
Bachelorarbeit

Saving Energy for Mobile Biosensors by

O�oading

Dragana Popovic

Mai 2016

Gutachter:

Jian-Jia Chen

Kevin Wen-Hung Huang

Technische Universität Dortmund

Fakultät für Informatik

Lehrstuhl XII

http://ls12-www.cs.tu-dortmund.de

Contents

1 Introduction 1

1.1 Motivation and Background . 1

1.2 Aim of the Project . 2

1.3 Structure of the work . 3

2 PAMONO Application for Virus Detection 5

2.1 Functionality of PAMONO Biosensor . 5

2.2 Comparison of SPR and PAMONO application 9

2.3 Requirement of the PAMONO Application 10

3 Processing of the Sensor Images 13

3.1 Introduction to OpenCL . 13

3.1.1 Platform model . 14

3.1.2 Execution model . 15

3.1.3 Memory model . 15

3.1.4 Programming model . 18

3.1.5 Construction of an OpenCL Application 18

3.2 Work�ow of the data . 19

3.2.1 Preprocessing . 19

3.2.2 Recording of the particle . 23

3.2.3 Segmentation . 27

3.2.4 Postprocessing . 29

3.3 Software . 31

4 Odroid 33

4.1 Single Board Computer vs. typical PC . 33

4.2 Odroid XU4 . 34

4.3 SmartPower . 40

4.4 Conclusion . 41

i

ii CONTENTS

5 Experimental Setup 43

5.1 Preparation . 43

5.2 Hardware Preparation for the experiment 44

5.3 Measurements on the Odroid . 46

5.4 Measurements by O�oading from Odroid to a Server for Computation . . . 47

6 Evaluation 49

6.1 Measurement results on the Odroid . 49

6.2 Measurement Results by O�oading to an server 53

6.2.1 O�oading via LAN-cable . 54

6.2.2 Wireless O�oading . 55

6.3 Conclusion . 57

7 Summary and Outlook 61

7.1 Summary . 61

7.2 Outlook . 62

A Further Additional 63

A.1 Parameter values for detecting viruses . 63

A.2 Measurement Results on Odroid and for O�oading 69

List of Figures 75

Listings 77

List of Tables 79

Bibliography 83

Erklärung 83

Chapter 1

Introduction

1.1 Motivation and Background

The spread of infectious diseases has a massive increase in the last couple of years [12].

The main reason for this is that people travel daily, for example by plane, bus, car, ship etc.

to other countries. Also the worldwide import and export supports the spread of diseases

across countries. Wherever people go, it is possible to potentially receive unwelcome very

little presents without immediately noticing. These little presents that are mentioned here,

are viruses and only a few nanometers in size.

Figure 1.1: Virus under an electron microscope [1]

Figure 1.1 shows a single virus, which has a size of about 50 nanometers. Of course,

some viruses are harmless, like regular �u viruses, but there are also some very dangerous

kinds of viruses, like bird �u, swine �u or ebola. Although it is possible to analyze liquid

samples, like blood or saliva in labs, this process usually takes a long time. And in some

situations, for example at the airport it is important to detect infections fast. Every

region has other speci�c viruses, like ebola which is widespread in Africa. If there is a

plane arriving from a country struggling with an epidemic, it is crucial to quickly identify

potentially infected passengers to prevent the epidemic to spread further.

There are already some methods to quickly detect viruses, for example the Polymerase

Chain Reaction which is used to clone DNA-information to become more viruses in a sample

1

2 CHAPTER 1. INTRODUCTION

and by this to detect them easier. Another example is the Enzyme-linked immunosorbent

assay. Thereby the virus stick to their antibodies on the layer. The best method is the

detecting process with PAMONO Biosensor and the corresponding special software which

is presented in detail in this work. It is an automatic method for detecting nano-objects

in liquids. The measurement period to detect viruses is between 5 and 30 minutes as

opposed to many hours in a lab. It is practically possible to detect single viruses [14].

The operation of this method is discussed in detail in chapter 2.

Summing up, with the PAMONO Biosensor it is possible to detect viruses quickly and

to prevent an epidemic to spread. The main problem of this process is that the software

needs a lot energy, because this sensor is a mobile sensor and uses battery power. The aim

of this work is to analyze how much energy can be saved by o�oading the processing data

in order to evaluate them, for example on an external server.

1.2 Aim of the Project

The aim of the project is to �nd out if it is possible to save energy for Mobile Biosensors

by o�oading the obtained data to an external server and to process them there, instead

of processing the data directly on the Odroid. To �nd out, if energy is truly saved by

o�oading the software will be �rstly executed on the Odroid with di�erent conditions, to be

precisely this conditions are di�erent parameter �les. The software needs a parameter �le,

which contains speci�c parameter settings for the calculation algorithm. The parameter

setting in�uences the quality of the measurement as well as the execution speed, because

the parameters have to be adopted on the speci�c hardware environment. For this two

di�erent �les were given. Chapter 5 is taking a closer look on the di�erence between them.

One �le is optimal for the Odroid and the execution process is very fast, while the second

�le is not optimal and the process takes considerably longer. The main di�erence between

these �les is es execution time on the Odroid.

After the measurements are performed on the Odroid, the o�oading process is started.

This will be done in two di�erent ways. The �rst method is to o�oad the data from the

Odroid to the server by Ethernet cable, whereby the Odroid is connected to the router. The

second method is wireless o�oading. For this a Wi-Fi module is used, which is explained

in chapter 5. This module has an antenna, which can be used to get a wireless connection

to a router and to o�oad the data that way.

When the o�oading process is done, the values for energy consumption for o�oading

and the energy consumption for executing the software on the Odroid are examined. And

by this is possible to analyze how much energy can be saved by o�oading the data instead

of processing them directly on the Odroid.

1.3. STRUCTURE OF THE WORK 3

1.3 Structure of the work

The following section describes the structure of this work. It starts with the PAMONO

application and its predecessor, the Surface Plasmon Resonance (SPR) method in chapter

2. Also the functionality, the advantages, disadvantages and the requirement of the sensor

will be explained. After that the software which is needed to process the data obtained

from the Biosensor is discussed in chapter 3. With respect to this software the used

concepts are presented, especially the analysis process of the obtained data from the sensor.

Furthermore, OpenCL is will be introduced, because the software is written in OpenCL

to execute the software as fast as possible. OpenCL is an interface for parallel computing.

Chapter 4 deals with the Odroid. It is a single board computer on which the software is

executed. Thereby a closer look on the hardware properties of the Odroid will be taken.

After the basic research has been presented, the experimental setup and the results of the

measurement are discussed in chapters 5 and 6. Finally, chapter 7 gives a summary and

an outlook on this topic.

4 CHAPTER 1. INTRODUCTION

Chapter 2

PAMONO Application for Virus

Detection

This chapter focuses on the PAMONO application which is used for detecting speci�c

viruses in di�erent samples like blood or saliva. With respect to the PAMONO application

the functionality of this Biosensor and the predecessor for this senor is introduced in sec-

tion 2.1. Before the PAMONO application was developed, the Surface Plasmon Resonance

(SPR) method was used for detecting viruses. At section 2.2 the advantages and disadvan-

tages of the new application are presented and a comparison between the predecessor SPR

and the PAMONO application is introduced. Finally, the last section 2.3 pays attention

on the speci�c requirement of the sensor. The whole chapter is based on the documents

[17, 14, 12].

2.1 Functionality of PAMONO Biosensor

PAMONO stands for Plasmon-Assisted Microscopy of Nano-Objects and is a new method

for detecting viruses quickly. It is a further development of the Surface Plasmon Resonance

(SPR) method, which was successfully contrived by the Institut for Analytical Science

(ISAS). In fact the SPR method is a good way for detecting viruses, but the execution

time was too long. More precisely for one process it takes between 30 and 60 minutes [14].

In order to shorten the execution time another method was needed.

The experimental setup of the SPR is similar to the PAMONO Biosensor and is shown

in �gure 2.1. There is a �ow cell in which the sample, which has to be analyzed, is placed.

The sample is composed of blood, saliva or any other liquid.

The sensor has a thin layer of gold with a size of about 50 µm. It is covered with one

or more speci�c kinds of antibodies, more precisely with the corresponding antibodies of

the viruses which have to be detected. After the sample is passed in the �ow cell, the gold

layer is illuminated with a laser. With a CCD sensor (charge-coupled device) the changing

5

6 CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

Figure 2.1: Experimental setup of SPR [14]

intensity of re�ected light waves are recorded by the camera. For more information on the

CCD sensor, refer to the document [18]. While the gold layer is illuminated, the viruses

stick to their antibodies. The CCD sensor is able to detect viruses if the concentration is

at least 104 viruses
mm2 .

The diagram in �gure 2.1 shows on the x axis the mapped time frame and on the y

axis the mapped intensity of each pixel. In this context it has to be mentioned that during

the processing each pixel is examined. If the intensity of one pixel rises up and stands

clearly up in comparison to the other, it is an indication that a virus has been detected.

At the diagram 2.1 the red curve shows the high intensity of the pixels. This suggests that

a virus has been discovered. In contrast to this, on the blue curve the intensity of each

pixel is not high enough, and because of that it is su�ciently certain that no virus has

been discovered.

The main problem of this application is that viruses can only be detected after a certain

concentration has been reached. By comparison the PAMONO sensor does not have this

problem. With the PAMONO sensor it is practically possible to detect single viruses. The

exact operation of this sensor is discussed in section 3.2. Other advantages of the PAMONO

Biosensor will be presented in section 2.2. In order to remove some weaknesses of the SPR

method, the PAMONO application has been developed. In �gure 2.2 the experimental

setup of the PAMONO Biosensor is introduced.

The experimental setup is described as follows:

The hoses are connected to the �ow cell, in which the sample to be investigated is placed. A

2.1. FUNCTIONALITY OF PAMONO BIOSENSOR 7

Figure 2.2: Experimental setup of the PAMONO Biosensor [14]

prism is attached at the bottom of the �ow cell, its top surface is covered with a thin layer

of gold. The laser on the left side under the prism illuminates the gold layer of the prism.

The CCD camera on the right side records the re�ected light. Additionally, a lens is added

in front of the camera. For test purposes particle were added between a size of 40 and 280

nanometers in a sample. It turned out that even particles with a size of 40 nanometers

were recognized. Furthermore, di�erent cameras for taking the pictures can be used, but

all cameras have the same color depth. An 8 Bit color depth is required. The sensor

images, which were taken by the camera, are used for analysis. They are transferred to a

special software which runs on a computer. It examines the sensor images. The examined

data can be formatted in di�erent �les like pictures, videos and so on. The analyzing of

the data is explained in section 3.2.

Figure 2.3: Examples for sensor images [14]

Examples for these sensor images are shown in �gure 2.3. The gold layer is portrayed

there, but it is obvious that the viruses are not visible with the naked eye on the images.

In total, it can be seen that each picture has some stronger and some weaker brightness

ranges. It is not possible to distinguish between a disturbance and a virus. With the

aid of the software, which is introduced in 3.2, it is possible to distinguish viruses from

disturbance even with the naked eye on the images.

8 CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

Figure 2.4: Working principle of PAMONO Biosensor [17]

In �gure 2.4 the functionality of the PAMONO Biosensor is shown. The �ow cell, in

which the sample is placed in, is portrayed on the top. Before a sample can be analyzed,

the gold layer of the prism has to be coated with speci�c antibodies, more precisely with

the corresponding antibodies of the speci�c virus, which has to be detected. While the

laser illuminates the gold layer and the sample passes through the �ow cell the viruses

stick to the corresponding antibodies. Through this process the light waves change. The

CCD camera records the changing light waves and it is possible to detect whether viruses

stuck to the antibodies.

Figure 2.5: Detecting viruses by PAMONO Biosensor [11]

In �gure 2.5 the functionality of the PAMONO Biosensor is shown once more and

next to it the virus detection process is portrayed. The CCD camera records the re�ected

changing light waves by constantly taking pictures. The evaluation process happens as

follows:

Each picture is considered independently by reviewing each pixel of the picture. The

intensity of each pixel is measured and plotted in a diagram. On the x axis the time frame

is mapped and on the y axis the intensity of each pixel. In case a virus is detected, the

diagram shows a strong increase of intensity. Otherwise the intensity remains on the same

level. Therefore, it is even possible to detect single viruses which is introduced in detail in

the next section.

2.2. COMPARISON OF SPR AND PAMONO APPLICATION 9

2.2 Comparison of SPR and PAMONO application

In this section the di�erences between the SPR and the PAMONO application are dis-

cussed. The main di�erence is the higher resolution at the PAMONO application. It is

able to enlarge the particle between 1:5 and 1:7. This is achieved by a strong magni�cation

of the particle. As a result, it is even possible to detect viruses with a size of less than 40

nanometers. In comparison, the magni�cation of the SPR method is just between 1:1 and

1:2. In contrast to the SPR method, the PAMONO application has the option to change

the angle of the laser, which makes the detection more precisely. But, a detection is only

possible if a concentration of 104 viruses
mm2 is reached. The PAMONO application uses a

CCD sensor as well as the SPR method to detect viruses. The higher precision enables to

detect even single viruses by the PAMONO application. In the following �gure 2.6 shows

the di�erences of the SPR and PAMONO application.

Figure 2.6: Comparison between PAMONO and SPR

Special emphasis should be placed on the high X- / Y-resolution. As already mentioned

the magni�cation at the PAMONO application of the particle is much higher than at

the SPR method. Furthermore, the insensitivity is excellent, which means that most

disturbances were removed successfully. Also, the measurement time is between 5 and 30

minutes for the PAMONO application instead of between 30 and 60 minutes for the SPR

method. The most interesting advantage of the PAMONO application is that viruses can

be detect at a concentration of only 103 viruses
mm2 and even single viruses in a sample can be

recognized.

The last di�erence between the PAMONO and SPR application is the continuous con-

trol without interruption option of the PAMONO application. That means the sample is

added evenly into the �ow cell. Obviously the PAMONO and SPR application have some

common properties. With both methods it is possible to detect up to 400 types of viruses

and the needed concentration to detect them is considerable low and because of that both

methods are in this relation good.

Even though the PAMONO sensor has a lot of bene�ts, there are also some disadvan-

tages. The main problem of the sensor is the high energy demand. As already mentioned

10 CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

it is very important to keep the running time short and the evaluation precisely, so the

viruses can be detected quickly.

2.3 Requirement of the PAMONO Application

The PAMONO application is more precise than the SPR application. Therefore, a higher

requirement for the evaluation process is needed. Especially the evaluation of the adhesion

of the viruses represent a higher challenge, because viruses are recognized with brightness

di�erences of the pictures. And as mentioned before each unevenness of the gold layer

causes di�erent brightnesses and it is di�cult to distinguish between truly viruses and

disorders. It is possible to detect single viruses with the PAMONO application through

examining each pixel of the picture and because of this preciseness that challenge occurs.

