tasks) according to Eq (1) then

π(τi)← k // assign task τi to priority k
break (continue the outer loop) ;

return “unscheduable”;

return “scheduable”;

Corollary 1. If there exist feasible priority assignments
by testing Theorem 2, the proposed PASS returns one of
them.

Proof. From Lemma 1 the sufficient test by Theorem 2
is compliant with the above conditions. Following the proof
of Theorem 3 in [5], we here conclude this corollary.

3.3 Speed-up Factor of 2 under Fixed-Priority
Scheduling

We now determine the processor speedup factor of the
proposed PASS based on checking our sufficient condi-
tion. First, we identify the necessary conditions for self-
suspending systems in the following theorem.

Theorem 3. Suppose a system τ consisting of periodic,
independent, preemptable, self-suspending tasks is schedula-
ble on one processor under fixed-priority scheduling with a
priority assignment π. For all tasks τi, there exists a time-
instant t with 0 < t ≤ Di such that

Ci + Si +
∑

j:π(τj)<π(τi)

Wj(t) ≤ t (3)

where

Wj(t) =

⌈
t+ Sj
Tj

⌉
Cj (4)

Proof. We prove this theorem by contrapositive: if there
exists a task τi such that for all time-instant t with 0 <
t ≤ Di, Eq. (3) does not hold, then, τ is unschedulabe with
priority assignment π.

This is done by providing a concrete SSS system that is
not schedulable by using π. Let t0 be the time to release
the first job of task τi. We then release higher-priority tasks
τj at time t0 − Sj . Let the first jobs of all higher-priority
tasks τj be suspended for their entire suspension length as
they release, i.e., from t0 − Sj to t0. Then, the subsequent
jobs of these tasks τj are released as early as possible, i.e.,
at t0 − Sj + Tj , t0 − Sj + 2Tj , etc. In other words, these
subsequent jobs suspend themselves only after finishing their
executions.

In the above pattern, for any interval in (t0, t0 + Di] in
which no higher-priority jobs than task τi is executed, we can
replace it from the earliest one by a suspension interval, of
τi, that equals to the length of the interval, until consuming
task τi’s suspension length Si.

As a result, we can observe that the condition ∀0 < t ≤ Di
with Ci + Si +

∑
j:π(τj)<π(τi)

Wj(t) > t implies that the job

of task τi released at time t0 in the above SSS system cannot

be finished at any time t0 + t, ∀0 < t ≤ Di, which concludes
the proof due to the contrapositive.

Lemma 2. For all tasks τi, ∀t > 0,

2Wi(t) ≥ Ŵi(t)

where Ŵi(t) and Wi(t) are defined in Eq. (2) and Eq. (4).

Proof. It is clear that for all time-instant t large than 0,⌈
t
Ti

⌉
Ci ≤Wi(t) and Ŵi(t) ≤ Ci +

⌈
t
Ti

⌉
Ci. In addition, we

know that ∀t > 0,

2

⌈
t

Ti

⌉
Ci ≥ Ci +

⌈
t

Ti

⌉
Ci.

Observing the above inequalities, we can conclude the proof
with simple logic.

Putting all the pieces together, we derive a speed-up factor
of 2 for the proposed PASS in the following theorem.

Theorem 4. If there exists a feasible priority assignment
for a self-suspending system τ on a unit-speed processor,
then the proposed approach can find one for system τ on
a speed-2 uniprocessor.

Proof. Suppose that there exists a feasible priority as-
signment for a self-suspending system τ on a unit-speed
processor.

Let A denote the set of priority assignments satisfying the
necessary condition in Theorem 3 on a unit-speed processor.
We denote B as the set of priority assignments compliant to
the sufficient condition in Theorem 2 on a speed-2 processor.
Since B is the set of priority assignments compliant to the
sufficient condition for feasibility, all the priority assign-
ments in B must be feasible.

