technische universitat
dortmund

Bachelorarbeit

Saving Energy for Mobile Biosensors by
Offloading

Dragana Popovic
Mai 2016

Gutachter:
Jian-Jia Chen
Kevin Wen-Hung Huang

Technische Universitat Dortmund
Fakultat fiir Informatik

Lehrstuhl XII
http://Is12-www.cs.tu-dortmund.de

Contents

1 Introduction
1.1 Motivation and Backgroundo oL
1.2 Aim of the Project
1.3 Structure of the worko L
2 PAMONO Application for Virus Detection
2.1 Functionality of PAMONO Biosensor
2.2 Comparison of SPR and PAMONO application
2.3 Requirement of the PAMONO Application
3 Processing of the Sensor Images
3.1 Imtroduction to OpenCL
3.1.1 Platform model
3.1.2 Execution model
3.1.3 Memory model
3.1.4 Programming model Lo
3.1.5 Construction of an OpenCL Application
3.2 Workflow of thedata
3.2.1 Preprocessingo
3.2.2 Recording of the particle L oL oo
3.2.3 Segmentation L L
3.24 Postprocessing
3.3 Software L
4 Odroid
4.1 Single Board Computer vs. typical PC
4.2 Odroid XU4
4.3 SmartPower
4.4 Conclusion e

10

13
13
14
15
15
18
18
19
19
23
27
29
31

i CONTENTS

5 Experimental Setup 43
9.1 Preparation e 43
5.2 Hardware Preparation for the experiment 44
5.3 Measurements on the Odroid L0 46
5.4 Measurements by Offloading from Odroid to a Server for Computation . . . 47

6 Evaluation 49
6.1 Measurement results on the Odroid, 49
6.2 Measurement Results by Offloading to an server 53

6.2.1 Offloading via LAN-cable 54
6.2.2 Wireless Offloading 55
6.3 Conclusion. e a7

7 Summary and Outlook 61
7.1 Summary e e 61
7.2 Outlook e 62

A Further Additional 63
A.1 Parameter values for detecting viruses 63
A2 Measurement Results on Odroid and for Offloading 69

List of Figures 75

Listings 77

List of Tables 79

Bibliography 83

Erkldrung 83

Chapter 1

Introduction

1.1 Motivation and Background

The spread of infectious diseases has a massive increase in the last couple of years [12].
The main reason for this is that people travel daily, for example by plane, bus, car, ship etc.
to other countries. Also the worldwide import and export supports the spread of diseases
across countries. Wherever people go, it is possible to potentially receive unwelcome very
little presents without immediately noticing. These little presents that are mentioned here,

are viruses and only a few nanometers in size.

Figure 1.1: Virus under an electron microscope [1]

Figure 1.1 shows a single virus, which has a size of about 50 nanometers. Of course,
some viruses are harmless, like regular flu viruses, but there are also some very dangerous
kinds of viruses, like bird flu, swine flu or ebola. Although it is possible to analyze liquid
samples, like blood or saliva in labs, this process usually takes a long time. And in some
situations, for example at the airport it is important to detect infections fast. Every
region has other specific viruses, like ebola which is widespread in Africa. If there is a
plane arriving from a country struggling with an epidemic, it is crucial to quickly identify
potentially infected passengers to prevent the epidemic to spread further.

There are already some methods to quickly detect viruses, for example the Polymerase

Chain Reaction which is used to clone DNA-information to become more viruses in a sample

2 CHAPTER 1. INTRODUCTION

and by this to detect them easier. Another example is the Enzyme-linked immunosorbent
assay. Thereby the virus stick to their antibodies on the layer. The best method is the
detecting process with PAMONQO Biosensor and the corresponding special software which
is presented in detail in this work. It is an automatic method for detecting nano-objects
in liquids. The measurement period to detect viruses is between 5 and 30 minutes as
opposed to many hours in a lab. It is practically possible to detect single viruses [14].

The operation of this method is discussed in detail in chapter 2.

Summing up, with the PAMONO Biosensor it is possible to detect viruses quickly and
to prevent an epidemic to spread. The main problem of this process is that the software
needs a lot energy, because this sensor is a mobile sensor and uses battery power. The aim
of this work is to analyze how much energy can be saved by offloading the processing data

in order to evaluate them, for example on an external server.

1.2 Aim of the Project

The aim of the project is to find out if it is possible to save energy for Mobile Biosensors
by offloading the obtained data to an external server and to process them there, instead
of processing the data directly on the Odroid. To find out, if energy is truly saved by
offloading the software will be firstly executed on the Odroid with different conditions, to be
precisely this conditions are different parameter files. The software needs a parameter file,
which contains specific parameter settings for the calculation algorithm. The parameter
setting influences the quality of the measurement as well as the execution speed, because
the parameters have to be adopted on the specific hardware environment. For this two
different files were given. Chapter 5 is taking a closer look on the difference between them.
One file is optimal for the Odroid and the execution process is very fast, while the second
file is not optimal and the process takes considerably longer. The main difference between

these files is es execution time on the Odroid.

After the measurements are performed on the Odroid, the offloading process is started.
This will be done in two different ways. The first method is to offload the data from the
Odroid to the server by Ethernet cable, whereby the Odroid is connected to the router. The
second method is wireless offloading. For this a Wi-Fi module is used, which is explained
in chapter 5. This module has an antenna, which can be used to get a wireless connection

to a router and to offload the data that way.

When the offloading process is done, the values for energy consumption for offloading
and the energy consumption for executing the software on the Odroid are examined. And
by this is possible to analyze how much energy can be saved by offloading the data instead

of processing them directly on the Odroid.

1.3. STRUCTURE OF THE WORK 3

1.3 Structure of the work

The following section describes the structure of this work. It starts with the PAMONO
application and its predecessor, the Surface Plasmon Resonance (SPR) method in chapter
2. Also the functionality, the advantages, disadvantages and the requirement of the sensor
will be explained. After that the software which is needed to process the data obtained
from the Biosensor is discussed in chapter 3. With respect to this software the used
concepts are presented, especially the analysis process of the obtained data from the sensor.
Furthermore, OpenCL is will be introduced, because the software is written in OpenCL
to execute the software as fast as possible. OpenCL is an interface for parallel computing.
Chapter 4 deals with the Odroid. It is a single board computer on which the software is
executed. Thereby a closer look on the hardware properties of the Odroid will be taken.
After the basic research has been presented, the experimental setup and the results of the
measurement are discussed in chapters 5 and 6. Finally, chapter 7 gives a summary and

an outlook on this topic.

CHAPTER 1. INTRODUCTION

Chapter 2

PAMONO Application for Virus

Detection

This chapter focuses on the PAMONO application which is used for detecting specific
viruses in different samples like blood or saliva. With respect to the PAMONQO application
the functionality of this Biosensor and the predecessor for this senor is introduced in sec-
tion 2.1. Before the PAMONOQO application was developed, the Surface Plasmon Resonance
(SPR) method was used for detecting viruses. At section 2.2 the advantages and disadvan-
tages of the new application are presented and a comparison between the predecessor SPR
and the PAMONO application is introduced. Finally, the last section 2.3 pays attention
on the specific requirement of the sensor. The whole chapter is based on the documents
[17, 14, 12].

2.1 Functionality of PAMONO Biosensor

PAMONO stands for Plasmon-Assisted Microscopy of Nano-Objects and is a new method
for detecting viruses quickly. It is a further development of the Surface Plasmon Resonance
(SPR) method, which was successfully contrived by the Institut for Analytical Science
(ISAS). In fact the SPR method is a good way for detecting viruses, but the execution
time was too long. More precisely for one process it takes between 30 and 60 minutes [14].
In order to shorten the execution time another method was needed.

The experimental setup of the SPR is similar to the PAMONO Biosensor and is shown
in figure 2.1. There is a flow cell in which the sample, which has to be analyzed, is placed.
The sample is composed of blood, saliva or any other liquid.

The sensor has a thin layer of gold with a size of about 50 pum. It is covered with one
or more specific kinds of antibodies, more precisely with the corresponding antibodies of
the viruses which have to be detected. After the sample is passed in the flow cell, the gold
layer is illuminated with a laser. With a CCD sensor (charge-coupled device) the changing

5

6 CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

=10* Virendmirm®

Figure 2.1: Experimental setup of SPR [14]

intensity of reflected light waves are recorded by the camera. For more information on the
CCD sensor, refer to the document [18]. While the gold layer is illuminated, the viruses
stick to their antibodies. The CCD sensor is able to detect viruses if the concentration is

at least 104 %‘9263
mm

The diagram in figure 2.1 shows on the x axis the mapped time frame and on the y
axis the mapped intensity of each pixel. In this context it has to be mentioned that during
the processing each pixel is examined. If the intensity of one pixel rises up and stands
clearly up in comparison to the other, it is an indication that a virus has been detected.
At the diagram 2.1 the red curve shows the high intensity of the pixels. This suggests that
a virus has been discovered. In contrast to this, on the blue curve the intensity of each
pixel is not high enough, and because of that it is sufficiently certain that no virus has
been discovered.