The SPR method just takes a look at the virus concentration in a sample. The software

and virus detection process is will be presented in chapter 3. Another challenge, which

arises, are some disturbances in the pictures, which have to be successfully mastered for a

precise virus detection. Examples for these disorders are shown below.

Figure 2.7: Disturbances of the sensor images [14]

Figure 2.7 shows di�erent kinds of disturbances. In a) for example the sensor image

shows a highly a�ected picture with disorders, which means that the viruses are overlapped

and because of that the virus detection is impossible.

A disturbance of concentric circles is portrayed in b) and wavy pattern are illustrated

in c). In d) signal noise, a typical problem of pictures, is demonstrated and illustrated

through the red dots. In the last two sensor images dirt particles are portrayed. Such

2.3. REQUIREMENT OF THE PAMONO APPLICATION 11

disorders may include air bubbles or even dirt particles like dust. Even �ne dust has a size

of around 10 µm. All these disorders make it di�cult to discover viruses.

As a summary it may be stated that the PAMONO application is more precise than

the SPR method, but it has obviously more challenges on the evaluation process than the

SPR method, because of the precision, e�ectiveness and the fast processing time. The

solution for these problems will be presented in section 3.2.

12 CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

Chapter 3

Processing of the Sensor Images

After the PAMONO application was introduced, the software, which processes the obtained

data from the sensor, will be presented. The most important aspect is that the software

is written in a language which supports massive parallel processing. Therefore, chapter

3.1 deals with OpenCL (Open Computing Language) which was used for implementing the

software. In this section OpenCL and its functioning is summarized. All information are

from the documents [14, 3, 26, 24, 10, 2]. The processing of the data is introduced in detail

in section 3.2 and the last section 3.3 gives an overview of the exactly software process.

These two sections are based on the document [14].

3.1 Introduction to OpenCL

Since it is important that the examination process is fast, the software has to run very

quickly too. The images obtained from the sensor are very large, especially when taking

into account that there are hundreds or even thousands of them [14]. To ensure that this

quantity can be analyzed fast, it is recommended to use a language which supports massive

parallel processing. In this case the language OpenCL is chosen and will be presented here.

The �rst version of OpenCL was published in August 2009 [26]. According to Benedict

et al. [3], it is de�ned as follows:

"It is a heterogeneous programming framework which supports a wide range of levels of par-

allelism and e�ciently maps to homogeneous or heterogeneous, single- or multiple-device

systems consisting of CPUs, GPUs, and other types of devices limited only by the imagina-

tion of vendors". Furthermore, it is important to mention that OpenCL o�ers a device-side

language as well as a host management layer. The device-side language is used for an e�-

cient mapping to a wide range of memory systems and the host language supports a rapid

execution of complex concurrent programs [3].

In the following the documentation deals with the advantages of OpenCL �rst and after

that a closer look at the construction of the model structure of OpenCL will be taken.

13

14 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Summing up, OpenCL enables an e�cient and parallel General Purpose Computation

on graphic cards [14]. It is also important to mention that OpenCL is platform inde-

pendent and portable. This feature permits that OpenCL can run on di�erent hardware,

e.g. Central Processing Units, Graphic Processing Units, Digital Signal Processors, mobile

units etc. and also on diverse operating systems, like Linux, Windows, MacOs etc. [14].

Furthermore, OpenCL o�ers the advantage of consistent numeric precision and accuracy.

Also, a high number of given functions are available. These characteristics are useful for a

fast virus detection, for example at the airport. Through all these properties OpenCL ex-

cels as a very e�cient programming platform, outstanding in comparison to other massive

parallel processing programming platforms, for example OpenGL.

The model structure of OpenCL consists of four di�erent types of models:

• Platform model: de�nes the cooperation of host and the other OpenCL devices

• Execution model: de�nes the utilization of resources

• Memory model: de�nes the di�erent memory areas of the OpenCL devices

• Programming model: de�nes the parallel processing

In the next chapter the models will be discussed exactly to accurately present the

working principle.

3.1.1 Platform model

The platform model consists of one host and at least one OpenCL device. Thereby the

host manages the executions on all the devices. Figure 3.1 shows the abstract architecture

of the platform model.

Figure 3.1: Platform model [3]

All these devices have several computing units. These computing units are further

divided into more processing elements. The process takes places as follows:

While an OpenCL program, named kernel, runs on the host, the host chooses one or

more devices on which the computation takes place independent from the rest. In principle

the kernel includes the actual code, which is written in OpenCL.

3.1. INTRODUCTION TO OPENCL 15

The OpenCL program respectively kernel is spread to several compute units and on

these one the program is divided into processing elements. On these processing elements

the program runs in parallel independent from the rest. By this the computation is much

faster, as if the program is executed sequentially. When the program is �nished, the host

can assign the next program to the devices and so on.

3.1.2 Execution model

The execution model gives an exact description of the OpenCL program execution. As

already mentioned the program is divided up among several processors in order to execute

in parallel and thus to keep the running time short. Each OpenCL program consists of

two di�erent parts: The host program and the kernels.

The host program manages the kernels and distributes them with the needed data on

the OpenCL devices. It is also important to mention that not every OpenCL device is

similar to the others. So the host divides the kernel corresponding to speci�c properties,

for the number of compute units, clock frequency, memory storage and so on. Many

kernels can be there and because of that the OpenCL devices need a command queue in

which the data can be enqueued. These data can be kernel executions, memory operations

and synchronization operations [10]. The OpenCL devices process the command queue

step-by-step and an e�cient and fast program �ow is possible [24].

OpenCL C is based on the programming language C, but has a couple of di�erences.

For example OpenCL C does not have the same standard functions like printf() or malloc().

Furthermore, it does not assist recursion or function pointers. On the other hand OpenCL

has some additional functions that do not exist in C [24]. For more accurate information

on this topic the reader is referred to the documentation [2].

Furthermore, the host de�nes a context which is an abstract container that coordinates

the execution of the kernels, manages the memory objects, the program object and kernels

that are created for each device [3, 26, 10]. For a detailed description of the execution

model see [14, 26].

3.1.3 Memory model

The memory model de�nes the memory structure of OpenCL. The most interesting part

on this occasion is the subdivision of the di�erent memory models and the cooperation of

them. In �gure 3.2 the memory model of OpenCL is portrayed. Simply put if a device

needs special data, these data have to be copied from the host to the global and constant

memory, which are regions of the device memory. In the following the di�erent memory

models are discussed.

Figure 3.2 illustrates that the memory model is divided into two parts, Host and Device

Memory. The di�erences between these two memories will be explained in the following:

16 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.2: Memory model [2]

� The Host Memory:

The Host Memory works like a working memory, simply put, like a RAM (Random-Access

Memory), and it is separated from the Device Memory. As a result every data the kernel

needs has to be transferred to the Device Memory through a copy, an OpenCL API or

through a virtual memory interface [2].

� The Device Memory:

The Device Memory represents the memory of each device. It should be noted that this

memory is also divided into four di�erent parts called address spaces or memory regions

[2]. In the following those parts will be presented.

� The Global Memory:

This memory is comparable with the RAM and it is the biggest available memory, but also

the slowest memory of all. Furthermore, it is visible for all compute units on the device.

It is very important to mention that this memory permits read and write access to all

work-items. If the data is transferred from the device to the host, every data is cached on

the global memory.

� The Constant Memory:

The Constant Memory is a part of the global memory. The di�erence to the other memo-

ries is that the kernel-instances have a read access to all work-items, but not a write access.

Memory objects which are allocated and initialized on the host, for example values which

never have to be changed like π, are placed into the Constant Memory.

� The Local Memory:

3.1. INTRODUCTION TO OPENCL 17

This memory is local for every work-group. Every work-item of this work-group has the

option to transfer data between the work-items and so it is possible to synchronize them

during execution. That is the reason why it is important to have a shorter latency and a

higher bandwidth than for the global memory. Summing up this memory can be used to

allocate variables during the synchronization and by this to execute the program with the

correct variables.

� The Private Memory:

This part of memory is used by work-items. Here variables can be de�ned individually for

one work-item which cannot be seen from the other work-items. These variables can be

mapped to registers.

To make the correlation between these kinds of memories the picture 3.3 is referred.

Figure 3.3: Memory model illustrated [3]

In summary, it is important to copy special data from the host to the global or local

memory if a device needs them. Furthermore, it is an interesting aspect to know that the

host has only read and write access to the global and constant memory, but not to the local

and private memory. If the host needs data from these regions, they have to be copied to

the global or constant memory, or in other words, if the kernel needs data, the host has to

copy these data to the global or constant memory. After that the kernel can use these data

on these memory regions or they have to be copied back to the private or local memory for

processing. Every time data have to be copied, they have to pass the global memory. The

constant memory, which is part of the global memory is used for constant variables like π

18 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

or for variables which only have to be calculated one time. The local memory deals like a

scratchpad memory [18] and can be used for the memory devices of each work-group, while

the private memory is used for every work-item. So in fact it is clear that each memory

has a special task.

3.1.4 Programming model

The fourth and last model is the programming model. There are four general overview

concepts for parallel processing. They are based on the Flynnsche classi�cation, which are

shown in table 3.1.

Table 3.1: Flynnsche classi�cation [14]

Single Instruction Multiple Instructions

Single Data SISD MISD

Multiple Data SIMD MIMD

In the following the individual aspects of these concepts will be described. This informa-

tion is taken from [14]:

� SISD: The program is executed serially and is working on a single data stream. For

example a single-processor is working that way.

� MISD: The program is executed on multiple processors, but also only on a single data

stream.

� SIMD: The program is executed on more processors and multiple data streams.

� MIMD: Each processor executes di�erent instructions on di�erent data.

3.1.5 Construction of an OpenCL Application

After the OpenCL models were explained in detail, a summary of the process execution

follows. Listening 3.1 shows the process steps of an OpenCL application.

Listing 3.1: Approach of OpenCL application[24]

1 . i n i t i a l i z a t i o n o f OpenCL

2 . ke rne l source code compi le

3 . r e s e r v e g l oba l and constant memory f o r data

t r a n s f e r r i n g and copying data to the dev i c e

4 . execute i n s t an c e s o f k e rn e l s

3.2. WORKFLOW OF THE DATA 19

5 . copy the data back to the host

For further information to OpenCL the documents [3, 26, 24, 10, 2] were referred.

3.2 Work�ow of the data

This section describes the function of the software. With this software the images which

were obtained from the PAMONO application can be evaluated. The �rst part explains

how the data, which were obtained from the sensor, are processed. The second part deals

with the collection of the particle, in this case collection of the viruses, and the last part

explains the follow-up phase of the data. After all these steps are performed it is possible to

say whether or not a sample is contaminated with viruses. All that following information

is taken from [14]. The pipeline in 3.4 illustrates the work�ow process.

Figure 3.4: Pipeline of Work�ow [14]

3.2.1 Preprocessing

Before it is possible to detect viruses, some intermediate stages have to be completed suc-

cessfully �rst. There are two main problems that need to be solved. The �rst problem

is that the surface structure dominates the brightness of the picture. And secondly the

technology generates signal noises. Therefore, it is important to resolve these issues before

it is possible to detect viruses. Otherwise, the detection process of the viruses would be

extremely complicated. For example it would be di�cult to distinguish between distur-

bance and true viruses. Simply put, these issues hide the virus adhesion. The following

part describes the solution of these problems. The �rst section deals with the background

cleaning, the second explains the reduction of the signal noise. The third one addresses

20 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

the segmentation of virus candidates and the last one explains how multicore processors

accelerate processing.

Background Cleaning

The �rst problem (surface structure dominates the brightness of the picture) arises, because

the surface of the sensor, more precisely the gold layer of the sensor, where the viruses

should stick on, is not smooth. The objects, which have to be detected, are only a few

nanometers in size and because of that even little irregularities change the intensity of the

re�ected light waves and wrong results occur. Precisely, unsmooth surfaces develop high

brightness di�erences. After the sample has some viruses included the brightness di�erences

are not that large anymore and it is actually possible to detect the virus adhesion with the

naked eye. However, it is very di�cult, because the di�erences are very small. To solve

these problems the constant background cleaning is applied.

The constant background cleaning is executed once only, by summing up b pictures

and average them. In this way it is accomplished to eliminate the signal noises in the

background. After that the background remains constant.

After this �rst problem is solved, it is necessary to take care of the second one. Some

structures of the gold layer background get visible in the picture, because it takes a few

seconds to clean the background. That means additional to the particle of the sample

also the background of the gold layer is illustrated. As mentioned earlier the gold layer

is not smooth and while the laser illuminates it, it gets warmed up. Through the heat

the structure of the gold layer gets visible on the pictures. As a result the truly virus

attachment is overlapped by the background of the gold layer. To solve this problem a

sliding background cleaning is needed. In contrast to the constantly background cleaning

the background cleaning is executed in each time step. In this way it is possible to remove

disturbances, until there are no more disorders and the pixel value remains constant. More

information about that are given in chapter 4 from [14].

Figure 3.5: Background Cleaning [14]

3.2. WORKFLOW OF THE DATA 21

Figure 3.5 shows the di�erence between the two methods of cleaning the background.

The constant background cleaning just calculates the background once only and because

of that the pixel values are postponed, but new disturbances are not removed. On the

other hand the sliding background cleaning calculates the background every time step and

because of that new disturbances can be removed instantly.

Signal Noise Reduction

The next important aspect of the data preprocessing is the elimination of signal noises.

For each input signal noise arise. Figure 3.6 shows the visualization of signal noise of two

successive frames.

Figure 3.6: Signal Noise of two successive frames [14]

It can be seen clearly that the red areas, which visualize the signal noises, are not

randomly. The largest part of �gure 3.6 shows di�erent structures, like circles, concentric

semi-circles or lines. These structures result from the technology, for example from the

chip of the camera. The remaining quantity constitutes from the disturbances of the time

courses. Here no concrete structure is recognizable.

The signal noises can also develop from the rising sensor temperature. While the laser

irradiates the sensor, the sensor set is warmed up and by this leads to a stronger signal

noise [8]. In the following there are described two methods for signal noise reduction:

The �rst one is a simple method, which reduces the signal noises through averaging the

pixel values of the pictures. This is made by a simple mathematical formula from [14].

I ′t(x, y) =
1

a
·
a−1∑
i=0

It−i(x, y) (3.1)

For this process only the position (x,y) of the pixel, the time t and the number of

pictures a are needed. One example of this signal noise reduction is shown in diagram 3.7.

22 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.7: Signal Noise Reduction by averaging pixel values [14]

The upper diagram shows the pixel values in time course without signal noise reduction.

