
Master Thesis

Multicore Systems with Dynamic Real-Time Guarantees

Lea Schönberger

May 30, 2017

Supervisors:

Prof. Dr. Jian-Jia Chen

Dipl.-Inf. Georg von der Brüggen

TU Dortmund University

Faculty of Computer Science

Computer Science Chair 12 (Embedded Systems)

http://ls12-www.cs.tu-dortmund.de

Design Automation for Embedded Systems Group





Contents

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Real-Time Systems 5

2.1. Theoretical Fundamentals of Real-Time Systems . . . . . . . . . . . . . . . 5

3. Mixed-Criticality Systems 9

3.1. The Theoretical Mixed-Criticality Model . . . . . . . . . . . . . . . . . . . . 9

3.2. Fixed-Priority Scheduling on Single Processor Systems . . . . . . . . . . . . 10

3.3. Mixed-Criticality Systems in Practice . . . . . . . . . . . . . . . . . . . . . 12

4. Systems with Dynamic Real-Time Guarantees 15

4.1. Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3. Schedulability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4. Optimal Priority Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Multicore Fixed-Priority Scheduling 21

5.1. Partitioned Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2. Semi-Partitioned Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6. Multicore Systems with Dynamic Real-Time Guarantees 27

6.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2. Partitioned Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2.1. Schedulability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2.2. Priority Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.3. Classical Bin-Packing Heuristics . . . . . . . . . . . . . . . . . . . . 31

6.2.4. Enhanced Bin-Packing Heuristics . . . . . . . . . . . . . . . . . . . . 36

6.2.5. Limits of Partitioned Scheduling . . . . . . . . . . . . . . . . . . . . 41

6.3. Semi-Partitioned Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.1. Task Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.2. Highest-Priority Task Splitting . . . . . . . . . . . . . . . . . . . . . 46



6.3.3. Complete Task Migration . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.4. Timing Tolerable Task Migration . . . . . . . . . . . . . . . . . . . . 51

7. Evaluation 55

7.1. Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2. Partitioned Scheduling Strategies . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3. Task Splitting and Highest-Priority Task Splitting . . . . . . . . . . . . . . 60

7.4. l-Failure-Proof Multicore Systems with Dynamic Real-Time Guarantees . . 61

7.5. Timing Tolerable Task Migration . . . . . . . . . . . . . . . . . . . . . . . . 63

7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A. Appendix 67

List of Figures 80

List of Algorithms 81

Bibliography 85

Affidavit (Eidesstattliche Versicherung) 86



1. Introduction

1.1. Motivation

With respect to computing hardware, several reliability threats can be identified such as

the so-called transient faults. These, in contrast to permanent faults, occur as bursts

provoked, for instance, by power supply jitters or electromagnetic interference due to at-

mospheric effects [15]. Such transient faults can have an impact on the contemplated

system’s execution behavior and may lead to incorrect computation results or even to

a system failure. Especially referring to safety-critical applications as employed in the

avionics or automotive sector, it is indispensable to take fault prevention as well as fault

recovery strategies into account throughout the system design process. Thus, manifold

techniques are applied by the industry to deal with faulty execution behavior, e.g., spa-

tial isolation of certain components, hardware redundancy, remapping of logical system

functionalities onto a flawless subset of hardware resources, excessive monitoring, and,

particularly emphasized in this thesis, re-execution of erroneous software jobs [13].

An application’s task shall be considered, after whose execution a fault detection rou-

tine is conducted which determines if the delivered result is correct or faulty. In the former

case, each deadline is met, as depicted in Figure 1.1 by means of tasks τ1, τ2, and τ3. In

the latter case, the faulty task is re-executed in order to ensure a valid output, whereas

the number of potential re-executions should be limited depending on the system charac-

teristics. However, by reason of fault recovery, a task’s worst-case execution time can be

prolongated significantly, so that, in consequence, it may engender another task’s deadline

miss. This situation is exemplarily illustrated in Figure 1.2, where a job of τ3 misses its

deadline due to a twofold re-execution of a task instance of τ1.

When a fault occurs, a system is said to perform a mode change, which can be depicted

as a switch from the normal execution scenario to a special state of alert. In the field of

τ1 = (1, 3, 3)

τ2 = (1, 6, 6)

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ3 = (1, 9, 9)

Figure 1.1.: A feasible schedule according to the rate-monotonic policy without error occurrence.



2 1. Introduction

� fault detected

τ1 = (1, 3, 3)

τ2 = (1, 6, 6)

deadline miss

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ3 = (1, 9, 9)

Figure 1.2.: Task τ3 misses its deadline due to multiple re-executions of τ1 by reason of fault
recovery (light red).

so-called Mixed-Criticality Systems, it is commonly necessary to carry out online adaption

strategies in such cases as, e.g., neglecting or dropping low-criticality tasks for the benefit

of higher-criticality tasks as well as recomputing and adjusting deadlines to ensure that

tasks with high criticality and thus of high or utmost importance meet their deadlines so

that the system’s proper functioning can be guaranteed.

Von der Brüggen et al. [24] suggested a diverging approach, denoted as System with

Dynamic Real-Time Guarantees model, according to which, instead of dealing with low-

criticality tasks inequitably, it is taken into consideration that a low-criticality task’s result

could still be useful despite its lateness. Hence, in the Systems with Dynamic Real-Time

Guarantees model introduced in [24], low-criticality tasks are neither neglected nor aborted

but kept running even in case of a system mode change due to the occurrence of a fault,

as long as the high-criticality tasks meet their deadlines. Following this concept, von der

Brüggen et al. [24] introduced the notion of full timing guarantees, i.e., adherence to each

task’s timing requirements, as well as of limited timing guarantees, i.e., compliance with

all high-criticality tasks’ timing properties as well as bounded tardiness with respect to

low-criticality tasks. Devoid of any online adaption, full timing guarantees can be assured

in the normal system mode and limited timing guarantees, in contrast, in case of fault

occurrence.

Since the revealed concept has been designed for single-core systems, in this master

thesis shall be examined if and how the Systems with Dynamic Real-Time Guarantees

model can be provided for multicore platforms likewise.



1.2. Structure of the Thesis 3

1.2. Structure of the Thesis

In this thesis, initially, a brief introduction into the fundamental concepts of Real-Time

Systems (cf. 2) as well as into those of Mixed-Criticality Systems (cf. 3) will be provided.

Thereon, in chapter 4, the System with Dynamic Real-Time Guarantees model proposed by

von der Brüggen et al. [24] will be introduced in detail, including the deployed task model,

the concrete system model, an appropriate schedulability test for establishing a System

with Dynamic Real-Time Guarantees as well as the respective method for generating an

optimal priority assignment.

The following chapter (cf. 5) covers the most common approaches to multiprocessor

scheduling that are applicable to the specific problem definition addressed in this the-

sis, namely, the partitioned and the semi-partitioned scheduling paradigm. Subsequently

(cf. 6), the attempt is made to transfer the System with Dynamic Real-Time Guarantees

model by von der Brüggen et al. [24] onto multiprocessor systems, for which reason in

the first place the system model of a Multicore System with Dynamic Real-Time Guaran-

tees is defined. Building on this, several partitioned approaches aiming at the formation

of systems satisfying the characteristics of a Multicore System with Dynamic Real-Time

Guarantees are discussed (cf. 6.2), where, regarding each strategy, the devised algorithms

are illustrated in pseudo-code. Moreover, two semi-partitioned concepts, the task splitting

(cf. 6.3.1) as well as the highest-priority task splitting paradigm (cf. 6.3.2), are introduced

in order to achieve a Multicore System with Dynamic Real-Time Guarantees in those cases,

in which partitioned approaches reach their limits.

Pursuing another objective, more precisely, an increased reliability of the particular

Multicore System with Dynamic Real-Time Guarantees, additionally the l-Failure-Proof

Multicore System with Dynamic Real-Time Guarantees model is presented, which, by

means of complete task migration (cf. 6.3.3), ensures the adherence to the characteristics

of a Multicore System with Dynamic Real-Time Guarantees even if l processors break

down. Furthermore, the concept of timing tolerable task migration is suggested (cf. 6.3.4)

for the purpose of reducing the tardiness of a specified group of timing tolerable tasks

under the circumstances that, e.g. due to electromagnetic radiation, each task on one or

more processors exhibits faulty execution behavior.

Finally, the proposed strategies are analyzed and evaluated in chapter 7 by means of

the results of comprehensive experiments.





2. Real-Time Systems

Henceforth, an introduction into the topic of real-time systems is given following the work

of Buttazzo [7] (especially pp. 1-51).

A real-time system is characterized by the fact that it mandatorily needs to satisfy tem-

poral correctness, i.e., timeliness with respect to specified constraints, as well as functional

correctness, i.e., the delivery of valid results. These days, real-time systems can be found

in miscellaneous fields of application including the automotive and avionics industry, the

medical sector as well as the telecommunication and consumer electronics sector besides

many more. Depending on the application area, disparate categories of real-time systems

can be distinguished with respect to the consequences of a malfunction concerning the

particular system, namely, soft real-time systems, e.g. multimedia applications where late

results are not very useful, firm real-time systems, e.g. telecommunication systems where

late results may be useless but not harmful, and hard real-time systems, in terms of which

a deadline miss’ impact is hazardous, e.g. in the avionics sector or with regard to a nuclear

power plant.

Notwithstanding the broad range of application, the design of real-time systems is still

challenging due to manifold reasons. On the one hand, there exist many misconceptions

concerning real-time systems, particularly between academia and the industry [22]. On the

other hand, ad hoc techniques as well as heuristic approaches are still the favored solution

regarding the implementation of real-time systems, which causes several issues such as a

large, complex and incomprehensible amount of code, difficult software maintainability

and tricky verification of time constraints, notably owing to the fact that the major share

of code is realized in low-level languages [7]. Hence, the resulting software may exhibit un-

predictable behavior with disastrous consequences in exceptional situations, if the system

lacks of specific mechanisms to ensure timing properties.

2.1. Theoretical Fundamentals of Real-Time Systems

Before addressing the topic of mixed-criticality systems, which form a subset of real-time

systems, some theoretical prerequisites will be provided to offer the recipient the necessary

knowledge for deeper understanding of the problems discussed in this thesis.

Consider a process executed sequentially by a processor which needs to be performed

several times. Such sequence of processes is termed task, denoted as τi, whereas a single



6 2. Real-Time Systems

instance is denominated job. A job of task τi is characterized by its worst-case execution

time Ci, i.e. the amount of time required from the moment in which the job’s execution

begins, identified as the start time si, until the moment of its completion, namely the

finishing time fi. Notwithstanding, the response time Ri arises out of the time span from

the instant when τi becomes ready for execution, referred to as the arrival time or release

time ai, until the finishing time. Each job has to be finished before a specified point

of time, the deadline, which can either refer to absolute time, i.e., the so-called absolute

deadline di, or describe an amount of time relative to the job’s arrival time, i.e., the relative

deadline Di. These parameters are, by way of illustration, visualized in Figure 2.1. In

addition, a job’s lateness Li describes the delay between its finishing time and its deadline,

i.e., Li = fi − Di, while the tardiness Ei denotes the time a job remains active after its

deadline, i.e., Ei = max(0, Li).

ai si fi di t

τi = (Ci, Ti, Di)

Ci
Ri

Di

Figure 2.1.: Typical parameters of a real-time task [7].

A task can release its jobs either periodically or aperiodically, whereat in the latter

case again two different options are conceivable: The jobs either arrive arbitrarily or

sporadically. In all these cases, a task is characterized by the so-called period or interarrival

time Ti, a timing parameter which describes the amount of time before whose expiry no

other job of task τi is permitted to become ready for execution. If the deadline equals the

interarrival time, i.e., Di = Ti, the task is said to have implicit deadlines (cf. Figure 2.2),

if, however, the deadline is smaller than or equal to the interarrival time, i.e., Di ≤ Ti, the

task is referred to as constrained -deadline task (cf. Figure 2.3). Otherwise, i.e., Di > Ti for

some tasks, the task set is termed arbitrary-deadline task set (cf. Figure 2.4). Concerning

sporadic tasks, it is furthermore necessary to introduce an additional timing parameter,

the moment of the first job’s arrival, known as phase Φi. Moreover, it universally holds

that implicit-deadline task sets are a subset of constrained-deadline task sets [19], which,

in turn, are a subset of arbitrary-deadline sets.

τ1 = (2, 4, 4)

τ2 = (1, 6, 6)

0 2 4 6 8 10 12 14

Figure 2.2.: An implicit-deadline task set.



2.1. Theoretical Fundamentals of Real-Time Systems 7

τ1 = (1, 6, 5)

τ2 = (2, 8, 4)

0 2 4 6 8 10 12 14

Figure 2.3.: A constrained-deadline task set.

τ1 = (1, 3, 4)

τ2 = (3, 5, 6)

0 2 4 6 8 10 12 14

Figure 2.4.: An arbitrary-deadline task set.

Apart from this, each job is endowed with a priority by means of which it is assigned

processor execution time according to the particular applied scheduling policy. The pri-

ority can either be fixed or dynamic and should be chosen with respect to the system’s

characteristics and purpose.

Regarding a task system T consisting of concurrent tasks τ1, . . . , τn with n ∈ N, the

order in which the tasks are executed by the processor is established by a scheduling pol-

icy. Such scheduling policies can display various characteristics concerning their way of

operation. Actually, a scheduling algorithm can be either preemptive, i.e., the running

job may be interrupted at any point in order to grant execution time to another task, or

non-preemptive, i.e., a job can never be interrupted but is executed until its completion.

Furthermore, it can be either static, i.e., all scheduling decisions are premised on param-

eters specified before a task’s activation, or dynamic, i.e. such parameters may change

throughout the system life cycle. Apart from this, a scheduling algorithm can be either

offline, i.e., the schedule is generated before any task’s activation, or online, i.e., the sched-

ule is produced and modified while the system is running. Eventually, it can be either

optimal, i.e., the algorithm minimizes a given cost function or otherwise creates a feasible

schedule if existent, or heuristic, i.e., the scheduling is performed by dint of a heuristic

function which approximates the optimal schedule but does not necessarily achieve it [7].

Moreover, clarifying the aforesaid, a schedule is denoted feasible if all tasks of task set

T can be outright executed taking into account their respective timing properties [7]. A

set of tasks is termed schedulable if there exists at least one algorithm that results in a

feasible schedule [7].





3. Mixed-Criticality Systems

During the last ten years the industry’s interest in running several independent applica-

tions of different so-called criticalities, i.e., of different importance, timing constraints and

therefore diversely severe consequences of a deadline miss, in the same integrated platform

increased enormously. This evolution is based on the attempt to lower costs of the partic-

ular systems while maintaining the prevailing performance [13] as well as on the necessity

to comply with other technical or practical requirements regarding e.g. weight, size, power

consumption, and heat development [6].

The notion of criticality is most commonly used with respect to functional safety, i.e.,

the non-existence of devastating consequences with respect to the system’s user as well

as to the environment [12], although the term has a broader variety of meanings which

is discussed by Avizienis et al. [3]. However, the definition of criticality is inconsistent

throughout the aggregate of manifold industrial sectors, whose respective technical defini-

tions of the former are manifested in specific safety-related standards, such as the DO-178C

for avionic software, the ISO 26262 for the automotive sector, and the generic IEC 61508

which serves as a groundwork for further domain-specific standards [13]. Despite these

discrepancies, in almost every standard the assignment of criticality levels to individual

system functions is defined as the result of a failure modes and effect criticality analy-

sis (FMECA [16]) routine, after whose completion not only criticality categories but also

additional recommendations are given.

Nevertheless, industrial mixed-criticality systems differ from the academic model, among

others due to ambiguous termini technici as well as variegated strategies and implemen-

tations. For this purpose, the theoretical mixed-criticality model as employed in the

common research landscape shall be introduced hereinafter. Thereupon, the issue of fixed-

priority scheduling on single-core mixed-criticality systems will be compendiously explored

(cf. 3.2).

3.1. The Theoretical Mixed-Criticality Model

In the following, the theoretical mixed-criticality model will be illustrated referring to the

review paper on mixed-criticality systems by Burns and Davis [6].

The first publication on mixed-criticality systems, coining this particular term in the

specific sense in which it was adopted thenceforward, was issued by Vestal [23] in the year



10 3. Mixed-Criticality Systems

2007. Since that time, various papers have been published on this topic, not necessarily

employing the same system and task model. However, Burns and Davis [6] propose a

generally applicable model that will be availed at this point.

A mixed-criticality system consists of a finite set K of components, whereat each single

one is characterized by a criticality level Li and encloses a finite set of sporadic tasks

T. A task τi = (Ti, Di, Ci, Li) is specified by its minimum interarrival time or period,

deadline, worst case execution time, and by the criticality level pertaining to its respective

superordinate component. Since tasks descending from disparate components must not

affect each other, it is necessary to implement protective mechanisms which impede a

job from exceeding its granted execution budget and, besides that, ensure that no job’s

timing parameters are violated in the job generation process. Otherwise, as a consequence,

development expenses would increase tremendously due to the fact that each component

were obliged to be realized on the highest criticality level [6].

Unlike conventional real-time systems, in mixed-criticality systems, the computation of

a task’s worst-case execution time Ci is dependent on its criticality level, more precisely,

it becomes larger as a function of a higher criticality level [6].

Furthermore, several models consider a mixed-criticality system to execute in a certain

amount of so-called criticality modes, whereat the system initially operates in the lowest

criticality mode whilst all tasks’ timing properties are satisfied. As soon as any task

infringes its particular time restrictions, a criticality mode change occurs, in course of which

each task’s timing properties may be renewed. It is frequently the case that the number of

criticality levels is restricted to merely two, a high- (HI) and a low-criticality mode (LO),

an architecture which is referred to as dual-criticality system. Deviantly, in such systems a

task is typically characterized as τi = (Ti, Di, Ci(HI), Ci(LO), Li), where Ci(HI) denotes

the worst-case execution time in high-criticality mode and Ci(LO) specifies the worst-case

execution time in low-criticality mode. A task with Li = HI is denominated as high-

criticality task, whereas a task with Li = LO is termed low-criticality task. Concerning

such systems, a mode change from LO to HI criticality mode is performed if at least one

task exceeds its Ci(LO) budget, whereby it is a common practice to only guarantee the

high-criticality tasks’ timeliness as soon as the system executes in HI criticality mode.

Depending on the actual system model, a descending criticality mode change is possible

as well, i.e., in terms of dual-criticality systems, from HI to LO criticality mode, even

though the majority of publications refuse this option, so that the system finally remains

in the highest criticality mode.

3.2. Fixed-Priority Scheduling on Single Processor Systems

Since Vestal’s first publication on mixed-criticality systems [23], a growing interest with

respect to this topic emerged in the research community, that resulted in multiple research



3.2. Fixed-Priority Scheduling on Single Processor Systems 11

approaches and results, which will be sketched briefly in what follows, according to the

review paper by Burns and Davis [6].