From Theorem 3 we know that ∀π ∈ A, for all tasks τi,
there exists a time-instant t with 0 < t ≤ Di such that

Ci + Si +
∑

j:π(τj)<π(τi)

Wi(t) ≤ t

Besides, we have that for any π, ∀t > 0

Ci+Si+
∑

j:π(τj)<π(τi)

Wi(t) ≥1
Ci
2

+Si+
1

2

∑
j:π(τj)<π(τi)

Ŵi(t)

where the right-handed side, of the above inequality, is the
sufficient condition on a speed-2 processor and ≥1 comes
from Lemma 2. From this it follows that A ⊆ B.

Due to the existence of feasible priority assignments and
the above relation on sets, it follows that A,B 6= ∅. From
Corollary 1 we know that if B 6= ∅, the proposed approach
can find a feasible priority assignment, on a speed-2 proces-
sor. We here conclude the proof.

4. CASE STUDY
In this section, we show the effectiveness of RM, LM, and

the proposed PASS approach via a case study implementa-
tion. We programmed the real-time matrix calculation read-
write applications, which read matrices from disk, perform
the matrix calculation, and write the result back to disk.

4.1 Implementation
Our case study was conducted with the Linux kernel 3.3.1

on NVIDIA GeForce GTX 480 graphics card and Intel i7
4790K processor. We used Gdev [10] as driver to perform
general purpose computing on GPU. In order to propagate

Description Small Medium Large
Largest matrix 2048 square 2432 square 2560 square
Total utilization 30.19% 33.98% 38.72%
Scheduling polices RM LM PASS RM LM PASS RM LM PASS

Feasibility × X X × X X × × X

Table 1: The feasibility for different scheduling
policies with respect to different problem sizes.

priorities from threads to GPUs, we made some modifica-
tions on Gdev. To minimize the undesired influence from
initialization, thread monitoring and task dispatching, we
specify CPU affinity for each thread so that the thread
will execute only on the designated CPUs. For example,
monitoring and dispatching threads are designated to one
dedicated processor, and pure computation threads to an-
other one. We choose the SCHED FIFO as the default
real-time scheduler in operating system. The scheduling on
GPUs is similar to priority-based SCHED FIFO.

Matrix calculation is widely used for high performance
computation, such as atom workload on CPUs and GPUs.
Due to the high performance of GPUs on float computation
and that of CPUs on general purpose operation, we decom-
pose each task into three serialized stages: small integer
matrix multiplication on CPUs, float matrix multiplication
on GPUs, and integer matrix addition on CPUs. Such com-
bination of matrix calculation is common in real-world image
recognition programs [7].

The real-time matrix calculation system consists of 10
periodic, self-suspending tasks. We evaluate three scenarios
for their performance with respect to different scheduling
policies, as shown in Table 1. We use the analysis in [17]
to derive the upper bound on the offloading computation
time in multi-tasking environment. Each task is associated
with the priority according to its fixed-priority scheduling
policy, i.e., RM, LM, and PASS. In the small problem size
scenario, execution period of all 10 tasks varies from 5000ms
to 9500ms and the total utilization is 30.19%. Each CPU-
GPU-CPU task performs calculation on matrix with differ-
ent sizes, among which the largest matrix size is 2048×2048.
With task periods fixed, we only scale up the matrix size to
generate the medium and large problem size configurations.
In the medium and large configurations, the total utiliza-
tion is 33.98% and 38.72% respectively. The corresponding
largest matrix size is 2432× 2432 and 2560× 2560.

4.2 Performance Evaluation
As shown in Table 1, the proposed PASS can successfully

schedule all tasks for the three problem sizes, whereas the
large problem size is unschedulable under LM scheduling,
and especially none of scenarios is schedulable under RM
scheduling, according to Theorem 2.

We report the maximum response time among jobs during
running for 30 minutes. Due to page limitation, we only
show the maximum response time of 4 tasks in Figure 2.
Other tasks has similar performance. Obviously, the pro-
posed PASS is able to provide a shorter maximum response
time than RM and LM for all problem sizes. In summary,
we empirically show that PASS is implementable in compu-
tation offloading systems with coprocessors and can achieve
better performance over RM and LM.

5. EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments using

synthesized task sets for evaluating the proposed PASS. The
effectiveness of the proposed PASS was evaluated by com-
paring to RM and LM scheduling. We also evaluate an upper
bound based on the necessary condition from Theorem 3,

M
a

x
im

u
m

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

RM LM PASS

 4000

 4500

 5000

 5500

 6000

 6500

 7000

Small Medium Large

(a)

 3000

 3500

 4000

 4500

 5000

 5500

 6000

Small Medium Large

(b)

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Small Medium Large

(c)

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Small Medium Large

(d)

1

Figure 2: Maximum response time of 4 tasks
under different scheduling polices for three problem
sizes, from which task periods are (a) 9500ms (b)
8000ms (c) 5500ms (d) 5000ms.

denoted by Necessary Condition (NC).
The metric to compare results is to measure the acceptance

ratio of the above tests with respect to a given goal of task
set utilization. We generate 100 task sets for each utilization
level. The acceptance ratio of a level is said to be the
number of task sets that are deemed schedulable divided
by the number of task sets for this level, i.e., 100.

5.1 Simulation Setup
We first generated a set of sporadic tasks. The cardi-

nality of the task set was 10. The UUniFast method [3]
was adopted to generate a set of utilization values with
the given goal. We here used the approach suggested by
Davis and Burns [6] to generate the task period according
to an exponential distribution. The distribution is of two
orders of magnitude, i.e., the ratio of the maximum and the
minimum possible task periods was 100. The execution time
was set accordingly, i.e., Ci = TiUi. Task relative deadlines
were implicit, i.e., Di = Ti. Note that the following results
remains similar if task relative deadlines were constrained.

We then converted a proportion p of sporadic tasks to SSS
tasks. Suspension lengths of tasks were then generated in
a similar manner to the method used in [13]. Suspension
lengths of tasks were assigned according to a uniform ran-
dom distribution, in one of three ranges depending on the
suspension type (sstype): [0.01(Ti−Ci), 0.1(Ti−Ci)] (short
suspensions, sstype=S in Figure 3), [0.1(Ti − Ci), 0.6(Ti −
Ci)] (moderate suspensions, sstype=M in Figure 3), and
[0.6(Ti − Ci), Ti − Ci] (long suspensions, sstype=L in Fig-
ure 3).

5.2 Results
Figure 3 presents the result for the performance in terms

of the acceptance ratio. It is clear that our proposed PASS
is superior to RM and LM. For all the tests, the feasibility
is inversely proportional to the proportion p, of self-suspen-
sion tasks. With short suspension length (Figure 3a, 3b,
and 3c), all tests can sustain the feasibility with a utilization
of up to 90%. Due to the little impact of short suspen-
sion length, the improvement of the proposed PASS over
RM and LM scheduling is not significant but still visible.
With moderate suspension length (Figure 3d, 3e, and 3f),
the proposed PASS can achieve significantly improvement
over RM and LM scheduling. When the suspension length
is long (Figure 3g, 3h, and 3i), we can observe that the
acceptance ratio drops significantly. This is due to the fact

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0
Ac

ce
pt

an
ce

 R
at

io 0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (a) p=0.2,sstype=S

RM LM PASS NC

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (b) p=0.5,sstype=S

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (c) p=0.8,sstype=S

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (d) p=0.2,sstype=M

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (e) p=0.5,sstype=M

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (f) p=0.8,sstype=M

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (g) p=0.2,sstype=L

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (h) p=0.5,sstype=L

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0 (i) p=0.8,sstype=L

Figure 3: Comparison with different types of the suspension length and proportions of SSS tasks.

that the long-suspension task is by nature prone to miss
its deadline. As a result, the space between the optimal
scheduling and the proposed PASS for the improvement is
limited. This can be observed from the task set with high
proportion of long-length self-suspending tasks, as seen in
Figure 3h and 3i, in which PASS is rather close to the upper
bound, NC. On the other hand, a significant improvement
can be seen in the task set with low proportion of long
self-suspending length, as shown in Figure 3g. One can
imagine that few worst-execution times from such tasks can
interference with the other tasks. Consequently, a feasible
assignment is still achievable once these tasks are associated
with higher-priority.