Here the signal noises are clearly showing. At frame 30 a virus sticked to the gold layer

and it is shown by rapid increase of intensity of the pixel values. In the lower diagram

the averaging of the pictures is illustrated. It is recognizable that the signal noises are

reduced, but also the strong jump is leveled. It is more di�cult to recognize because of

that at what point the viruses stuck.

The second method is more complex, but also o�ers a better reduction of the signal

noises, so this method is used in the software. Here the signal noises are reduced by Haar-

Wavelets. The main problem is that the signal noise reduction in the simple method also

reduces the strong jump of the pixel values. But exactly this part should not be a�ected.

In �gure 3.8 the di�erence between the two methods is portrayed.

The upper one shows the pixel values in time course without signal noise reduction and

the lower graph provides the graph after the Haar-Wavelets method was applied. It can be

seen clearly that the signal noises are not reduced as strong as by the averaging method,

but the strong rash is retained. Simply put, by this method the high frequency is being

removed. This method works as follows:

The fact is that frequencies of signal noises are higher than frequencies of virus ad-

hesiones. Therefore it is possible to remove only the high frquencies without in�uence in

frequencies of the viruses. Instead of removing only the high frequencies, these one are

become smooth and as a result the frequencies of the viruses produces strong hues. This is

achieved by using the algorithms One dimensional discrete Haar-Wavelet Transformation

and Inverse one dimensional discrete Haar-Wavelet Transformation which are illustrated

and discussed in [14].

3.2. WORKFLOW OF THE DATA 23

Figure 3.8: Signal Noise Reduction by Haar-Wavelets [14]

3.2.2 Recording of the particle

After the preprocessing is �nished the recording of the particle starts. In this section

three di�erent methods of recording the particle are described, which mark pixel-based

viruses which stick to the gold layer of the PAMONO sensor. The �rst method called

Jump detection with time series analyses and damped past is the most simple alternative of

detecting viruses. The second alternative called Jump detection with time series analyses

uses recent pictures of the past to detect viruses. The last method is the most complicated.

It is called Time series analyses with pattern matching. All three methods were developed

for multicore processors to speed up the process.

The following pictures illustrate how the rapid arise of the intensity should look like.

Figure 3.9 illustrates the value of a single pixel in time course. The strong increase of

the intensity shows how a virus in the sample attaches to the gold layer of the PAMONO

sensor. The used method will a�ect the amount of the increase in intensity. After the

intensity got high and stand out of the remaining intensity, it remains at the same level.

If the intensity falls o�, it implies that a disturbance occurred. If no disturbance exists,

the intensity does not fall o�, because the intensity of the virus remains constant.

If a pixel is not just a disturbance, but truly a virus attachment, all the algorithms

create a matrix for virus candidates. The matrix is a n × m matrix, where n and m stand

for the width and the height of the matrix, respectively. If a candidate is found in position

(x,y) it is marked with ky,x 6= 0, otherwise it is just marked with 0.

It is also interesting to see how the virus detection is visualized in the picture. So in

�gure 3.10 it is illustrated what it looks like when the virus is seen. In part a) it shows

24 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.9: Virus attachment by time course [14]

one frame before the virus in the sample attaches to the gold layer. In part b) the virus

attachment can be seen a little and in c) the virus attachment can be seen clearly. The

size of the virus here is above 200 nanometers.

Figure 3.10: Virus attachment [14]

Jump detection with time series analyses and damped past

This method works on only one picture It for the current time t, the position (x,y) of the

pixel and the damped past Idt . p describes a percentage value which expressed how strong

the value of the past in�uences the new value.From the recursive equations 3.2 and 3.3 it

is recognizable that the values of the past in�uence the new value less and less, because

this one incorporates into the new value.

Idt (x, y) = p · It−1(x, y) + (1− p) · Idt−2(x, y), if t > 0 (3.2)

Id0 (x, y) = I0(x, y) (3.3)

One example for p could be around 10 percent. This means that the actual value does

not in�uence the new value much and that the past is more decisive. This ensures that the

memory usage is kept as low as possible. To verify if a jump is truly a virus attachment it

3.2. WORKFLOW OF THE DATA 25

is necessary to proof if the intensity of each pixel at this position stay constantly for the

next pictures. For example, for the next 50 pictures this condition, if the intensity of this

pixel stays constantly high, has to be veri�ed for each time between u < t < (u+50) with

the formula 3.4:

Iu(x, y)− (1, 5 · r) < It(x, y) < Iu(x, y) + (1, 5 · r). (3.4)

On this occasion r stands for the signal noise and u is the time when a virus sticks to

the antibodies. The signal noise is multiplied with the constant 1.5. The constant 1.5 is

chosen, because of the quantization noise [13]. This represents the distance between the

useful signal and the noise signal. If for example a signal is chosen that order curve is less

step-like and signals with 1 and 2 are included, but the analog signal has the value 1.5,

a rest remains. If the condition is true, the point (y,x) is added into the matrix for the

candidates of a virus. All these three-dimensional images in 3.11 result from this method.

Figure 3.11: Virus attachment in three dimensions [14]

Part a) of 3.11 shows a picture without virus attachment. In b) the virus attachment

is illustrated by the height of the mountains which show the intensity of each pixel and c)

portrays the same as b) just by a di�erent angel.

Jump detection with time series analyses

The next method for recording the particle is called Jump detection with time series anal-

ysis and only works with a section from the past. This section has a size of size of 4·a+b,
whereby a and b stand for the dimensions of the picture. The main idea of this method

is to look at 2·a frames before and after a possible virus attachment. After the process

has �nished and a virus stick to the gold layer, there are some conditions which have to

26 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

be checked. The surface of the gold layer has to be smoothed and the intensity of the

pixel values has to be positive. To analyze the section of the past four averaging values are

calculating for each time frame. Through these values it is possible to analyze this section.

With the following formulas 3.5 - 3.8 these averaging values are calculated:

avg1(x, y) =
1

a
·
3a−1+b∑
i=4a+b

It−i(x, y) (3.5)

avg2(x, y) =
1

a
·
2a−1+b∑
i=3a+b

It−i(x, y) (3.6)

avg3(x, y) =
1

a
·
a−1∑
i=2a

It−i(x, y) (3.7)

avg4(x, y) =
1

a
·

0∑
i=a

It−i(x, y) (3.8)

After the main values were calculated, the following conditions 3.9 - 3.11 have to be

reviewed. Thereby again is taking a closer look if the increase of the intensity stays for

all further pictures constant high. The value r in the formulas for the condition describes

the value of the signal noise again and can be held constant. As in the formula before for

proo�ng the condition the signal noise is multiplied with the constant 1.5. The explanation

for this constant is the same as at the section Jump detection with time series analyses

and damped past.

|avg1(x, y)− avg2(x, y)| < 1, 5 · r (3.9)

|avg3(x, y)− avg4(x, y)| < 1, 5 · r (3.10)

avg3(x, y) + avg4(x, y)

2
− avg1(x, y) + avg2(x, y)

4
≥ 4 · r (3.11)

If the conditions are ful�lled, it can be presumed that a virus candidate exists.

Time series analysis with pattern matching

The last method uses a comparison of the pixel by time course with one or more master

samples. Since the pixel value by time course shows a rapid ascent of the intensity in

case of a virus attachment, this method uses this knowledge to compare the time row of a

master sample with the received time row. In �gure 3.12 an example for the comparison is

visualized. It illustrates a candidate for a virus attachment, because it is clearly identi�able

that the time row of the pixel matches the one from the master sample.

All three methods can be used for a virus detection. The �rst method (Jump detection

with time series analyses and damped past) is the easiest way and optimal for a low memory

3.2. WORKFLOW OF THE DATA 27

Figure 3.12: Comparison of pixel time course with master sample [14]

usage. The Jump detection with time series analyses and Time series analysis with pattern

matching methods are more complex and because of that need more hardware resources.

Each method has been optimized for a parallel processing. The processing of each pixel

works independent from the others. Further information to the time row which has to be

revised for a comparison to the master sample is described in [14] chapter 5.4.

3.2.3 Segmentation

Up to here each pixel was examined for a virus candidate. The next step is to bundle

up the virus candidates that are located in the immediate vicinity to a structure. On the

basis of the structure it is possible to classify the characteristics in particle or disturbance.

To do this, two algorithms will be presented in this section. On the one side there is the

Scanline Algorithm, which scans the picture pixel by pixel and maybe �nds a structure

of a particle and on the other side the Marching Squares Algorithm, which identi�es the

structure by polygons. The Scanline Algorithm and the Marching Squares Algorithm are

based on [15] and [14].

Scanline Algorithm

As already mentioned the Scanline Algorithm examines each picture pixel by pixel and

tries to condense the pixels, which were recognized as a virus candidate, to a segment. The

algorithm can be explained by the following �gure 3.13.

At the beginning the virus candidates are illustrated in green in part a). The Scanline

Algorithm starts scanning the picture line by line. When a virus candidate is detected,

which is shown in part b) and c) as a red point, this point is condensed either to an existing

segment or a new segment is created. In part d) the result of the Scanline Algorithm is

shown and all virus candidates have their own segment. It can be clearly seen that this

method is very simple and has some disadvantages. It is working parallel and because

of that each thread will be processed by an own working group (see section 3.1) it can

28 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.13: Scanline Algorithm [14]

happen that some segments are separated, although they should not be. Furthermore, a

closer look should be taken at edge cases. Further information for managing this task will

be described in chapter 6.2 from [14].

Marching Squares Algorithm

The Scanline Algorithm gives a rough structure of the viruses and because of that it is

not possible to get a clear classi�cation. To solve this problem, the Marching Squares

Algorithm was developed. This section is based on chapter 6.3 from [14]. The algorithm

process is illustrated in the following �gure 3.14.

Figure 3.14: Marching Square Algorithm [14]

3.2. WORKFLOW OF THE DATA 29

First the algorithm needs a n × m matrix, which gets processed by the algorithm from

chapter 3.2.2, to know on which position the virus candidate stuck. These positions will

be marked green on the picture, which is shown in part b) of 3.14. By this it is possible

to construct closed polygons by which the structure can be classi�ed in virus candidate or

disturbance. Each polygon should be made of at least four points as a minimum and can

be described by this formula:

P := (P0, P1, P2, ..., Pn−1)with Pi ∈ R2 ,0 ≤ i ≤ n-1,n ≥ 3 and P0 = Pn−1. (3.12)

The algorithm works by processing two steps. The �rst one is to �nd out in which

direction the polygon should be constructed and the second how the polygon is exactly

built. Further information on this process are described in chapter 6.3 from [14].

3.2.4 Postprocessing

The last step of the software is the postprocessing. The segments are separated into virus

candidate and non virus candidate. This is based on the structure and size of the segment.

Also a few methods will be described how the virus candidates can be visualized so that

the human eye can recognize the di�erence between virus and disturbance. Although it is

truth that an algorithm is more exact than the human eye, it is also important to verify

this algorithm. Before this algorithm was developed, these pictures were examined pixel

for pixel by hand. Through the visualization of each virus it is possible to pursue the

working process of the software. This section is based on chapter 7 from [14] .

Classi�cation of Segments

Virus candidates should be segmented because disturbances can change the brightness as

well as viruses and only through the brightness it is impossible to detect if this is a virus

or a particle. If it is a virus candidate the segmentation has a certain structure by which

a virus can be classi�ed. The di�erence between virus and disturbance is shown in �gure

3.15.

The images a) and b) illustrate viruses while the rest show disturbances. It is typical

that viruses have a certain structure, for example circles or ellipses while disturbances

have a random shape. They are crescent and stretched. As mentioned in chapter 3.2

particles and disturbances also cause a rise of the brightness. For a better representation

the contrast of the picture is boosted. To do this the values range has to be stretched. It

is necessary, because the virus attachment is taken place in a very small value range and

so it would be impossible to see the virus attachment with the naked eye. This can be

archived by the following formula 3.13:

30 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.15: Comparision between virus and disturbance [14]

I
′
t(x, y) =

maxout
maxI −minI

· It(x, y) +
(
maxout ·

−minI
maxI −minI

)
[14]. (3.13)

With this formula 3.13 it is possible to stretch an interval from [minI , maxI] to

[0,maxout]. So it is possible to visualize the virus.

Pseudo Color Reproduction

All the images which were produced by the PAMONO sensor always have a gray tone

recording which is a huge problem, because the human eye is not able to see subtle dif-

ferences and because of that, it is important to transfer this gray tone into a color model.

Here the HSV color model was chosen. Figure 3.16 presents the HSV color model.

In the model 3.16 it is not necessary to know about the proportions of red, green and

blue. The colors are presented by the angle, where 0◦ and 360◦ represents red, 120◦ green

and 240◦ blue. The stronger the saturation, the stronger is the intensity of the color. With

the following formula 3.14 it is possible to calculate the angle to the color.

H =

(x · (360◦ −HS +HE) +HE) mod 360◦ , for HS > HE

(x · (360◦ −HS +HE) +HE) , else
(3.14)

The variable H stands for color angle here. HS describes the starting values while HE

stands for the ending value. Both variables are within the required interval [0◦ - 360◦].

The last variable x entries within the speci�ed interval [0-1] for one input value. What it

looks like when the grey tone is transferred into a HSV color will be presented in �gure

3.17.

After this transformation, it is much easier for the human eye to see the di�erences

between viruses and disturbances. Figure 3.18 portrays the picture after processing. The

3.3. SOFTWARE 31

Figure 3.16: HSV colour model

Figure 3.17: Grey tone into HSV colour model [9]

yellow points with red border in the second quarter of the picture are virus attachments.

The half circles with red or magenta border could be blurred virus attachments or distur-

bances.

3.3 Software

Taken together, all the strategies presented here were transcribed in a software. A general

overview of these concepts are portrayed in 3.19.

The input for the software can either be images, a video or a camera. This input has to

be decoded before the virus detection process can start. The exactly process was discussed

in chapter 3.2. After this process an online visualization or a segmentation can be done

or the images can be encoded. After this the obtained data from the sensor are evaluated.

See [14] chapter 8 for a closer look at the software implementation.

32 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.18: Result after Processing [14]

Figure 3.19: General overview of the Software

Chapter 4

Odroid

This chapter introduces the Odroid hardware on which the Software will run. Before

the Odroid type XU 4 is described in section 4.2, the di�erences between a Single Board

Computer and a typical PC are introduced in section 4.1. Odroid stands for "Open +

Android and it is a development platform with hardware as well as software" [7]. It is a

Single Board Computer and was developed by the company Hardkernel. In total 15 types of

Odroid were manufactured, but only the types XU 4 and C 1+ are still being produced [6].

An Odroid o�ers diverse possibilities, for example it can be used "as a home theater set-

top box, a general purpose computer for web browsing, gaming and socializing, a compact

toll for collage or o�ce work, a prototyping device for hardware tinkering, a controller for

home automation, a workstation for software development, and much more" [7] page 6.