After having demonstrated that neither a rate monotonic (RM) nor a deadline mono-

tonic (DM) scheduling policy is optimal in terms of mixed-criticality systems, Vestal’s

paper [23] revealed that Audsley’s Optimal Priority Assignment algorithm [2] (also de-

noted as Audsley’s approach or OPA) is employable in this scope of application. Nine

years later, this strategy was shown to be even optimal for mixed-criticality systems by

Dorin et al. [11]. Due to the matter of fact that Audsley’s approach is of further interest

in the subsequent chapter (cf. 4), it shall be explained concisely at this juncture.

To establish an optimal priority order of a task set T on a single-core dual-criticality

system, an appropriate task has to be identified for each priority level. Assume that a tasks

set T is divided into two disjoint subsets of high- and low-criticality tasks. Commencing

with the search for a candidate to take the lowest possible priority, a schedulability analysis

is performed with the low-criticality task set’s lowest-priority task filling this vacancy. In

case of success, the next priority level is contemplated, otherwise, the procedure is repeated

considering the high-criticality task set’s lowest-priority task. Likewise, the attention is

drawn to the next priority-level, if the assessment exhibits a positive outcome. Provided

that neither of both tasks can be proven to be schedulable under the examined priority

assignment, the task set is indicated as unschedulable [2]. Synoptically, this algorithm is

provided in pseudo-code in Algorithm 1.

Algorithm 1 Audsley’s Optimal Priority Assignment algorithm for single-core mixed-
criticality systems.

Input: THI = τ1, . . . , τn,TLO = τ1, . . . , τl with T := THI ∪TLO

Output: T with optimal priority assignment or Unschedulable

procedure Find Priority Assignment(THI = τ1, . . . , τn,TLO = τ1, . . . , τl with T := THI ∪TLO)
for (i = 1; i ≤ n; i := i+ 1) do

T∗ := ∅
if (IsSchedulable(T∗ ∪ τ1, τ1 ∈ TLO, prio(τ1) := n) then

T∗ := T∗ ∪ τ1,TLO := TLO\τ1
else if (IsSchedulable(T∗ ∪ τ1, τ1 ∈ THI , prio(τ1) := n) then

T∗ := T∗ ∪ τ1,THI := THI\τ1
else

return Unschedulable

Furthermore, it was shown by Baruah and Vestal [5] in 2008 that fixed-priority schedul-

ing is not dominated by earliest-deadline-first (EDF) scheduling with regard to mixed-

criticality systems, but rather ranks behind, since there exist feasible systems which are

not schedulable under the EDF policy [6]. On that score and due to the fact that the

later introduced Systems with Dynamic Real-Time Guarantees model (cf. 4) by von der

Brüggen et al. [24] considers fixed-priority scheduling only, this overview shall be confined

to the delineation of fixed-priority scheduling for mixed-criticality systems.



12 3. Mixed-Criticality Systems

Referring to fixed-priority scheduling for mixed-criticality systems, three different con-

cepts protrude in academic research, namely, strategies based on the usage of response-time

analysis, methods employing slack scheduling and those performing period transforma-

tions [6], whereat the latter issues shall solely be treated as marginal at this point.

A weak point of Vestal’s basic approach consists in the necessity to evaluate high-

criticality tasks as well as low-criticality tasks as if they were equally situated on the

high-criticality level, which leads to a restriction in terms of resource usage. However, an

improvement can be achieved by applying execution time monitoring as well as mecha-

nisms to impede the exceeding of execution time budgets [6] (cf. 1.1). Vestal’s approach

was further developed in 2011, culminating in a scheduling and dedicated analysis model

which outperforms all antecedent attempts relating to fixed-priority scheduling on mixed-

criticality systems. Either way, in the course of this just as in the vast majority of subse-

quent publications, dual-criticality systems are considered, which evince one key charac-

teristic. In fact, all low-criticality tasks are dropped or at least neglected in case any task

violates its execution time restriction.

Having illustrated the development in response-time analysis based fixed-priority schedul-

ing, the residual aforementioned approaches will be briefly adumbrated. In point of fact,

the so-called slack scheduling provides an alternative solution for scheduling periodic dual-

criticality task systems, as low-criticality task instances are executed in the slack induced

by those evincing high-criticality properties, but exhibits a weak point when considering

sporadic tasks, since it is difficile to determine when the slack of a non-appearing sporadic

task can be assigned to a low-criticality task’s instance [6]. Another concept attempts

to gain advantage of splitting tasks into two or more subtasks, which are individually

assigned new modified deadlines. Notwithstanding, due to the excessive overhead engen-

dered by frequent context switches, this approach is not deemed beneficial with respect

to single-core scheduling [6], but is revived regarding the research on multicore scheduling

(cf. 5) and will be turned into account later on in this thesis (cf. 6.3.1, 6.3.2).

Apart from the outlined concepts, also other strategies are pursued in the academic

research landscape, but, however, these are not necessarily conducive to this thesis and

will be omitted on this occasion. Nevertheless, a detailed overview can be found in [6].

3.3. Mixed-Criticality Systems in Practice

Having gained an insight into the current state of research on fixed-priority scheduling

on single-core mixed-criticality systems, it becomes evident that all above approaches,

especially to dual-criticality systems, exhibit the same weaknesses, which are a major

point of criticism to many system engineers in the industry [6]. On the one hand, it is

a matter of fact that as soon as a system enters the high-criticality mode, low-criticality

tasks are discarded, but, however, since these tasks still evince a certain importance, a



3.3. Mixed-Criticality Systems in Practice 13

basic service level should be provided anyway. On the other hand, the possibility should

be offered to return from high criticality to low criticality mode at some point of time in

which the proper system functioning can be resumed, in particular with respect to systems

designed for a long operating lifetime [6].

As a solution to these issues, von der Brüggen et al. [24] provide the System with Dy-

namic Real-Time Guarantees model, which will be introduced in the subsequent chapter.





4. Systems with Dynamic Real-Time

Guarantees

As alluded to earlier, the occurrence of faults in mixed-criticality systems may provoke a

system mode change from a low-criticality system mode to a higher one. More precisely, as

soon as a faulty computation result is identified by a dedicated fault detection mechanism,

the criticality mode is increased and a fault recovery routine is employed, namely, the

particular task instance is either partially or completely re-executed. The major share of

approaches disclosed by the academic research community follows the concept of neglecting

low-criticality tasks in such cases in order to guarantee the satisfaction of higher-criticality

tasks’ timing properties, regardless of the faulty task’s increased demand of execution time

(cf. 3).

In their paper, von der Brüggen et al. [24] remark that owing to the employment of

fault prevention strategies with respect to hardware as well as to software, fault occurrence

should not be considered a common case in mixed-criticality systems. On that score, low-

criticality tasks should neither be neglected nor aborted under such circumstances, but

should rather proceed in execution, provided that all high-criticality tasks meet their

respective deadlines. Pursuing this strategy, the obtained results of low-criticality tasks

can still prove to be satisfactory in usage, despite their lateness.

With respect to their Systems with Dynamic Real-Time Guarantees model, von der

Brüggen et al. [24] do not conventionally consider high- and low-criticality tasks, but

instead focus on the particular tasks’ timing requirements. Hence, a set of so-called timing

strict tasks (casually denoted as hard tasks) as well as one of timing tolerable tasks (casually

denominated soft tasks) is established. The former are obliged to comply with their

respective timing properties in any event and can be regarded as a counterpart to the

high-criticality task set in common dual-criticality systems, whereas the latter serve as

an equivalent to the regular low-criticality tasks, which may violate some deadlines when

executed in the high-criticality mode, but, nevertheless, should evince bounded tardiness.

Furthermore, unlike the majority of mixed-criticality systems proposed by academia

(cf. 3), the System with Dynamic Real-Time Guarantees model enables a system to return

from high- to low-criticality mode as soon as the normal system behavior is restored and,

thus, its proper functioning is endangered no longer.



16 4. Systems with Dynamic Real-Time Guarantees

Due to the presupposition that faults occur quite infrequently, von der Brüggen et al.

provide an offline verified fixed-priority preemptive scheduling strategy instead of a cost-

intensive online scheduling policy. Merely an online monitoring mechanism is required to

observe the system’s overall timeliness, subject to the condition that the prerequisites for

establishing a System with Dynamic Real-Time Guarantees are fulfilled.

In the following, the Systems with Dynamic Real-Time Guarantees model shall be

introduced in detail according to von der Brüggen et al. [24], beginning with the specified

task model (cf. 4.1), proceeding with the concrete system model (cf. 4.2) as well as with

the applied schedulability test (cf. 4.3) and finally depicting an optimal priority assignment

(cf. 4.4).

4.1. Task Model

The task set T considered in the Systems with Dynamic Real-Time Guarantees model

consists of a finite collection (τ1, . . . , τn), with n ∈ N, of independent mixed-criticality

sporadic tasks executed on a single processor.

Each task τi = (Ti, Di, C
N
i , C

A
i ) is characterized by a minimum inter-arrival time Ti, a

relative deadline Di and two distinct worst-case execution times CNi and CAi . The task

sets contemplated are either constrained- or implicit-deadline task sets, i.e., Di ≤ Ti or

Di = Ti, respectively.

Since the System with Dynamic Real-Time Guarantees model presumes a dual-criticality

system, a task τi can be executed in two different execution modes, which have an impact

on the task’s worst-case execution time. Accordingly, the task’s plain, flawless execution

time (plus the amount of time required for fault detection) is denoted CNi or worst-case

execution time under normal execution. In this case of normal execution, the task is said

to be executed in normal mode. Otherwise, the task is indicated to be in abnormal mode,

whereat its worst-case execution time under abnormal execution, which comprises the nor-

mal worst-case execution time and, additionally, the amount of time necessary for fault

recovery, is termed CAi . Thus, it always holds that CAi ≥ CNi . The exact runtime of the

fault recovery routine depends on the particular re-execution mode and is not relevant at

this point, but will be explored when broaching the issue of experiments (cf. 7). However,

if a certain number of tasks is executed in abnormal mode, the system can be informally

declared to be abnormal or in abnormal mode.

Due to the fact that the System with Dynamic Real-Time Guarantees model assumes

at least a few timing strict tasks to be eminently safety-critical, i.e., a deadline miss

engenders hazardous consequences, neither modifications in terms of the tasks’ release

rate nor regarding the deadline are admissible, which results in the assignment of uniform

deadlines in normal and abnormal mode.



4.2. System Model 17

The utilization of a task τi in normal mode, termed normal utilization, is denoted by

UNi =
CNi
Ti

, while, analogously, its utilization in abnormal mode, referred to as abnormal

utilization, is described by UAi =
CAi
Ti

. Hence, the system utilization is qualified by UNsum =∑
{τi∈T} U

N
i in normal mode and by UAsum =

∑
{τi∈T} U

A
i in abnormal mode. Moreover,

the response time of the j -th instance of task τi is referred to as Ri,j , its worst-case response

time as RNi and RAi in normal as well as in abnormal mode, respectively. A job’s tardiness

is denoted by Ei = RAi −Di.

4.2. System Model

The System with Dynamic Real-Time Guarantees model distinguishes between timing

strict tasks, denoted as TA
hard, and timing tolerable tasks, identified as TA

soft, whereby

the partition of T into TA
hard and TA

soft is assumed to be given. If for all active tasks a

flawless execution can be guaranteed, provided that no further faults occur, the system is

denoted as system with full timing guarantees. Otherwise, if only the timing strict tasks’

timeliness can be assured, it is referred to as a system with limited timing guarantees.

Henceforth, the formal specifications of a System with Dynamic Real-Time Guarantees

as introduced by von der Brüggen et al. are presented.

Definition 1 (System with Dynamic Real-Time Guarantees [24]).

Consider a set of T tasks under a fixed-priority scheduling. A job of task τi ∈ T cannot

start its execution until all the jobs of task τi that arrived earlier are completed. The jobs

of all tasks always have to be executed and cannot be aborted.

If the system runs with full timing guarantees, then the hard real-time guarantees hold for

each task:

• T: Each task τi ∈ T must meet the hard relative deadline.

If the system runs with limited timing guarantees, the service level guarantees are down-

graded from hard real time guarantees to bounded tardiness for some of the tasks:

• TA
hard ⊆ T: Each task τi ∈ TA

hard is required to meet the hard relative deadline.

• TA
soft ⊆ T: Each task τi ∈ TA

soft must have bounded tardiness, i.e., 0 ≤ Ei < γ for

some fixed value γ.

Each task in T has to be placed either in TA
hard or in TA

soft, thus TA
hard ∩ TA

soft = ∅ and

TA
hard ∪TA

soft = T.

In conformity with von der Brüggen et al. [24], a task set T is termed feasible or feasibly

schedulable as a System with Dynamic Real-Time Guarantees, if the conditions providing

full timing guarantees as well as those ensuring limited timing guarantees hold for the

given partitioning and priority order. Such fixed priority ordering of a task set is denoted

by P , with P (τi) describing the priority of task τi, while P (τi) < P (τj) when τi has higher

priority than τj .



18 4. Systems with Dynamic Real-Time Guarantees

According to von der Brüggen et al. [24] shall be defined:

• hp(τk) as the set of tasks having higher priority than τk,

• hep(τk) = hp(τk) ∪ τk,
• lp(τk) as the set of tasks having lower priority than τk and

• ΘA
soft := {τi ∈ TA

soft | τi ∈ hp(τj), τj ∈ TA
hard}.

4.3. Schedulability Test

Considering a task set T with a given partition into TA
hard and TA

soft and a fixed-priority

order P, T can be identified as a System with Dynamic Real-Time Guarantees, provided

that it is scheduled according to P and the following conditions hold [24]:

1. Each task τi ∈ T meets its hard deadline if all tasks are executed in the normal

mode.

2. Each task τi ∈ TA
hard meets its hard deadline if some (or all) tasks are executed in

the abnormal mode.

3. Each task τi ∈ TA
soft has a bounded tardiness if some (or all) tasks are executed in

the abnormal mode.

The schedulability of a task set with constrained deadlines T scheduled according to a

fixed-priority strategy can be examined by applying Time Demand Analysis (TDA) [20],

which is an exact, pseudo-polynomial runtime schedulability test with respect to one spe-

cific task τk, subject to the condition that the priority ordering P is given and hp(τk) has

already been proven to be schedulable. If TDA holds not only for one τk but for all τk ∈ T,

T is avouched to be schedulable (by a fixed-priority scheduling policy complying with P).

Definition 2 (Time Demand Analysis [20]).

τk is schedulable if the following equation holds:

∃t with 0 < t ≤ Dk and Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (4.1)

Against this backdrop, three conditions whose fulfillment serves as a prerequisite for a

System with Dynamic Real-Time Guarantees can be defined (a proof is provided by von

der Brüggen et al. [24]).

Theorem 1 (Exact Schedulability Test for Constrained Deadlines [24]).

For a given fixed priority ordering P, a task set T is a System with Dynamic Real-Time

Guarantees as defined in 1, if the following three conditions hold:

1. Full timing guarantees hold if T can be scheduled according to Time Demand Analysis

(TDA) [20] when all tasks are executed in the normal mode, i.e., Ci = CNi ∀ τi.



4.4. Optimal Priority Assignment 19

2. When the system runs with limited timing guarantees all τi ∈ TA
hard will meet their

hard deadlines if they can be proven to be schedulable by TDA [20] when all tasks are

executed in the abnormal mode, i.e., Ci = CAi ∀ τi.
3. Each task τi ∈ TA

soft has bounded tardiness if UAsum ≤ 1.

Since von der Brüggen et al. [24] expect faults to emerge very rarely, a system utilization

of UAsum > 1 in case of fault occurrence is considered to be acceptable for short instants,

if UNsum < 1 and if faulty intervals of time are substantially shorter than the flawless ones.

This follows from the fact that if fault bursts are assumed to only have an impact on a

small amount of jobs by contrast with the number of jobs in the interim, the fault-free

time is supposed to be sufficient for the system to return to full timing guarantees after

each fault burst. Relatedly, if faults are expected to occur with a certain rate, limited

timing guarantees are maintained for a longer interval of time only in case the given rate

is reasonably high.

4.4. Optimal Priority Assignment

After having eludicated the necessary conditions for establishing a System with Dynamic

Real-Time Guarantees under a given priority order, the issue of composing such an optimal

priority assignment shall be addressed hereinafter.

In their paper, von der Brüggen et al. [24] prove that neither a deadline-monotonic nor a

criticality-monotonic priority assignment is optimal for a System with Dynamic Real-Time

Guarantees [24]. However, Audsley’s Optimal Priority Assignment algorithm (cf. 3.2) is

applicable with regard to finding a feasible priority order in case the employed schedula-

bility test is OPA-compatible, in other words, if the following conditions hold [24] [9]:

1. The schedulability of a task τk, according to the applied test, may be dependent on

the set of hp(τk), but not on the relative priority ordering of hp(τk).

2. The schedulability of a task τk, according to the applied test, may be dependent on

the set of lp(τk), but not on the relative priority ordering of lp(τk).

3. When the priorities of any two tasks of adjacent priority levels are swapped, the task

being assigned to the higher priority cannot become unschedulable according to the

applied test, if it was previously schedulable at the lower priority.

By means of these requirements, von der Brüggen et al. [24] show that the schedulability

test employed in the course of the System with Dynamic Real-Time Guarantees model

(cf. 4.3) is OPA compatible and therefore can be availed in the context of Audsley’s

algorithm [24]. The optimal priority assignment algorithm for Systems with Dynamic

Real-Time Guarantees proposed by von der Brüggen et al. [24] is portrayed in pseudo-

code in Algorithm 2 and proceeds similarly to the OPA algorithm for mixed-criticality

systems introduced by Vestal [23] (cf. 3.2). In the following, it will be referred to as



20 4. Systems with Dynamic Real-Time Guarantees

procedure Find Optimal Priority Assignment(T), where the partition of T into

TA
hard and TA

soft is considered to be given.

Algorithm 2 Feasible Priority Assignment Algorithm by von der Brüggen et al. [24]

Input: TAhard, TAsoft

Output: Feasible Order P of TAhard ∪TAsoft or Not Possible

Sort TAhard by Di increasingly

Sort TAsoft by Di increasingly

Find Assignment(TAhard, TAsoft)

procedure Find Assignment(TAhard, TAsoft)

for (n = |TAhard ∪TAsoft|; n > 0; n := n− 1) do

τt := last element of TAhard

if (Try Priority(τt,
{
TAhard ∪TAsoft

}
\ {τt},n,hard)) then

P (τt) := n
TAhard := TAhard\ {τt}

else
τt := last element of TAsoft

if (Try Priority(τt,
{
TAhard ∪TAsoft

}
\ {τt},n,soft)) then

P (τt) := n
TAsoft := TAsoft\ {τt}

else
return Not Possible

return List of TAhard ∪TAsoft ordered by P (τt)

procedure Try Priority(τt, hp(τt), priority, task type)
P (τt) := n
Assign hp(τt) to priorities 1, . . . , n− 1
if (task type==hard) then

Ci := CAi , ∀τi ∈ hp(τt) ∪ τt
else

Ci := CNi , ∀τi ∈ hp(τt) ∪ τt
if (τt is schedulable according to TDA) then

return true
else

return false

Since by means of the System with Dynamic Real-Time Guarantees model of von

der Brüggen et al. [24] a possibility has been suggested to circumvent the weaknesses of

common approaches to mixed-criticality scheduling, as manifested in 3, the main question

of this thesis takes shape at this point, namely, if and how the concept of von der Brüggen

et al. [24] can be transferred onto multiprocessor systems. For this purpose, the topic

of multicore real-time scheduling will be thoroughly examined in the subsequent chapter

(cf. 5), before novel approaches and solutions will be submitted in 6.