The main problem of this application is that viruses can only be detected after a certain
concentration has been reached. By comparison the PAMONO sensor does not have this
problem. With the PAMONO sensor it is practically possible to detect single viruses. The
exact operation of this sensor is discussed in section 3.2. Other advantages of the PAMONO
Biosensor will be presented in section 2.2. In order to remove some weaknesses of the SPR
method, the PAMONO application has been developed. In figure 2.2 the experimental
setup of the PAMONO Biosensor is introduced.

The experimental setup is described as follows:

The hoses are connected to the flow cell, in which the sample to be investigated is placed. A

2.1. FUNCTIONALITY OF PAMONO BIOSENSOR 7

) flow cell
with

sample

Figure 2.2: Experimental setup of the PAMONO Biosensor [14]

prism is attached at the bottom of the flow cell, its top surface is covered with a thin layer
of gold. The laser on the left side under the prism illuminates the gold layer of the prism.
The CCD camera on the right side records the reflected light. Additionally, a lens is added
in front of the camera. For test purposes particle were added between a size of 40 and 280
nanometers in a sample. It turned out that even particles with a size of 40 nanometers
were recognized. Furthermore, different cameras for taking the pictures can be used, but
all cameras have the same color depth. An 8 Bit color depth is required. The sensor
images, which were taken by the camera, are used for analysis. They are transferred to a
special software which runs on a computer. It examines the sensor images. The examined
data can be formatted in different files like pictures, videos and so on. The analyzing of

the data is explained in section 3.2.

Figure 2.3: Examples for sensor images [14]

Examples for these sensor images are shown in figure 2.3. The gold layer is portrayed
there, but it is obvious that the viruses are not visible with the naked eye on the images.
In total, it can be seen that each picture has some stronger and some weaker brightness
ranges. It is not possible to distinguish between a disturbance and a virus. With the
aid of the software, which is introduced in 3.2, it is possible to distinguish viruses from

disturbance even with the naked eye on the images.

8 CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

"-:‘-':"-:""._.l"':.-.--i'.'.". ‘

Sample =P __ C ==

Figure 2.4: Working principle of PAMONO Biosensor [17]

In figure 2.4 the functionality of the PAMONO Biosensor is shown. The flow cell, in
which the sample is placed in, is portrayed on the top. Before a sample can be analyzed,
the gold layer of the prism has to be coated with specific antibodies, more precisely with
the corresponding antibodies of the specific virus, which has to be detected. While the
laser illuminates the gold layer and the sample passes through the flow cell the viruses
stick to the corresponding antibodies. Through this process the light waves change. The
CCD camera records the changing light waves and it is possible to detect whether viruses
stuck to the antibodies.

* *

= *
™ Solution with Viruses s

* * o Antibodies

&3 '—‘ﬁ‘— 1) Gold Layer
. N
Time

Biosensor and Data Acquisition Time Series of Images recorded by CCD Real-time Data Analysis

. No Virus
£ =.
NS

Figure 2.5: Detecting viruses by PAMONO Biosensor [11]

In figure 2.5 the functionality of the PAMONO Biosensor is shown once more and
next to it the virus detection process is portrayed. The CCD camera records the reflected
changing light waves by constantly taking pictures. The evaluation process happens as

follows:

Fach picture is considered independently by reviewing each pixel of the picture. The
intensity of each pixel is measured and plotted in a diagram. On the x axis the time frame
is mapped and on the y axis the intensity of each pixel. In case a virus is detected, the
diagram shows a strong increase of intensity. Otherwise the intensity remains on the same
level. Therefore, it is even possible to detect single viruses which is introduced in detail in

the next section.

2.2. COMPARISON OF SPR AND PAMONO APPLICATION 9

2.2 Comparison of SPR and PAMONO application

In this section the differences between the SPR and the PAMONO application are dis-
cussed. The main difference is the higher resolution at the PAMONO application. It is
able to enlarge the particle between 1:5 and 1:7. This is achieved by a strong magnification
of the particle. As a result, it is even possible to detect viruses with a size of less than 40
nanometers. In comparison, the magnification of the SPR method is just between 1:1 and
1:2. In contrast to the SPR method, the PAMONO application has the option to change
the angle of the laser, which makes the detection more precisely. But, a detection is only
possible if a concentration of 10% % is reached. The PAMONO application uses a
CCD sensor as well as the SPR method to detect viruses. The higher precision enables to
detect even single viruses by the PAMONO application. In the following figure 2.6 shows
the differences of the SPR, and PAMONO application.

PAMONO SPR
X-fY resolution 0.544m 30um
insensitivity very good good
measurement duration 5-30 min 30-60 min
sample concentration 10% 10* 10° - 10"
types of viruses to 400 to 400
continious control yes o
concentration goo0d go0d

Figure 2.6: Comparison between PAMONO and SPR

Special emphasis should be placed on the high X- / Y-resolution. As already mentioned
the magnification at the PAMONO application of the particle is much higher than at
the SPR method. Furthermore, the insensitivity is excellent, which means that most
disturbances were removed successfully. Also, the measurement time is between 5 and 30
minutes for the PAMONO application instead of between 30 and 60 minutes for the SPR
method. The most interesting advantage of the PAMONO application is that viruses can

103 VITUSES

be detect at a concentration of only pree

and even single viruses in a sample can be

recognized.

The last difference between the PAMONO and SPR application is the continuous con-
trol without interruption option of the PAMONO application. That means the sample is
added evenly into the flow cell. Obviously the PAMONO and SPR application have some
common properties. With both methods it is possible to detect up to 400 types of viruses
and the needed concentration to detect them is considerable low and because of that both

methods are in this relation good.

Even though the PAMONO sensor has a lot of benefits, there are also some disadvan-

tages. The main problem of the sensor is the high energy demand. As already mentioned

10 CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

it is very important to keep the running time short and the evaluation precisely, so the

viruses can be detected quickly.

2.3 Requirement of the PAMONO Application

The PAMONO application is more precise than the SPR application. Therefore, a higher
requirement for the evaluation process is needed. Especially the evaluation of the adhesion
of the viruses represent a higher challenge, because viruses are recognized with brightness
differences of the pictures. And as mentioned before each unevenness of the gold layer
causes different brightnesses and it is difficult to distinguish between truly viruses and
disorders. It is possible to detect single viruses with the PAMONO application through
examining each pixel of the picture and because of this preciseness that challenge occurs.
The SPR method just takes a look at the virus concentration in a sample. The software
and virus detection process is will be presented in chapter 3. Another challenge, which
arises, are some disturbances in the pictures, which have to be successfully mastered for a

precise virus detection. Examples for these disorders are shown below.

(b)

(d) (&) (1)

Figure 2.7: Disturbances of the sensor images [14]

Figure 2.7 shows different kinds of disturbances. In a) for example the sensor image
shows a highly affected picture with disorders, which means that the viruses are overlapped
and because of that the virus detection is impossible.

A disturbance of concentric circles is portrayed in b) and wavy pattern are illustrated
in ¢). In d) signal noise, a typical problem of pictures, is demonstrated and illustrated

through the red dots. In the last two sensor images dirt particles are portrayed. Such

2.3. REQUIREMENT OF THE PAMONO APPLICATION 11

disorders may include air bubbles or even dirt particles like dust. Even fine dust has a size
of around 10 pum. All these disorders make it difficult to discover viruses.

As a summary it may be stated that the PAMONO application is more precise than
the SPR method, but it has obviously more challenges on the evaluation process than the
SPR. method, because of the precision, effectiveness and the fast processing time. The

solution for these problems will be presented in section 3.2.

12

CHAPTER 2. PAMONO APPLICATION FOR VIRUS DETECTION

Chapter 3
Processing of the Sensor Images

After the PAMONO application was introduced, the software, which processes the obtained
data from the sensor, will be presented. The most important aspect is that the software
is written in a language which supports massive parallel processing. Therefore, chapter
3.1 deals with OpenCL (Open Computing Language) which was used for implementing the
software. In this section OpenCL and its functioning is summarized. All information are
from the documents |14, 3, 26, 24, 10, 2]. The processing of the data is introduced in detail
in section 3.2 and the last section 3.3 gives an overview of the exactly software process.

These two sections are based on the document [14].

3.1 Introduction to OpenCL

Since it is important that the examination process is fast, the software has to run very
quickly too. The images obtained from the sensor are very large, especially when taking
into account that there are hundreds or even thousands of them [14]. To ensure that this
quantity can be analyzed fast, it is recommended to use a language which supports massive
parallel processing. In this case the language OpenCL is chosen and will be presented here.

The first version of OpenCL was published in August 2009 [26]. According to Benedict
et al. [3], it is defined as follows:
"It is a heterogeneous programming framework which supports a wide range of levels of par-
allelism and efficiently maps to homogeneous or heterogeneous, single- or multiple-device
systems consisting of CPUs, GPUs, and other types of devices limited only by the imagina-
tion of vendors". Furthermore, it is important to mention that OpenCL offers a device-side
language as well as a host management layer. The device-side language is used for an effi-
cient mapping to a wide range of memory systems and the host language supports a rapid
execution of complex concurrent programs [3].