The �rst Odroid came onto the market in fall of 2009 and the newest type will come onto

the market in spring of 2016 which is the Odroid C2. In the last part of this chapter the

SmartPower module will be introduced. With this device the power consumption can be

calculated. The following sections are based on the references [7], [5], [6], [25] and [19].

4.1 Single Board Computer vs. typical PC

Although a Single Board Computer can be used as a typical PC, there are a few small

di�erences between them. A personal computer has a motherboard which has a processor,

a random access memory, a read only memory, a hard disc and so forth. A Single Board

Computer also o�ers all these components, but with one di�erence. The motherboard

on the Odroid is much smaller in comparison to the motherboard on a typical PC. The

di�erence is that the motherboard on the Odroid does not o�er further slots for extension

boards. As already mentioned, a Single Board can also be used as a personal computer,

because it also o�ers a normal operating system, which is highly optimized. Although there

is a di�erence between the speed of a typical Intel processor and the ARM processor which

is used on a Single Board Computer, with the right hardware it is possible to reach nearly

33

34 CHAPTER 4. ODROID

the same speed as a personal computer. These processors are also very powerful and have

high clock rates. The Raspberry Pi 2 Model B, which is on the market since February 2015

has a clock rate up to 900 MHz [27]. But also there are more powerful models, like the

Odroid XU 4 which o�ers a clock rate up to 2 GHz [6]. A hardware comparison between the

di�erent types of Single Board Computers is shown in 4.1. The boot partition of the Single

Board Computer can be stored by a simple micro-SD card. The Odroids by Hardkernel,

for example the Odroid XU 4, supports the much faster eMMC module. By this it is also

possible to switch between operating systems much easier. Only a switch has to be �ipped

depending on whether the Odroid should boot from the eMMC module or the SD card.

The next interesting aspect for comparison between Single Board Computer and typical

PC is the energy consumption. A personal computer uses between 100W and 1000W or

more, but an Odroid XU 4 for example only uses between 10W and 20W [7]. Summing

up Single Board Computers are not only energy-saving, they are also cheaper and more

�exible than personal computer. That makes them great choices for new development in

all sectors, for example testing new applications.

Figure 4.1: Hardware Comparision between di�erent Single Board Computers [6]

4.2 Odroid XU4

The following section is describing the Odroid XU 4 in detail. All the including components

will be presented. This section is based on the references [7] and [5]. In �gure 4.2 the Odroid

XU 4 is portrayed. This type of Odroid is on the market since summer 2015 and is described

4.2. ODROID XU4 35

as: "The world's most a�ordable ARM Octa-Core big.LITTLE high-performance board

computer" [5].

Figure 4.2: Odroid XU 4 [6]

The Odroid XU 4 is smaller than the types before, to be precise it has a size of half

a credit card and because of that it is very easy to transport. Furthermore, it has a

more powerful hardware compared to its predecessors. It o�ers new operating systems like

some versions of Linux, e.g. Ubuntu 15.04, and also the two Android versions KitKat and

Lollipop. The most important point is the excellent data transfer rate this version o�ers.

By the eMMC module, the USB 3.0 and the Gigabit Ethernet interface this version has

the fastest data transfer compared to all his predecessors. In diagram 4.3 a comparison

between the standard SDcard and the eMMC module is shown. The SDcard or the eMMC

module is needed for booting an operating system. But it can clearly be seen how much

faster the Odroid works with an eMMC card. Furthermore, there are also some kinds of

SD cards like the SD-class 10 or SD-UHS1. The di�erence between these two memory

cards takes place in the writing and reading speed. In comparison with the SD-class 10

and SD-UHS1 the writing speed with the eMMC module is four to �ve times faster. The

reading speed is much higher. It is nearly four to seven times faster as the reading speed

of the SD-class 10 and the SD-UHS1. The measured values for the read and write speed

at the USB type are also quite di�erent. The write and read speed of the USB 3.0 is about

�ve times faster as of the USB 2.0.

The next diagram 4.4 illustrates the streaming speed between the XU 4 and his proces-

sors XU 3 with 100 Mbps on board and XU 3 External 1Gbps. In this context, the term

streaming speed means how long it takes to transfer a collection of digital data through a

transmission channel. A comparison is made between the o�oad and download time, more

precisely when the Odroid functions as a client and when the Odroid is functioning as a

server.

As clearly can be seen the Odroid XU 4 functions faster than its predecessor XU 3 as

server as well as a client. If the Odroid functions as a server the XU 4 is between two

36 CHAPTER 4. ODROID

Figure 4.3: Comparison between the SDCard and eMMC 5.0 and USB 2.0 and USB 3.0 [6]

and more than seven times faster than his predecessor. If it functions as a client it is

also between more than one and more than seven times faster. The Odroid XU 4 has a

streaming speed of about 880 Mbps.

As seen in �gure 4.5 and 4.6 the processor of the Odroid XU 4 is a Samsung Exynos5422

with four CoretexTM -A15 2 GHZ and four CortexTM -A17 Octacore 1.4 GHz CPUs with

Mali-T628 gra�c card. The four CoretexTM -A15 are used for computer intensive opera-

tions, while the four CortexTM -A17 are used for less energy demanding operations. By this

it is possible to save power. If necessary the suitable kernels are used in order to use it as

sparingly as possible. Furthermore, the XU 4 o�ers a 2 GByte DDR3-RAM as a memory

and as indicated above it can also use eMMC 5.0 or a simple micro SDcard in di�erent

sizes. The size of the memory expansion goes from 8GB to 64GB. And as mentioned earlier

the reading speed of the eMMC is up to seven times faster than the reading speed of the

micro SDcard. The XU 4 can switch which module it wants to use with a hardware switch.

It also has a 750 MHz clocking and a 12 GB
s memory bandwidth with 2× 32 bit bus. This

Odroid needs a 5V olt
4Ampere DC power source. In the standby operation it uses about 1 Ampere

and while operating the current consumption rises above 3 Ampere. Further, the Odroid

has two USB 3.0 Host ports and one USB 2.0 Host port. As mentioned before, the USB 3.0

port is about �ve times faster than the USB 2.0 port and o�ers all the same features that

4.2. ODROID XU4 37

Figure 4.4: Comparison of the ethernet performance between the Odroid xU 4 and his predecessor

XU 3. For the comparison two di�erent versions of the XU 3 were used, a XU 3 with 100 Mbps

on board and XU 3 External 1Gbp [6]

Figure 4.5: Annoted Board Image [7]

a typical PC has, too. For example it is possible to connect a Wi-Fi adapter and by this

get a connection to the Internet or other devices as keyboard, mouse, or even an external

USB hub. By this it is possible to have more than three USB ports. In addition, it also

o�ers a standard type-A HDMI connector to connect it to a display. Furthermore, XU 4

has a installed Ethernet RJ-45 jack for LAN connection. It o�ers di�erent speeds. There

are 10 / 100/ 1000 Mbps available. To know with which speed the Odroid is connected to

the Internet it has LED �ashes. If the LED �ash lights green the speed is 100Mbps and

if it is yellow the speed is up to 1000Mbps. As shown in the diagram 4.4 the streaming

speed of the Odroid is about 880 Mbps. With a Wi-Fi Module, which is illustrated in

�gure 4.8 a connection to the Internet can be established. The XU 4 also o�ers a USB-

UART Module Kit which allows the user to connect the Odroid to a laptop and by this

to view the bootloader and to change the network and video settings. Of course the XU

38 CHAPTER 4. ODROID

Figure 4.6: Block Diagramm of XU 4 [7]

also provides General Purpose Input and Output (GPIO) ports. Altogether there are two

di�erent GPIO ports. One has 30 pin and the second one has 12 pin. A GPIO port is a

more general contact pin on an integrated circuit [4]. It can be used as input or as output,

which is determinate by logic programming. This contact usually does not have a purpose

and because of that it is by default idle. All these pins have a 2mm space and are operated

with 1.8V DC. They can be used as an interface for other physical devices, but if the user

does not need any further devices it is not necessary to control them. The important point

here is that the ADC inputs are limited to 1.8 Volt and if a peripheral needs a higher

voltage a XU 4 Shifter Shield 4.7 is needed. By this it is possible to rise the voltage up to

3.3 Volt or even to 5 Volt.

Figure 4.7: Shifter Shield for Odroid XU 4 to get a higher voltage [5]

Another aspect of the XU 4 is that it can be used on battery power. It o�ers a RTC

(Real Time Clock) backup battery connector 4.9. By this it is possible to work with it

while the Odroid is not connected to a power socket and in total the Odroid can run up

to three years by this. This battery is a CR2032 3V olt
220mAH and uses as connector a Molex

4.2. ODROID XU4 39

51021-0200. The Odroid XU 4 is not the only Odroid which has a battery power supply.

The directly forerunners XU 3 and XU 3 Lite, the C1 and C1+, U3 and XU / XU Lite all

o�er this option.

Figure 4.8: Wi-Fi Module for XU 4 [5]

Figure 4.9: Backup Battery for the Real Time Clock for Odroid XU 4 [5]

Another problem which is known from typical PCs is that heat builds up while the

system operates. Especially the XU 4 reaches up to 95◦ C. The XU 4 uses a cooling fan

to solve this problem which is illustrated in 4.10. To prevent damages the processor will

throttle itself if the temperate passes a critical threshold value. The processor does not

work with full power then and the e�ciency gets lost. With the cooling fan it is possible

to regulate the temperature and the processor can still work with full power.

Figure 4.10: Cooling Fan for XU 4 [5]

Summing up, a Single Board Computer has all the technical possibilities that a typical

PC also o�ers, it is just much smaller and cheaper. The Odroid XU 4 dimensions are 82

× 58 × 22 mm. As shown in �gure 4.1 Single Board Computers like the Odroid XU 4 can

be bought for as little as 74$. In all, they are a very good choice for testing and system

40 CHAPTER 4. ODROID

Figure 4.11: Hardware components of Odroid XU 4 [5]

development. A general overview of all the components that the Odroid XU 4 o�ers is

shown in �gure 4.11.

4.3 SmartPower

To do measurements for the Odroid, especially power and electric current intensity, a

special module was developed: SmartPower . By this it is possible to measure the voltage

(Volt), the current in real time (Amper), the power of the system (Watt) in real time and

also the power consumption (Watt
hour). In �gure 4.12 the Smart Power module is portrayed.

This module can be connected to a computer or laptop with an USB cable and with the

PC application a graphical representation can be displayed. It is possible to measure

either the current or the power in real time. In �gure 4.13 the diagram for the current

graphical representation in the left picture is illustrated and the diagram for the power use

is portrayed.

The Smart Power module is compatible with many types of Odroids, like the XU, XU

3 and XU 4 with the DC plug cable (5.5mm / 2.1mm) or with the DC plug cable (2.5mm /

0.8mm) for Odroid X, X2, U2, X2, U3 and C1. In the block diagram 4.14 the components

of the Smart Power are illustrated.

The Smart Power module works on DC 12V olt
3Ampere input power and o�ers an output

voltage between 3 Volt and 5.250 Volt. The maximum output current is 5 Ampere. As

already mentioned, with the Smart Power it is possible to measure the voltage, the current

and power in real time and also the used power per hour. The small tolerances of these

results can di�er from the real values around 2 percent. Besides the USB device port for a

4.4. CONCLUSION 41

Figure 4.12: Smart Power module for measurements with Odroids [5]

Figure 4.13: PC application for Smart Power. The left picture illustrates the current graphic

and the right picture the watt graphic of the Smart Power module.

connection to a PC the Smart Power device also has 2 buttons. With the right button it

is possible to start and stop the measurements and the left button just turns it on and o�.

With the button it is possible to set the desired voltage. The measurements can be done

as follows: The Smart Power module is connected to the power outlet and the Odroid to

the Smart Power. Further on, a laptop is wired on the Smart Power, so the PC application

can be started on the laptop.

In total, this chapter introduced the Odroid with all its speci�cations and also the

hardware accessory for the Odroid.

4.4 Conclusion

Further it is also an important aspect why especially an Odroid was chosen for this topic. It

could also be possible to chose a typical PC or any other Single Board Computer, e.g. the

Raspberry Pi and to measure the power and electric current intensity there. In comparison

42 CHAPTER 4. ODROID

Figure 4.14: Block Diagram for the Smart Power device

to the Single Board Computer the Odroid sticks out because of its hardware opportunities.

But not only this sticks out. Single Board Computer are in comparison to typical personal

computers much cheaper and are therefore well-suited for experimental developments. In

comparison to a Raspberry Pi [23] for example the here used Odroid XU 4 has a RAM with

2GB, instead of 1GB RAM for the Raspberry Pi 3 Model B. The processor which is used

at the Raspberry Pi 3 Model B is the Broadcom BCM2837 and the Odroid XU 4 uses the

Samsung Exynos5 Octa ARM CortexTM-A15 Quad, which is more powerful. After these

comparisons were made for the Hardware opportunities it turned out that the Odroid was

the best opportunity for this topic.

The next question is why the Odroid XU 4 was chosen and not any other kind of

them. The Odroid XU 4 is the one of the newest kinds of Single Board Computers from

Hardkernel. The XU 4 is a further development of the XU 3 and the full software of the

XU 3 ist compatible with the XU 4, but the XU 4 is more compact, more a�ordable and

more expandable [6]. In total, this type has an energy-e�cient technology and because in

this work the power and electric current intensity should be under examination, this kind

of Single Board was chosen.

Chapter 5

Experimental Setup

After the Software for virus detection and the Odroid hardware were introduced, this

chapter deals with the experimental setup. As discussed earlier the measurements of the

power consumption will be executed with the Smart Power module which was presented in

detail in chapter 4.3. The �rst part of this chapter 5 explains which necessary preparations

have to be taken to run the software. The second section presents the hardware preparation

for this experiment. In the third section 5.3 of this chapter the experimental setup for the

measurements on the Odroid is presented and a closer look at their realization is taken.

The last part 5.4 of this chapter focuses on the o�oading process. To be precise, how the

data, which were obtained from the PAMONO application, were o�oaded on a server and

how much energy the Odroid needs for this process.

5.1 Preparation

As mentioned earlier, there are various ways to process the data from the PAMONO sensor,

for example di�erent ways of single noise reduction, time series analysis or segmentation.