5. Multicore Fixed-Priority Scheduling

When turning towards the subject of multiprocessor scheduling, many aspects have to

be taken into account. Regarding fixed-priority scheduling policies, not only a priority

assignment has to be established, but, besides, the decision has to be made, which task to

execute on which processor. Moreover, dependencies between different tasks or subtasks

are obliged to be factored in when trying to solve this problem. Not least, the processors’

properties and specifications must be included. However, in this thesis only homogeneous

multiprocessor systems will be considered, i.e., all processors are identical and therefore

exhibit the same execution rate. The contemplated task sets will, in general, not include

any task dependencies, unless it is explicitly emphasized (cf. 6.3.1, 6.3.2).

In terms of multicore scheduling for real-time systems, three different approaches are

commonly employed in academia as well as in the industry: global scheduling, partitioned

scheduling and semi-partitioned scheduling. Applying the partitioned scheduling concept,

two steps need to be performed, namely, the establishment of a partition of all given tasks

onto a set of processors as well as the formation of a priority order, whereat each subset of

tasks pertaining to one specific processor can be interpreted as an individual uniprocessor

system. The global scheduling paradigm, in contrast, perceives the system en bloc, so

that only one global queue of jobs that are ready for execution needs to be managed,

whilst task instances are permitted to be preempted from one processor and to proceed in

execution on another processor later on. Nevertheless, this strategy will not be adopted

in this thesis, thus, further details will be omitted. Combining aspects of both partitioned

and global scheduling, the semi-partitioned scheduling policy is a hybrid approach, which

in the first instance allocates tasks to particular processors, but, nevertheless, allows a

certain subset of tasks to migrate between processors.

Subsequently, the partitioned as well as the semi-partitioned scheduling approach will

be expounded more precisely.

5.1. Partitioned Scheduling

When engaging with the partitioned scheduling approach for multicore systems, two dis-

tinct problems have to be solved. In the first place, it is necessary to partition the given

task set into disjunct subsets, so that each task τi ∈ T is permanently assigned to one

specific processor which is in charge of its execution, since no migration of tasks between



22 5. Multicore Fixed-Priority Scheduling

processors is permitted with respect to this concept. As a second step, a priority level has

to be determined for each task in each subset of T, which must not change prospectively

due to the fact that a fixed-priority scheduling policy is considered.

The greatest benefit of applying partitioned scheduling is the fact that the multipro-

cessor scheduling problem is reduced into a set of uniprocessor scheduling problems as

soon as the task partitioning stage is completed [10], but, nevertheless, the allocation of

tasks to processors is proven to be NP-hard [14], since it is analogous to the bin-packing

problem [10].

Based on the problem formulation by Lakshmanan et al. [19], a brief description of

the classical bin-packing problem shall be given at this point. A set of n objects Oi with

1 ≤ i ≤ n, n ∈ N, where the size of each object is located in the range between 0 and 1,

is supposed to be packed into a set of m bins Bj with 1 ≤ j ≤ m,m ∈ N, of capacity 1,

subject to:

∀ j (1 ≤ j ≤ m)
∑

∀ Oi∈Bj

Si ≤ 1

For a given bin-packing problem instance, the average size AS is defined as:

AS =
1

m

n∑
i=1

Si

Since the worst-case size bound SB is formed by the greatest lower bound on the aver-

age size of all unsolvable bin-packing problems, there exists a solution for a bin-packing

problem instance with AS ≤ SB [19].

As a method of resolution to partitioned scheduling in terms of implicit-deadline task

sets, it is a frequent practice in academia to apply approximation algorithms in the shape of

bin-packing heuristics such as First-Fit (FF), Arbitrary-Fit (AF), Best-Fit (BF), Worst-

Fit (WF), or Decreasing Utilization (DU) etc. in combination with a rate-monotonic

priority order on each processor, as gathered and discussed in the survey by Davis and

Burns [10]. To solve the problem of scheduling constrained-deadline sporadic task sets,

i.e., Di ≤ Ti ∀ τi ∈ T, on the other hand, the deadline-monotonic partitioning algorithm

introduced by Baruah and Fisher [4] is well-known, which is a polynomial-time algorithm

derivated from the First-Fit heuristic [17] for bin-packing [4], applicable for fixed-priority

scheduling provided that an appropriate schedulability test is used [8].

In the course of deadline-monotonic partitioning, the tasks of task set T will be pre-

liminarily assumed to be ordered non-decreasingly with regard to their relative deadlines,

i.e., Di ≤ Di+1 ∀ i with 1 ≤ i ≤ m and m = |T|. Once such a deadline-monotonic order is

constructed, each task τi ∈ T is assigned to the first processor that satisfies the respective

schedulability condition [4]. If the schedulability test does not hold for any processor, the

task set is identified to be not schedulable on the particular multicore system. By way



5.2. Semi-Partitioned Scheduling 23

of illustration, the algorithm is portrayed in pseudo-code (the notation is aligned with

the general notation used in this thesis) in Algorithm 3 according to [4], not putting the

schedulability condition into concrete terms, since the issue of a suitable schedulability

test will be discussed in 6.2.1.

Algorithm 3 Deadline-Monotonic Partitioning [4]

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: Partitioning Succeeded or Partitioning Failed

procedure Partition(T, p) The collection of sporadic tasks T = {τ1, . . . , τn} is to be partitioned on
m identical, unit-capacity processors (i.e., each processor can be modeled as a bin of capacity 1). (Tasks
are indexed according to non-decreasing value of relative deadline parameters Di ≤ Di+1 for all i.) Tp

denotes the tasks assigned to processor p; initially Tp := ∅ for all p.

for (i = 1; i ≤ n; i := i+ 1) do
i ranges over the tasks, which are indexed by non-decreasing value of the deadline parameter
for (p = 1; p ≤ m; p := p+ 1) do

p ranges over the processors, considered in any order
if (τi satisfies the schedulability condition) then

assign τi to Tp; proceed to next task
Tp = Tp ∪ {τi} break

if (p > m) then return Partitioning Failed

return Partitioning Succeeded

By virtue of the fact that implicit-deadline task sets form a subset of constrained-

deadline task sets, only the latter will be considered concerning the development of a

System with Dynamic Real-Time Guarantees model for multicore systems under a parti-

tioned approach (cf. 6.2).

5.2. Semi-Partitioned Scheduling

After having touched upon the partitioned scheduling approach for multiprocessor systems,

a hybrid concept, the so-called semi-partitioned scheduling, shall be addressed, by means

of which variegated aspects pertaining to global as well as to partitioned scheduling are

combined. Analogously to the partitioned paradigm, the semi-partitioned method requires

a partitioning of the task set into disjunct subsets, which are allocated to certain processors.

In contrast to the fully partitioned scheme, this hybrid approach does not entirely interdict

task migration, but permits a specified amount of tasks to migrate between processors.

In terms of task migration, also the notion of task splitting is used frequently, since

what is commonly understood as a splitting operation is nothing else than suspending the

execution of a task on one processor and resuming it on another one. This action can be

performed several times, until the task is finalized. A majority of research results proposes

strategies which pursue this strategy such as the paper of Kato and Yamasaki [18], who

introduce the Deadline Monotonic with Priority Migration (DM-PM) algorithm, which

shall be briefly sketched.



24 5. Multicore Fixed-Priority Scheduling

When applying the Deadline Monotonic with Priority Migration algorithm, the attempt

is made to partition the given task set T by the use of bin-packing heuristics (cf. 5.1).

However, if for one task τi no suitable processor can be found, the task set is not declared

unfeasible, but instead is shared between multiple processors. The splitting points are

chosen in such a manner that each processor receiving a subtask of τi has no spare capacity,

except possibly that one obtaining the last part of the task. Under any circumstances,

it is necessary to ensure that no task is executed by more than one processor at the

same time. For this reason, Kato and Yamasaki imposed particular conditions: First,

a shared task is obliged to be scheduled on the highest priority level on each processor.

Second, every instance of a shared task is required to be released on the processor with

lowest index and should migrate successively to the next core as soon as the processor’s

execution capacity is exhausted. All regular tasks, i.e., such tasks that do not migrate

between disparate processors but are strictly allocated, are scheduled in compliance with

the deadline-monotonic scheduling policy [18].

Apart from that, an enhancement of the DM-PM algorithm was introduced by Lakshma-

nan et al. [19], namely, the Partitioned Deadline-Monotonic Scheduling under deadline-

monotonic priority assignments, when used with Highest-Priority Task-Splitting, short

(PDMS HPTS). In contrast to DM-PM, when no appropriate processor can be detected

for a task τi, not τi itself but the considered processor’s highest-priority is split, i.e., dis-

tributed across several processors, such that τi can be allocated to the respective core.

Moreover, an already shared task is permitted to be split again if it is executed on the

actual processor’s highest priority level [19].

The greatest benefit of the illustrated approaches is the increase in acceptance rates of

task sets in contrast to fully partitioned strategies due to the matter of fact that by means

of task splitting the fragmentation, which might emerge as a consequence of employing

bin-packing heuristics, is reduced and the processors’ capacity is seized as far as possible.

Nevertheless, besides the motivation to share a task which cannot be completely affiliated

by any processor, there exists another kind of task migration, as eludicated by Xu and

Burns [25], who propose to migrate a certain amount of tasks from one processor to another

if a criticality mode change occurs on the contemplated core. More precisely, Xu and

Burns consider two different worst-case execution times for each task, Ci(LO) and Ci(HI)

(cf. 3.1), whereat low-criticality tasks are never permitted to overshoot their respective

Ci(LO). However, as soon as a high-criticality task exceeds its Ci(LO), the criticality

mode is increased and all low-criticality migrate to another processor, subject to the

permanent condition that all tasks, regardless of their criticality, remain schedulable [25].

Both strategies outlined above will be considered in this thesis, though targeting dif-

ferent objectives. After attempting to establish a multiprocessor version of the System

with Dynamic Real-Time Guarantees model employing partitioned scheduling strategies,

the aim will be pursued to enlarge the number of accepted task sets by sharing task across



5.2. Semi-Partitioned Scheduling 25

processors (cf. 6.3.1, 6.3.2). To follow another intention, the paradigm of Xu and Burns

will be adopted thereafter, firstly, to create a failure-proof version of the multicore variant

of a System with Dynamic Real-Time Guarantees (cf. 6.3.3), and secondly, to reduce the

bounded tardiness of timing tolerable tasks (cf. 4) if for any reason all tasks on one or

more processors are executed in abnormal mode (cf. 6.3.4).





6. Multicore Systems with Dynamic

Real-Time Guarantees

After having provided the fundamentals of real-time systems in general (cf. 2) as well as

of mixed-criticality systems in particular (cf. 3), having depicted the System with Dy-

namic Real-Time Guarantees model as proposed by von der Brüggen et al. [24] (cf. 4) and

having introduced the two main approaches to multiprocessor fixed priority scheduling

(cf. 5), an attempt shall be made hereinafter to transfer the System with Dynamic Real-

Time Guarantees paradigm onto a multiprocessor environment, taking into consideration

the previously discussed strategies. In order to attain this objective, the system model

of a so-called Multicore System with Dynamic Real-Time Guarantees will be defined sub-

sequently (cf. 6.1) with the intention to develop a guiding principle which to fulfill shall

be the aim of ensuing deliberations. Hence, in the first place, the topic of partitioned

scheduling will be addressed (cf. 6.2), whereat several bin-packing strategies will be pre-

sented by means of which a Multicore System with Dynamic Real-Time Guarantees can

be established. Thereafter, to provide the opportunity to feasibly schedule more task sets

than by the use of outright partitioned methods, these approaches will be enhanced by en-

abling task splitting, availing the concept of Kato and Yamasaki [18] (cf. 6.3.1) as well as

that of Lakshmanan et al. [19] (cf. 6.3.2). Furthermore, for the purpose of granting failure

safety for a respective system, the strategy of Xu and Burns [25] will be pursued (cf. 6.3.3)

permanently migrating all tasks from one or more defective cores to the remaining func-

tional processors. Additionally, in order to reduce the tardiness of a certain subset of

timing tolerable tasks on a processor exhibiting completely erroneous behavior, e.g. due

to electromagnetic interference, a temporary migration strategy is discussed (cf. 6.3.4).

Not least, the offered concepts will be assessed and verified in practice by illuminating the

results of comprehensive experiments in the next chapter (cf. 7).

6.1. System Model

Henceforth, the Multicore System with Dynamic Real-Time Guarantees model will be

introduced, whereat a homogeneous multiprocessor environment will be considered, i.e.,

all processors pertaining to the particular system are identical and therefore exhibit the

same execution rate. The contemplated task set will be assumed to have constrained



28 6. Multicore Systems with Dynamic Real-Time Guarantees

deadlines, since implicit-deadline task sets form a subset of constrained-deadline task sets,

and to evince no dependencies between tasks unless it is explicitly emphasized. Moreover,

analogously to the System with Dynamic Real-Time Guarantees approach by von der

Brüggen et al. [24], only preemptive fixed-priority scheduling policies will be taken into

account.

With respect to the system model, the task partitioning as well as the specific priority

order regarding each particular task subset (also termed subsystem) Tp is assumed to be

given at this juncture.

Definition 3 (Multicore System with Dynamic Real-Time Guarantees).

Consider a set of tasks T = τ1, . . . , τn with n ∈ N, partitioned to a set of m homogeneous

processors with m ∈ N, whereas the set of tasks Tp with 0 < p ≤ m pertaining to each

processor is sorted according to a fixed-priority order Pp. A job of task τi ∈ Tp with

0 < i ≤ n cannot begin its execution until all jobs of task τi that arrived earlier are

completed. Furthermore, the jobs of all tasks always have to be finalized and must never

be aborted.

Each task set Tp allocated to a processor with index p forms an individual System with

Dynamic Real-Time Guarantees called Subsystem of a Multicore System with Dynamic

Real-Time Guarantees or short subsystem.

A system S with subsystems Tp is a Multicore System with Dynamic Real-Time Guar-

antees if and only if each subsystem Tp satisfies the characteristics of a System with

Dynamic Real-Time Guarantees at any point of time.

If a subsystem Tp runs with full timing guarantees, then hard real-time guarantees hold

for each task allocated to a processor with index p:

• Tp: Each task τi ∈ T assigned to a processor with index p is obliged to meet its

hard relative deadline.

If a subsystem Tp runs with limited timing guarantees, the service level guarantees are

downgraded from hard real-time guarantees to bounded tardiness for some of the tasks:

• TA
p,hard ⊆ Tp: Each task τi ∈ TA

p,hard assigned to a processor with index p is required

to meet its hard relative deadline.

• TA
p,soft ⊆ T: Each task τi ∈ TA

p,soft assigned to a processor with index p must have

bounded tardiness, i.e., 0 ≤ Ei < γ for some fixed value γ.

Each task in T has to be placed either in TA
hard or in TA

soft, thus TA
hard ∩ TA

soft = ∅
and TA

hard ∪ TA
soft = T. Furthermore, each task in T has to be assigned to exactly one

processor with index p, hence T1 ∩T2 ∩ · · · ∩Tp = ∅ and T1 ∪T2 ∪ · · · ∪Tp = T.

If the system S runs with full timing guarantees, then every subsystem Tp runs with

full timing guarantees.

If the system S runs with limited timing guarantees, then at least one subsystem Tp

runs with limited timing guarantees.



6.2. Partitioned Approach 29

6.2. Partitioned Approach

Since the definition of a Multicore System with Dynamic Real-Time Guarantees is given

above, on this occasion the question shall be answered, how to establish a Multicore

System with Dynamic Real-Time Guarantees. On that score, a number of algorithms will

be presented hereinafter, partially availing classical bin-packing heuristics and partially

modifying suchlike. Before turning to the actual most challenging, NP-hard problem

of task partitioning, the issue of finding a suitable schedulability test will be discussed.

Thereafter, the subject of constructing a priority order for each particular subsystem will

be raised, due to the fact that this course of action will be identical with regard to each

particular partitioned scheduling algorithm.

6.2.1. Schedulability Test

Before making the actual task partitioning a subject of discussion, a closer look shall

be taken at how to determine if a task set T is schedulable, owing to the fact that this

examination will play a not negligible role when deciding if a specific task τi is assigned

to a certain processor with index p and thus integrated into a subsystem Tp or not.

Since a Multicore System with Dynamic Real-Time Guarantees consists of several sub-

systems satisfying the characteristics of a System with Dynamic Real-Time Guarantees,

there is no need to apply a global schedulability test encompassing the union of all pro-

cessors with their respective task sets T1 ∪T2 ∪ · · · ∪Tp = T, but it is rather possible to

adopt the schedulability test presented by von der Brüggen et al. [24] (cf. 4.3) in such a

manner that it is employed with respect to each processor separately. This property of a

Multicore System with Dynamic Real-Time Guarantees permits to establish the following

theorem.

Theorem 2 (Exact Schedulability Test for Multicore Systems with Dynamic

Real-Time Guarantees with Constrained Deadlines).

For a given partition of a task set T into subsystems T1, . . . ,Tm of S with m ∈ N, S is a

Multicore System with Dynamic Real-Time Guarantees defined in 3 if the following four

conditions hold:

1. Full timing guarantees hold for a subsystem Tp if it can be scheduled according to

Time Demand Analysis (TDA) [20] when all tasks are executed in the normal mode,

i.e., Ci = CNi ∀ τi ∈ Tp with 0 < i ≤ n, 0 < p ≤ m.

2. Full timing guarantees hold for S if full timing guarantees hold for each subsystem

Tp with 0 < p ≤ m.

3. When a subsystem Tp runs with limited timing guarantees, all τi ∈ Tp,hard will meet

their hard deadlines if they can be proven to be schedulable by TDA [20] when all

tasks are executed in the abnormal mode, i.e., Ci = CAi ∀ τi ∈ Tp.