In the following the documentation deals with the advantages of OpenCL first and after

that a closer look at the construction of the model structure of OpenCL will be taken.

13

14 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Summing up, OpenCL enables an efficient and parallel General Purpose Computation
on graphic cards [14]. It is also important to mention that OpenCL is platform inde-
pendent and portable. This feature permits that OpenCL can run on different hardware,
e.g. Central Processing Units, Graphic Processing Units, Digital Signal Processors, mobile
units etc. and also on diverse operating systems, like Linux, Windows, MacOs etc. [14].
Furthermore, OpenCL offers the advantage of consistent numeric precision and accuracy.
Also, a high number of given functions are available. These characteristics are useful for a
fast virus detection, for example at the airport. Through all these properties OpenCL ex-
cels as a very efficient programming platform, outstanding in comparison to other massive

parallel processing programming platforms, for example OpenGL.

The model structure of OpenCL consists of four different types of models:

e Platform model: defines the cooperation of host and the other OpenCL devices
e Execution model: defines the utilization of resources

e Memory model: defines the different memory areas of the OpenCL devices

e Programming model: defines the parallel processing

In the next chapter the models will be discussed exactly to accurately present the

working principle.

3.1.1 Platform model

The platform model consists of one host and at least one OpenCL device. Thereby the
host manages the executions on all the devices. Figure 3.1 shows the abstract architecture

of the platform model.

Davice ‘

P — |

Corm
Device |
Haost <" Co
.

mpute unit

Compute unit

A
EllE|lE E

Figure 3.1: Platform model [3]

All these devices have several computing units. These computing units are further
divided into more processing elements. The process takes places as follows:

While an OpenCL program, named kernel, runs on the host, the host chooses one or
more devices on which the computation takes place independent from the rest. In principle

the kernel includes the actual code, which is written in OpenCL.

3.1. INTRODUCTION TO OPENCL 15

The OpenCL program respectively kernel is spread to several compute units and on
these one the program is divided into processing elements. On these processing elements
the program runs in parallel independent from the rest. By this the computation is much
faster, as if the program is executed sequentially. When the program is finished, the host

can assign the next program to the devices and so on.

3.1.2 Execution model

The execution model gives an exact description of the OpenCL program execution. As
already mentioned the program is divided up among several processors in order to execute
in parallel and thus to keep the running time short. Fach OpenCL program consists of
two different parts: The host program and the kernels.

The host program manages the kernels and distributes them with the needed data on
the OpenCL devices. It is also important to mention that not every OpenCL device is
similar to the others. So the host divides the kernel corresponding to specific properties,
for the number of compute units, clock frequency, memory storage and so on. Many
kernels can be there and because of that the OpenCL devices need a command queue in
which the data can be enqueued. These data can be kernel executions, memory operations
and synchronization operations [10]. The OpenCL devices process the command queue
step-by-step and an efficient and fast program flow is possible [24].

OpenCL C is based on the programming language C, but has a couple of differences.
For example OpenCL C does not have the same standard functions like printf() or malloc().
Furthermore, it does not assist recursion or function pointers. On the other hand OpenCL
has some additional functions that do not exist in C [24]. For more accurate information
on this topic the reader is referred to the documentation |[2].

Furthermore, the host defines a context which is an abstract container that coordinates
the execution of the kernels, manages the memory objects, the program object and kernels
that are created for each device [3, 26, 10]. For a detailed description of the execution
model see [14, 26].

3.1.3 Memory model

The memory model defines the memory structure of OpenCL. The most interesting part
on this occasion is the subdivision of the different memory models and the cooperation of
them. In figure 3.2 the memory model of OpenCL is portrayed. Simply put if a device
needs special data, these data have to be copied from the host to the global and constant
memory, which are regions of the device memory. In the following the different memory
models are discussed.

Figure 3.2 illustrates that the memory model is divided into two parts, Host and Device

Memory. The differences between these two memories will be explained in the following:

16 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Compute Device H 7.
Compute unit 7 \ I Compyte unit N | S 'QO'
Prl Compute Device | 0‘?'5
men) Compute unit 1 I H I Cameuls unit N S5
Pl pml Compute Device
Ly Compute unit 1 Compute unit N/
e Private Private Private Private
[memory 1 memgry M memory 7 memory M
[rer | [[PEM] [rer | [PEm |
Lof [
L i
Local ; Local
- memory T memory N

GlobaliConstant Memory Cache |

[,
|

}

| | Global Memory |l | Constant Memory ‘|

‘ Host l'ilemory |

Host

Figure 3.2: Memory model [2]

¢ The Host Memory:

The Host Memory works like a working memory, simply put, like a RAM (Random-Access
Memory), and it is separated from the Device Memory. As a result every data the kernel
needs has to be transferred to the Device Memory through a copy, an OpenCL API or

through a virtual memory interface [2].

¢ The Device Memory:
The Device Memory represents the memory of each device. It should be noted that this
memory is also divided into four different parts called address spaces or memory regions

[2]. In the following those parts will be presented.

¢ The Global Memory:

This memory is comparable with the RAM and it is the biggest available memory, but also
the slowest memory of all. Furthermore, it is visible for all compute units on the device.
It is very important to mention that this memory permits read and write access to all
work-items. If the data is transferred from the device to the host, every data is cached on

the global memory.

¢ The Constant Memory:

The Constant Memory is a part of the global memory. The difference to the other memo-
ries is that the kernel-instances have a read access to all work-items, but not a write access.
Memory objects which are allocated and initialized on the host, for example values which

never have to be changed like 7, are placed into the Constant Memory.

¢ The Local Memory:

3.1. INTRODUCTION TO OPENCL 17

This memory is local for every work-group. Every work-item of this work-group has the
option to transfer data between the work-items and so it is possible to synchronize them
during execution. That is the reason why it is important to have a shorter latency and a
higher bandwidth than for the global memory. Summing up this memory can be used to
allocate variables during the synchronization and by this to execute the program with the

correct variables.

¢ The Private Memory:
This part of memory is used by work-items. Here variables can be defined individually for
one work-item which cannot be seen from the other work-items. These variables can be

mapped to registers.

To make the correlation between these kinds of memories the picture 3.3 is referred.

Kernel | — Kearnal-wide
scope
Constant memory
i_ _____________________ |
__ypMorkgroup : : Workgroup
L Workgreup Lol scope
: Workgroup :
! I
' I
! I
|
| |
| i’
I3' | /Work iterm
B | scopa
I '
: Private | Private Private :
[H : i g I
|: d
E
E
[
L

Figure 3.3: Memory model illustrated [3]

In summary, it is important to copy special data from the host to the global or local
memory if a device needs them. Furthermore, it is an interesting aspect to know that the
host has only read and write access to the global and constant memory, but not to the local
and private memory. If the host needs data from these regions, they have to be copied to
the global or constant memory, or in other words, if the kernel needs data, the host has to
copy these data to the global or constant memory. After that the kernel can use these data
on these memory regions or they have to be copied back to the private or local memory for
processing. Every time data have to be copied, they have to pass the global memory. The

constant memory, which is part of the global memory is used for constant variables like 7

18 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

or for variables which only have to be calculated one time. The local memory deals like a
scratchpad memory [18| and can be used for the memory devices of each work-group, while
the private memory is used for every work-item. So in fact it is clear that each memory

has a special task.

3.1.4 Programming model

The fourth and last model is the programming model. There are four general overview
concepts for parallel processing. They are based on the Flynnsche classification, which are

shown in table 3.1.

Table 3.1: Flynnsche classification [14]

Single Instruction | Multiple Instructions
Single Data SISD MISD
Multiple Data | SIMD MIMD

In the following the individual aspects of these concepts will be described. This informa-

tion is taken from [14]:

¢ SISD: The program is executed serially and is working on a single data stream. For

example a single-processor is working that way.

¢ MISD: The program is executed on multiple processors, but also only on a single data

stream.

¢ SIMD: The program is executed on more processors and multiple data streams.

¢ MIMD: Each processor executes different instructions on different data.

3.1.5 Construction of an OpenCL Application

After the OpenCL models were explained in detail, a summary of the process execution

follows. Listening 3.1 shows the process steps of an OpenCL application.

Listing 3.1: Approach of OpenCL application[24]

1. initialization of OpenCL
kernel source code compile
reserve global and constant memory for data
transferring and copying data to the device

4. execute instances of kernels

3.2. WORKFLOW OF THE DATA 19

5. copy the data back to the host

For further information to OpenCL the documents |3, 26, 24, 10, 2| were referred.