And also the results of a chosen algorithm are depending on parameter settings, e.g. the

maximal merging distance, the detection threshold, usage of brightness correction and a lot

more. In order to analyze the e�cts of these di�erences, two di�erent parameter documents

were given. Firstly the optimized parameter and secondly the unoptimized parameter. The

reason why some values are optimal and other not for the Odroid is dues to the hardware

of the Odroid. As already shown in chapter 4 there are some di�erences between the

hardware of a typical PC and the hardware of an Odroid. Furthermore, it is important

to mention that the e�ect of the di�erences of these �les is mainly its in�uence on the

execution speed. As it will be seen in the measurements later, with the optimized values

the software runs much faster. Another important point is the evaluation of these two

di�erent parameters. The optimized parameter found 108 viruses in the data which were

obtained from the sensor, while the unoptimized parameter only detected 105 viruses. This

43

44 CHAPTER 5. EXPERIMENTAL SETUP

is no huge di�erence, so overall it can be said, that it may be stated that the di�erence

between these �les has a major on the execution time, but only a minor e�ect on the

precision of the evaluation. In �gure 5.1 the result of these processes is visualized. This

has a lot to do with the chosen parameter �le. The explanation for this is that the values

for the not optimal parameter sum up some virus candidates to just one virus and because

of that it seems that less viruses have been detected. In the Appendix A.1 the complete

values of these two documents are portrayed and can be compared for their di�erences.

The di�erences between them are for example the values for the merging maximal frame

distance for polygons which is for the unoptimized parameter 17 and for the optimized

15. Furthermore, some parameters have di�erent values, for example the merging for

the maximal distance is for the unoptimized value 6.102633 and for the optimized value

3.499158. But there are more di�erences. For example the brightness correction is activated

at the unoptimized values, but not activated at the optimized values. The main di�erence

between these two data is that the optimized values are adapted for the Odroid, and the

unoptimized are not.

Figure 5.1: In the left picture the result of the software for the optimized values and in the right

picture the results of the software for the unoptimized values is realized.

5.2 Hardware Preparation for the experiment

The experimental setup is presented in �gure 5.2. Firstly the Smart Power module is con-

nected to the power socket and then to the Odroid. Furthermore, the laptop is connected

to the Smart Power, so the Smart Power application can run on it. Then, a display is

plugged into the HDMI port of the Odroid and the keyboard is attached via USB port. A

mouse is not necessary, because the used SD card has no graphical operating system. As

mentioned earlier, just like a normal PC the Odroids slowly heats up while running. To

ensure that the Odroid works most e�cient, a script which regulates the fan of the Odroid,

was prepared. This script is introduced at the beginning ot the next section.

Overall there are two di�erent methods to o�oad the data from the Odroid to the

server: The �rst method is to connect the Odroid to the router with a LAN cable to get an

Internet connection that way. The second method is to set up a wireless connection with

the router. For this the Odroid Wi-Fi Module 4 is used. It is portrayed in �gure 5.3 [5].

5.2. HARDWARE PREPARATION FOR THE EXPERIMENT 45

Figure 5.2: Experimental setup of the measurements

Figure 5.3: Odroid WIFI Module 4 [5]

The Wi-Fi Module 4 serves as an antenna to get a wireless connection to the router, to

be precisely it is an IEEE 802.11a/b/g/n WLAN module with on-board 2.4Ghz and 5Ghz

Dual band antenna [5]. The board image of this module is illustrated in �gure 5.4.

Figure 5.4: Board Image of the Wi� Module 4 [5]

It is shown that the Wi-Fi Module 4 has a Ralink RT5572N chipset and a dual band

antenna. Furthermore, it has a WPS status LED, a WPS key and a Wi� link LED. The

dimension of the module is 68.5 x 22.8 x 8.5 mm and it only weighs 12 g. This module can

be used on di�erent types of Odroids like the ODROID U3 / XU3 / C1 / XU4 / C0 / C2.

46 CHAPTER 5. EXPERIMENTAL SETUP

5.3 Measurements on the Odroid

While running the software on the Odroid heat arises and with the script in Listening 5.1

the fan can be regulated.

Listing 5.1: prepareMeasurements

sudo s e r v i c e l ightdm stop

sudo / etc / i n i t . d/ cups stop sudo

echo 0 > / sys / dev i c e s / odroid_fan .14/ fan_mode

sudo echo 255 > / sys / dev i c e s / odroid_fan .14/pwm_duty

sudo . / change_governor . sh f a7

sudo . / change_governor . sh f a15

i f pgrep −x gst−launch −0.10; then sudo k i l l a l l

gst−launch −0.10 −e −q −w; f i

i f pgrep −x sh ; then sudo k i l l a l l sh −e −q −w; f i

It is possible to have automatically the fan start every time a given temperature has

been reached or it can be triggered manually. It is also possible to set the fan speed. All

measurements, which have been done, were done by setting the fan manually on full speed.

In fact, the speed was set to 255. The results of these measurements will be introduced in

chapter 6.1.

To get comparable values in relation to the power and electric current intensity, the

software �rst has to be executed only on the Odroid and after this the obtained data from

the sensor were o�oaded to an external server for further processing. For th executing

process on the Odroid two scripts were written. One script is using the optimized values

and the other one the unoptimized. The script for the optimized values is shown in 5.2

and the script for the unoptimized values is illustrated in 5.3.

Listing 5.2: RunOptimized

#!/bin / sh

#Environment v a r i a b l e s

export PATH=./: ${PATH}

export LD_LIBRARY_PATH=../ l i b / : ${LD_LIBRARY_PATH}

export GST_PLUGIN_PATH=../ Plug ins

t a s k s e t −c 0 ,1 , 2 , 3 , . / RunVirusDetection −paramsFile

params_VirusDetectionCL_optimized . txt r e su l tF i l e sOutputFo lde r =.

sourceSta r t Index=1 num−bu f f e r s=−1 sourcePath =. ./ images / t r a i n i n g

sourceFileName=capture2013−04−11− sourceFileNameDigitCount=4

sourc eF i l eExtens i on=png forceRecompi le=0 saveOpenCLBinaries=1

s i l e n t=0 v i s u a l i z e=0 −useQueues queueMaxSizeBytes=52428800

5.4. MEASUREMENTS BYOFFLOADING FROMODROID TOA SERVER FOR COMPUTATION47

Listing 5.3: RunUnoptimized

#!/bin / sh

#Environment v a r i a b l e s

export PATH=./: ${PATH}

export LD_LIBRARY_PATH=../ l i b / : ${LD_LIBRARY_PATH}

export GST_PLUGIN_PATH=../ Plug ins

t a s k s e t −c 0 ,1 , 2 , 3 , . / RunVirusDetection −paramsFile

params_VirusDetectionCL_unoptimized . txt r e su l tF i l e sOutputFo lde r =.

sourceSta r t Index=1 num−bu f f e r s=−1 sourcePath =. ./ images / t r a i n i n g

sourceFileName=capture2013−04−11− sourceFileNameDigitCount=4

sourc eF i l eExtens i on=png forceRecompi le=0 saveOpenCLBinaries=1

s i l e n t=0 v i s u a l i z e=0 −useQueues queueMaxSizeBytes=52428800

Obviously the only di�erence between these two scripts is the used parameter �le. The

other parameters are equal. Both scripts analyze the same pictures obtained from the PA-

MONO sensor. For �ne tuning of the measurement process, more di�erent parameters can

be set. For example, it is possible that the analyzing time of each pixel can be displayed to

setting the parameter "Pro�lingCPU" or "Pro�lingGPU" to true. With setting "silent"

to true the output function is being deactivated. With the function "-useQueues queue-

MaxSizeBytes" the maximum size of the queue can be adjusted. The software process of

the data was explained in detail in chapter 3.2.

5.4 Measurements by O�oading from Odroid to a Server for

Computation

After the electric current intensity (Ampere) and power consumption Watt
hour of the software

on the Odroid were determined, it is interesting to �nd out how much power and electric

current intensity the Odroid needs to o�oad the data to an external server for executing.

For this a server was provided on which the data were o�oaded. To realize this, two

further scripts were given. One script has to run on the server and the other one on the

Odroid. The script in Listening 5.4 describes the work steps of the server and the script

in Listening 5.5 the o�oading process of the Odroid.

Listing 5.4: runAsServer

#!/bin / sh

#Environment v a r i a b l e s

export PATH=./: ${PATH}

export LD_LIBRARY_PATH=../ l i b / : ${LD_LIBRARY_PATH}

48 CHAPTER 5. EXPERIMENTAL SETUP

export GST_PLUGIN_PATH=../ Plug ins

. / RunVirusDetection −paramsFile

params_VirusDetectionCL_unoptimized . txt

r e su l tF i l e sOutputFo lde r =. sourceSta r t Index=1 num−bu f f e r s=−1
sourcePath =. ./ images / t r a i n i n g sourceFileName=capture2013−04−11−
sourceFileNameDigitCount=4 sourc eF i l eExtens i on=png

forceRecompi le=0 saveOpenCLBinaries=1 s i l e n t=0 v i s u a l i z e=0

−useQueues queueMaxSizeBytes=52428800 −udpReceiver
udpReceiverCaps="app l i c a t i on /x−rtp , media=(s t r i n g) video ,

c lock−r a t e=(i n t)90000 , encoding−name=(s t r i n g)RAW,

sampling=(s t r i n g)RGB, depth=(s t r i n g)8 , width=(s t r i n g)706 ,

he ight=(s t r i n g)167 , co l o r imet ry=(s t r i n g)SMPTE240M,

payload=(i n t)96 , s s r c=(u int)2490757164 ,

c lock−base=(u int)3577112882 , seqnum−base=(u int)14889"
udpReceiverPort=5004 cameraInputWidth=706

cameraInputHeight=167 cameraInputBPP=16 cameraInputDepth=16

The data from the Odroid were o�oaded to the server with the script runAsServer.

The server has already the parameter �le with the settings for the calculation. Further,

the server needs the information what kind of data is o�oaded. This may include more

for example the depth, width and height of the o�oaded media. To realize the o�oading

process the udpReceiverPort must be set up. In this case the port 5004 was used.

Listing 5.5: runAsClient

#Environment v a r i a b l e s

export PATH=./: ${PATH}

export LD_LIBRARY_PATH=../ l i b / : ${LD_LIBRARY_PATH}

export GST_PLUGIN_PATH=../ Plug ins

. / gst−launch −0.10 −v mu l t i f i l e s r c

l o c a t i o n =". ./ images / t r a i n i n g / capture2013−04−11−%04d . png"
index=1 num−bu f f e r s=−1
%caps="image/png , f ramerate=(f r a c t i o n)60/1 ,

p ixe l−aspect−r a t i o=(f r a c t i o n)1/1" ! %pngdec !

%"video /x−raw−gray , bpp=16, endianness=4321" ! f fmpegco lo r space !

%%%rtpvrawpay ! udpsink host =129 .217 .43 .72 port=5004

The Odroid functions as the client and o�oads the data with the script runAsClient

to the server. For the process the folder has to be indicated in the script. Furthermore,

the IP address of the server has to be initialized and the port has to be equal the one in

the script for the server.

Chapter 6

Evaluation

After the experimental setup in chapter 5 was described, the measurement results will be

presented. First, the measurements were done on the Odroid, which means that the electric

current intensity and power consumption was measured while running the software on the

Odroid. And after this a closer look is taken on how much electric current intensity and

power the Odroid needs to o�oad the data to the external server. The measurements on

the Odroid are presented in 6.1 and the measurements of the o�oading process in section

6.2. A distinction is made here according to the needed power and electric current intensity

for o�oading the data via LAN-cable and via wireless. The last part of this chapter is

summing up the most important aspects of these measurements.

6.1 Measurement results on the Odroid

The software, which was presented in chapter 3.2, was running on the Odroid with the

two di�erent kinds of parameters, the optimized parameter and then the unoptimized

parameter. The Table A.2 which is in the Appendix represents the measurement results

for the optimized parameter. Thereby di�erent aspects were examined. One aspect is how

much additional power and electric current intensity the Odroid needs when unnecessary

equipment is connected to the Odroid, during the software is executed or the data were

o�oaded to the server. Here the software was running in two di�erent cases. The �rst one

is with a connected keyboard and the second is without the keyboard. This comparison is

made to see the di�erence in power consumption on the Odroid with respect to plugged

and unplugged keyboard. In this experiment the static power consumption of the keyboard

is observed, because the keyboard was not used while the measurements were running. In

this way it is ensured that with unplugged keyboard only the electric current intensity

and power consumption of the software is considered. In order to calculate the power

consumption and electric current intensity of the software, it is also necessary to know how

49

50 CHAPTER 6. EVALUATION

much electric current intensity and power the Odroid used in standby mode. This is shown

in �gure 6.1.

It can be seen that the Odroid runs with a constant voltage of 5.250 Volt. Furthermore,

it used approximately between 1.56 Watt and 1.57 Watt and about 0.33 Ampere in the

standby mode. The last line with the unit Watt
hour indicates how much power in total the

Odroid uses per hour. This display only shows the value if the Smart Power is started.

Although only the usage of power and electric current intensity for one moment is displayed.

Figure 6.1: Power and Energy consumption of the Odroid in standby mode. In the left picture

the electric current intensity is shown and in the right one the power consumption.

As mentioned earlier, the obtained data from the sensor were processed with two di�er-

ent parameter �les. The main di�erence between these �les is that the optimized values are

optimal for the Odroid, which means that the running time of the software is faster than

with the unoptimized parameter. In total it can be seen that the consumed power is much

higher by processing with the unoptimized parameter. The precise di�erence between them

is presented in Table A.2 and A.3 which are in the Appendix.

In total the software was running twenty times for each parameter �le and another

twenty times to see the di�erent results whether the keyboard is connected to the Odroid

or not. For every passage the fan of the Odroid was working in full speed. This ensured

that the process performance was most e�ective.

For the optimized parameter the results are as follows. The electric current intensity

was equal for each passage, to be precisely the average value accounted for an amount

of 0.064 Watt
hour . The time, which the software needs for completion, in average is around

32.52·109nanoseconds, roughly around 32.5 seconds. This result correspond to the mea-

surements with unconnected keyboard.

In comparison to the execution time in chapter 2 [14] which was between 5 and 30

minutes, the execution time with optimal parameters is more than 10 times faster. This

may be due to the fact that the hardware of the Odroid is more powerful than on a typical

PC. Another point could be that the Odroid was used without graphical interface. The

6.1. MEASUREMENT RESULTS ON THE ODROID 51

editing pictures are thus not directly visualized on the desktop and the processing of them

works in the background. This could also be one point why the execution process on the

Odroid is much faster.

The results for the measurements without connected keyboard are as follows. The

power consumption average is around 0.063 Watt
hour . In comparison, with the power con-

sumption with connected keyboard, the di�erence is only around0.001 Watt
hour lower. The

di�erence does nearly not exist and can be classi�ed to be within the error range. The

lead time of the software without keyboard is in average 32.51·109nanoseconds, roughly
around 32.5 seconds. If the comparison is made by means of seconds, there is no truly

di�erence between them. It could therefore be concluded that there is no matter if the

keyboard is connected to the Odroid or not, because the power consumption stays con-

siderably equal. Although the lead time and the electric current intensity of the software

has barely noticeable di�erences, there are two more aspects which can be compared, the

power consumption and the electric current intensity while the software is running. To

illustrate this there are two graphics for the measurements with connected keyboard in 6.2

and two further graphics for the measurements without connected keyboard in 6.3.