6. CONCLUSIONS
In this work we propose PASS for priority assignment

of real-time tasks with dynamic suspending behavior under
fixed-priority scheduling. We show that there is no lower
bound on processor speed-up factor for the classical RM,
DM, and LM scheduling in self-suspending systems. The
proposed approach is guaranteed to find a feasible priority
assignment on a speed-2 uniprocessor, if one exists on a unit-
speed processor. Also, the results via the GPU offloading
implementation and extensive simulations suggest that the
proposed approach can be effectively put into practice.

7. REFERENCES
[1] N. C. Audsley. Optimal priority assignment and feasibility of

static priority tasks with arbitrary start times. Citeseer, 1991.

[2] N. C. Audsley. On priority assignment in fixed priority
scheduling. Information Processing Letters, 79(1):39–44, 2001.

[3] E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[4] J.-J. Chen and C. Liu. Fixed-relative-deadline scheduling of
hard real-time tasks with self-suspensions. In Real-Time
Systems Symposium (RTSS), 2014.

[5] R. I. Davis and A. Burns. Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor
real-time systems. Real-Time Systems, 47(1):1–40, 2011.

[6] R. I. Davis, A. Zabos, and A. Burns. Efficient exact
schedulability tests for fixed priority real-time systems.
Computers, IEEE Transactions on, 57(9):1261–1276, 2008.

[7] J. Inc. Deepbeliefsdk: The sdk for jetpac ios, android, linux,
and os x deep belief image recognition framework.
https://github.com/jetpacapp/DeepBeliefSDK.

[8] W. Kang, S. H. Son, J. A. Stankovic, and M. Amirijoo.
I/o-aware deadline miss ratio management in real-time
embedded databases. In Real-Time Systems Symposium, pages
277–287, 2007.

[9] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa,
and R. Rajkumar. Rgem: A responsive gpgpu execution model
for runtime engines. In Real-Time Systems Symposium
(RTSS), pages 57–66, 2011.

[10] S. Kato, M. McThrow, C. Maltzahn, and S. A. Brandt. Gdev:
First-class gpu resource management in the operating system.
In USENIX Annual Technical Conference, 2012.

[11] J. Kim, B. Andersson, D. d. Niz, and R. R. Rajkumar.
Segment-fixed priority scheduling for self-suspending real-time
tasks. In Real-Time Systems Symposium (RTSS), pages
246–257, 2013.

[12] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance evaluation, 2(4):237–250, 1982.

[13] C. Liu and J. H. Anderson. Task scheduling with
self-suspensions in soft real-time multiprocessor systems. In
Real-Time Systems Symposium (RTSS), pages 425–436, 2009.

[14] C. Liu and J. Chen. Bursty-interference analysis techniques for
analyzing complex real-time task models. In Real-Time
Systems Symposium (RTSS), 2014.

[15] W. Liu, J. Chen, A. Toma, T. Kuo, and Q. Deng. Computation
offloading by using timing unreliable components in real-time
systems. In Design Automation Conference (DAC), 2014.

[16] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
time-critical scheduling via resource augmentation. In Proc. of
the 29th ACM Symposium on Theory of Computing, pages
140–149, 1997.

[17] G. Raravi and B. Andersson. Calculating an upper bound on
the finishing time of a group of threads executing on a gpu: A
preliminary case study. Technical report, IPP Hurray Research
Group, 2010.

[18] F. Ridouard, P. Richard, and F. Cottet. Negative results for
scheduling independent hard real-time tasks with
self-suspensions. In Real-Time Systems Symposium (RTSS),
pages 47–56, 2004.