3.2 Workflow of the data

This section describes the function of the software. With this software the images which
were obtained from the PAMONO application can be evaluated. The first part explains
how the data, which were obtained from the sensor, are processed. The second part deals
with the collection of the particle, in this case collection of the viruses, and the last part
explains the follow-up phase of the data. After all these steps are performed it is possible to
say whether or not a sample is contaminated with viruses. All that following information

is taken from [14]. The pipeline in 3.4 illustrates the workflow process.

* background cleaning
= noise reduction

Preprocessing | * averagingimage data

» gradientbased series analysis

* segmentation between distances measure
Recordingthe | * Series analysisby pattern matching
Particle * marchingsquare segmentation

» postprocessing of detection
* visualisation of detection
Postprocessing pseudo color visualization

Figure 3.4: Pipeline of Workflow [14]

3.2.1 Preprocessing

Before it is possible to detect viruses, some intermediate stages have to be completed suc-
cessfully first. There are two main problems that need to be solved. The first problem
is that the surface structure dominates the brightness of the picture. And secondly the
technology generates signal noises. Therefore, it is important to resolve these issues before
it is possible to detect viruses. Otherwise, the detection process of the viruses would be
extremely complicated. For example it would be difficult to distinguish between distur-
bance and true viruses. Simply put, these issues hide the virus adhesion. The following
part describes the solution of these problems. The first section deals with the background

cleaning, the second explains the reduction of the signal noise. The third one addresses

20 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

the segmentation of virus candidates and the last one explains how multicore processors

accelerate processing.

Background Cleaning

The first problem (surface structure dominates the brightness of the picture) arises, because
the surface of the sensor, more precisely the gold layer of the sensor, where the viruses
should stick on, is not smooth. The objects, which have to be detected, are only a few
nanometers in size and because of that even little irregularities change the intensity of the
reflected light waves and wrong results occur. Precisely, unsmooth surfaces develop high
brightness differences. After the sample has some viruses included the brightness differences
are not that large anymore and it is actually possible to detect the virus adhesion with the
naked eye. However, it is very difficult, because the differences are very small. To solve
these problems the constant background cleaning is applied.

The constant background cleaning is executed once only, by summing up b pictures
and average them. In this way it is accomplished to eliminate the signal noises in the
background. After that the background remains constant.

After this first problem is solved, it is necessary to take care of the second one. Some
structures of the gold layer background get visible in the picture, because it takes a few
seconds to clean the background. That means additional to the particle of the sample
also the background of the gold layer is illustrated. As mentioned earlier the gold layer
is not smooth and while the laser illuminates it, it gets warmed up. Through the heat
the structure of the gold layer gets visible on the pictures. As a result the truly virus
attachment is overlapped by the background of the gold layer. To solve this problem a
sliding background cleaning is needed. In contrast to the constantly background cleaning
the background cleaning is executed in each time step. In this way it is possible to remove
disturbances, until there are no more disorders and the pixel value remains constant. More

information about that are given in chapter 4 from [14].

138

180
140 m
120

100)

— input

= constantly
o background
I e P cleaning
2 sliding
background
cleaning

30

pixel value

time

Figure 3.5: Background Cleaning [14]

3.2. WORKFLOW OF THE DATA 21

Figure 3.5 shows the difference between the two methods of cleaning the background.
The constant background cleaning just calculates the background once only and because
of that the pixel values are postponed, but new disturbances are not removed. On the
other hand the sliding background cleaning calculates the background every time step and

because of that new disturbances can be removed instantly.

Signal Noise Reduction

The next important aspect of the data preprocessing is the elimination of signal noises.
For each input signal noise arise. Figure 3.6 shows the visualization of signal noise of two

successive frames.

Figure 3.6: Signal Noise of two successive frames [14]

It can be seen clearly that the red areas, which visualize the signal noises, are not
randomly. The largest part of figure 3.6 shows different structures, like circles, concentric
semi-circles or lines. These structures result from the technology, for example from the
chip of the camera. The remaining quantity constitutes from the disturbances of the time
courses. Here no concrete structure is recognizable.

The signal noises can also develop from the rising sensor temperature. While the laser
irradiates the sensor, the sensor set is warmed up and by this leads to a stronger signal

noise [8]. In the following there are described two methods for signal noise reduction:

The first one is a simple method, which reduces the signal noises through averaging the

pixel values of the pictures. This is made by a simple mathematical formula from [14].

a—1
)= hily) (31)
=0

For this process only the position (z,y) of the pixel, the time ¢ and the number of

pictures a are needed. One example of this signal noise reduction is shown in diagram 3.7.

22 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

pixel values in time course
AR

=
=]
=)
T
)
s
1

pixel value
B
1

=y
[
(==}

=
1

1

1

1
o W@ W 3 40 & &1 0 & 50
time

pixel values in time course - averaging about 8 frames

1o} |

140 7 b

pixel value
3

0 10 0 a0 40 50 =] 70 a0

Figure 3.7: Signal Noise Reduction by averaging pixel values [14]

The upper diagram shows the pixel values in time course without signal noise reduction.
Here the signal noises are clearly showing. At frame 30 a virus sticked to the gold layer
and it is shown by rapid increase of intensity of the pixel values. In the lower diagram
the averaging of the pictures is illustrated. It is recognizable that the signal noises are
reduced, but also the strong jump is leveled. It is more difficult to recognize because of

that at what point the viruses stuck.

The second method is more complex, but also offers a better reduction of the signal
noises, so this method is used in the software. Here the signal noises are reduced by Haar-
Wawvelets. The main problem is that the signal noise reduction in the simple method also
reduces the strong jump of the pixel values. But exactly this part should not be affected.
In figure 3.8 the difference between the two methods is portrayed.

The upper one shows the pixel values in time course without signal noise reduction and
the lower graph provides the graph after the Haar-Wavelets method was applied. It can be
seen clearly that the signal noises are not reduced as strong as by the averaging method,
but the strong rash is retained. Simply put, by this method the high frequency is being

removed. This method works as follows:

The fact is that frequencies of signal noises are higher than frequencies of virus ad-
hesiones. Therefore it is possible to remove only the high frquencies without influence in
frequencies of the viruses. Instead of removing only the high frequencies, these one are
become smooth and as a result the frequencies of the viruses produces strong hues. This is
achieved by using the algorithms One dimensional discrete Haar-Wavelet Transformation
and Inverse one dimensional discrete Haar- Wavelet Transformation which are illustrated

and discussed in [14].

3.2. WORKFLOW OF THE DATA 23

pixel values in time course

180

w» 160 B
[:H]
=
T 1401 B
g
‘a 120k i

100

0 10 20 30 40 50 60 70 80 a0
time
pixel values in time course - smoothed with Haar-Wavelets

160 | B
w
[:H]
=
£ a0} J
T
=
o

120+ B

1 1 1 1 1 1 1 1

time

Figure 3.8: Signal Noise Reduction by Haar-Wavelets [14]

3.2.2 Recording of the particle

After the preprocessing is finished the recording of the particle starts. In this section
three different methods of recording the particle are described, which mark pixel-based
viruses which stick to the gold layer of the PAMONO sensor. The first method called
Jump detection with time series analyses and damped past is the most simple alternative of
detecting viruses. The second alternative called Jump detection with time series analyses
uses recent pictures of the past to detect viruses. The last method is the most complicated.
It is called Time series analyses with pattern matching. All three methods were developed

for multicore processors to speed up the process.

The following pictures illustrate how the rapid arise of the intensity should look like.
Figure 3.9 illustrates the value of a single pixel in time course. The strong increase of
the intensity shows how a virus in the sample attaches to the gold layer of the PAMONO
sensor. The used method will affect the amount of the increase in intensity. After the
intensity got high and stand out of the remaining intensity, it remains at the same level.
If the intensity falls off, it implies that a disturbance occurred. If no disturbance exists,
the intensity does not fall off, because the intensity of the virus remains constant.

If a pixel is not just a disturbance, but truly a virus attachment, all the algorithms
create a matrix for virus candidates. The matrix is a n X m matrix, where n and m stand
for the width and the height of the matrix, respectively. If a candidate is found in position
(x,y) it is marked with k, , # 0, otherwise it is just marked with 0.

It is also interesting to see how the virus detection is visualized in the picture. So in

figure 3.10 it is illustrated what it looks like when the virus is seen. In part a) it shows

24 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

24500

pixel values
(=]
=
=]
[=]

23600

100 200 300
time

Figure 3.9: Virus attachment by time course [14]

one frame before the virus in the sample attaches to the gold layer. In part b) the virus
attachment can be seen a little and in ¢) the virus attachment can be seen clearly. The

size of the virus here is above 200 nanometers.

(=) (& (9

Figure 3.10: Virus attachment [14]

Jump detection with time series analyses and damped past

This method works on only one picture I; for the current time ¢, the position (z,y) of the
pixel and the damped past I. p describes a percentage value which expressed how strong
the value of the past influences the new value.From the recursive equations 3.2 and 3.3 it
is recognizable that the values of the past influence the new value less and less, because

this one incorporates into the new value.