Figure 6.2: Graphical illustration for connected keyboard with optimized parameter on the

Odroid. In the left �gure the electric current intensity and in the right picture the power consump-

tion while running the software is illustrated.

By means of the time course in the �gure 6.2 for the process with the optimized pa-

rameter and connected keyboard the upshot of this is relatively uniform. For the electric

current intensity the value is more than 1.2 Ampere. The value �uctuates between plus

and minus 0.1 Ampere. The graphical progress of the electric current intensity is similar.

The development of this is relative uniformly and the average of this amounts to 5.3 Watt.

The value �uctuates stronger and is between plus and minus 0.2 Watt.

The results for the unconnected keyboard with optimized parameter are as follows.

Both curves are similar and are relatively uniform, but they are a little shifted along

the x axis. The electric current intensity value amounts to 1.15 Ampere and �uctuates

52 CHAPTER 6. EVALUATION

Figure 6.3: Graphical illustration for unconnected keyboard with optimized parameter on the

Odroid. In the left �gure the electric current intensity and in the right picture the power consump-

tion while running the software is illustrated.

between 1.1 and 1.2 Ampere. Therefore, it can be seen that the electric current intensity

with unconnected keyboard is around 0.1 Ampere lower than with connected keyboard.

Similar results arise with the power consumption. The average value amounts 5 Watt with

variations around 0.2 Watt either way. In total there is a di�erence of approximately 0.3

Watt.

The overall conclusion is that without a connected keyboard a small, but recognizable

di�erence in power consumption is noticeable. But this di�erence could be classi�ed to be

within the error range and because of this it can be speci�ed that there is no matter if the

keyboard is connected to the Odroid or not.

As mentioned earlier the unoptimized parameter is not optimal for processing on the

Odroid and so the lead time of the process is much higher than for the optimized parameter.

That is why the power consumption is also much higher. In fact the average for the power

consumption with connected keyboard is around 0.21985 Watt
hour and the lead time of the

software amounts around 117.1·109 nanoseconds, roughly around 117.16 seconds. If the

keyboard is unconnected, the following results occur. The average value for the power

consumption is around 0.2185 Watt
hour and the running time is around 117.0·109 nanoseconds,

roughly around 116.98 seconds. In the following graphics 6.4 and 6.5 the exactly course of

power and electric current intensity is portrayed.

As in the results for the optimized parameter also shown a slight variation, but the

�uctuation is a little smaller. The average value with the connected keyboard amounts to

around 1.3 Ampere and 5.9 Watt
hour . For the electric current intensity there are variations be-

tween plus and minus 0.05 Ampere and the power consumption shows �uctuations between

plus and minus 0.1 Watt
hour . The interesting point here are the graphics without connected

keyboard. Here the �uctuations of the curves are hardly recognizable. The electric current

intensity is around 1.3 Ampere and varies around 0.01 Ampere. The characteristics of the

6.2. MEASUREMENT RESULTS BY OFFLOADING TO AN SERVER 53

Figure 6.4: Graphical illustration for connected keyboard with unoptimized parameter on the

Odroid. In the left �gure the electric current intensity and in the right picture the power consump-

tion while running the software is illustrated.

Figure 6.5: Graphical illustration for unconnected keyboard with unoptimized parameter on

the Odroid. In the left �gure the electric current intensity and in the right picture the power

consumption while running the software is illustrated.

course for the power consumption is similar. The value amounts around 5.8 Watt and also

varies only around 0.01 Watt.

In total it is recognizable that with the unoptimized parameter the lead time and also

the electric current intensity is much higher, but the course is constant. But again it

is clearly seen that the di�erence between connected and unconnected keyboard has no

matter on the power consumption.

6.2 Measurement Results by O�oading to an server

After the measurements were done on the Odroid and comparable values are available, it is

possible to see the di�erence of the power and electric current intensity for o�oading. Here,

the only interesting point is how high the power and electric current intensity is to o�oad

the data to the server. The power consumption of the server to process this information,

54 CHAPTER 6. EVALUATION

is irrelevant for this work. The �rst paragraph 6.2.1 deals with the measurement results

for o�oading the data via LAN-cable and the second paragraph 6.2.2 with the results for

o�oading the data wireless.

6.2.1 O�oading via LAN-cable

The results for o�oading the data from the Odroid to the server with an Ethernet cable

are as follows. With connected keyboard the power consumption was in average around

0.0275 Watt
hour and the time for o�oading was in average 19.06·109 nanoseconds, roughly 19.06

seconds. In contrast to this, the results with unconnected keyboard were quite similar, only

for the power consumption a little higher. For the power consumption arises a value around

0.0278 Watt
hour and the time for o�oading in average is around 19.05·109 nanoseconds, roughly

19.05 seconds. The graphics in �gure 6.6 and 6.7 illustrate the electric current intensity

and power consumption for the o�oading process. The values for each o�oading process

via Ethernet cable is illustrated in A.4 which is located in the Appendix.

By means of the graphical time course of the power and electric current intensity it can

be clearly seen that the process is relative constant. With connected keyboard the electric

current intensity is around 1.1 Ampere and almost constant. The power consumption

is around 5.2 Watt and variates between plus and minus 0.01 Watt. The measurement

results with an unconnected keyboard are quite similar. The electric current intensity

again amounts to around 1.1 Ampere and �uctuates between plus and minus 0.1 Ampere.

The power consumption is also the same and amounts to around 5.2 Watt.

Figure 6.6: Graphical illustration with connected keyboard for o�oading process via LAN-cable.

In the left �gure the electric current intensity and in the right picture the power consumption for

o�oading process is illustrated.

In total, it is clearly seen that in case of o�oading there is no truly di�erence between

the measurement results with or without connected keyboard. It is also an important

point, that the courses of this o�oading process are in total constant and also that the

o�oading process is very fast. Summing up, only about 19 seconds are needed to o�oad

6.2. MEASUREMENT RESULTS BY OFFLOADING TO AN SERVER 55

Figure 6.7: Graphical illustration with unconnected keyboard for o�oading process via LAN-

cable. In the left �gure the electric current intensity and in the right picture the power consumption

for o�oading process is illustrated.

the data to an external server for processing and in fact can be said that the keyboard

in this case has no in�uence on the results. The conclusion can therefore be drawn that

the di�erent results for the �rst measurement on executing the software with and without

keyboard on the Odroid are only within the error range.

6.2.2 Wireless O�oading

The second method for o�oading the data to an external server is the wireless o�oading

process. The measurement results show that the power consumption as well as the lead

time for o�oading is not constant.

Values ranged from 0.122 Watt
hour to nearly 0.179 Watt

hour for a connected keyboard. Without

connected keyboard the power consumption �uctuates between 0.099 Watt
hour and 0.184 Watt

hour .

On average the power consumption is 0.14415 Watt
hour and it takes about 88.04·10

9nanoseconds

with a connected keyboard. Loosely speaking the o�oading process takes about 88.04 sec-

onds in average. Without a connected keyboard the power consumption in average is

around 0.13195 Watt
hour and 81.81·109 nanoseconds for the o�oading process, so about 81.81

seconds. All the values are illustrated in A.5 which is again located in the Appendix.

In total, can be clearly seen that the power consumption and the o�oading time points

out a di�erence nearly seven seconds. Furthermore, the wireless o�oading process also

�uctuates highly in relation to power consumption and lead time. This also can be justi�ed

in the way that the wireless signal strength is never the same. The di�erences could arise

because of the wireless signal strength and it is di�cult so say how much the values are

in�uenced by connected or the unconnected keyboard.

By means of the graphics in 6.8 and 6.9 can be seen that the course is again fairly

constant. For the connected keyboard the results are as follows. The electric current

intensity is around 1.3 Ampere and oscillates between plus and minus 0.1 Ampere. For the

56 CHAPTER 6. EVALUATION

power consumption a similar course is presented. The value results around 5.8 Watt and

ranges only between plus and minus 0.1 Watt. As expected from the values in the Table

A.5 the results for the measurements without a connected keyboard are the same.

Figure 6.8: Graphical illustration with connected keyboard for o�oading process via Wireless.

In the left �gure the electric current intensity and in the right picture the power consumption for

o�oading process is illustrated.

Figure 6.9: Graphical illustration with unconnected keyboard for o�oading process via Wireless.

In the left �gure the electric current intensity and in the right picture the power consumption for

o�oading process is illustrated.

For the electric current intensity the value is 1.3 Ampere and has �uctuations between

plus and minus 0.1 Ampere. The power consumption is similar. The result is 5.8 Watt

and ranges around 0.1 Watt.

Therefore it can be be seen that there is no truly di�erence if the keyboard is con-

nected to the Odroid or not. After a sort can be made the conclusion that connected or

unconnected keyboard does not have any e�ect on the results and the low di�erence is only

within the error range. But, it is interesting how much varying strengths the wireless has

and because of that in comparison with the o�oading process via LAN-cable, the wireless

o�oading process takes a lot of time.

6.3. CONCLUSION 57

The reasons for these �uctuations could be also important to know and by this to solve

the issue. For private networks, there are some solutions for this [22]. The �rst one is to

place the router in the same room as the laptop, computer, tablet, mobile phone and so

on. As farther away from the router, as lower is the signal strength. A further barrier for

the wireless signal strength can be also a wall or any other devices like a television, a radio

or even a microwave. To enhance the signal strength and to ensure that in a apartment for

example in every room the signal strength is the same there are some methods [20]. The

�rst opportunity is to change the router. Older versions use the 802.11g-Standard and have

a transmission rate of 54 MBit
second . Newer router use an 802.11n or 802.11ac Standard [21].

The 802.11n Standard o�ers transmission rates up to 150 MBit
second . If the router has three

antennas it is even possible to become transmission rates up to 450 MBit
second . The newest

wireless standard, the 802.11ac, o�ers up to 540 MBit
second .

Although it is possible to become so strong signal strengths, barriers like walls obstruct

also these high signals. For this two further ways were developed:

Firstly a Wireless Repeater which works like a signal repeater. For example it is set

at the half distance between router and laptop for example and by this it strengths the

signal strength. The second is a Powerline Adapter. It is connected to the router with

an Ethernet cable and plugged into a power outlet. A second adapter works like a Wlan-

Assess-Point and by this it is possible for devices to connect to the Internet. Unfortunately

this opportunities were missing and because of that they could not be tested.

In total, it is known from everyday examples that Internet access with wireless connec-

tion needs a lot of power. One best known example is the mobile phone. If the wireless

connection is activated, it is apparent that the battery for the mobile phone discharge

faster. In many magazines, e.g. [16] is given the advice to turn o� the wireless connection

to save energy.

6.3 Conclusion

In this respect a conclusion will be made at which point it is recommended to o�oad the

data for calculation on an external server. It turned out that the measurement results for

connected and unconnected keyboard on the Odroid are nearly similar, only the values

which arises with connected keyboard here are discussed.

The �rst diagram in 6.10 illustrates the comparison between the executed software on

the Odroid with optimized and unoptimized parameter and the o�oading process via LAN-

cable and wireless in relation to the execution time. It is clearly seen that the execution time

for the executed software with unoptimized parameter needs the most time. In average

the execution time takes about 117 seconds, but by means of the course the execution

time stays considerably constant. In comparison to the execution time for the optimized

parameter this process needs only about 32 seconds. Furthermore, on the course is seen

58 CHAPTER 6. EVALUATION

that the execution time stays constant. The same course shows the o�oading process via

LAN cable. The time for o�oading is around 19 seconds. The only strong �uctuations

arises with the o�oading process via wireless. As mentioned earlier the transfer rate

of this process �uctuates considerably over all passes. In average the o�oading time is

approximately 88 seconds.

Figure 6.10: Graphical illustration of the execution time in nanoseconds. A comparison between

the optimized and unoptimized parameter �le on the Odroid and the o�oading process via LAN

cable and wireless is illustrated.

The second diagram 6.11 portrays the comparison between the executed software on

the Odroid with optimized and unoptimized parameter and the o�oading process via

LAN-cable and wireless in relation to the power consumption. The courses of the power

consumption are quite similar to the courses of the execution time. The power consumption

of the executed software with unoptimized parameter setting is in average 0.220 Watt
hour and

for the optimized parameter setting is about 0.064 Watt
hour . For the o�oading process via

LAN cable around 0.028 Watt
hour are consumed and via wireless it amounts around 0.144 Watt

hour .

In total, the main conclusions which can be drawn from the surveys are the following:

The main question of this work is how much power can be saved if the data was o�oaded

instead of executing this software directly on the Odroid. The overall conclusion is that

the o�oading process via LAN-cable is most e�ective in relation to power consumption

and duration. The wireless o�oading is unfortunately inadvisable. Even in the fastest

way, the wireless o�oading process takes nearly more than three times than the o�oading

by LAN-cable.

6.3. CONCLUSION 59

Figure 6.11: Graphical illustration of the power consumption in Watt
hour . A comparison between

the optimized and unoptimized parameter �le on the Odroid and the o�oading process via LAN

cable and wireless is illustrated.

And also in relation to the software executed on the Odroid, in some cases it needs

more power and the lead time is longer. To be precise, if the software is executed with the

optimized parameter setting for the Odroid, the o�oading process needs more than three

times as much electric current intensity and time. Simply put, it is possible to do three

measurements on the Odroid, to o�oad the data to the server once.

For this comparison with the executed software on the Odroid by using the unoptimized

parameters, the �gures are as follows: Here in fact it would be worth to o�oad wireless

the data instead of executing the software with this parameter. In this case executing the

software on the Odroid would need almost 1.5 times more electric current intensity and

time.

In summary it can be said that a clear distinction needs to be made between the selected

parameter �les. If parameter �les were selected, which are optimal for the Odroid, it is

recommended to o�oad the data via LAN-cable, but not wireless. In this case it is better

to execute the data on the Odroid. But in the other case the o�oading process has more

advantages. There it is even irrelevant if the o�oading process is done via LAN-cable or

wireless. In total, it is obvious that the o�oading process with LAN-cable is the best way

for o�oading.

The aim of this project was to �nd out if it is possible to save energy for Mobile

Biosensors through o�oading the data to an external server. After all the measurements

60 CHAPTER 6. EVALUATION

were done, it can be speci�ed that especially the o�oading process via LAN cable is

optimal for saving power. It is very fast and the transmission rate stays nearly constant

over the entire period and in total this method for o�oading needs lower power than

directly executing the software on the Odroid. Saving energy for wireless o�oading is more

di�cult. The o�oading process takes a lot of time and the transmission rate �uctuates very

strong. And exactly here is the main problem. Although the power consumption is nearly

constant and has no relation to the transmission rate, the o�oading process takes much

longer and because of that also more power is consumed. If it is possible to strengthen

the transmission rate of the wireless o�oading with the methods, which were presented

in 6.2.2, it would be worth to o�oad the data via wireless. But in which relation this

o�oading process would stay in comparison to the o�oading process via LAN cable has

to be investigated further.