30 6. Multicore Systems with Dynamic Real-Time Guarantees

4. When the Multicore System with Dynamic Real-Time Guarantees S runs with limited

timing guarantees, at least one subsystem Tp and at most all subsystems T1, . . . ,Tm

run with limited timing guarantees. In this case, all tasks of all subsystems run-

ning with full timing guarantees, if existent, meet their deadlines, whereas all tasks

τi ∈ Tp,hard of all subsystems Tp running with limited timing guarantees meet their

hard deadlines.

5. Each task τi ∈ Tp,soft of such subsystems Tp running with limited timing guarantees

has bounded tardiness if UAp,sum ≤ 1.

The proof makes use of the proof of 1 provided by von der Brüggen et al. [24] due to

the fact that a Multicore System with Dynamic Real-Time Guarantees S is composed by

a set of Systems with Dynamic Real-Time Guarantees Tp with 0 < p ≤ m,m ∈ N.

Proof.

1. Since a subsystem Tp equals a System with Dynamic Real-Time Guarantees, this

follows directly from the proof of 1 by von der Brüggen et al. [24].

2. This follows directly.

3. Since a subsystem Tp equals a System with Dynamic Real-Time Guarantees, this

follows directly from the proof of 1 by von der Brüggen et al. [24].

4. This follows directly.

5. Since a subsystem Tp equals a System with Dynamic Real-Time Guarantees, this

follows directly from the proof of 1 by von der Brüggen et al. [24]. 2

Analogously to the approach of von der Brüggen et al. [24] with respect to Systems

with Dynamic Real-Time Guarantees, regarding Multicore Systems with Dynamic Real-

Time Guarantees, a subsystem utilization of of UAp,sum > 1 in case of fault occurrence is

conceded if UNp,sum < 1 and if the duration of erroneous execution intervals is significantly

shorter than that of the intervals evincing fault-free execution.

6.2.2. Priority Order

After having introduced the appropriated system model of a Multicore System with Dy-

namic Real-Time Guarantees, the establishment of a priority order concerning all τi ∈ T

shall be studied more closely. Due to the fact that the multiprocessor scheduling prob-

lem is reduced into a set of uniprocessor scheduling problems once the task allocation is

completed (cf. 5.1), an individual priority order Pp can be defined for each subsystem Tp.

Since by means of the definition of a Multicore System with Dynamic Real-Time Guar-

antees (cf. 3) each subsystem Tp satisfies the characteristics of a System with Dynamic

Real-Time Guarantees anytime, the Feasible Priority Assignment Algorithm by von der



6.2. Partitioned Approach 31

Brüggen et al. [24] (cf. Algorithm 2) is applicable to all subsystems successively. Thus,

feasible fixed-priority orders P1, . . . , Pm can, if existent, be retrieved for T1, . . . , Tm.

6.2.3. Classical Bin-Packing Heuristics

Being aware of the procedure to create a feasible priority assignment, it is necessary to

engender the crucial prerequisites, namely, the partition of task set T into m subsys-

tems T1, . . . , Tm. For this purpose, several partitioning strategies will be introduced in

the following, beginning with classical bin-packing heuristics. Classical in this context is

tantamount to simple, since the particular subsystem’s task set in this event is contem-

plated in toto, whereby with respect to each approach only one fitting-strategy is applied.

In the course of this, each algorithm is explained in detail and additionally portrayed in

pseudo-code. Thereafter, enhanced bin-packing heuristics will be presented (cf. 6.2.4),

with regard to which in some instances timing strict and timing tolerable tasks are con-

sidered separately and, furthermore, occasionally more than one heuristic is utilized.

Deadline-Monotonic First-Fit Scheduling (DM FF)

The first and presumably most intuitive bin-packing heuristic to be addressed is the first-fit

(FF) strategy, whose fundamental idea is to assign each task to the first suitable proces-

sor, i.e., to the first processor concerning which it satisfies the respective schedulability

condition. Additionally, before commencing the actual allocation phase, the considered

subsystem’s tasks are preordered increasingly with respect to their particular deadlines,

i.e., τi < τj if Di < Dj , analogously to the proceeding in terms of the deadline-monotonic

partitioning algorithm by Baruah and Fisher [4] (cf. Algorithm 3). The applied schedu-

lability condition on this occasion is the schedulability test specified above, which was,

concerning uniprocessor systems, originally introduced by von der Brüggen et al. [24]

(cf. 4.3).

For clarification, the deadline-monotonic first-fit scheduling algorithm is given as pseudo-

code in Algorithm 4. In the procedure Find Assignment(T, S) (cf. Algorithm 4, l. 3)

an iteration over all τi ∈ T is performed, in the course of which the schedulability con-

dition is checked for each subsystem Tp plus the contemplated task (cf. Algorithm 4, l.

7). If the schedulability test holds, the task is assigned to the respective subsystem (cf.

Algorithm 4, l. 8), otherwise the task set is declared as unfeasible (cf. Algorithm 4, l. 12).

If all tasks have been successfully allocated to a subsystem Tp, the system S i.e., the task

partitioning as well as the respective priority orders for each subsystem, are returned (cf.

Algorithm 4, l. 13).



32 6. Multicore Systems with Dynamic Real-Time Guarantees

Algorithm 4 Deadline-Monotonic First-Fit (DM FF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Di increasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: assigned := false
6: for each TpinS do
7: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
8: Tp := Tp ∪ {τt}
9: T := T \ {τt}

10: assigned := true
11: break
12: if (assigned = false) then return Not Possible

13: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

Deadline-Monotonic Arbitrary-Fit Scheduling (DM AF)

The deadline-monotonic arbitrary-fit scheduling policy follows a similar idea as the deadline-

monotonic first-fit scheduling policy (cf. 6.2.3). Likewise, the deadline-monotonic parti-

tioning algorithm (cf. Algorithm 3) serves as a groundwork for this method, but accom-

plishing the modification that a task τi ∈ T is not assigned to the first processor for which

the schedulability test holds. In point of fact, the schedulability condition for τi ∈ T in

addition to a subsystem Tp is checked with respect to each single core, despite the out-

come of earlier tests (cf. Algorithm 5, ll. 7-8). Thereupon, the respective processor to

which τi is allocated is chosen randomly out of the set comprising all suitable processors

(cf. Algorithm 5, ll. 10-12). If the schedulability condition did not hold for any subsystem

Tp, the task set is identified as unfeasible (cf. Algorithm 5, l. 13).

Algorithm 5 Deadline-Monotonic Arbitrary-Fit (DM AF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Di increasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: S̄ := ∅
6: for each Tp ∈ S do
7: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
8: S̄ := S̄ ∪Tp

9: if S̄ 6= ∅ then
10: r := random element out of [1, |S̄|]
11: Tr := Tr ∪ {τt}
12: T := T\{τt}
13: else return NOT POSSIBLE
14: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp



6.2. Partitioned Approach 33

Deadline-Monotonic Best-Fit Scheduling (DM BF)

The deadline-monotonic best-fit scheduling policy makes use of the same main princi-

ple and schedulability test as the concepts explained before (cf. 6.2.3, 6.2.3). At this

point, the choice of the particular processor to which a task τi ∈ T is attached in case

the schedulability condition holds, is made with respect to a processor’s total utilization

UNp,sum :=
∑

τi∈Tp U
N
i . More precisely, the processor out of all suitable processors accord-

ing to the schedulability test which exhibits the maximum total utilization is selected to

affiliate τi. This processor is retrieved by means of the procedure Find Processor With

Max. Utilization(S, S∗) (cf. Algorithm 6, ll. 18-25), which successively calculates the

total utilization of each core available for the current task, i.e., each core which is not

contained in S∗, and returns the index of that one exhibiting the maximal load. If the

schedulability test holds concerning this specific processor (cf. Algorithm 6, l. 11), it re-

ceives the contemplated task (cf. Algorithm 6, l. 11), otherwise the processor is excluded

from the list of disposable processors as long as τi is not allocated to any subsystem by

adding it to the dedicated set S∗ (cf. Algorithm 6, l. 15). In this manner, namely, by

steadily choosing the processor with the maximum load, the processors are successively

filled to capacity. The exact procedure is depicted as pseudo-code in Algorithm 6.

Algorithm 6 Deadline-Monotonic Best-Fit (DM BF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Di increasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: S∗ := ∅
6: assigned := false
7: while (assigned = false) do
8: p := Find Processor with Max. Utilization(S, S∗)
9: if ( p = −1) then return Not Possible

10: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
11: Tp := Tp ∪ {τt}
12: T := T\{τt}
13: assigned := true
14: else
15: S∗ := S∗ ∪Tp
16: if (|S∗| = |S|) then return Not Possible

17: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

18: procedure Find Processor with Max. Utilization(S, S∗)
19: pbest := −1
20: Usum,best := 0
21: for (p := 1; p ≤ |S\S∗|; p := p+ 1) do
22: if (UNsum,p ≥ Usum,best) then
23: pbest := p
24: Usum,best := UNsum,p

25: return pbest



34 6. Multicore Systems with Dynamic Real-Time Guarantees

Deadline-Monotonic Worst-Fit Scheduling (DM WF)

In contrast to the aforementioned deadline-monotonic best-fit scheduling policy, the dead-

line-monotonic worst-fit strategy operates in an antithetical fashion. After preordering

the task set T increasingly with respect to the particular deadlines, the processor with

the minimum total utilization UNp,sum :=
∑

τi∈Tp U
N
i is chosen by the procedure Find

Processor With Min. Utilization(S, S∗) (cf. Algorithm 7, ll. 18-25) in order to

assign a task τi ∈ T and to achieve a balanced processor utilization. This method’s

detailed operating principle is visualized in Algorithm 7.

Algorithm 7 Deadline-Monotonic Worst-Fit (DM WF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Di increasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: S∗ := ∅
6: assigned := false
7: while (assigned = false) do
8: p := Find Processor with Min. Utilization(S, S∗)
9: if ( p = −1) then return Not Possible

10: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
11: Tp := Tp ∪ {τt}
12: T := T\{τt}
13: assigned := true
14: else
15: S∗ := S∗ ∪Tp
16: if (|S∗| = |S|) then return Not Possible

17: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

18: procedure Find Processor with Min. Utilization(S, S∗)
19: pbest := −1
20: Usum,best := 0
21: for (p := 1; p ≤ |S\S∗|; p := p+ 1) do
22: if (UNsum,p ≤ Usum,best) then
23: pbest := p
24: Usum,best := UNsum,p

25: return pbest

Decreasing Utilization First-Fit Scheduling (DU FF)

Deviating from the basic deadline-monotonic partitioning approach of Baruah and Fisher [4],

a utilization based variation modifying some of the preceding algorithms shall be sug-

gested in the following. To begin with, the decreasing utilization first-fit scheduling policy

is depicted. As the denotation suggests, this method follows the same principle as the

deadline-monotonic first-fit scheduling strategy, despite the fact that the task set T is

preordered decreasingly with regard to task utilization (cf. Algorithm 8, l. 1). This is

justified by the attempt to distribute the workload more evenly onto the processors than



6.2. Partitioned Approach 35

it, by intuition, appears to be possible employing a deadline-monotonic task preordering.

If this intuitive idea turns out to be correct and if more task sets prove to be schedulable

owing to the reduction of fragmentation achieved by this approach, will be examined in 7.

The exact algorithm is given in pseudo-code in Algorithm 8.

Algorithm 8 Decreasing Utilization First-Fit (DU FF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Ui decreasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: assigned := false
6: for each Tp ∈ S do
7: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
8: Tp := Tp ∪ {τt}
9: T := T\{τt}

10: assigned := true
11: break
12: if (assigned = false) then return Not Possible

13: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

Decreasing Utilization Arbitrary-Fit Scheduling (DU AF)

Pursuing the above approach, the decreasing utilization arbitrary-fit scheduling policy

exhibits the same behavior as the deadline-monotonic arbitrary-fit strategy (cf. 6.2.3)

except the fact that the task set T is preordered according to decreasing task utilization.

By reason of the strong resemblance to Algorithm 5, the DU AF algorithm is given in the

appendix as Algorithm 14.

Decreasing Utilization Best-Fit Scheduling (DU BF)

Analogously to the proceeding in 6.2.3 and 6.2.3, the decreasing utilization best-fit schedu-

ling strategy requires to initially preorder the task set T in terms of decreasing task

utilization and, in a second step, operates according to the best-fit bin-packing heuristic,

that is, in the same way as the DM BF policy, as shown in Algorithm 15.

Decreasing Utilization Worst-Fit Scheduling (DU WF)

Likewise, the decreasing utilization worst-fit scheduling method proceeds analogically to

the deadline-monotonic worst-fit scheduling policy (cf. 6.2.3), but requires, as the above

approaches, a task preordering with respect to decreasing task utilization, aiming to fulfill

the aforementioned objective. The algorithm is portrayed in pseudo-code in Algorithm 16.



36 6. Multicore Systems with Dynamic Real-Time Guarantees

6.2.4. Enhanced Bin-Packing Heuristics

After having touched upon standard bin-packing strategies and having sketched several

algorithms combining these with a deadline-monotonic or decreasing utilization based task

preorder, an enhancement of those shall be moved into the spotlight. In the following, a

number of approaches will be suggested, which do not consider the task set T as a whole,

but instead handle the timing strict and the timing tolerable task subsets successively,

beginning with the timing strict tasks (this proceeding is termed criticality-successive in

what follows). More specifically, both subsets are internally preordered either nondecrea-

singly with respect to their deadlines or regarding their utilization in a decreasing fashion.

In the first instance, the set of timing strict tasks TA
hard is allocated to the available

processors, followed by the set of timing tolerable tasks TA
soft, whereat not necessarily the

same fitting-strategy is applied to both subsets.

The underlying idea of this concept is to establish a different task allocation than

it can be achieved by standard bin-packing heuristics in order to reduce the processor

fragmentation. Since, in contrast to approaches attempting to distribute the task set en

bloc, not only one iteration is performed in the course of the task assignment, it should

be possible to retrieve a provisional task allocation after the iteration over TA
hard and to

fill in the timing tolerable tasks in a second iteration in such a manner that as little spare

capacity as possible is left on each processor.

As a consequence, by intuition, more task sets could be accepted as by means of stan-

dard bin-packing strategies, i.e., even task sets evincing a higher system utilization than

feasible by the use of the aforementioned policies could, in turn, be scheduled by these

enhanced bin-packing heuristics. If this intuitive idea proves to be practicable, will be

verified by experiments and discussed in 7 as soon as all paradigms aiming at the estab-

lishment of a Multicore System with Dynamic Real-Time Guarantees have been eludicated

in theory.

Criticality-Successive Deadline-Monotonic First-Fit Scheduling (CS DM FF)

The criticality-successive deadline-monotonic first-fit scheduling strategy evinces a similar

functionality as the deadline-monotonic first-fit scheduling policy, initially discussed in

6.2.3, with the sole difference that, in contrast to DM FF, this approach does not consider

the task set T as one unit but rather processes TA
hard and TA

soft successively. Initially,

the set of timing strict tasks TA
hard as well as the set of timing tolerable tasks TA

soft are

separately ordered with regard to their respective deadlines (cf. Algorithm 9, ll. 1-2).

Thereon, two iterations about the particular task subsets are performed, namely, over

TA
hard (cf. Algorithm 9, ll. 5-13) and over TA

soft (cf. Algorithm 9, ll. 14-22), whereat in

either case nothing else than the actual deadline-monotonic first-fit heuristic, as introduced



6.2. Partitioned Approach 37

in 6.2.3, is applied. If both iterations terminate successfully, the task set is determined to

be feasible under CS DM FF (cf. Algorithm 9, l. 23).

Algorithm 9 Criticality-Successive Deadline-Monotonic First-Fit (CS DM FF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort TAhard by Di increasingly

2: Sort TAsoft by Di increasingly

3: Find Assignment(TAhard, TAsoft, S)

4: procedure Find Assignment(TAhard, TAsoft, S)

5: for each τt ∈ TAhard do
6: assigned := false
7: for each Tp ∈ S do
8: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
9: Tp := Tp ∪ {τt}

10: TAhard := TAhard\{τt}
11: assigned := true
12: break
13: if (assigned = false) then return Not Possible

14: for each τt ∈ TAsoft do

15: assigned := false
16: for each Tp ∈ S do
17: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
18: Tp := Tp ∪ {τt}
19: TAsoft := TAsoft\{τt}
20: assigned := true
21: break
22: if (assigned = false) then return Not Possible

23: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

Criticality-Successive Deadline-Monotonic Arbitrary-Fit Scheduling (CS DM AF)

In analogous fashion to the previous approach, the criticality-successive deadline-monotonic

arbitrary-fit scheduling policy does not treat the task set T in its entirety like the deadline-

monotonic arbitrary-fit scheduling method discussed in 6.2.3, but contemplates TA
hard and

TA
soft in a consecutive way, whereat in each case the deadline-monotonic arbitrary-fit

policy, as explained in 6.2.3 is applied to the respective task subset. The exact way of

operating is illustrated in pseudo-code in Algorithm 17.

Criticality-Successive Deadline-Monotonic Best-Fit Scheduling (CS DM BF)

The criticality-successive deadline-monotonic best-fit scheduling policy, analogously to the

two strategies presented before (cf. 6.2.4,6.2.4), deals with TA
hard and TA

soft one by one

instead of contemplating T in total, in the course of which the best-fit bin-packing heuristic

(cf. 6.2.3) is applied to each subset successively. The concrete algorithm is given in

Algorithm 18.



38 6. Multicore Systems with Dynamic Real-Time Guarantees

Criticality-Successive Deadline-Monotonic Worst-Fit Scheduling (CS DM WF)

As the strategies outlined above, the criticality-successive deadline-monotonic worst-fit

scheduling policy considers timing strict and timing tolerable tasks in succession instead

of handling T at once, whereby in either iteration the worst-fit bin-packing heuristic (cf.

6.2.3) is employed with respect to each particular task subset. The algorithm is sketched

in pseudo-code in Algorithm 19.

Criticality-Successive Decreasing Utilization First-Fit Scheduling (CS DU FF)

In addition to the earlier introduced algorithms, also the utilization-based variation of

the criticality-successive deadline-monotonic first-fit scheduling approach (cf. 6.2.4 is sug-

gested, where TA
hard as well as TA

soft are not preordered in terms of their deadlines but

with respect to the particular task utilization (cf. Algorithm 10, ll. 1-2). Apart from

this only difference, the scheduling paradigm completely equals the criticality-successive

deadline-monotonic first-fit scheduling policy delineated above, in the process of which the

first-fit bin-packing strategy is applied consecutively to TA
hard (cf. Algorithm 10, ll. 5-13)

as well as to TA
soft (cf. Algorithm 10, ll. 14-22).