(zy) =p- La(z,y) + (1—p) - Is(a,y), if t >0 (3.2)
I(z,y) = To(x.y) (3.3)
One example for p could be around 10 percent. This means that the actual value does

not influence the new value much and that the past is more decisive. This ensures that the

memory usage is kept as low as possible. To verify if a jump is truly a virus attachment it

3.2. WORKFLOW OF THE DATA 25

is necessary to proof if the intensity of each pixel at this position stay constantly for the
next pictures. For example, for the next 50 pictures this condition, if the intensity of this
pixel stays constantly high, has to be verified for each time between u < t < (u-+50) with
the formula 3.4:

L(z,y) — (1,5-7r) < Ii(z,y) < Ly(x,y) + (1,5 7). (3.4)

On this occasion r stands for the signal noise and u is the time when a virus sticks to
the antibodies. The signal noise is multiplied with the constant 1.5. The constant 1.5 is
chosen, because of the quantization noise [13]. This represents the distance between the
useful signal and the noise signal. If for example a signal is chosen that order curve is less
step-like and signals with 1 and 2 are included, but the analog signal has the value 1.5,
a rest remains. If the condition is true, the point (y,x) is added into the matrix for the

candidates of a virus. All these three-dimensional images in 3.11 result from this method.

Figure 3.11: Virus attachment in three dimensions [14]

Part a) of 3.11 shows a picture without virus attachment. In b) the virus attachment
is illustrated by the height of the mountains which show the intensity of each pixel and ¢)
portrays the same as b) just by a different angel.

Jump detection with time series analyses

The next method for recording the particle is called Jump detection with time series anal-
ysts and only works with a section from the past. This section has a size of size of 4-a+b,
whereby a and b stand for the dimensions of the picture. The main idea of this method
is to look at 2-a frames before and after a possible virus attachment. After the process

has finished and a virus stick to the gold layer, there are some conditions which have to

26 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

be checked. The surface of the gold layer has to be smoothed and the intensity of the
pixel values has to be positive. To analyze the section of the past four averaging values are
calculating for each time frame. Through these values it is possible to analyze this section.

With the following formulas 3.5 - 3.8 these averaging values are calculated:

3a—1+4b

1
avgi(y) =~ > L-i(z,y) (3.5)
i=4a+b
2a—1+b
avgs(z,y) == Y Tii(,y) (3.6)
i=3a+b
1 a—1
avgs(w,y) =~ > Iii(,) (3.7)
i=2a
1 0
avga(w,y) = = > I-i(w,y) (3.8)

After the main values were calculated, the following conditions 3.9 - 3.11 have to be
reviewed. Thereby again is taking a closer look if the increase of the intensity stays for
all further pictures constant high. The value r in the formulas for the condition describes
the value of the signal noise again and can be held constant. As in the formula before for
proofing the condition the signal noise is multiplied with the constant 1.5. The explanation
for this constant is the same as at the section Jump detection with time series analyses

and damped past.

lavgi (z,y) — avga(z,y)| < 1,57 (3.9)
lavgs(z,y) — avga(z,y)| < 1,57 (3.10)
avgs(x,y) ;ravg4(fv,y) _ avgi(z,y) Iavm(%y) S4.r (3.11)

If the conditions are fulfilled, it can be presumed that a virus candidate exists.

Time series analysis with pattern matching

The last method uses a comparison of the pixel by time course with one or more master
samples. Since the pixel value by time course shows a rapid ascent of the intensity in
case of a virus attachment, this method uses this knowledge to compare the time row of a
master sample with the received time row. In figure 3.12 an example for the comparison is
visualized. It illustrates a candidate for a virus attachment, because it is clearly identifiable
that the time row of the pixel matches the one from the master sample.

All three methods can be used for a virus detection. The first method (Jump detection

with time series analyses and damped past) is the easiest way and optimal for a low memory

3.2. WORKFLOW OF THE DATA 27

- Input

value

1 12 12 14 18 1B - master
sample

time

Figure 3.12: Comparison of pixel time course with master sample [14]

usage. The Jump detection with time series analyses and Time series analysis with pattern
matching methods are more complex and because of that need more hardware resources.
Each method has been optimized for a parallel processing. The processing of each pixel
works independent from the others. Further information to the time row which has to be

revised for a comparison to the master sample is described in [14]| chapter 5.4.

3.2.3 Segmentation

Up to here each pixel was examined for a virus candidate. The next step is to bundle
up the virus candidates that are located in the immediate vicinity to a structure. On the
basis of the structure it is possible to classify the characteristics in particle or disturbance.
To do this, two algorithms will be presented in this section. On the one side there is the
Scanline Algorithm, which scans the picture pixel by pixel and maybe finds a structure
of a particle and on the other side the Marching Squares Algorithm, which identifies the
structure by polygons. The Scanline Algorithm and the Marching Squares Algorithm are
based on [15] and [14].

Scanline Algorithm

As already mentioned the Scanline Algorithm examines each picture pixel by pixel and
tries to condense the pixels, which were recognized as a virus candidate, to a segment. The
algorithm can be explained by the following figure 3.13.

At the beginning the virus candidates are illustrated in green in part a). The Scanline
Algorithm starts scanning the picture line by line. When a virus candidate is detected,
which is shown in part b) and c) as a red point, this point is condensed either to an existing
segment or a new segment is created. In part d) the result of the Scanline Algorithm is
shown and all virus candidates have their own segment. It can be clearly seen that this
method is very simple and has some disadvantages. It is working parallel and because

of that each thread will be processed by an own working group (see section 3.1) it can

28 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

_:
-

(b)

()

Figure 3.13: Scanline Algorithm [14]

happen that some segments are separated, although they should not be. Furthermore, a
closer look should be taken at edge cases. Further information for managing this task will
be described in chapter 6.2 from [14].

Marching Squares Algorithm

The Scanline Algorithm gives a rough structure of the viruses and because of that it is
not possible to get a clear classification. To solve this problem, the Marching Squares
Algorithm was developed. This section is based on chapter 6.3 from [14]. The algorithm

process is illustrated in the following figure 3.14.

() (b) (c)

Figure 3.14: Marching Square Algorithm [14]

3.2. WORKFLOW OF THE DATA 29

First the algorithm needs a n x m matrix, which gets processed by the algorithm from
chapter 3.2.2, to know on which position the virus candidate stuck. These positions will
be marked green on the picture, which is shown in part b) of 3.14. By this it is possible
to construct closed polygons by which the structure can be classified in virus candidate or
disturbance. Each polygon should be made of at least four points as a minimum and can

be described by this formula:

P = (Po,Pl,PQ, .‘.,Pnfl)With Pz € RQ ,O S i S n—l,n Z 3 and PO = Pnfl. (312)

The algorithm works by processing two steps. The first one is to find out in which
direction the polygon should be constructed and the second how the polygon is exactly

built. Further information on this process are described in chapter 6.3 from [14].

3.2.4 Postprocessing

The last step of the software is the postprocessing. The segments are separated into virus
candidate and non virus candidate. This is based on the structure and size of the segment.
Also a few methods will be described how the virus candidates can be visualized so that
the human eye can recognize the difference between virus and disturbance. Although it is
truth that an algorithm is more exact than the human eye, it is also important to verify
this algorithm. Before this algorithm was developed, these pictures were examined pixel
for pixel by hand. Through the visualization of each virus it is possible to pursue the

working process of the software. This section is based on chapter 7 from [14] .

Classification of Segments

Virus candidates should be segmented because disturbances can change the brightness as
well as viruses and only through the brightness it is impossible to detect if this is a virus
or a particle. If it is a virus candidate the segmentation has a certain structure by which
a virus can be classified. The difference between virus and disturbance is shown in figure
3.15.

The images a) and b) illustrate viruses while the rest show disturbances. It is typical
that viruses have a certain structure, for example circles or ellipses while disturbances
have a random shape. They are crescent and stretched. As mentioned in chapter 3.2
particles and disturbances also cause a rise of the brightness. For a better representation
the contrast of the picture is boosted. To do this the values range has to be stretched. It
is necessary, because the virus attachment is taken place in a very small value range and
so it would be impossible to see the virus attachment with the naked eye. This can be

archived by the following formula 3.13:

30 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.15: Comparision between virus and disturbance [14]

Max oyt —ming

Ii(z,y) = Tz, y) + (mazous -)[14]. (3.13)

maxry — ming maxy — ming
With this formula 3.13 it is possible to stretch an interval from [min;, max;| to

[0,max,y¢|. So it is possible to visualize the virus.

Pseudo Color Reproduction

All the images which were produced by the PAMONO sensor always have a gray tone
recording which is a huge problem, because the human eye is not able to see subtle dif-
ferences and because of that, it is important to transfer this gray tone into a color model.
Here the HSV color model was chosen. Figure 3.16 presents the HSV color model.