Chapter 7

Summary and Outlook

In the last chapter of this work a summary and an outlook of the main aspects of this

theme follows.

7.1 Summary

The aim of this work was to analyze the energy consumption of the Odroid by means of an

application example. The application that was used is called PAMONO application. With

this Biosensor it is possible to detect viruses in samples like blood or saliva. During the

investigation, pictures are made of this process and these pictures can be examined with a

special software, which was explained in chapter 3.2.

To get comparable values and to recognize if the o�oading process truly saves en-

ergy, the software was �rst executed on the Odroid. The processing time and the energy

consumption depend on the parameter settings for the PAMONO software. Therefore a

distinction was made between an optimized and unoptimized parameter �le. With the

optimized parameters are optimal for the Odroid this process is much faster than with

the unoptimized parameter �le. The result is that the software executes the calculation

more than three times faster optimized than with the unoptimized parameter. In total,

the energy consumption of the Odroid for processing with the optimized parameter was

around 0.064 Watt
hour and takes around 32 seconds, while it was around 0.220 Watt

hour for the

unoptimized parameter and takes around 88 seconds.

After the measurements on the Odroid are completed, the o�oading process can be

started. Two ways of o�oading were examined. The �rst was o�oading the data via LAN-

cable and the second was o�oading via wireless. This results in an extreme di�erence in

relation to energy, power and time execution. The results for o�oading via LAN-cable

were pretty fast and the energy consumption was also very low. The measured values are

roughly about 0.028 Watt
hour for energy consumption and around 19 seconds for o�oading.

By o�oading via wireless various di�erent values occurred. The energy consumption lies

61

62 CHAPTER 7. SUMMARY AND OUTLOOK

within the range of 0.100 Watt
hour and 0.184 Watt

hour and the lead time between 73 seconds and

109 seconds. Therefore the o�oading process is more e�ective by o�oading via LAN-cable.

Hence, it is possible to note that the o�oading process via LAN-cable is most e�ective

and it is possible to save energy by this. But this can not be said for the o�oading process

via wireless. If the process has to be done with a non optimal parameter setting, it is

better to o�oad them, instead of executing the software on the Odroid. But if there are

optimal parameter settings executing the process on the Odroid is more energy-saving.

7.2 Outlook

The o�oading process via wireless is not optimal, because of that it would be important to

try o�oading via LTE (Long Term Evolution) and observe the di�erences. And also to �nd

a solution for the high power consumption of using wireless. Another point would be to

optimize the software for the Odroid and by this to ensure that every parameter �le, with

which the software should be executed, is close to optimal. Of course a further aspect is to

improve the software and by this to reduce the lead time and also the power consumption,

but with the guarantee of a reliable data evaluation. It is also an important point to realize

the aspect why wireless o�oading causes so many �uctuations in power consumption and

o�oading time and to �nd a solution for this problem. In total, it is important to detect

the reasons for the high power consumption for o�oading, e.g. via wireless and to �nd a

solution to reduce this. It would be also interesting to try di�erent o�oading methods,

maybe not directly over the Internet. For example the di�erences via Bluetooth o�oading

to a personal computer in comparison to o�oading via Ethernet cable or wireless could be

examined. But here the problem is that Bluetooth only works for small distances and also

has the problem that is needs many powers to work e�ective.

A further aspect to take a closer look at is to do these measurements on other Single

Board Computers, e.g. the Raspberry Pi and to take a comparison between them. In this

relation can be examined in the case that one Single Board Computer needs lower power

what hardware aspect causes this.

Appendix A

Further Additional

A.1 Parameter values for detecting viruses

Table A.1: Comparison between optimized and unoptimized documents

optimized parameter unoptimized parameter

sourceStartIndex 1 1

sourcePath " " E:/ISAS-Images2-

repo/isas_images2/public_

data/200nm_11Apr13_1/

synth2/pcount100/nstt/

training

sourceFileName "capture2013-04-11-" "capture2013-04-11-"

sourceFileExtension "png" "png"

sourceFileNameDigitCount 4 4

pauseAtFrame -1 -1

pauseAtFrame2 -1 -1

sinkStartIndex 0 0

sinkPath " " " "

sinkFileName "Image" "Image"

sinkFileExtension " " " "

sinkFileNameDigitCount 3 3

forceRecompile 0 0

writeAllFeaturesToFile 0 0

writeFinalFeaturesToFile 0 0

63

64 APPENDIX A. FURTHER ADDITIONAL

fastRelaxedMath 0 0

delay 0 0

startMergingAfterXFrames 0 0

background 1 1

backgroundRefs 40 40

backgroundGap -1 -1

backgroundOption 1 1

foreground 1 1

foregroundRefs 40 40

foregroundBackground

Option

1 1

foregroundGroupNFrames 1 1

averageImage 0 0

averageImageKernelWidth 3 3

averageImageKernelHeight 4 4

medianImage 0 0

medianImageKernelWidth 3 3

medianImageKernelHeight 3 3

gaussImage 1 1

gaussImageSigma 1.500000 1.500000

brightnessCorrection 0 0

brightnessCorrection

ReferenceBrightness

0.000000 0.000000

haarNoiseReduction 0 0

haarNoiseReductionKeep 8 8

haarNoiseReduction

Quality

0.100000 0.100000

combineDetections 0 0

combineDetections

CombineXFrames

16 16

combineDetections

CombineEveryNthFrame

1 1

enlargeDetections 0 0

closeDetections 0 0

closeDetectionsCircle

Radius

4.200000 4.200000

openDetections 0 0

openDetectionsCircle

Radius

4.200000 1.000000

detectOutshinedSpots 0 0

convertScale 0 0

convertScaleMin 0.000000 0.000000

convertScaleMax 0.000000 0.000000

A.1. PARAMETER VALUES FOR DETECTING VIRUSES 65

convertScaleMinMaxEvery

NthFrame

16 16

convertScaleKeepConstant

FromFrame

-1 -1

fuzzyNoiseRemoval 0 0

fuzzyNoiseRemovalX1 0.046264 0.046264

fuzzyNoiseRemovalX2 0.148658 0.148658

detection 1 1

timeSeries 1 1

timeSeriesOption 14 14

detectionThreshold 0.400000 0.400000

detectionThresholdDown 0.861650 0.861650

timeSeriesDistancePatterns "-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0"

"-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,

-1.0,-1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0"

timeSeriesDistancePattern

Size

16 16

timeSeriesDistancePattern

Count

1 1

timeSeriesDistancePattern

SlopeRelaxation

0 0

timeSeriesDistance

PatternA

0 0

timeSeriesDistance

PatternB

0 0

timeSeriesDistanceMin

Step

0.009152 0.009152

timeSeriesDistanceMax

Step

0.149582 0.149582

timeSeriesDistanceMin

NegativeStep

-1.000000 -1.000000

timeSeriesDistanceMax

NegativeStep

-1.000000 -1.000000

timeSeriesAutomatically

UpdateVariablePatterns

1 1

fuzzyDetection

Enhancement

0 0

66 APPENDIX A. FURTHER ADDITIONAL

fuzzyDetection

EnhancementX1

0.054554 0.054554

gaussHesseFeature 0 0

gaussHesseFeatureSigma 0.700000 0.700000

gaussHesseFeatureNum

Scales

8 8

gaussHesseFeature

Detection Threshold

0.000000 0.000000

gaussHesseFeaturePolygon

Threshold

0.000000 0.000000

gaussHesseBlobFeature

DetectionThreshold

0.000000 0.000000

gaussHesseBlobFeature

PolygonThreshold

0.000000 0.000000

hesseFeature 0 0

templateMatchingFeature 0 0

templateMatchingFeature

Threshold

0.000000 0.000000

templateMatchingFeature

Normalize

1 1

clDeviceType 4 4

clDeviceId 0 0

clPlatformName "NVIDIA Corporation" "NVIDIA Corporation"

roiStartX 0 0

roiStartY 0 0

roiEndX 0 0

roiEndY 0 0

stepFeature 0 0

merging 1 1

mergingOption 0 0

mergingMaxDistance 4.000000 4.000000

mergingMaxFrameDistance

ForPolygon

8 8

classify 1 1

classifyVirusCount 0 0

classifyVirusCount

MinDetections

0 0

classifyVirusCount

MaxDetections

20 20

polygonMinAxisFirst 3.000000 3.000000

polygonMaxAxisFirst 40.000000 40.000000

polygonMinAxisSecond 2.000000 2.000000

polygonMaxAxisSecond 40.000000 40.000000

A.1. PARAMETER VALUES FOR DETECTING VIRUSES 67

polygonMinArea 0.000000 0.000000

polygonMaxArea 20000.000000 20000.000000

polygonMinCircularity 0.400000 0.400000

polygonMinCircumference 0.000000 0.000000

polygonMaxCircumference 20000.000000 20000.000000

polygonBoundingBoxMax

AspectRatio

4.000000 4.000000

polygonMinRoundness 0.300000 0.300000

polygonMinCompactness 0.000000 0.000000

polygonMinShape 0.000000 0.000000

polygonMaxRectangularity 1.000000 1.000000

visualize 1 1

visualizeOption 0 0

drawTheVirusBoundingBox 0 0

drawTheVirusPolygons 1 1

visualizePseudoColorHSV

MappingHStartDegree

0.000000 0.000000

visualizePseudoColorHSV

MappingHEndDegree

60.000000 60.000000

visualizePseudoColorHSV

MappingMinDegree

0.000000 0.000000

visualizePseudoColorHSV

MappingMaxDegree

360.000000 360.000000

visualizePseudoColorHSV

Saturation

1.000000 1.000000

visualizePseudoColorHSV

Value

1.000000 1.000000

resultFilesOutputFolder " " " "

quickStart 0 0

copomoCuto�Parameter -1 -1

foregroundBackground

Option

0 1

foregroundRefs 12 27

backgroundRefs 26 26

gaussImage 1 1

gaussImageSigma 1.594505 2.106963

brightnessCorrection 0 1

closeDetections 0 0

closeDetectionsCircle

Radius

2.788893 1.70609

openDetections 0 0

openDetectionsCircle

Radius

2.90899 4.355153

68 APPENDIX A. FURTHER ADDITIONAL

detectOutshinedSpots 0 0

timeSeriesOption 17 14

detectionThreshold 0.073741 0.113192

timeSeriesDistance

PatternSize

12 28

timeSeriesDistance

PatternSlopeRelaxation

3 3

timeSeriesDistance

MinStep

0.013227 0.00926

timeSeriesDistance

MaxStep

0.191839 0.127521

timeSeriesDistanceMin

NegativeStep

-0.576513 -0.099111

timeSeriesDistanceMax

NegativeStep

-0.701246 -0.560982

mergingMaxDistance 3.499158 6.102633

mergingMaxFrameDistance

ForPolygon

15 17

A.2. MEASUREMENT RESULTS ON ODROID AND FOR OFFLOADING 69

A.2 Measurement Results on Odroid and for O�oading

Table A.2: Measurement Results with the optimized parameter on the Odroid

optimized with keyboard without keyboard

Pass Power

Consumption

Watt
hour

Execution time

ns

Power

Consumption

Watt
hour

Execution time

ns

1 0.066 32 473 729 920 0.063 32 499 621 004

2 0.065 32 512 826 254 0.063 32 510 739 963

3 0.064 32 510 289 004 0.063 32 528 677 585

4 0.064 32 533 680 837 0.063 32 508 057 295

5 0.064 32 566 582 671 0.063 32 472 741 046

6 0.064 32 496 639 962 0.063 32 488 461 754

7 0.063 32 496 614 421 0.063 32 480 446 671

8 0.064 32 499 554 796 0.063 32 539 321 504

9 0.064 32 508 595 670 0.064 32 521 873 129

10 0.063 32 503 371 337 0.063 32 502 890 420

11 0.064 32 556 904 588 0.063 32 496 771 713

12 0.064 32 540 652 254 0.063 32 569 874 420

13 0.064 32 566 125 670 0.063 32 517 011 046

14 0.064 32 553 434 754 0.063 32 507 714 628

15 0.064 32 513 066 540 0.063 32 524 262 671

16 0.064 32 476 403 504 0.063 32 508 760 712

17 0.064 32 563 077 045 0.063 32 524 402 879

18 0.064 32 512 696 754 0.063 32 523 336 587

19 0.064 32 481 053 962 0.062 32 486 187 837

20 0.064 32 520 066 337 0.063 32 510 241 879

average 0.064 32 519 268 314 0.063 32 511 069 737

70 APPENDIX A. FURTHER ADDITIONAL

Table A.3: Measurement Results with the unoptimized parameter on the Odroid

unoptimized with keyboard without keyboard

Pass Power

Consumption

Watt
hour

Execution time

ns

Power

Consumption

Watt
hour

Execution time

ns

1 0.218 116 717 339 347 0.220 117 311 783 681

2 0.219 116 728 867 223 0.220 116 941 711 431

3 0.220 117 002 950 097 0.220 116 770 889 347

4 0.223 117 556 784 223 0.218 116 660 150 097

5 0.219 116 318 189 014 0.218 116 318 976 680

6 0.218 116 420 285 972 0.220 117 442 926 389

7 0.223 117 896 093 056 0.219 116 649 110 889

8 0.225 118 353 542 347 0.219 117 179 200 722

9 0.222 117 270 315 972 0.219 116 827 268 181

10 0.223 117 935 271 223 0.218 116 782 269 180

11 0.216 116 850 462 264 0.215 116 040 525 180

12 0.217 116 733 371 597 0.218 117 164 706 264

13 0.218 116 972 914 722 0.218 116 919 870 514

14 0.218 116 654 775 723 0.217 116 574 687 680

15 0.216 116 054 377 264 0.218 117 051 727 639

16 0.221 117 335 286 430 0.220 117 845 978 722

17 0.221 117 816 836 139 0.219 117 861 871 305

18 0.219 116 951 409 805 0.217 116 757 696 681

19 0.222 117 988 078 056 0.218 117 250 986 097

20 0.219 117 154 517 889 0.219 117 158 568 639

average 0.21985 117 135 583 418 0.2185 116 975 545 265

A.2. MEASUREMENT RESULTS ON ODROID AND FOR OFFLOADING 71

Table A.4: O�oading Results by LAN-cable from Odroid to an external server.