Algorithm 10 Criticality-Successive Decreasing Utilization First-Fit (CS DU FF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort TAhard by Ui decreasingly

2: Sort TAsoft by Ui decreasingly

3: Find Assignment(TAhard, TAsoft, S)

4: procedure Find Assignment(TAhard, TAsoft, S)

5: for each τt ∈ TAhard do
6: assigned := false
7: for each Tp ∈ S do
8: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
9: Tp := Tp ∪ {τt}

10: TAhard := TAhard\{τt}
11: assigned := true
12: break
13: if (assigned = false) then return Not Possible

14: for each τt ∈ TAsoft do

15: assigned := false
16: for each Tp ∈ S do
17: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
18: Tp := Tp ∪ {τt}
19: TAsoft := TAsoft\{τt}
20: assigned := true
21: break
22: if (assigned = false) then return Not Possible

23: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp



6.2. Partitioned Approach 39

Criticality-Successive Decreasing Utilization Arbitrary-Fit Scheduling (CS DU AF)

The criticality-successive decreasing utilization arbitrary-fit scheduling policy operates

analogously to its deadline-monotonic pendant (cf. 6.2.4), except the fact that timing

strict and timing tolerable tasks are preordered according to decreasing task utilization,

as apparent from Algorithm 20.

Criticality-Successive Decreasing Utilization Best-Fit Scheduling (CS DU BF)

Likewise, the criticality-successive decreasing utilization best-fit scheduling method ex-

hibits a similar behavior to the deadline-monotonic version, with the sole difference that

the preordering of TA
hard and TA

soft is performed on the basis of decreasing task utilization,

as shown in Algorithm 21.

Criticality-Successive Decreasing Utilization Worst-Fit Scheduling (CS DU WF)

The alternative version to the criticality-successive deadline-monotonic worst-fit schedul-

ing approach, namely, the variant employing a task preorder with respect to decreasing

utilization, is illustrated in Algorithm 22 and, apart from that, operates in the same fashion

as Algorithm 19.

Deadline-Monotonic Hard Best-Fit, Soft Worst-Fit Scheduling (DM HBF SWF)

Unlike the approaches suggested before, in the subsequent methods disparate fitting-

strategies are applied to each subset of Twith the intention to utilize the cores evenly

and to diminish fragmentation. With respect to the deadline-monotonic hard best-fit,

soft worst-fit scheduling policy, the timing-strict tasks are allocated availing the best-fit

bin-packing heuristic (cf. Algorithm 11, ll. 5-18) while the timing-tolerable tasks are

distributed by means of the worst-fit bin-packing heuristic (cf. Algorithm 11, ll. 19-32),

whereat both TA
hard and TA

soft are internally preordered according to the tasks’ respective

deadlines.

Deadline-Monotonic Hard Worst-Fit, Soft Best-Fit Scheduling (DM HWF SBF)

The deadline-monotonic hard worst-fit, soft best-fit scheduling paradigm exhibits the same

underlying principle and the same purpose as the aforementioned strategy, albeit the

usurpated bin-packing heuristics are applied in reverse order, as outlined in Algorithm 23.

Decreasing Utilization Hard Best-Fit, Soft Worst-Fit Scheduling (DU HBF SWF)

The decreasing utilization hard best-fit, soft worst-fit scheduling policy operates analo-

gously to the deadline-monotonic version (cf. 6.2.4), with the sole difference that the



40 6. Multicore Systems with Dynamic Real-Time Guarantees

timing-strict as well as the timing-tolerable tasks are internally ordered in terms of de-

creasing task utilization. The algorithm is portrayed in pseudo-code in Algorithm 24.

Algorithm 11 Deadline-Monotonic Hard Best-Fit, Soft Worst-Fit (DM HBF SWF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort TAhard by Di increasingly

2: Sort TAsoft by Di increasingly

3: Find Assignment(TAhard, TAsoft, S)

4: procedure Find Assignment(TAhard, TAsoft, S)

5: for each τt ∈ TAhard do
6: S∗ := ∅
7: assigned := false
8: while (assigned = false) do
9: p := Find Processor with Max. Utilization(S, S∗)

10: if ( p = −1) then return Not Possible

11: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
12: Tp := Tp ∪ {τt}
13: T := TAhard\{τt}
14: assigned := true
15: else
16: S∗ := S∗ ∪Tp
17: if (|S∗| = |S|) then return Not Possible

18: for each τt ∈ TAsoft do

19: S∗ := ∅
20: assigned := false
21: while (assigned = false) do
22: p := Find Processor with Min. Utilization(S, S∗)
23: if ( p = −1) then return Not Possible

24: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
25: Tp := Tp ∪ {τt}
26: T := TAsoft\{τt}
27: assigned := true
28: else
29: S∗ := S∗ ∪Tp
30: if (|S∗| = |S|) then return Not Possible

31: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

32: procedure Find Processor with Min. Utilization(S, S∗)
33: pbest := −1
34: Usum,best := 0
35: for (p := 1; p ≤ |S\S∗|; p := p+ 1) do
36: if (UNsum,p ≤ Usum,best) then
37: pbest := p
38: Usum,best := UNsum,p

39: return pbest

40: procedure Find Processor with Max. Utilization(S, S∗)
41: pbest := −1
42: Usum,best := 0
43: for (p = 1; p ≤ |S\S∗|; p := p+ 1) do
44: if (UNsum,p ≥ Usum,best) then
45: pbest := p
46: Usum,best := UNsum,p

47: return pbest



6.3. Semi-Partitioned Approach 41

Decreasing Utilization Hard Worst-Fit, Soft Best-Fit Scheduling (DU HWF SBF)

Relatedly, the decreasing utilization hard worst-fit, soft best-fit scheduling policy handling

tasks τi ∈ TA
hard according to the worst-fit paradigm and τi ∈ TA

soft in compliance with

the best-best fit method, whereat TA
hard and TA

soft are internally preordered at the sight

of decreasing task utilization. The particular proceeding is clarified in Algorithm 25.

6.2.5. Limits of Partitioned Scheduling

Having introduced manifold algorithms by dint of which the bin-packing problem, namely,

the allocation of tasks to processors, can be solved as well as for each bin, respectively

each subsystem, a feasible priority assignment can be established and thus a Multicore

System with Dynamic Real-Time Guarantees is shaped, the question arises, how effective

the aforementioned methods turn out to be.

Considering the underlying bin-packing problem, it is evident that in case one bin

cannot affiliate any of the remaining objects, nevertheless the possibility exists that some

spare capacity is left. In other words, if no further task can be allocated to a processor, it

is anyway possible that some processor capacity is unused. However, in some cases such

tasks could be assigned to processors with disposable capacity regardless, if they were not

prohibited to be split by specification.

Thus, tasks are conceded to be disassembled into multiple subtasks hereinafter, which

turn to account residual processor resources. Accordingly, each core is attempted to be

filled to maximum by assigning shares of not yet allocated tasks. In the course of this, it

is possible to schedule task sets exhibiting a higher system utilization than schedulable by

merely partitioned strategies. This approach constitutes the first half of the subsequent

section contemplating the so-called semi-partitioned scheduling (cf. 5.2).

6.3. Semi-Partitioned Approach

As alluded to in the preceding section, it is desirable to permit tasks to be shared between

multiple processors in order to be able to accept more task sets than by use of fully par-

titioned scheduling approaches. This concept shall be followed subsequently, commencing

with an adaption of the task splitting paradigm introduced by Kato and Yamasaki [18]

(cf. 6.3.1) applicable to Multicore Systems with Dynamic Real-Time Guarantees, before

modifying it according to the highest-priority task splitting strategy by Lakshmanan et

al. [19]. Thereon, pursuing a different objective, a task migration approach suggested by

Xu and Burns [25] (cf. 6.3.4) will be addressed in order to create failure-proof Multicore

Systems with Dynamic Real-Time Guarantees on the one hand and to reduce the bounded

tardiness with respect to a certain amount of timing tolerable tasks on the other hand,



42 6. Multicore Systems with Dynamic Real-Time Guarantees

contemplating such cases in which all tasks on one or more processors execute abnormally

for some reason.

6.3.1. Task Splitting

Splitting tasks and sharing them across processors provides a broad range of benefits, such

as improved acceptance rates for task sets which could not be scheduled properly as a Mul-

ticore System with Dynamic Real-Time Guarantees by means of partitioned scheduling

strategies. Nevertheless, this idea is not merely advantageous, but also bears many chal-

lenges and requires additional considerations. In particular, it must be determined, which

tasks to share, how to compute a subtask’s worst-case execution time, how to specify its

deadline, which priority to assign it and how to ensure the subtasks’ correct execution

order. These questions will be answered in the following, based on the findings by Kato

and Yamasaki [18].

As apparent from the partitioned scheduling approaches suggested above (cf. 5.1), a

task set T is declared to be unschedulable as a Multicore System with Dynamic Real-

Time Guarantees S on a set of m processors, if for any task τs ∈ T the schedulability test

defined in Theorem 2 does not hold. If this is the case with respect to a certain task τs, the

attempt is made to share τs between at least two processors such that, as noted previously

(cf. 5.2), τs is not executed by more than one processor at the same time and such that

the subtasks τs,1, . . . , τs,p with 0 < p ≤ m, of τs are completed in proper sequence.

When a task τs is split, resulting from this, each processor maintaining one share of τs

is filled to maximum capacity, except the last one which may evince a certain amount of

unused execution capacity. In this regard, it has to be taken into account that after τs

exhausted the resource provided by a processor with index p, it is successively passed on

to the processor with index p+ 1, in case the schedulability condition holds, and so forth.

Hence, each instance of a shared task is assigned the highest priority in the respective

processor’s task set Tp, whereat, in case a processor already holds a shared task, namely,

the last subtask of a task τj , the later assigned subtask, i.e. τs, receives the highest priority,

while the earlier assigned shared task, i.e. τj , is relegated to the second place. Hereinafter,

a precise definition of a shared task is given.

Definition 4 (Shared Task).

A task τs ∈ T is a shared task if its execution is not restricted to one processor and if the

following conditions hold:

• A shared task is never executed on more than one processor at the same time, but

is successively passed on to the next core as soon as its execution budget on the

considered processor is exhausted.



6.3. Semi-Partitioned Approach 43

• A shared task is always scheduled under the highest priority on each processor,

except another shared task has already been assigned to the respective core. In this

case, the later allocated task is preferred in terms of priority.

• Concerning all calculations involving the shared task’s worst-execution time, CAs is

considered regardless of the actual execution mode.

Each share of τs, denoted as subtask, can be treated as an individual task τs,p = (Cs,p, Ts, Ds).

Since it has been clarified how to distribute a shared task between processors and under

which priority to schedule it, henceforth shall be explained how to determine each subtask’s

τs,p worst-case execution time CAs,p. For this purpose, response time analysis is employed,

which is explained in the following based on the results by Kato and Yamasaki [18].

Assume that two tasks τi and τj , with τi possessing a lower priority than τj , are released

at a critical instant t0, i.e., at the same time, due to the fact that the response times Ri

and Rj are maximal in this case, as shown by Liu and Layland [21]. Resulting from

this, τi can be blocked by τj for a certain amount of time, denoted Bi,j(Di), during a

contemplated time window of length Di. Moreover, the maximum number of jobs of τj

which are entirely executed in this same interval is identified as F =
⌊
Di
Tj

⌋
. To compute

the blocking time Bi,j(Di) which τi suffers from τj , two different cases have to be taken

into account, namely, Di ≥ F · Tj +Cj , as illustrated in Figure 6.1, and Di ≤ F · Tj +Cj ,

as outlined in Figure 6.2, whereat Cj = CAj . In the first case, Bi,j(Di) is given by

Bi,j(Di) = F · CAj + CAj = (F + 1) · CAj ,

whereas in the second case by

Bi,j(Di) = Di − F · (Tj − CAj ).

In consequence, the worst-case response time Ri,p of each task τi allocated to a processor

with index p is obtained by:

Ri,p =
∑

τj∈Tp∩hp(τi)

Bi,j(Di) + CAi

Henceforth, let τs ∈ Tp be a shared task whose time of competition with another task

τi ∈ Tp during a time interval of length Di can be retrieved by:

Ws,p(Di) =

⌈
Di

Ts

⌉
· CAs,p

The choice of Cj = CAj is justified by a simple deliberation. Let τs be a shared task.

With respect to the value of Cj , a case discrimination could be made: CAj could be chosen

in the course of the calculation of CAs,p if τj ∈ TA
hard, and CNj if τj ∈ TA

soft. By this means,



44 6. Multicore Systems with Dynamic Real-Time Guarantees

a result for CAs,p could be retrieved such that hard real-time guarantees hold for τs,p in

normal as well as in abnormal mode if τs ∈ TA
hard, and, furthermore, such that τs meets

its deadline under normal execution and has bounded tardiness otherwise if τs ∈ TA
soft.

However, since τs,p is scheduled on the highest priority level by definition (in case more

than one shared task has been assigned to respective processor, τs,p shall be considered

as the highest-priority shared task at this juncture), τs,p ∈ TA
soft is permitted to miss its

deadline when executed abnormally in terms of the definition of a Multicore System with

Dynamic Real-Time Guarantees (cf. 3), but, notwithstanding, this tardiness may cause

another task’s deadline miss (cf. the case depicted in Figure 1.2). To avoid such incidents,

Cj = CAj is chosen regardless of a shared task’s membership in either the timing strict or

the timing tolerable subset of T.

t0 di

Di

τj τj τj τj τj τj

Figure 6.1.: Di ≥ F · Tj + Cj [18]

t0 di

Di

τj τj τj τj τj τj

Figure 6.2.: Di ≤ F · Tj + Cj [18]

In order to comply with all tasks’ timing requirements, the following condition must

hold for each τi ∈ Tp if a shared task τs is allocated to a processor with index p:

RAi,p +Ws,p(Di) ≤ Di

⇔ CAs,p ≤
Di −RAi,p⌈

Di
Ts

⌉
Hence, CAs,p can eventually be derived by:

CAs,p = min
τi∈Tp

Di −RAi,p⌈
Di
Ts

⌉




6.3. Semi-Partitioned Approach 45

Concerning the worst-case execution time of task τs,p in normal mode CAs,p, the know-

ledge about the ratio between CNs,p and CAs,p is assumed to be given as a factor ξ with

CAs,p = ξ · CNs,p, so that CNs,p can be computed by:

CNs,p =
1

ξ
· CAs,p

Having obtained the understanding how to compute the worst-case execution time

of a shared task’s subtask τs,p as well as of in which manner to select its priority, these

techniques can subsequently be combined with the earlier presented partitioned scheduling

strategies (cf. 6.2) in the context of the Semi-Partitioned Scheduling Policy with Task

Splitting (TS) algorithm (cf. Algorithm 12), which works in the following fashion.

After applying a partitioned scheduling strategy of choice until the point of its failure

(cf. Algorithm 12, l. 2), the attempt is made to allocate each remaining task τt ∈ T availing

the concept of task splitting. Iterating over all subsystems Tp, the particular value of CAs,p

is derived according to the previously explained calculations (cf. Algorithm 12, ll. 8-16),

whereby it is taken into consideration that an already shared task’s response time RAi,p

equals its worst-case execution time CAi,p (cf. Algorithm 12, ll. 11-12) since it is scheduled

under the highest priority on the respective subsystem. Thereon, the schedulability test

for a Multicore System with Dynamic Real-Time Guarantees (cf. 6.2.1) is applied to

determine if a suchlike can be established with τs,p being scheduled under the highest

priority in Tp. In case the schedulability condition holds, CAs,p is computed (cf. Algorithm

12, l. 18) and τs,p is assigned to the respective processor. This procedure is repeated

until the auxiliary variable Creq, which indicates the remaining execution demand of τs,

reaches zero. As soon as each τs ∈ T is distributed, the algorithm terminates successfully.

Otherwise, the task set is declared to be unschedulable under this policy.



46 6. Multicore Systems with Dynamic Real-Time Guarantees

Algorithm 12 Semi-Partitioned Scheduling Policy with Task Splitting (TS)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm, factor ξ

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Di increasingly
2: Apply partioned scheduling policy until Not Possible is returned
3: Find Assignment(T, S)

4: procedure Find Assignment(T, S)
5: for each τs ∈ T do
6: assigned := false
7: Creq := CAs
8: for each Tp ∈ S do
9: Cs,p := 0

10: for each τi ∈ Tp do
11: x := 0
12: if (τi is shared task) then

13: x :=
Di−CAi⌈
Di
Ts

⌉
14: else

15: x :=
Di−RAi,p⌈

Di
Ts

⌉
16: if (x < CAs,p) then

17: CAs,p := max(0, x)

18: if (CAs,p 6= 0 and Find Optimal Priority Assignment({τs,p} ∪Tp) 6= Not Possible) then

19: CNs,p := 1
ξ
· CAs,p

20: Tp := {τs,p} ∪Tp
21: Creq := Creq − CAs,p
22: if (Creq = 0) then
23: assigned := true
24: T := T\{τs}
25: break
26: if (assigned = false) then return Not Possible

27: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

By means of the semi-partitioned scheduling policy with task splitting, it is possible to

schedule task sets with respect to which strictly partitioned approaches encounter their

limits. This phenomenon is investigated more in detail when engaging with experiments

in 7. Nevertheless, Lakshmanan et al. [19] strived to attain even greater improvement by

modifying the task splitting concept of Kato and Yamasaki [18] as covered subsequently.

6.3.2. Highest-Priority Task Splitting

The highest-priority task splitting approach by Lakshmanan et al. [19] is based on the task

splitting paradigm by Kato and Yamasaki [18], but follows a divergent direction in terms

of the actual splitting behavior. While in the model of Kato and Yamasaki [18] as well as

in the above introduced derivate version applicable for Multicore Systems with Dynamic

Real-Time Guarantees (cf. 6.3.1) consistently a task τs is chosen as splitting candidate

including which the schedulability test does not hold for the respective task set T, the

underlying concept of highest-priority task splitting is of different kind. Here, a processor’s

highest-priority task τhp is shared across several cores such that the respective subsystem

Tp comprising the contemplated task τs is feasible as System with Dynamic Real-Time



6.3. Semi-Partitioned Approach 47

Guarantees. Against this backdrop, the Semi-Partitioned Scheduling Policy with Highest-

Priority Task Splitting (HPTS) has been developed for the application domain of Multicore

Systems with Dynamic Real-Time Guarantees and shall hereon be eludicated in detail.