In the model 3.16 it is not necessary to know about the proportions of red, green and
blue. The colors are presented by the angle, where 0° and 360° represents red, 120° green
and 240° blue. The stronger the saturation, the stronger is the intensity of the color. With

the following formula 3.14 it is possible to calculate the angle to the color.

x-(360°— Hs+ Hp)+ H mod 360° , for Hg > H
" (z - (s+ Hg)+ Hg) s > Hg (3.14)

(z-(360° — Hs + Hg) + Hg) , else
The variable H stands for color angle here. Hg describes the starting values while Hg
stands for the ending value. Both variables are within the required interval [0° - 360°].
The last variable x entries within the specified interval [0-1] for one input value. What it
looks like when the grey tone is transferred into a HSV color will be presented in figure
3.17.
After this transformation, it is much easier for the human eye to see the differences

between viruses and disturbances. Figure 3.18 portrays the picture after processing. The

3.3. SOFTWARE 31

X v Blackness Value
LAY

1207 - green | 607 yellow

__HF
~—<__ color angle
™ S Saturation

Figure 3.16: HSV colour model

H 240 300 360

Figure 3.17: Grey tone into HSV colour model [9]

yvellow points with red border in the second quarter of the picture are virus attachments.
The half circles with red or magenta border could be blurred virus attachments or distur-

bances.

3.3 Software

Taken together, all the strategies presented here were transcribed in a software. A general
overview of these concepts are portrayed in 3.19.

The input for the software can either be images, a video or a camera. This input has to
be decoded before the virus detection process can start. The exactly process was discussed
in chapter 3.2. After this process an online visualization or a segmentation can be done
or the images can be encoded. After this the obtained data from the sensor are evaluated.

See [14] chapter 8 for a closer look at the software implementation.

32 CHAPTER 3. PROCESSING OF THE SENSOR IMAGES

Figure 3.18: Result after Processing [14]

Online
Visualization

Virus

detection

I

Encoding

Segmentation

Figure 3.19: General overview of the Software

Chapter 4

Odroid

This chapter introduces the Odroid hardware on which the Software will run. Before
the Odroid type XU 4 is described in section 4.2, the differences between a Single Board
Computer and a typical PC are introduced in section 4.1. Odroid stands for "Open +
Android and it is a development platform with hardware as well as software” [7]. It is a
Single Board Computer and was developed by the company Hardkernel. In total 15 types of
Odroid were manufactured, but only the types XU 4 and C 1+ are still being produced [6].
An QOdroid offers diverse possibilities, for example it can be used "as a home theater set-
top box, o general purpose computer for web browsing, gaming and socializing, a compact
toll for collage or office work, a prototyping device for hardware tinkering, a controller for
home automation, a workstation for software development, and much more” |7| page 6.
The first Odroid came onto the market in fall of 2009 and the newest type will come onto
the market in spring of 2016 which is the Odroid C2. In the last part of this chapter the
SmartPower module will be introduced. With this device the power consumption can be
calculated. The following sections are based on the references |7], [5], |6], |[25] and [19].

4.1 Single Board Computer vs. typical PC

Although a Single Board Computer can be used as a typical PC, there are a few small
differences between them. A personal computer has a motherboard which has a processor,
a random access memory, a read only memory, a hard disc and so forth. A Single Board
Computer also offers all these components, but with one difference. The motherboard
on the Odroid is much smaller in comparison to the motherboard on a typical PC. The
difference is that the motherboard on the Odroid does not offer further slots for extension
boards. As already mentioned, a Single Board can also be used as a personal computer,
because it also offers a normal operating system, which is highly optimized. Although there
is a difference between the speed of a typical Intel processor and the ARM processor which

is used on a Single Board Computer, with the right hardware it is possible to reach nearly

33

34 CHAPTER 4. ODROID

the same speed as a personal computer. These processors are also very powerful and have
high clock rates. The Raspberry Pi 2 Model B, which is on the market since February 2015
has a clock rate up to 900 MHz [27]. But also there are more powerful models, like the
Odroid XU 4 which offers a clock rate up to 2 GHz [6]. A hardware comparison between the
different types of Single Board Computers is shown in 4.1. The boot partition of the Single
Board Computer can be stored by a simple micro-SD card. The Odroids by Hardkernel,
for example the Odroid XU 4, supports the much faster eMMC module. By this it is also
possible to switch between operating systems much easier. Only a switch has to be flipped
depending on whether the Odroid should boot from the eMMC module or the SD card.
The next interesting aspect for comparison between Single Board Computer and typical
PC is the energy consumption. A personal computer uses between 100W and 1000W or
more, but an Odroid XU 4 for example only uses between 10W and 20W [7]. Summing
up Single Board Computers are not only energy-saving, they are also cheaper and more

flexible than personal computer. That makes them great choices for new development in

all sectors, for example testing new applications.

ODROID-C2

ODROID-C1+

RPi 2 Model B

Amlogic $905 SoC

Amlogic 5805 SoC

Broadcom BCM2836

CPU 4 x ARM Cortex-A53 2GHz 4 x ARM Cortex-A5 1.5GHz 4 x ARM Cortex-AT 900MHz
64bit ARMvE Architecture @28nm 32bit ARMv7 Architecture @28nm 32bit ARMv7 Architecture @40nm

GPU 3 x ARM Mali-450 MP T00MHz 2 x ARM Mali-450 MP 600MHz 1 VideoCore IV 250MHz

RAM 2GB 32bit DDR3 912MHz 1GE 32bitDDR3 T92MHz 1GE 32bit LP-DDR2 400MHz

Flash Storage

Micro-SD UHS-1 @83Mhz/SDR50 or
eMMC5.0 storage option

Micro-SD UHS-1 @78Mhz/SDR50 or
eMMC4.5 storage option

Micro-SD @ 50Mhz/SDR25
No eMMC storage option

USB2.0 Host 4 Ports 4 Ports 4Ports
USB2.0 Device / 1 Port for Linux USB Gadget device or 1 Port for Linux USB Gadget device or No
QTG USB host USB host
Ethernet/LAN 10/100 /1000 Mbit/'s 10710071000 Mbit's 10 /100 Mbit/s

Video Qutput HDMI 2.0 4K / 60Hz HDMI 1.4 HOMI 1.4 /RCA/DSI
Audio Qutput HDMI/ 125 HDMI/128 MDMI/3.5mm Jack /128
Camera Input USB 720p USe 720p MIFI CSI1080p

Real Time Clock

No (unless using an add-on module)

Yes (on-board RTC)

No (unless using an add-on module)

IR Receiver Yes (on-board IR sensor) Yes { on-board IR sensor) Mo {unless using an add-on module)
10 Expansion I4U+?‘pm port ‘ 4Df?p|ll1n0rtl ‘ .40 pin |:!0rt)
GPIO/UART/I2C /128] ADC GPIOJ/UART /SPI/I2C /125 /ADC GPIO /UART/SPI/ 125
ADC 10bit SAR 2 channels 10bit SAR 2 channels Mo {unless using an add-on board)
Heat sink Included Included Optional
Size 85 x 56 mm (3.35 x 2.2 inch) 85 x 56 mm (3.35x 2.2 inch) 85 x 56 mm (3.35x 2.2 inch)
Weight 40g (1.410z) 40g (1.410z) 429 (1.480z)
Price $40 $37 $35

Figure 4.1: Hardware Comparision between different Single Board Computers [6]

4.2 Odroid XU4

The following section is describing the Odroid XU 4 in detail. All the including components
will be presented. This section is based on the references [7] and [5]. In figure 4.2 the Odroid
XU 4 is portrayed. This type of Odroid is on the market since summer 2015 and is described

4.2. ODROID XU4 35

as: "The world’s most affordable ARM Octa-Core big. LITTLE high-performance board

computer" [5].

Figure 4.2: Odroid XU 4 [6]

The Odroid XU 4 is smaller than the types before, to be precise it has a size of half
a credit card and because of that it is very easy to transport. Furthermore, it has a
more powerful hardware compared to its predecessors. It offers new operating systems like
some versions of Linux, e.g. Ubuntu 15.04, and also the two Android versions KitKat and
Lollipop. The most important point is the excellent data transfer rate this version offers.
By the eMMC module, the USB 3.0 and the Gigabit Ethernet interface this version has
the fastest data transfer compared to all his predecessors. In diagram 4.3 a comparison
between the standard SDcard and the eMMC module is shown. The SDcard or the eMMC
module is needed for booting an operating system. But it can clearly be seen how much
faster the Odroid works with an eMMC card. Furthermore, there are also some kinds of
SD cards like the SD-class 10 or SD-UHS1. The difference between these two memory
cards takes place in the writing and reading speed. In comparison with the SD-class 10
and SD-UHS1 the writing speed with the eMMC module is four to five times faster. The
reading speed is much higher. It is nearly four to seven times faster as the reading speed
of the SD-class 10 and the SD-UHS1. The measured values for the read and write speed
at the USB type are also quite different. The write and read speed of the USB 3.0 is about
five times faster as of the USB 2.0.