unoptimized with keyboard without keyboard

Pass Power

Consumption

Watt
hour

Execution time

ns

Power

Consumption

Watt
hour

Execution time

ns

1 0.028 19 028 946 335 0.028 19 052 737 585

2 0.028 19 024 229 336 0.028 19 018 654 127

3 0.028 19 159 829 002 0.028 19 027 453 835

4 0.028 19 138 726 836 0.028 19 071 580 335

5 0.028 19 081 834 711 0.028 19 092 511 877

6 0.028 19 104 421 628 0.027 19 056 275 544

7 0.028 19 024 389 377 0.027 19 035 794 544

8 0.028 19 118 736 169 0.027 19 115 639 003

9 0.027 19 023 022 960 0.028 19 063 089 002

10 0.028 19 043 116 919 0.028 19 046 127 919

11 0.027 19 038 844 586 0.028 19 029 071 044

12 0.027 19 065 534 211 0.028 19 065 526 336

13 0.027 19 036 474 961 0.028 19 020 022 252

14 0.027 19 064 781 044 0.028 19 098 487 002

15 0.027 19 070 859 294 0.027 19 024 237 836

16 0.027 19 045 600 544 0.028 19 031 341 377

17 0.027 19 059 206 211 0.028 19 070 742 336

18 0.028 19 044 162 710 0.028 19 042 515 877

19 0.027 19 046 237 169 0.028 18 972 377 210

20 0.027 19 050 390 336 0.028 19 092 364 794

average 0.0275 19 063 467 217 0.0278 19 051 327 492

72 APPENDIX A. FURTHER ADDITIONAL

Table A.5: O�oading Results by Wi-Fi from Odroid to an external server.

unoptimized with keyboard without keyboard

Pass Power

Consumption

Watt
hour

Execution time

ns

Power

Consumption

Watt
hour

Execution time

ns

1 0.138 83 652 256 927 0.132 81 688 954 927

2 0.126 76 629 326 425 0.119 74 050 513 676

3 0.132 80 542 662 052 0.099 61 343 144 383

4 0.150 92 092 527 302 0.128 79 817 852 010

5 0.143 87 913 014 635 0.110 68 026 345 925

6 0.147 90 175 954 428 0.141 87 602 136 010

7 0.134 82 660 097 176 0.126 77 472 847 801

8 0.146 89 378 978 760 0.131 80 603 741 259

9 0.137 83 348 090 135 0.129 85 850 255 552

10 0.139 85 778 639 427 0.110 68 545 804 341

11 0.151 92 398 565 886 0.133 82 541 984 593

12 0.133 81 282 463 843 0.133 82 145 592 468

13 0.144 87 875 553 178 0.167 103 084 415 971

14 0.179 109 092 968 888 0.183 112 909 011 305

15 0.132 80 080 317 427 0.144 87 332 031 510

16 0.152 92 814 575 845 0.184 113 496 359 639

17 0.133 80 720 995 760 0.130 80 463 066 093

18 0.171 104 305 984 512 0.134 82 043 431 052

19 0.174 106 200 901 638 0.105 65 367 340 300

20 0.122 73 827 399 218 0.101 61 822 872 799

average 0.1445 88 038 563 673 0.13195 81 810 385 080

List of Figures

1.1 virus under a electron microscope [1] . 1

2.1 Experimental setup of SPR [14] . 6

2.2 Experimental setup of the PAMONO Biosensor [14] 7

2.3 Examples for sensor images [14] . 7

2.4 Working principle of PAMONO Biosensor [17] 8

2.5 Detecting viruses by PAMONO Biosensor [11] 8

2.6 Comparison between PAMONO and SPR 9

2.7 Disturbances of the sensor images [14] . 10

3.1 Platform model [3] . 14

3.2 Memory model [2] . 16

3.3 Memory model illustrated [3] . 17

3.4 Pipeline of Work�ow [14] . 19

3.5 Background Cleaning [14] . 20

3.6 Signal Noise of two successive frames [14] 21

3.7 Signal Noise Reduction by averaging pixel values [14] 22

3.8 Signal Noise Reduction by Haar-Wavelets [14] 23

3.9 Virus attachment by time course [14] . 24

3.10 Virus attachment [14] . 24

3.11 Virus attachment in three dimensions [14] 25

3.12 Comparison of pixel time course with master sample [14] 27

3.13 Scanline Algorithm [14] . 28

3.14 Marching Square Algorithm [14] . 28

3.15 Comparision between virus and disturbance [14] 30

3.16 HSV colour model . 31

3.17 Grey tone into HSV colour model [9] . 31

3.18 Result after Processing [14] . 32

3.19 General overview of the Software . 32

4.1 Hardware Comparision between di�erent Single Board Computers [6] . . . 34

73

74 LIST OF FIGURES

4.2 Odroid XU 4 [6] . 35

4.3 Comparison between the SDCard and eMMC 5.0 and USB 2.0 and USB 3.0

[6] . 36

4.4 Comparison of the ethernet performance between the Odroid xU 4 and his

predecessor XU 3. For the comparison two di�erent versions of the XU 3

were used, a XU 3 with 100 Mbps on board and XU 3 External 1Gbp [6] . 37

4.5 Annoted Board Image [7] . 37

4.6 Block Diagramm of XU 4 [7] . 38

4.7 Shifter Shield for Odroid XU 4 to get a higher voltage [5] 38

4.8 Wi-Fi Module for XU 4 [5] . 39

4.9 Backup Battery for the Real Time Clock for Odroid XU 4 [5] 39

4.10 Cooling Fan for XU 4 [5] . 39

4.11 Hardware components of Odroid XU 4 [5] 40

4.12 Smart Power module for measurements with Odroids [5] 41

4.13 PC application for Smart Power. The left picture illustrates the current

graphic and the right picture the watt graphic of the Smart Power module. 41

4.14 Block Diagram for the Smart Power device 42

5.1 In the left picture the result of the software for the optimized values and

in the right picture the results of the software for the unoptimized values is

realized. 44

5.2 Experimental setup of the measurements . 45

5.3 Odroid WIFI Module 4 [5] . 45

5.4 Board Image of the Wi� Module 4 [5] . 45

6.1 Power and Energy consumption of the Odroid in standby mode. In the left

picture the electric current intensity is shown and in the right one the power

consumption. 50

6.2 Graphical illustration for connected keyboard with optimized parameter on

the Odroid. In the left �gure the electric current intensity and in the right

picture the power consumption while running the software is illustrated. . . 51

6.3 Graphical illustration for unconnected keyboard with optimized parameter

on the Odroid. In the left �gure the electric current intensity and in the

right picture the power consumption while running the software is illustrated. 52

6.4 Graphical illustration for connected keyboard with unoptimized parameter

on the Odroid. In the left �gure the electric current intensity and in the

right picture the power consumption while running the software is illustrated. 53

6.5 Graphical illustration for unconnected keyboard with unoptimized parame-

ter on the Odroid. In the left �gure the electric current intensity and in the

right picture the power consumption while running the software is illustrated. 53

LIST OF FIGURES 75

6.6 Graphical illustration with connected keyboard for o�oading process via

LAN-cable. In the left �gure the electric current intensity and in the right

picture the power consumption for o�oading process is illustrated. 54

6.7 Graphical illustration with unconnected keyboard for o�oading process via

LAN-cable. In the left �gure the electric current intensity and in the right

picture the power consumption for o�oading process is illustrated. 55

6.8 Graphical illustration with connected keyboard for o�oading process via

Wireless. In the left �gure the electric current intensity and in the right

picture the power consumption for o�oading process is illustrated. 56

6.9 Graphical illustration with unconnected keyboard for o�oading process via

Wireless. In the left �gure the electric current intensity and in the right

picture the power consumption for o�oading process is illustrated. 56

6.10 Graphical illustration of the execution time in nanoseconds. A comparison

between the optimized and unoptimized parameter �le on the Odroid and

the o�oading process via LAN cable and wireless is illustrated. 58

6.11 Graphical illustration of the power consumption in Watt
hour . A comparison

between the optimized and unoptimized parameter �le on the Odroid and

the o�oading process via LAN cable and wireless is illustrated. 59

76 LIST OF FIGURES

Listings

3.1 Approach of OpenCL application[24] . 18

5.1 prepareMeasurements . 46

5.2 RunOptimized . 46

5.3 RunUnoptimized . 47

5.4 runAsServer . 47

5.5 runAsClient . 48

77

78 LISTINGS

List of Tables

3.1 Flynnsche classi�cation [14] . 18

A.1 Comparison between optimized and unoptimized documents 63

A.2 Measurement Results with the optimized parameter on the Odroid 69

A.3 Measurement Results with the unoptimized parameter on the Odroid 70

A.4 O�oading Results by LAN-cable from Odroid to an external server. 71

A.5 O�oading Results by Wi-Fi from Odroid to an external server. 72

79

80 LIST OF TABLES

Bibliography

[1] 123RF: Virus-Infektion medizinische Symbol von einer Gruppe von bakteriellen

Eindringlings Zellen verursacht Krankheiten und Gebrechen zu gesunden Patienten

vertreten. http://de.123rf.com/lizenzfreie-bilder/flu________________%C3%

82%C4%BCkrebs.html?mediapopup=10945949. [Online; accessed 02-January-2016].

[2] Aaftab Munshi, Lee Howes and Bartosz Sochacki: The OpenCL C Speci�-

cation. https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf.

[Online; accessed 12-January-2016].

[3] Benedict R. Gaster, Lee Howes, David R. Kaeli Perhaad Mistry-

Dana Schaa: Heterogeneous Computing with OpenCL. Revised OpenCL 1.2 Edition

edition, 2013. Chapter 1,2.

[4] Bernet, Marcel: GPIO. https://developer.mbed.org/teams/

ch-open-wstage2015/wiki/GPIO. [Online; accessed 02-May-2016].

[5] Hardkernel: ODROID Support Page. http://odroid.com/dokuwiki/doku.php.

[Online; accessed 06-March-2016].

[6] Hardkernel: Odroid XU4. http://www.hardkernel.com/main/products/prdt_

info.php?g_code=G143452239825. [Online; accessed 09-March-2016].

[7] Hardkernel: Odroid XU-4 Beginners Guide. 2015. [Online; accessed 06-March-

2016].

[8] Henner.Info: Bild-Rauschen. http://www.henner.info/rauschen.htm. [Online;

accessed 29-February-2016].

[9] Häÿler, Ulrike: Vom Farbnamen zum Farbmodell. http://www.wisotop.de/

hsv-und-hsl-farbmodell.shtml. [Online; accessed 05-March-2016].

[10] Homberg, Willi: OpenCL Basics Parallel Computing on GPU and CPU.

http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/gpu/

gpgpu-6-opencl.pdf?__blob=publicationFile, 2011. [Online; accessed 12-

January-2016].

81

82 BIBLIOGRAPHY

[11] Informatik 12, Leibniz-Institut für Analytische Wissenschaften

ISAS e.V. Technische Universität Dortmund Lehrstühle Informatik

7 und: Fortschritte. https://ls7-www.cs.tu-dortmund.de/pamono-sensor/

fortschritte.html. [Online; accessed 02-January-2016].

[12] Informatik 12, Leibniz-Institut für Analytische Wissenschaften

ISAS e.V. Technische Universität Dortmund Lehrstühle Infor-

matik 7 und: PAMONO Virensensor. https://ls7-www.cs.tu-dortmund.de/

pamono-sensor/projekt/beschreibung.html. [Online; accessed 02-January-2016].

[13] Lexikon, HiFi: Signal-Rausch-Abstand / signal-to-noise ratio (SNR). http://www.

fairaudio.de/hifi-lexikon-begriffe/signal-rausch-abstand-snr.html. [On-

line; accessed 10-May-2016].

[14] Libuschewski, Pascal: Massive parallele Verarbeitung von Bildseuqnzen zur Erken-

nung von Nanopartikeln. Diplomarbeit, Juni 2011.

[15] Müller, Prof. Dr. Heinrich: Vorlesung Mensch-Maschine-Interaktion, Win-

tersemester 2014/2015. Chapter 3 Graphische Datenverarbeitung.

[16] Netzwelt: Smartphones: Die zehn Gebote für eine län-

gere Akkulaufzeit. http://www.netzwelt.de/news/89651_

3-smartphones-zehn-gebote-laengere-akkulaufzeit.html. [Online; accessed

04-May-2016].

[17] Pascal Libuschewski, Dennis Kaulbars, Björn Dusza Dominic Siedhoff

Frank Weichert-Heinrich Müller Christian Wietfeld Peter Marwedel:

Multi-Objective Computation O�oading for Mobile Biosensors via LTE. MobiHealth

2014, November 2014.

[18] Patrick Wagner, Fa. ScanDig: CCD-Sensor (Chip oder Zeile). http://www.

filmscanner.info/CCDSensoren.html. [Online; accessed 19-March-2016].

[19] Prasad, Mayank: Introduction to Single Board Computing. http://maxembedded.

com/2013/07/introduction-to-single-board-computing/. [Online; accessed 09-

March-2016].

[20] Seemann, Michael: So erhöhen Sie die WLAN-

Reichweite: 3 Tipps. http://www.pc-magazin.de/ratgeber/

wlan-empfang-verbessern-erweitern-erhoehen-router-repeater-1506595.

html. [Online; accessed 04-May-2016].

[21] Seemann, Michael: So verdoppeln sie Ihre WLAN-

Geschwindigkeit. http://www.pc-magazin.de/ratgeber/

ERKLÄRUNG 83

wlan-802-11ac-standard-fakten-details-alle-infos-1942309.html. [On-

line; accessed 04-May-2016].

[22] Toschka, Patrick: WLAN-Verbindung schwankt stark

� das können Sie tun. http://praxistipps.chip.de/

wlan-verbindung-schwankt-stark-das-koennen-sie-tun_34790. [Online; ac-

cessed 04-May-2016].

[23] Welt, PC: Die besten Ein-Platinen-PCs im Vergleich. http://www.

pcwelt.de/ratgeber/Die_besten_Ein-Platinen-PCs_im_Vergleich-Kleine_

Helfer-8998742.html. [Online; accessed 04-May-2016].

[24] Wiersdoerfer, Tim: OpenCL. http://ps.informatik.uni-siegen.de/

downloads/Seminare/multicore-ws2011/wiersdoerfer.pdf. [Online; accessed 12-

January-2016].

[25] Wikipedia: Odroid. https://de.wikipedia.org/wiki/ODROID. [Online; accessed

06-March-2016].

[26] Wikipedia: OpenCL. https://de.wikipedia.org/wiki/OpenCL. [Online; accessed

05-January-2016].

[27] Wikipedia: Raspberry Pi. https://de.wikipedia.org/wiki/Raspberry_Pi. [On-

line; accessed 09-March-2016].

84

ERKLÄRUNG 85

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und

keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate ken-

ntlich gemacht habe.

Dortmund, den May 11, 2016

Dragana Popovic

86