Analogously to the semi-partitioned scheduling policy with task splitting (cf. 6.3.1),

the semi-partitioned scheduling policy with highest-priority task splitting is employed at

the precise moment when a partitioned scheduling strategy fails. As a consequence, the

attempt is made to distribute all remaining, i.e., all unallocated, τt ∈ T successively

on the available processors, i.e., on those which boast with spare capacity, by sharing a

processor’s highest-priority task τhp instead of τt. The algorithm, as depicted in Algorithm

13, iterates through all subsystems Tp ∈ S exhibiting unused execution resources and, in

the first instance, disjoins τhp from Tp (cf. 13, l. 14, l. 20) in order to obtain sufficient

processor capacity for Tp ∪ {τt}\τhp to pass the schedulability test. If removing τhp once

does not lead to the desired result, τhp is merged with T(cf. 13, l. 15, l. 21), i.e. τhp needs

to be re-allocated to another core, and the procedure is repeated until the schedulability

condition is satisfied for Tp ∪ {τt}\τhp (cf. Algorithm 13, ll. 13-17, 19-22). In this case,

τt is assigned to Tp (cf. 13, ll. 17-18, l. 24) and, afterwards, a task splitting routine

is invoked (cf. 13, l. 25) for the purpose of dividing the last highest-priority task τhp,

which has been deleted from Tp, into two subtasks τhp′ and τhp′′ . The splitting routine

operates equivalently to the actual task splitting and worst-case execution computation

process applied in the context of the semi-partitioned scheduling policy with task splitting

(cf. Algorithm 12) and divides τhp in such a way that the allocation of τhp′ to Tp under

highest priority, if feasible in compliance with the conditions of a System with Dynamic

Real-Time Guarantees (cf. Algorithm 13, l. 26), consumes the residual execution capacity,

whereas τhp′′ is merged with T(cf. 13, l. 28). In this case, the respective processor is

furthermore identified as not available for the particular task (cf. Algorithm 13, l. 29) in

order to prevent a deadlock. The set of unallocated tasks T is then reordered by increasing

relative deadline Di (cf. Algorithm 13, l. 31). If any task cannot be assigned successfully,

the task set is declared as unfeasible by this scheduling policy.

Since a shared task’s subtask τhp′′ is not directly re-allocated to another processor once

τhp has been split, but rather returned to T, which is why already split tasks can be chosen

again for splitting, it is necessary to examine if a contemplated task τt ∈ T is a shared task

(cf. 13, l. 11) owing to the fact that the definition of a shared task (cf. 4) must be satisfied

at any point of time. More specifically, if this is the case, it has to be ensured firstly that

not yet any other share of τt has been assigned to Tp (cf. 13, l. 8) and, secondly, that τt

is assigned under the highest priority on the particular subsystem (cf. 13, l. 17).

To what extent the semi-partitioned scheduling policy with highest-priority task split-

ting stands out from the previously introduced semi-partitioned scheduling policy with

task splitting with respect to the amount of accepted task sets, will be investigated by

virtue of experiments and discussed in chapter 7.



48 6. Multicore Systems with Dynamic Real-Time Guarantees

Algorithm 13 Semi-Partitioned Scheduling Policy with Highest-Priority Task Splitting
(HPTS)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Di increasingly
2: Apply partioned scheduling policy until Not Possible is returned
3: Find Assignment(T, S)

4: procedure Find Assignment(T, S)
5: for each τt ∈ T do
6: assigned := false
7: for each Tp ∈ S do
8: if (availablep and τt is not already shared on Tp) then
9: T′p := ∅

10: τhp := highest-priority task in Tp
11: if (τt is shared task) then
12: T∗p := Tp ∪ {τt} with τt as highest-priority task
13: while ((Find Optimal Priority Assignment(T∗p) = Not Possible)) do
14: Tp := Tp\{τhp}
15: T := T ∪ {τhp}
16: τhp := highest-priority task in Tp
17: T∗p := Tp ∪ {τt} with τt as highest-priority task

18: Tp := T∗p
19: else
20: while ((Find Optimal Priority Assignment(Tp ∪ {τt}) = Not Possible)) do
21: Tp := Tp\{τhp}
22: T := T ∪ {τhp}
23: τhp := highest-priority task in Tp

24: Tp := Tp ∪ {τt}
25: (τhp′ , τhp′′ ) := Split(τhp,Tp)
26: if (Find Optimal Priority Assignment(T′p ∪ {τhp′}) 6= Not Possible) then
27: Tp := Tp ∪ τhp′ with τhp′ as highest-priority task
28: T := T ∪ τhp′′
29: availablep := false
30: assigned := true
31: Sort T by Di decreasingly
32: break
33: if (assigned = false) then return Not Possible

34: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

35: procedure Split(τhp,Tp)
36: Chp′ := 0
37: for each τi ∈ Tp do
38: if (τi is shared task) then

39: x :=
Di−CAi⌈
Di
Tτhp

⌉
40: else
41: x :=

Di−Ri,p⌈
Di
Tτhp

⌉
42: if (x < Ct,p) then
43: Chp′ := max(0, x)

44: if (Find Optimal Priority Assignment({τhp′} ∪Tp) 6= Not Possible) then

45: return (0, CAτhp )

46: else
47: return (Chp′ , C

A
τhp
− Chp′ )



6.3. Semi-Partitioned Approach 49

6.3.3. Complete Task Migration

After having investigated how to successfully schedule more task sets than it is possible

by dint of merely partitioned algorithms, namely, with the aid of task splitting, henceforth

a diverging issue shall be addressed. Since the knowledge of how to establish a Multi-

core System with Dynamic Real-Time Guarantees has been provided, hence this model’s

fundamentals shall be remembered. Due to the matter of fact that a Multicore System

with Dynamic Real-Time Guarantees pertains to the category of real-time systems, which

inevitably require temporal correctness of all obtained results, and, moreover, that a Mul-

ticore System with Dynamic Real-Time Guarantees’s timing strict tasks are safety-critical,

such systems are verified offline by complying with the respective schedulability conditions

during the system establishment process, as presented in previous sections (cf. 6.2, 6.3.1,

6.3.2). By this means, it can be ensured that a Multicore System with Dynamic Real-Time

Guarantees fulfills its timing requirements even in case of abnormal execution behavior

(cf. 6).

However, it may be the case that, e.g. due to external influences or wear of components,

one or more processors of the respective system break down and therefore are not usable

any longer. By reason of the fact that such incidents are not taken into account in the

Multicore System with Dynamic Real-Time Guarantees model, the system’s proper func-

tioning cannot be guaranteed in any respect under these circumstances. Nevertheless, a

solution for this problem shall be provided inspired by task migration paradigm suggested

in the work of Xu and Burns [25].

In their paper, Xu and Burns [25] contemplate dual-core dual-criticality systems with

a task set T encompassing a subset of high- as well as of low-criticality tasks. Resulting

from this, regarding the employed task model, each task τ ∈ T is endowed with two

distinct values specifying its worst-case execution time, in fact, Ci(HI) and Ci(LO) (cf.

3). As long as no task surpasses its respective Ci(LO), all deadlines are met and no

migration occurs. Notwithstanding low-criticality tasks are not permitted to exceed their

low-criticality execution time budget, the possibility exists that a high-criticality task

overshoots its respective Ci(LO). In this event, a certain amount of low-criticality tasks

migrate from the afflicted core to another processor, whereat all tasks remain schedulable.

Provided that high-criticality tasks on more than one processor exceed their low-criticality

budget, some low-criticality tasks are abandoned in order to maintain the remaining tasks’

schedulability. In the latter case, no migration occurs.

Without going into further detail, since the system model established by Xu and

Burns [25] is not compliant with that one required by a Multicore System with Dynamic

Real-Time Guarantees, simply the fundamental idea of migrating tasks from one processor

to another shall be availed in order to provide the opportunity to verify offline a Multicore

System with Dynamic Real-Time Guarantees’s behavior in case of one or more processor



50 6. Multicore Systems with Dynamic Real-Time Guarantees

breakdowns. Against this backdrop, the l-Failure-Proof Multicore System with Dynamic

Real-Time Guarantees is introduced hereinafter.

Definition 5 (l-Failure-Proof Multicore System with Dynamic Real-Time Guar-

antees).

Consider a Multicore System with Dynamic Real-Time Guarantees S with subsystems Tp,

whereat a set of tasks T = τ1, . . . , τn, with n ∈ N, is partitioned to a set of m homogeneous

processors. S is a l-Failure-Proof Multicore System with Dynamic Real-Time Guarantees

if the following conditions are satisfied at any point of time:

• No migration occurs if all tasks are executed in normal mode while no processor’s

functional status is compromised.

• No migration occurs if one or more tasks are executed in abnormal mode while no

processor’s functional status is compromised.

• If one or more, but at maximum l processors, with 0 < l < m, break down, the

affected subsystems’ tasks are permanently migrated onto the remaining set of intact

processors or onto the remaining intact processor in such a way that the system S

remains schedulable complying with the characteristics of a Multicore System with

Dynamic Real-Time Guarantees.

Following the proceeding of Xu and Burns [25], subsequently shall be clarified how the

task migration as described in Definition 5 can be realized.

When a processor breakdown occurs, no information is available about the specific

execution state of the affected tasks, i.e., if their execution is completed, partly completed

or pending, by reason of which all migrating tasks are obliged to expend their entire

execution budget on their new destination core. Owing to the fact that a certain amount

of time might have passed in the interval between a task’s release and its migration, a

new relative deadline has to be derived for each τi ∈ Tb, where Tf denotes the failing

subsystem. Since the system’s feasibility has to be verified offline and the exact value

of the time interval elapsed can only be retrieved at runtime, a pessimistic estimation is

made, so that the new deadline of task τi ∈ Tf can be derived as follows:

D′i = Di − Ji

The so-called release jitter for timing strict as well as for timing tolerable tasks is given

by:

Ji = RNi − CNi

Ji = RAi − CAi

The response time RNi or RAi , respectively, can be calculated according to the proceeding

of response time analysis offered in 6.3.1.



6.3. Semi-Partitioned Approach 51

Due to the fact that not only the feasiblity of the primal Multicore System with Dynamic

Real-Time Guarantees, i.e., in case all processors are available, has to be verified but also

the feasiblity after the migration of one or more subsets of T, the schedulability condition

as defined in 6.2.1 must be checked multiple times. More precisely, the schedulability

test has to be performed l + 1 times: Once initially and once again for each collapsing

subsystem, whereat it is of no importance if the l processors break down successively or

all at once, because according to the logical flow the migration takes places subsystem by

subsystem. Concerning these additional schedulability tests, not the original deadlines Di

of τi ∈ Tf but the modified ones D′i have to be taken into consideration. In the course

of this, not specific processors are contemplated as failure candidates, but instead each

possible subset of l processors in S, to ensure the systems reliability.

6.3.4. Timing Tolerable Task Migration

Unlike the scenario reflected upon before, furthermore the possibility exists that cores of a

system not break down but nevertheless are corrupted for a longer interval of time due to,

e.g., external influences, which leads to a processor state in which all tasks are executed

abnormally. In such cases, the properties of a Multicore System with Dynamic Real-

Time Guarantees are maintained anyway, i.e., all timing strict tasks meet their respective

deadlines, but the timing tolerable tasks’ bounded tardiness increases significantly. Since

timing tolerable tasks are known to be not safety-critical, this does not seem to be a major

issue, but, however, a certain amount of timing tolerable may be more important than

others. For this reason, it would be desirable if those did not deliver their results with

utmost tardiness, whereas, regarding other timing tolerable tasks, it is entirely irrelevant

if they are delayed even more. On this basis, again availing the task migration paradigm

by Xu and Burns [25], the attempt shall be made to reduce a specified group of timing

tolerable tasks’ tardiness if the processor they are allocated to exhibits outright abnormal

execution behavior. Pursuing this objective, the Multicore System with Dynamic Real-

Time Guarantees with Task Migration is introduced in the following.

Definition 6 (Multicore System with Dynamic Real-Time Guarantees with

Task Migration).

Consider a Multicore System with Dynamic Real-Time Guarantees S with subsystems

Tp, whereat a set of tasks T = τ1, . . . , τn, with n ∈ N, is partitioned to a set of m

homogeneous processors. S is a Multicore System with Dynamic Real-Time Guarantees

with Task Migration if the following conditions are satisfied at any point of time:

• No migration occurs if all tasks are executed in normal mode.

• If all tasks are executed in abnormal mode, a certain amount of timing tolerable

tasks is migrated from the afflicted subsystem Ti to another subsystem Tj , so that

all tasks on Ti comply with their respective timing requirements, whereas Tj still



52 6. Multicore Systems with Dynamic Real-Time Guarantees

satisfies the characteristics of a System with Dynamic Real-Time Guarantees, i.e.

each timing strict tasks meets its hard deadline while all timing tolerable tasks have

bounded tardiness. In this case the not migrating timing tolerable tasks’ tardiness

is reduced due to lowered processor utilization.

• If tasks on more than one subsystem are executed abnormally, no migration occurs

and the timing tolerable tasks on all afflicted subsystems have bounded tardiness.

• If the normal system state of all subsystems is recovered, i.e. all tasks execute

normally, each task that has previously been migrated is re-migrated to the processor

it has been allocated to initially.

Consider, for convenience only, a dual-core Multicore System with Dynamic Real-Time

Guarantees S = Tp ∪Tq with an already established task partitioning of task set T onto

the respective subsystems. Each subsystem Tp, Tq contains a set of timing strict tasks

Tp,hard,Tq,hard as well as a set of timing tolerable tasks Tp,soft, Tq,soft. In the same vein

as in the model of Xu and Burns [25], the latter in turn consists of a certain number of

tasks authorized to migrate Tp,soft,mig, Tq,soft,mig and a set of tasks which are statically

allocated to the respective processor Tp,soft,stat, Tq,soft,stat, so that Tp,soft = Tp,soft,mig ∪
Tp,soft,stat where the indication of migrating tasks is assumed to be given. If the subsystem

does not execute completely abnormally, it holds that Tp = Tp,hard∪Tp,soft,mig∪Tp,soft,stat

and Tq = Tq,hard ∪ Tq,soft,mig ∪ Tq,soft,stat. As soon as all tasks in Tp are in abnormal

execution mode, it follows that Tp = Tp,hard ∪Tp,soft,stat and Tq = Tq,hard ∪Tq,soft,mig ∪
Tq,soft,stat ∪ Tp,soft,mig, while, if the same situation occurs on Tq, this leads to Tp =

Tp,hard ∪Tp,soft,mig ∪Tp,soft,stat ∪Tq,soft,mig and Tq = Tq,hard ∪Tq,soft,stat. In general, it

is possible that either one core individually enters a completely abnormal execution state

or both simultaneously. The second case can be refined, because, concerning this matter,

two options must be distinguished: Either fully abnormal task execution commences on

both processors one by one or in exactly the same point of time, which, as a consequence,

leads to increased bounded tardiness with respect to the set of timing tolerable tasks.

As already discussed in 6.3.3, it is necessary to modify a task’s deadline when migrating

it to another core. This operation is performed in identical fashion as with respect to the l-

Failure-Proof Multicore System with Dynamic Real-Time Guarantees so that the modified

deadline of a task τi ∈ Tp,soft can be retrieved as D′i = Di − Ji with the release jitter

given as Ji = RNi − CNi . Here, the schedulability condition defined in 6.2.1 must be

checked five times: firstly, in the context of the partitioned scheduling stage, secondly,

to verify that Tp = Tp,hard ∪ Tp,soft,mig ∪ Tp,soft,stat ∪ Tq,soft,mig is feasible in terms

of the requirements of a System with Dynamic Real-Time Guarantees in case all tasks

on subsystem Tq exhibit abnormal execution behavior, and thirdly, to prove that Tq =

Tq,hard ∪ Tq,soft,mig ∪ Tq,soft,stat is still feasible as a System with Dynamic Real-Time

Guarantees under the given circumstances. Furthermore, the last two steps must be



6.3. Semi-Partitioned Approach 53

repeated in analogous fashion, taking into consideration that, in contrast, all tasks on

Tp may be executed abnormally. These additional tests are justified on account of the

modified relative deadlines of migrating tasks, so that the schedulability condition in the

first migration event must be assessed applying modified deadlines D′i, as explained above,

to all tasks τi ∈ Tp,soft,mig or τj ∈ Tq,soft,mig, respectively, while concerning the re-

migration the migration tasks’ deadlines have to be adjusted once again. At this juncture,

again the time elapsed between a task’s release and its migration is considered. Although

the second job of a migrated task is likely to execute under its original timing parameters,

since it is released on its destination core Tq, it is nevertheless imaginable that a task

instance executing under a modified deadline is re-migrated to its source processor Tp

before its completion. On that score, again, a pessimistic rescaling of the task deadline is

conducted, whereat the release jitter on its shelter subsystem Tq is contemplated, in fact,

D′′i = D′i − Ji,q = Di − Ji − Ji,q. These parameters can be calculated in the same manner

for the event of all tasks on Tq being in abnormal execution state. However, as soon as

a migration task returns to its original core, its next released job is executed based on its

primal specifications.

The Multicore System with Dynamic Real-Time Guarantees with Task Migration para-

digm is the last approach thematized in this thesis and thus concludes a miscellaneous

series of methods providing the opportunity to transfer the System with Dynamic Real-

Time Guarantees model by von der Brüggen et al. [24] onto a homogeneous multicore

environment. While the thoroughly partitioned scheduling policies (cf. 6.2) aim at the

fundamental establishment of a Multicore System with Dynamic Real-Time Guarantees

and the task splitting strategies (cf. 6.3.1, 6.3.2) endeavor to increase the number of ac-

cepted task sets under the Multicore System with Dynamic Real-Time Guarantees model,

the task migration concept attempts to increase the system’s reliability on the one hand

(cf. 6.3.3) and to meliorate the objective of tardiness on the other hand. More precisely,

timing tolerable task migration paves the way to reduce tardiness concerning a specified

set of timing tolerable tasks in the context of outright abnormal execution behavior on a

particular processor. By this means, the possibility is offered to treat a target group of

tasks extraordinarily, which do not evince the safety characteristics of timing strict tasks,

but stand out of the multitude of timing tolerable tasks.

Conclusively, in the next chapter all approaches elaborated in this thesis will be ana-

lyzed, compared and assessed being premised on the results of implemented experiments.





7. Evaluation

Having learned about various possibilities to transfer the Systems with Dynamic Real-

Time Guarantees model of von der Brüggen et al. [24] onto a multiprocessor environment

and, building on this, to improve several objectives such as the acceptance rate of task

sets as a function of the system utilization, the system reliability as well a certain group

of tasks’ bounded tardiness, henceforward shall be investigated if these methods not only

seem reasonable in theory but also turn out to be beneficial in practice. For this purpose,

the experimental setup shall be revealed initially (cf. 7.1), before proceeding with the

contemplation of the experiments’ findings, dealing with each objective successively. Thus,

after comparing the partitioned scheduling strategies (cf. 7.2), it shall be examined which

improvement can be achieved by the use task splitting as well as of highest-priority task-

splitting (cf. 7.3). Moreover, a closer look will be taken at the trade-off between the number

of accepted task sets and the gained system reliability (cf. 7.4) or reduced tardiness (cf.

7.5), respectively, resulting from the employment of the task migration paradigm. Finally,

the obtained outcomes will be summarized and evaluated, before concluding this thesis

with a short outlook (cf. 7.6).