The next diagram 4.4 illustrates the streaming speed between the XU 4 and his proces-
sors XU 3 with 100 Mbps on board and XU 3 External 1Gbps. In this context, the term
streaming speed means how long it takes to transfer a collection of digital data through a
transmission channel. A comparison is made between the offload and download time, more
precisely when the Odroid functions as a client and when the Odroid is functioning as a
server.

As clearly can be seen the Odroid XU 4 functions faster than its predecessor XU 3 as

server as well as a client. If the Odroid functions as a server the XU 4 is between two

36 CHAPTER 4. ODROID

140

105

M Write speed (MB/s)

70 M Read speed (MB/s)

35

5D-class10 SD-UHS1 eMMC 5.0

160.0

1200 1

B Read S5D (MB/sec)
M Write SSD (MB/sec)

0.0 -

USE 2.0 (HighSpeed) USB 3.0 (SuperSpeed)

Figure 4.3: Comparison between the SDCard and eMMC 5.0 and USB 2.0 and USB 3.0 [6]

and more than seven times faster than his predecessor. If it functions as a client it is
also between more than one and more than seven times faster. The Odroid XU 4 has a

streaming speed of about 880 Mbps.

As seen in figure 4.5 and 4.6 the processor of the Odroid XU 4 is a Samsung Exynosb422
with four Coretex”™-A15 2 GHZ and four Cortex’™-A17 Octacore 1.4 GHz CPUs with
Mali-T628 grafic card. The four Coretex”™-A15 are used for computer intensive opera-
tions, while the four Cortex”™-A17 are used for less energy demanding operations. By this
it is possible to save power. If necessary the suitable kernels are used in order to use it as
sparingly as possible. Furthermore, the XU 4 offers a 2 GByte DDR3-RAM as a memory
and as indicated above it can also use eMMC 5.0 or a simple micro SDcard in different
sizes. The size of the memory expansion goes from 8GB to 64GB. And as mentioned earlier
the reading speed of the eMMC is up to seven times faster than the reading speed of the
micro SDcard. The XU 4 can switch which module it wants to use with a hardware switch.
It also has a 750 MHz clocking and a 12 % memory bandwidth with 2x 32 bit bus. This

Odroid needs a 4;;’}:1;?% DC power source. In the standby operation it uses about 1 Ampere

and while operating the current consumption rises above 3 Ampere. Further, the Odroid
has two USB 3.0 Host ports and one USB 2.0 Host port. As mentioned before, the USB 3.0
port is about five times faster than the USB 2.0 port and offers all the same features that

4.2. ODROID XU4 37

900.0
675.0
M xU3 On-board 100Mbps
M xU3 External 1Gbps
450.0 [Xu4 On-board 1Gbps
225.0
0.0

iperf Server on SBC (Mbit/sec) iperf Client on SBC (Mbit/sec)

Figure 4.4: Comparison of the ethernet performance between the Odroid xU 4 and his predecessor
XU 3. For the comparison two different versions of the XU 3 were used, a XU 3 with 100 Mbps
on board and XU 3 External 1Gbp [6]

RTC backup battey connector
Gigabit Ethernet controller

Serial conzole [TR ODROID-XU4 []
, port

Ethernet RJ-45 Jack 2xUSB 30

=% Hostports
Cooling fan coennector
USB 2.0 Host Power button
Power LED RTC Crystal
USB 3.0 Hub s
5V 4A DC Input controller
Status LED —JESHT PMIC
Power protection IC 3 eMMC Module connector
MicroSD slot 30 pin GPIO
header GPIO /
12C 1 SPI/ UART
HDMI Type-A /ADC
Exynos 5422
CPU
Boot mode selector —3 12 pin GPIO
header GPIO /
12C7125

Figure 4.5: Annoted Board Image [7]

a typical PC has, too. For example it is possible to connect a Wi-Fi adapter and by this
get a connection to the Internet or other devices as keyboard, mouse, or even an external
USB hub. By this it is possible to have more than three USB ports. In addition, it also
offers a standard type-A HDMI connector to connect it to a display. Furthermore, XU 4
has a installed Ethernet RJ-45 jack for LAN connection. It offers different speeds. There
are 10 / 100/ 1000 Mbps available. To know with which speed the Odroid is connected to
the Internet it has LED flashes. If the LED flash lights green the speed is 100Mbps and
if it is yellow the speed is up to 1000Mbps. As shown in the diagram 4.4 the streaming
speed of the Odroid is about 880 Mbps. With a Wi-Fi Module, which is illustrated in
figure 4.8 a connection to the Internet can be established. The XU 4 also offers a USB-
UART Module Kit which allows the user to connect the Odroid to a laptop and by this

to view the bootloader and to change the network and video settings. Of course the XU

38 CHAPTER 4. ODROID

Exynos 5422 Application Processor

USB 2.0 | . [2xUsBS0

USB2.0
Host Type A

Cortex—AL5 Cortex—AlS Cortex—AT7
eMMC MuCO |32KB/32KB 1/D—Cache |3 2KB/32KB [/D~Cache 1|3 32KB/32KB I/D~Cache] e | Ethernet
Module Socket| & i Bbit NEONvZ + VEPv4 NEONv2 + VFPv4 MEONV2 + VEPv4 NEONVZ + VEPv4 #1 Contraller 10/100/1000

Micro 8D |MMC 2 Cortex—ALS5 Cortex—AlS Cortex—AT Cortex—AT
Slot I - 32KB/32KB I/D—Cachel|32KB/32KB I/D~=Cache| 32KB/32KB I/D~Cache | 32KB/32KB I/D~Cache|

NEONvZ +VFPvé || NEONv2 + VEPv4 NEONVZ + VFPvé | NEONVZ + VFPvi
szl UART #2
Console

DC 5V/MA

Cooling Fan
HDMI
Type—A

1/0 expansion
Port
(12pin)

SCU and ACP SCU

2MB L2-Cache with ECC 512KB L2-Cache

128 -bit AMBAACE Coherent Bus interface 128-bit AMBAACE Coherent Bus interface

UART #0
Multimedia

10
Port
{30pin)

SFIL #1

ADC

I Y |

GPIO

Figure 4.6: Block Diagramm of XU 4 [7]

also provides General Purpose Input and Output (GPIO) ports. Altogether there are two
different GPIO ports. One has 30 pin and the second one has 12 pin. A GPIO port is a
more general contact pin on an integrated circuit [4]. It can be used as input or as output,
which is determinate by logic programming. This contact usually does not have a purpose
and because of that it is by default idle. All these pins have a 2mm space and are operated
with 1.8V DC. They can be used as an interface for other physical devices, but if the user
does not need any further devices it is not necessary to control them. The important point
here is that the ADC inputs are limited to 1.8 Volt and if a peripheral needs a higher
voltage a XU 4 Shifter Shield 4.7 is needed. By this it is possible to rise the voltage up to
3.3 Volt or even to 5 Volt.

Figure 4.7: Shifter Shield for Odroid XU 4 to get a higher voltage [5]

Another aspect of the XU 4 is that it can be used on battery power. It offers a RTC
(Real Time Clock) backup battery connector 4.9. By this it is possible to work with it
while the Odroid is not connected to a power socket and in total the Odroid can run up

to three years by this. This battery is a CR2032 % and uses as connector a Molex

4.2. ODROID XU4 39

51021-0200. The Odroid XU 4 is not the only Odroid which has a battery power supply.
The directly forerunners XU 3 and XU 3 Lite, the C1 and C1+, U3 and XU / XU Lite all

offer this option.

Figure 4.8: Wi-Fi Module for XU 4 [5]

Figure 4.9: Backup Battery for the Real Time Clock for Odroid XU 4 [5]

Another problem which is known from typical PCs is that heat builds up while the
system operates. Especially the XU 4 reaches up to 95° C. The XU 4 uses a cooling fan
to solve this problem which is illustrated in 4.10. To prevent damages the processor will
throttle itself if the temperate passes a critical threshold value. The processor does not
work with full power then and the efficiency gets lost. With the cooling fan it is possible

to regulate the temperature and the processor can still work with full power.

Figure 4.10: Cooling Fan for XU 4 [5]

Summing up, a Single Board Computer has all the technical possibilities that a typical
PC also offers, it is just much smaller and cheaper. The Odroid XU 4 dimensions are 82
x 58 x 22 mm. As shown in figure 4.1 Single Board Computers like the Odroid XU 4 can
be bought for as little as 74$. In all, they are a very good choice for testing and system

40

CHAPTER 4. ODROID

Frocessor

Samsung Exynos5422 ARM® Cortex™-A15 Quad 2.0GHz/Cortex™-AT7 Quad 1.4GHz

Memory

2Gbyte LPDDR3 RAM PoP (750Mhz, 12GB/s memory bandwidth, 2x32bit bus)

3D Accelerator

Mali™-TG628 MPG OpenGL ES 3.0/2.0/1.1 and OpenCL 1.1 Full profile

Audio HDMI Digital audio output. Optional SPDIF optical output (USE module)
USB3.0 Host SuperSpeed USE standard A type connector x 2 port

USB2.0 Host HighSpeed USE standard A type connector x 1 port

Display HDMI 1.4a with a Type-A connector

Storage (Option)

eMMC module socket : eMMC 5.0 Flash Storage (up to 64GByte)
MicroSD Card Slot (up to G4GByte)

Fast Ethernet LAN

10/100/1000Mbps Ethernet with RJ-45 Jack (Auto-MDIX support)

WiFi (Option)

USE IEEE 802.11b/g/n 1T1R WLAN with Antenna (USE module)

HDD/SSD SATA interface (Optional)

SuperSpeed USE (USBE 3.0) to Serial ATA3 adapter for 2.5"3.5" HDD and SSD storage

Power (included)

5V 4A Power

System Software

Ubuntu 15.04 + OpenGL ES + OpenCL on Kernel LTS 3.10
Android 4.4.2 on Kernel LTS 3.10

Android 5.1 is available as a community driven OS development.
Full source code is accessible via our Github.

Size 82 » 58 x 22 mm approx. (weight: 60gram including cooling fan approx. 38gram without cooler)

Figure 4.11: Hardware components of Odroid XU 4 [5]

development. A general overview of all the components that the Odroid XU 4 offers is

shown in figure 4.11.

4.3 SmartPower

To do measurements for the Odroid, especially power and electric current intensity, a
special module was developed: SmartPower. By this it is possible to measure the voltage

(Volt), the current in real time (Amper), the power of the system (Watt) in real time and

Watt
hour

also the power consumption (). In figure 4.12 the Smart Power module is portrayed.
This module can be connected to a computer or laptop with an USB cable and with the
PC application a graphical representation can be displayed. It is possible to measure
either the current or the power in real time. In figure 4.13 the diagram for the current
graphical representation in the left picture is illustrated and the diagram for the power use
is portrayed.

The Smart Power module is compatible with many types of Odroids, like the XU, XU
3 and XU 4 with the DC plug cable (5.5mm / 2.1mm) or with the DC plug cable (2.5mm /
0.8mm) for Odroid X, X2, U2, X2, U3 and C1. In the block diagram 4.14 the components

of the Smart Power are illustrated.

12Volt
3Ampere

voltage between 3 Volt and 5.250 Volt. The maximum output current is 5 Ampere. As

The Smart Power module works on DC input power and offers an output
already mentioned, with the Smart Power it is possible to measure the voltage, the current
and power in real time and also the used power per hour. The small tolerances of these

results can differ from the real values around 2 percent. Besides the USB device port for a

4.4. CONCLUSION

41

Figure 4.12: Smart Power module for measurements with Odroids [5]

1 Smart Power -

[Device Found: Attachedstate = TRUE Status SN Verson: 1.1.0 FMW Version : V3.0

Watt Graph

Smart Power

eeeeee

5397

vax: 6.435Mn: 3.236

Watthour

HRH I

100 msec

Figure 4.13: PC application for Smart Power.

100

x T Smart Power

[pevieFound: Atachedsire TrUE

eeeee

L. 363

vin 144(]M 0.358

45

vax: 6,427 vn: 1,683

mn ot
(N A

Ampere Graph

Smart Power

T
0 20 0 60 80 100
100 msec

The left picture illustrates the current graphic

and the right picture the watt graphic of the Smart Power module.

connection to a PC the Smart Power device also has 2 buttons. With the right button it
is possible to start and stop the measurements and the left button just turns it on and off.
With the button it is possible to set the desired voltage. The measurements can be done
as follows: The Smart Power module is connected to the power outlet and the Odroid to
the Smart Power. Further on, a laptop is wired on the Smart Power, so the PC application
can be started on the laptop.

In total, this chapter introduced the Odroid with all its specifications and also the

hardware accessory for the Odroid.

4.4 Conclusion

Further it is also an important aspect why especially an Odroid was chosen for this topic. It
could also be possible to chose a typical PC or any other Single Board Computer, e.g. the

Raspberry Pi and to measure the power and electric current intensity there. In comparison

42 CHAPTER 4. ODROID

AR)
POWER Target
Adapter Device
12V/3A(3EW) (ODROID)
_— b Sy

Figure 4.14: Block Diagram for the Smart Power device

to the Single Board Computer the Odroid sticks out because of its hardware opportunities.
But not only this sticks out. Single Board Computer are in comparison to typical personal
computers much cheaper and are therefore well-suited for experimental developments. In
comparison to a Raspberry Pi [23] for example the here used Odroid XU 4 has a RAM with
2GB, instead of 1GB RAM for the Raspberry Pi 8 Model B. The processor which is used
at the Raspberry Pi 8 Model B is the Broadcom BCM2837 and the Odroid XU 4 uses the
Samsung Exynos5 Octa ARM Cortex™-A15 Quad, which is more powerful. After these
comparisons were made for the Hardware opportunities it turned out that the Odroid was
the best opportunity for this topic.

The next question is why the Odroid XU 4 was chosen and not any other kind of
them. The Odroid XU 4 is the one of the newest kinds of Single Board Computers from
Hardkernel. The XU 4 is a further development of the XU 3 and the full software of the
XU 3 ist compatible with the XU 4, but the XU 4 is more compact, more affordable and
more expandable [6]. In total, this type has an energy-efficient technology and because in
this work the power and electric current intensity should be under examination, this kind

of Single Board was chosen.

Chapter 5
Experimental Setup

After the Software for virus detection and the Odroid hardware were introduced, this
chapter deals with the experimental setup. As discussed earlier the measurements of the
power consumption will be executed with the Smart Power module which was presented in
detail in chapter 4.3. The first part of this chapter 5 explains which necessary preparations
have to be taken to run the software. The second section presents the hardware preparation
for this experiment. In the third section 5.3 of this chapter the experimental setup for the
measurements on the Odroid is presented and a closer look at their realization is taken.
The last part 5.4 of this chapter focuses on the offloading process. To be precise, how the
data, which were obtained from the PAMONO application, were offoaded on a server and

how much energy the Odroid needs for this process.

5.1 Preparation

As mentioned earlier, there are various ways to process the data from the PAMONO sensor,
for example different ways of single noise reduction, time series analysis or segmentation.
And also the results of a chosen algorithm are depending on parameter settings, e.g. the
maximal merging distance, the detection threshold, usage of brightness correction and a lot
more. In order to analyze the effcts of these differences, two different parameter documents
were given. Firstly the optimized parameter and secondly the unoptimized parameter. The
reason why some values are optimal and other not for the Odroid is dues to the hardware
of the Odroid. As already shown in chapter 4 there are some differences between the
hardware of a typical PC and the hardware of an Odroid. Furthermore, it is important
to mention that the effect of the differences of these files is mainly its influence on the
execution speed. As it will be seen in the measurements later, with the optimized values
the software runs much faster. Another important point is the evaluation of these two
different parameters. The optimized parameter found 108 viruses in the data which were

obtained from the sensor, while the unoptimized parameter only detected 105 viruses. This

43

44 CHAPTER 5. EXPERIMENTAL SETUP

is no huge difference, so overall it can be said, that it may be stated that the difference
between these files has a major on the execution time, but only a minor effect on the
precision of the evaluation. In figure 5.1 the result of these processes is visualized. This
has a lot to do with the chosen parameter file. The explanation for this is that the values
for the not optimal parameter sum up some virus candidates to just one virus and because
of that it seems that less viruses have been detected. In the Appendix A.1 the complete
values of these two documents are portrayed and can be compared for their differences.
The differences between them are for example the values for the merging mazimal frame
distance for polygons which is for the unoptimized parameter 17 and for the optimized
15. Furthermore, some parameters have different values, for example the merging for
the mazimal distance is for the unoptimized value 6.102633 and for the optimized value
3.499158. But there are more differences. For example the brightness correction is activated
at the unoptimized values, but not activated at the optimized values. The main difference
between these two data is that the optimized values are adapted for the Odroid, and the

unoptimized are not.

Figure 5.1: In the left picture the result of the software for the optimized values and in the right

picture the results of the software for the unoptimized values is realized.

5.2 Hardware Preparation for the experiment

The experimental setup is presented in figure 5.2. Firstly the Smart Power module is con-
nected to the power socket and then to the Odroid. Furthermore, the laptop is connected
to the Smart Power, so the Smart Power application can run on it. Then, a display is
plugged into the HDMI port of the Odroid and the keyboard is attached via USB port. A
mouse is not necessary, because the used SD card has no graphical operating system. As
mentioned earlier, just like a normal PC the Odroids slowly heats up while running. To
ensure that the Odroid works most efficient, a script which regulates the fan of the Odroid,
was prepared. This script is introduced at the beginning ot the next section.

Overall there are two different methods to offload the data from the Odroid to the
server: The first method is to connect the Odroid to the router with a LAN cable to get an
Internet connection that way. The second method is to set up a wireless connection with
the router. For this the Odroid Wi-Fi Module 4 is used. It is portrayed in figure 5.3 [5].

5.2. HARDWARE P