7.1. Experiment Setup

In the following, the developed scheduling policies shall be tested by means of randomly

generated implicit-deadline task-sets according to the approach of von der Brüggen et

al. [24]. In the course of this, the ratio between the worst-case execution time in normal

mode CNi and in abnormal mode CAi is specified by a factor ξ with CAi = ξ ·CNi . Since at

this point the single re-execution of a task instance shall be selected as the fault-recovery

routine of choice, this factor is given as ξ = 1.83. This is justified by the adherence

to the experimental specifications defined by von der Brüggen et al. [24] in the context

of evaluating their Systems with Dynamic Real-Time Guarantees model, whereby the

execution of a fault-detection routine is assumed to consume 20% of a job’s plain worst-

case execution time, so that, if only one fault-detection is performed at the end, this

results in a ratio ξ =
CAi
CNi

= 2.2
1.2 ≈ 1.83 [24]. Von der Brüggen et al. [24] also consider two

further fault-recovery strategies, namely, twofold re-execution as well as checkpointing,

but, however, these will not be taken into consideration at this juncture.



56 7. Evaluation

While the merely partitioned as well as the task splitting scheduling strategies are

compared on the basis of one specific setting, i.e., a timing strict task percentage of 50%,

ξ = 1.83, and a task set size of 10 tasks per run among 1000 runs in total, which engenders

a sound conclusion, the migration approaches are assessed under varying parameters to

make an accurate statement concerning their cost-benefit factors.

7.2. Partitioned Scheduling Strategies

Hence, the partitioned scheduling-policies introduced earlier (cf. 6.2) will be evaluated

fitting-strategy by fitting-strategy, i.e., all approaches being premised on the same under-

lying bin-packing heuristic will be contemplated collectively, beginning with the first-fit

paradigm.

In Figure 7.1, the percentage of accepted task sets as a function of the system utilization

is depicted for DM FF, CS DM FF, DU FF and CS DU FF likewise. Against all expec-

tations, the criticality-successive methods, i.e., those not contemplating T at large but

TA
hard and TA

soft consecutively instead, do not outperform DM FF and DU FF but rather

rank behind significantly. Moreover, the idea of a deadline-monotonic task preordering

comes to fruition, since the respective scheduling policies yield substantially better results

than those employing a preordering according to decreasing task utilization.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_FF

CS_DM_FF

DU_FF

CS_DU_FF

Figure 7.1.: Comparison of all scheduling policies based on the first-fit bin-packing heuristic de-
veloped in this thesis.

This trend is also evident in Figure 7.2, where again the criticality successive concepts

turn out to be inferior than those considering the union of timing strict and timing tolerable

tasks and, besides, the strategies applying a deadline-monotonic task preorder dominate



7.2. Partitioned Scheduling Strategies 57

over those preordered according to decreasing utilization. Furthermore, comparing Figure

7.1 and Figure 7.2, it becomes apparent that DM AF clearly surpasses DM FF in terms

of effectiveness, since a decrease in the percentage of accepted task sets begins noticeably

later when making use of DM AF, namely, at a system utilization of about 40%, than of

DM FF, where the descent commences at a system utilization of about 30%. Apart from

that, the acceptance rate of DM AF does not drop under a value of 40%, whereas at full

system utilization DM FF does not achieve an acceptance rate higher than 5%.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_AF

CS_DM_AF

DU_AF

CS_DU_AF

Figure 7.2.: Comparison of all scheduling policies based on the arbitrary-fit bin-packing heuristic
developed in this thesis.

The scheduling policies being derived from the best-fit bin-packing heuristic emerge

as the overall worst approaches in this series of experiments, as discernible from Figure

7.3. Due to the fact that even the best performing algorithm, i.e. DM BF, already

begins to decrease dramatically in terms of the acceptance rate at system utilization of

approximately 15% and reaches 0% at a utilization of less than 40%, all developed best-fit

approaches can be regarded as completely ineffective.

Resulting from Figure 7.4, the scheduling policies based on the worst-fit heuristic prove

to perform better than those applying best-fit, but nevertheless rank behind the earlier

considered first-fit and arbitrary-fit derivates. Again, it is obvious that the criticality-

successive algorithms deliver significantly worse results than those contemplating timing

strict and timing tolerable tasks in toto and, furthermore, that once again a task preorder-

ing turns out to be more practicable when established according to the deadline-monotonic

paradigm than when arranged with respect to decreasing utilization. However, also the

worst-fit approaches cannot be recommended in terms of Multicore Systems with Dynamic

Real-Time Guarantees, owing to the fact that even DM BF exhibits a rapid acceptance



58 7. Evaluation

rate decrease at a system utilization of about 20%, reaches 10% at a utilization close to

40%, and finally 0% at a utilization of approximately 70%.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_BF

CS_DM_BF

DU_BF

CS_DU_BF

Figure 7.3.: Comparison of all scheduling policies based on the best-fit bin-packing heuristic
developed in this thesis.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_WF

CS_DM_WF

DU_WF

CS_DU_WF

Figure 7.4.: Comparison of all scheduling policies based on the worst-fit bin-packing heuristic
developed in this thesis.



7.2. Partitioned Scheduling Strategies 59

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_HBF_SWF

DM_HWF_SBF

Figure 7.5.: Comparison of all deadline-monotonic criticality-successive scheduling policies devel-
oped in this thesis.

Figure 7.5 depicts the experimental results of the deadline-monotonic criticality-successive

strategies developed in this thesis which apply disparate bin-packing heuristics to each sub-

set of T. Unlike the criticality-successive approaches contemplated before, DM HBF SWF

does not exhibit an equally steep descent with respect to the task acceptance rate but,

nevertheless, does not outperform DM WF. DM HWF SBF stays behind DM HBF SWF

and diverges sparsely from the aforementioned methods.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DU_HBF_SWF

DU_HWF_SBF

Figure 7.6.: Comparison of all criticality-successive scheduling policies developed in this thesis
preordered according to decreasing task utilization.



60 7. Evaluation

In Figure 7.6, the findings resulting from inhomogeneous criticality-successive schedul-

ing policies with task preordering according to decreasing task utilization are depicted.

While DU HWF SBF barely evinces a different behavior than known from DM HWF SBF,

DU HBF SWF bears a certain resemblance to DU WF (cf. 7.4). Either way, neither of

these combined criticality-successive strategies proves satisfactory with respect to the ob-

jective of establishing a Multicore System with Dynamic Real-Time Guarantees, may they

boast a deadline-monotonic task preorder or a decreasing utilization based.

In general, it turns out to be much more effective to consider timing strict and timing

tolerable tasks as a union than contemplating TA
hard and TA

soft separately, so that the

employment of criticality-successive scheduling policies is not advisable in this context.

Moreover, in any event the task set T should be preordered with respect to decreasing

task utilization in order to attain more satisfactory outcomes. However, DM AF protrudes

from the multitude of partitioned approaches and therefore can be identified as the most

suitable scheduling policy for the establishment of a Multicore System with Dynamic Real-

Time Guarantees under the given setting.

7.3. Task Splitting and Highest-Priority Task Splitting

Since DM AF has been determined to be the favored solution to the problem of creating

a Multicore System with Dynamic Real-Time Guarantees, subsequently a closer look shall

be taken at the findings descending from the employment of task splitting as well as of

highest-priority task splitting. Under the same setup as before the particular splitting

routines are applied as soon as the conventional DM AF policy declares a task set as

unfeasible in order to improve the acceptance rate as a function of the system utilization.

As evident from Figure 7.7, the usage of task splitting in point of fact leads to an

improvement of the regular DM AF result but, however, to a very marginal. Concerning

DM AF TS, the decrease in terms of the task set acceptance rate takes place insignifi-

cantly slower and reaches a negligibly higher value at a system utilization of 100% than

DM AF. On that score, it remains questionable whether the paltry gain can justify the

computational expense caused by the task splitting routine. However, it certainly depends

on the respective case of application if it is reasonable to apply this method.

In contrast to the above case, the employment of highest-priority task-splitting does

not entail any improvement compared to the regular DM AF policy, as visualized in

Figure 7.8. Due to the fact that the underlying highest-priority task splitting paradigm

by Lakshmanan et al. [19] was designed to go beyond the level of task splitting regarding

the amount of successfully schedulable task sets, this result is quite surprising and hence

indicates that the developed concept is not applicable in terms of Multicore Systems with

Dynamic Real-Time Guarantees, at least not in the current shape. Notwithstandig, the

attempt could be made to modify the provided algorithm as a future perspective.



7.4. l-Failure-Proof Multicore Systems with Dynamic Real-Time Guarantees 61

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_AF

DM_AF_TS

Figure 7.7.: DM AF with task splitting routine compared to DM AF.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_AF

DM_AF_HPTS

Figure 7.8.: DM AF with highest-priority task splitting routine compared to DM AF.

7.4. l-Failure-Proof Multicore Systems with Dynamic Real-Time

Guarantees

Having learned how to establish an l-Failure-Proof Multicore Systems with Dynamic Real-

Time Guarantees (cf. 6.3.3), as of now shall be examined which is the price for the

increased system reliability. More precisely, the task set acceptance rate as a function of

the system utilization shall be contemplated based on experiments employing DM AF and

an additional migration routine which is capable of verifying the conditions of a 1-Failure-



62 7. Evaluation

Proof Multicore System with Dynamic Real-Time Guarantees, i.e., the case that one core

breaks down.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4

DM_AF

DM_AF_TMIG

Figure 7.9.: DM AF with complete task migration routine for the establishment of a 1-Failure-
Proof Multicore Systems with Dynamic Real-Time Guarantees compared to DM AF.

In the first instance, the same experiment setup is used as described in the beginning. In

contrast to regular DM AF scheduling, the acceptance rate of the algorithm establishing a

1-Failure-Proof Multicore System with Dynamic Real-Time Guarantees, DM AF TMIG,

decreases nearly immediately, in fact, at a system utilization of less than 5%, and reaches

0 at a utilization of approximately 15%. Hence, a a 1-Failure-Proof Multicore System

with Dynamic Real-Time Guarantees can only be established considering a total system

utilization of at maximum 15% under the given setting.

In order to find a possibly more suitable experiment setup, two parameters have been

diversified one by one. In Figure 7.10, the percentage of timing strict tasks has been varied

between the amounts of 30%, 40%, 50%, 60%, and 70%, while the residual factors have

been maintained. As consequence, it can be noticed that the percentage of timing strict

tasks scarcely influences the algorithms result. Interestingly enough, the acceptance rate

decreases slightly slower at a timing strict task percentage of 70%, but, however, this could

be provoked by random effects.

Furthermore, Figure 7.11 comprises the results of experiments after an adjustment of

the task set size, so that the algorithm is executed on a set of 5, 10, 20, and 50 tasks.

Resulting from this, it can be observed that the optimal number of tasks with respect to

this setting can be identified as 10, since for a smaller task set an acceptance rate of 100%

can be obtained at no point of time and, moreover, for larger task sets, the task acceptance

rate dependent on the system utilization declines more rapidly.



7.5. Timing Tolerable Task Migration 63

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

WCET-F.: 1.83, Runs: 1000, Tasks/Run: 50, Processors: 4

30%

40%

50%

60%

70%

Figure 7.10.: DM AF with complete task migration routine under varying percentage of timing
strict tasks.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Processors: 4

5 Tasks

10 Tasks

20 Tasks

50 Tasks

Figure 7.11.: DM AF with complete task migration routine under varying task set size.

7.5. Timing Tolerable Task Migration

After having contemplated the experimental results of an algorithm performing complete

task migration, the findings with respect to a routine performing a migration of a subset

of timing tolerable tasks for a certain interval of time (cf. 6.3.4) shall be touched upon.

Since the amount of migrating tasks is assumed to be given, one setting for the number of



64 7. Evaluation

such tasks is chosen at the beginning and employed throughout all experiments, namely,

a percentage of 50%. Moreover, solely one core is chosen as the migrating tasks’ origin.

From Figure 7.12 it become obvious that also in the course of timing tolerable task

migration losses are suffered with respect to the task set acceptance rate. The decent of

success cases begins at a system utilization of about 20% and proceeds moderately until

a utilization of 100% where still not an acceptance rate of 0 is reached. Nevertheless, the

algorithm is surely less efficient than DM AF but in consideration of its objective, the

performance can be identified as satisfactory.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Tasks/Run: 10, Processors: 4, Mig.: 50.0%

DM_AF

DM_AF_MIG

Figure 7.12.: DM AF with timing tolerable task migration routine to reduce tardiness of a spec-
ified amount of timing tolerable tasks.

Analogously to the examination of complete task migration, subsequently the percent-

age of timing strict tasks and, consecutively, the size of the task set shall be modified.

Resulting from this, from Figure 7.13 can be discovered that the algorithm performs bet-

ter if the percentage of timing strict tasks increases. This can be explained by the fact

that only timing tolerable tasks are migrated. If the amount of timing strict tasks grows

and thus the number of timing tolerable tasks declines, it is obvious that the number of

migrating tasks becomes smaller and, as a consequence, the probability of migrating these

successfully rises.

Apart from this, Figure 7.14 portrays the outcome of experiments employing a set of 5,

10, 20, and 50 tasks. In analogous fashion to the complete task migration case, a set size

of 10 tasks turns out to be optimal concerning this particular setting due to the fact that

a smaller set size does not provoke an acceptance rate of 100% at a system utilization of

1% and, moreover, larger sets lead to a quicker decline of the acceptance rate contingent

on the total system utilization.



7.6. Conclusion 65

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

WCET-F.: 1.83, Runs: 1000, Tasks/Run: 50, Processors: 4

30%

40%

50%

60%

70%

Figure 7.13.: DM AF with timing tolerable task migration routine under varying percentage of
timing strict tasks.

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

A
cc

e
p
ta

n
ce

 R
a
te

 (
%

)

Hard Tasks: 50.0%, WCET-F.: 1.83, Runs: 1000, Processors: 4

5 Tasks

10 Tasks

20 Tasks

50 Tasks

Figure 7.14.: DM AF with timing tolerable task migration routine under varying task set size.

7.6. Conclusion

Within the scope of this master thesis, manifold ideas have been proposed how to transfer

the Systems with Dynamic Real-Time Guarantees model by von der Brüggen et al. [24]

onto a multiprocessor environment. Unfortunately, by means of experimental outcomes,

the majority of these approaches turned out to be ineffective. Nevertheless, the deadline-



66 7. Evaluation

monotonic arbitrary-fit scheduling policy proved to dominate all investigated strategies

in terms of its task set acceptance rate as a function of the system utilization and can

be even further improved by applying a task-splitting routine. While the task-splitting

approach is capable of enhancing a scheduling policy’s success, the highest-priority task

splitting paradigm could be identified as entirely useless with respect to this particular

field of application.

Moreover, the Multicore Systems with Dynamic Real-Time Guarantees model has been

extended with respect to system reliability by creating a failure-proof version of the Multi-

core System with Dynamic Real-Time Guarantees, the l-Failure-Proof Multicore Systems

with Dynamic Real-Time Guarantees, and providing an algorithm to obtain such systems.

Notwithstanding, as the cost for this robustness, the number of possibly accepted task sets

is restricted significantly.

Not least, a possibility has been suggested to reduce a specified amount of timing

tolerable tasks’ bounded tardiness by migrating them to another core in case on their

respective processor all tasks are executed abnormally for a longer interval of time. Here

again, the task set acceptance rate dependent on the system utilization decreases for the

benefit of the desired objective.

In summary, the given problem statement has been solved successfully by providing

miscellaneous opportunities to construct a Multicore System with Dynamic Real-Time

Guarantees. What remains for future work, is the issue of modifying the highest-priority

task splitting paradigm in such a way that it can be employed in addition to regular

scheduling strategies in order to attain a significant improvement. Finally, it could be

an interesting idea to combine both task splitting and task migration for the purpose of

successfully scheduling task sets with higher system utilization under an l-Failure-Proof

Multicore Systems with Dynamic Real-Time Guarantees.



A. Appendix

Algorithm 14 Deceasing Utilization Arbitrary-Fit (DU AF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Ui decreasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: S̄ := ∅
6: for each Tp ∈ S do
7: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
8: S̄ := S̄ ∪Tp

9: if S̄ 6= ∅ then
10: r := random element out of [1, |S̄|]
11: Tr := Tr ∪ {τt}
12: T := T\{τt}
13: else return NOT POSSIBLE
14: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp



68 A. Appendix

Algorithm 15 Decreasing Utilization Best-Fit (DU BF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Ui decreasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: S∗ := ∅
6: assigned := false
7: while (assigned = false) do
8: p := Find Processor with Max. Utilization(S, S∗)
9: if ( p = −1) then return Not Possible

10: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
11: Tp := Tp ∪ {τt}
12: T := T\{τt}
13: assigned := true
14: else
15: S∗ := S∗ ∪Tp
16: if (|S∗| = |S|) then return Not Possible

17: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

18: procedure Find Processor with Max. Utilization(S, S∗)
19: pbest := −1
20: Usum,best := 0
21: for (p := 1; p ≤ |S\S∗|; p := p+ 1) do
22: if (UNsum,p ≥ Usum,best) then
23: pbest := p
24: Usum,best := UNsum,p

25: return pbest



69

Algorithm 16 Decreasing Utilization Worst-Fit (DU WF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort T by Ui decreasingly
2: Find Assignment(T, S)

3: procedure Find Assignment(T, S)
4: for each τt ∈ T do
5: S∗ := ∅
6: assigned := false
7: while (assigned = false) do
8: p := Find Processor with Min. Utilization(S, S∗)
9: if ( p = −1) then return Not Possible

10: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
11: Tp := Tp ∪ {τt}
12: T := T\{τt}
13: assigned := true
14: else
15: S∗ := S∗ ∪Tp
16: if (|S∗| = |S|) then return Not Possible

17: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

18: procedure Find Processor with Min. Utilization(S, S∗)
19: pbest := −1
20: Usum,best := 0
21: for (p := 1; p ≤ |S\S∗|; p := p+ 1) do
22: if (UNsum,p ≤ Usum,best) then
23: pbest := p
24: Usum,best := UNsum,p

25: return pbest



70 A. Appendix

Algorithm 17 Criticality-Successive Deadline-Monotonic Arbitrary-Fit (CS DM AF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort TAhard by Di increasingly

2: Sort TAsoft by Di increasingly

3: Find Assignment(TAhard ∪TAsoft, S)

4: procedure Find Assignment(TAhard ∪TAsoft, S)

5: for each τt ∈ TAhard do
6: S̄ := ∅
7: for each Tp ∈ S do
8: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
9: S̄ := S̄ ∪Tp

10: if S̄ 6= ∅ then
11: r := random element out of [1, |S̄|]
12: Tr := Tr ∪ {τt}
13: TAhard := TAhard\{τt}
14: else return Not Possible
15: for each τt ∈ TAsoft do

16: S̄ := ∅
17: for each Tp ∈ S do
18: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
19: S̄ := S̄ ∪Tp

20: if S̄ 6= ∅ then
21: r := random element out of [1, |S̄|]
22: Tr := Tr ∪ {τt}
23: TAsoft := TAsoft\{τt}
24: else return Not Possible
25: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp



71

Algorithm 18 Criticality-Successive Deadline-Monotonic Best-Fit (CS DM BF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort TAhard by Di increasingly

2: Sort TAsoft by Di increasingly

3: Find Assignment(TAhard, TAsoft, S)

4: procedure Find Assignment(TAhard, TAsoft, S)

5: for each τt ∈ TAhard do
6: S∗ := ∅
7: assigned := false
8: while (assigned = false) do
9: p := Find Processor with Min. Utilization(S, S∗)

10: if ( p = −1) then return Not Possible

11: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
12: Tp := Tp ∪ {τt}
13: TAhard := TAhard\{τt}
14: assigned := true
15: else
16: S∗ := S∗ ∪Tp
17: if (|S∗| = |S|) then return Not Possible

18: for each τt ∈ TAsoft do

19: S∗ := ∅
20: assigned := false
21: while (assigned = false) do
22: p := Find Processor with Max. Utilization(S, S∗)
23: if ( p = −1) then return Not Possible

24: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
25: Tp := Tp ∪ {τt}
26: TAsoft := TAsoft\{τt}
27: assigned := true
28: else
29: S∗ := S∗ ∪Tp
30: if (|S∗| = |S|) then return Not Possible

31: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

32: procedure Find Processor with Max. Utilization(S, S∗)
33: pbest := −1
34: Usum,best := 0
35: for (p := 1; p ≤ |S\S∗|; p := p+ 1) do
36: if (UNsum,p ≥ Usum,best) then
37: pbest := p
38: Usum,best := UNsum,p

39: return pbest



72 A. Appendix

Algorithm 19 Criticality-Successive Deadline-Monotonic Worst-Fit (CS DM WF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

1: Sort TAhard by Di increasingly

2: Sort TAsoft by Di increasingly

3: Find Assignment(TAhard, TAsoft, S)

4: procedure Find Assignment(TAhard, TAsoft, S)

5: for each τt ∈ TAhard do
6: S∗ := ∅
7: assigned := false
8: while (assigned = false) do
9: p := Find Processor with Min. Utilization(S, S∗)

10: if ( p = −1) then return Not Possible

11: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
12: Tp := Tp ∪ {τt}
13: TAhard := TAhard\{τt}
14: assigned := true
15: else
16: S∗ := S∗ ∪Tp
17: if (|S∗| = |S|) then return Not Possible

18: for each τt ∈ TAsoft do

19: τ1 := first element of TAsoft
20: S∗ := ∅
21: assigned := false
22: while (assigned = false) do
23: p := Find Processor with Min. Utilization(S, S∗)
24: if ( p = −1) then return Not Possible

25: if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
26: Tp := Tp ∪ {τt}
27: TAsoft := TAsoft\{τt}
28: assigned := true
29: else
30: S∗ := S∗ ∪Tp
31: if (|S∗| = |S|) then return Not Possible

32: return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

33: procedure Find Processor with Min. Utilization(S, S∗)
34: pbest := −1
35: Usum,best := 0
36: for (p := 1; p ≤ |S\S∗|; p := p+ 1) do
37: if (UNsum,p ≤ Usum,best) then
38: pbest := p
39: Usum,best := UNsum,p

40: return pbest



73

Algorithm 20 Criticality-Successive Decreasing Utilization Arbitrary-Fit (CS DU AF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

Sort TAhard by Ui decreasingly

Sort TAsoft by Ui decreasingly

Find Assignment(TAhard ∪TAsoft, S)

procedure Find Assignment(TAhard ∪TAsoft, S)

for each τt ∈ TAhard do
S̄ := ∅
for each Tp ∈ S do

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
S̄ := S̄ ∪Tp

if S̄ 6= ∅ then
r := random element out of [1, |S̄|]
Tr := Tr ∪ {τt}
TAhard := TAhard\{τt}

else return Not Possible
for each τt ∈ TAsoft do

S̄ := ∅
for each Tp ∈ S do

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
S̄ := S̄ ∪Tp

if S̄ 6= ∅ then
r := random element out of [1, |S̄|]
Tr := Tr ∪ {τt}
TAsoft := TAsoft\{τt}

else return Not Possible
return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp



74 A. Appendix

Algorithm 21 Criticality-Successive Decreasing Utilization Best-Fit (CS DU BF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

Sort TAhard by Ui decreasingly

Sort TAsoft by Ui decreasingly

Find Assignment(TAhard, TAsoft, S)

procedure Find Assignment(TAhard, TAsoft, S)

for each τt ∈ TAhard do
S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Min. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAhard := TAhard\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

for each τt ∈ TAsoft do

S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Max. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAsoft := TAsoft\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

procedure Find Processor with Max. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p := 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≥ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest



75

Algorithm 22 Criticality-Successive Decreasing Utilization Worst-Fit (CS DU WF)

Input: T := τ1, . . . , τn, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

Sort TAhard by Ui decreasingly

Sort TAsoft by Ui decreasingly

Find Assignment(TAhard, TAsoft, S)

procedure Find Assignment(TAhard, TAsoft, S)

for each τt ∈ TAhard do
S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Min. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAhard := TAhard\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

for each τt ∈ TAsoft do

S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Min. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAsoft := TAsoft\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

procedure Find Processor with Min. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p := 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≤ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest



76 A. Appendix

Algorithm 23 Deadline-Monotonic Hard Worst-Fit, Soft Best-Fit (DM HWF SBF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

Sort TAhard by Di increasingly

Sort TAsoft by Di increasingly

Find Assignment(TAhard, TAsoft, S)

procedure Find Assignment(TAhard, TAsoft, S)

for each τt ∈ TAhard do
S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Min. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAhard := TAhard\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

for each τt ∈ TAsoft do

S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Max. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAsoft := TAsoft\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

procedure Find Processor with Min. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p := 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≤ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest

procedure Find Processor with Max. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p = 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≥ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest



77

Algorithm 24 Decreasing Utilization Hard Best-Fit, Soft Worst-Fit (DU HBF SWF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

Sort TAhard by Ui decreasingly

Sort TAsoft by Ui decreasingly

Find Assignment(TAhard, TAsoft, S)

procedure Find Assignment(TAhard, TAsoft, S)

for each τt ∈ TAhard do
S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Max. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAhard := TAhard\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

for each τt ∈ TAsoft do

S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Min. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAsoft := TAsoft\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

procedure Find Processor with Min. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p := 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≤ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest

procedure Find Processor with Max. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p := 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≥ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest



78 A. Appendix

Algorithm 25 Decreasing Utilization Hard Worst-Fit, Soft Best-Fit (DU HWF SBF)

Input: TAhard = τ1, . . . , τn,T
A
soft = τ1, . . . , τl, System with m identical processors S := T1, . . . ,Tm

Output: System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp, or Not Possible

Sort TAhard by Ui decreasingly

Sort TAsoft by Ui decreasingly

Find Assignment(TAhard, TAsoft, S)

procedure Find Assignment(TAhard, TAsoft, S)

for each τt ∈ TAhard do
S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Max. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAhard := TAhard\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

for each τt ∈ TAsoft do

S∗ := ∅
assigned := false
while (assigned = false) do

p := Find Processor with Min. Utilization(S, S∗)
if ( p = −1) then return Not Possible

if (Find Optimal Priority Assignment(Tp ∪ {τt}) 6= Not Possible) then
Tp := Tp ∪ {τt}
TAsoft := TAsoft\{τt}
assigned := true

else
S∗ := S∗ ∪Tp
if (|S∗| = |S|) then return Not Possible

return System S with each subsystem Tp, 0 < p ≤ m, ordered by Pp

procedure Find Processor with Min. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p := 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≤ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest

procedure Find Processor with Max. Utilization(S, S∗)
pbest := −1
Usum,best := 0
for (p := 1; p ≤ |S\S∗|; p := p+ 1) do

if (UNsum,p ≥ Usum,best) then
pbest := p
Usum,best := UNsum,p

return pbest



List of Figures

1.1. A feasible schedule according to the rate-monotonic policy without error

occurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Task τ3 misses its deadline due to multiple re-executions of τ1 by reason of

fault recovery (light red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1. Typical parameters of a real-time task [7]. . . . . . . . . . . . . . . . . . . . 6

2.2. An implicit-deadline task set. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. A constrained-deadline task set. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4. An arbitrary-deadline task set. . . . . . . . . . . . . . . . . . . . . . . . . . 7

6.1. Di ≥ F · Tj + Cj [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2. Di ≤ F · Tj + Cj [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1. Comparison of all scheduling policies based on the first-fit bin-packing

heuristic developed in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2. Comparison of all scheduling policies based on the arbitrary-fit bin-packing

heuristic developed in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3. Comparison of all scheduling policies based on the best-fit bin-packing

heuristic developed in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4. Comparison of all scheduling policies based on the worst-fit bin-packing

heuristic developed in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5. Comparison of all deadline-monotonic criticality-successive scheduling poli-

cies developed in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.6. Comparison of all criticality-successive scheduling policies developed in this

thesis preordered according to decreasing task utilization. . . . . . . . . . . 59

7.7. DM AF with task splitting routine compared to DM AF. . . . . . . . . . . 61

7.8. DM AF with highest-priority task splitting routine compared to DM AF. . 61

7.9. DM AF with complete task migration routine for the establishment of a

1-Failure-Proof Multicore Systems with Dynamic Real-Time Guarantees

compared to DM AF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.10. DM AF with complete task migration routine under varying percentage of

timing strict tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.11. DM AF with complete task migration routine under varying task set size. . 63



80 List of Figures

7.12. DM AF with timing tolerable task migration routine to reduce tardiness of

a specified amount of timing tolerable tasks. . . . . . . . . . . . . . . . . . . 64

7.13. DM AF with timing tolerable task migration routine under varying per-

centage of timing strict tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.14. DM AF with timing tolerable task migration routine under varying task set

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Algorithms

1. Audsley’s Optimal Priority Assignment algorithm for single-core mixed-

criticality systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Feasible Priority Assignment Algorithm by von der Brüggen et al. [24] . . . 20

3. Deadline-Monotonic Partitioning [4] . . . . . . . . . . . . . . . . . . . . . . 23

4. Deadline-Monotonic First-Fit (DM FF) . . . . . . . . . . . . . . . . . . . . 32

5. Deadline-Monotonic Arbitrary-Fit (DM AF) . . . . . . . . . . . . . . . . . 32

6. Deadline-Monotonic Best-Fit (DM BF) . . . . . . . . . . . . . . . . . . . . 33

7. Deadline-Monotonic Worst-Fit (DM WF) . . . . . . . . . . . . . . . . . . . 34

8. Decreasing Utilization First-Fit (DU FF) . . . . . . . . . . . . . . . . . . . 35

9. Criticality-Successive Deadline-Monotonic First-Fit (CS DM FF) . . . . . . 37

10. Criticality-Successive Decreasing Utilization First-Fit (CS DU FF) . . . . . 38

11. Deadline-Monotonic Hard Best-Fit, Soft Worst-Fit (DM HBF SWF) . . . . 40

12. Semi-Partitioned Scheduling Policy with Task Splitting (TS) . . . . . . . . 46

13. Semi-Partitioned Scheduling Policy with Highest-Priority Task Splitting

(HPTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

14. Deceasing Utilization Arbitrary-Fit (DU AF) . . . . . . . . . . . . . . . . . 67

15. Decreasing Utilization Best-Fit (DU BF) . . . . . . . . . . . . . . . . . . . 68

16. Decreasing Utilization Worst-Fit (DU WF) . . . . . . . . . . . . . . . . . . 69

17. Criticality-Successive Deadline-Monotonic Arbitrary-Fit (CS DM AF) . . . 70

18. Criticality-Successive Deadline-Monotonic Best-Fit (CS DM BF) . . . . . . 71

19. Criticality-Successive Deadline-Monotonic Worst-Fit (CS DM WF) . . . . . 72

20. Criticality-Successive Decreasing Utilization Arbitrary-Fit (CS DU AF) . . 73

21. Criticality-Successive Decreasing Utilization Best-Fit (CS DU BF) . . . . . 74

22. Criticality-Successive Decreasing Utilization Worst-Fit (CS DU WF) . . . . 75

23. Deadline-Monotonic Hard Worst-Fit, Soft Best-Fit (DM HWF SBF) . . . . 76

24. Decreasing Utilization Hard Best-Fit, Soft Worst-Fit (DU HBF SWF) . . . 77

25. Decreasing Utilization Hard Worst-Fit, Soft Best-Fit (DU HWF SBF) . . . 78





Bibliography

[1] B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair static-

priority scheduling on multiprocessors are 50In 15th Euromicro Conference on Real-

Time Systems, 2003. Proceedings., pages 33–40, July 2003.

[2] N. C. Audsley. On Priority Assignment in Fixed Priority Scheduling. Inf. Process.

Lett., 79(1):39–44, May 2001.

[3] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic

Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans. De-

pendable Secur. Comput., 1(1):11–33, January 2004.

[4] Sanjoy Baruah and Nathan Fisher. The Partitioned Multiprocessor Scheduling of

Sporadic Task Systems. In Proceedings of the 26th IEEE International Real-Time

Systems Symposium, RTSS ’05, pages 321–329, Washington, DC, USA, 2005. IEEE

Computer Society.

[5] Sanjoy Baruah and Steve Vestal. Schedulability Analysis of Sporadic Tasks with

Multiple Criticality Specifications. In Proceedings of the 2008 Euromicro Conference

on Real-Time Systems, ECRTS ’08, pages 147–155, Washington, DC, USA, 2008.

IEEE Computer Society.

[6] Alan Burns and Robert I. Davis. Mixed Criticality Systems – a Review. York, UK,

July 2016. Department of Computer Science, University of York. Eighth edition.

[7] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Al-

gorithms and Applications. Springer Publishing Company, Incorporated, 3rd edition,

2011.

[8] J. J. Chen. Partitioned Multiprocessor Fixed-Priority Scheduling of Sporadic Real-

Time Tasks. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS),

pages 251–261, July 2016.

[9] Robert I. Davis and Alan Burns. Improved priority assignment for global fixed prior-

ity pre-emptive scheduling in multiprocessor real-time systems. Real-Time Systems,

47(1):1–40, 2011.



84 Bibliography

[10] Robert I. Davis and Alan Burns. A Survey of Hard Real-time Scheduling for Multi-

processor Systems. ACM Comput. Surv., 43(4):35:1–35:44, October 2011.

[11] François Dorin, Pascal Richard, Michaël Richard, and Joël Goossens. Schedulability

and sensitivity analysis of multiple criticality tasks with fixed-priorities. Real-Time

Systems, 46(3):305–331, 2010.

[12] Rolf Ernst and Marco Di Natale. Mixed Criticality Systems — A History of Miscon-

ceptions? IEEE Design & Test, 33(5):65–74, October 2016.

[13] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Tovar Eduardo. How realistic

is the mixed-criticality real-time system model? In Proceedings of the 23rd Interna-

tional Conference on Real Time and Networks Systems, RTNS ’15, pages 139–148,

New York, NY, USA, 2015. ACM.

[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[15] M. A. Haque, H. Aydin, and D. Zhu. Real-time scheduling under fault bursts with

multiple recovery strategy. In 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 63–74, April 2014.

[16] International Electrotechnical Commission (IEC). Analysis Techniques for System

Reliability — Procedure for Failure Mode and Effects Analysis (FMEA). International

Standard IEC 60812:2006, 2006.

[17] David S. Johnson. Fast Algorithms for Bin Packing. J. Comput. Syst. Sci., 8(3):272–

314, June 1974.

[18] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on multipro-

cessors. In 2009 15th IEEE Real-Time and Embedded Technology and Applications

Symposium, pages 23–32, April 2009.

[19] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned Fixed-Priority Preemp-

tive Scheduling for Multi-core Processors. In 2009 21st Euromicro Conference on

Real-Time Systems, pages 239–248, July 2009.

[20] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact

characterization and average case behavior. In [1989] Proceedings. Real-Time Systems

Symposium, pages 166–171, Dec 1989.

[21] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. J. ACM, 20(1):46–61, January 1973.



Bibliography 85

[22] John A. Stankovic. Misconceptions About Real-Time Computing: A Serious Problem

for Next-Generation Systems. Computer, 21(10):10–19, October 1988.

[23] Steve Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying De-

grees of Execution Time Assurance. In Proceedings of the 28th IEEE International

Real-Time Systems Symposium, RTSS ’07, pages 239–243, Washington, DC, USA,

2007. IEEE Computer Society.

[24] Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang, and Jian-Jia Chen.

Systems with Dynamic Real-Time Guarantees in Uncertain and Faulty Execution

Environments. In Real-Time Systems Symposium (RTSS), Porto, Portugal, Nov. 29

- Dec. 2 2016.

[25] Hao Xu and Alan Burns. Semi-partitioned Model for Dual-core Mixed Criticality Sys-

tem. In Proceedings of the 23rd International Conference on Real Time and Networks

Systems, RTNS ’15, pages 257–266, New York, NY, USA, 2015. ACM.





Eidesstattliche Versicherung 

 

______________________________ ____________________ 

Name, Vorname Matr.-Nr. 

Ich versichere hiermit an Eides statt, dass ich die vorliegende Bachelorarbeit/Masterarbeit* mit 

dem Titel 

____________________________________________________________________________ 

____________________________________________________________________________ 

____________________________________________________________________________ 

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die 

angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich 

gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde 

vorgelegen. 

__________________________  _______________________ 

Ort, Datum   Unterschrift 

  *Nichtzutreffendes bitte streichen 

Belehrung: 

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer 

Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit 

einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für 

die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der 

Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden 

Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5 

Hochschulgesetz - HG - )  

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren 

oder mit Geldstrafe bestraft.  

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die 

Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen. 

Die oben stehende Belehrung habe ich zur Kenntnis genommen: 

 

_____________________________ _________________________ 
Ort, Datum       Unterschrift 


	Titelseite
	Table of Contents
	Introduction
	Motivation
	Structure of the Thesis

	Real-Time Systems
	Theoretical Fundamentals of Real-Time Systems

	Mixed-Criticality Systems
	The Theoretical Mixed-Criticality Model
	Fixed-Priority Scheduling on Single Processor Systems
	Mixed-Criticality Systems in Practice

	Systems with Dynamic Real-Time Guarantees
	Task Model
	System Model
	Schedulability Test
	Optimal Priority Assignment

	Multicore Fixed-Priority Scheduling
	Partitioned Scheduling
	Semi-Partitioned Scheduling

	Multicore Systems with Dynamic Real-Time Guarantees
	System Model
	Partitioned Approach
	Schedulability Test
	Priority Order
	Classical Bin-Packing Heuristics
	Enhanced Bin-Packing Heuristics
	Limits of Partitioned Scheduling

	Semi-Partitioned Approach
	Task Splitting
	Highest-Priority Task Splitting
	Complete Task Migration
	Timing Tolerable Task Migration


	Evaluation
	Experiment Setup
	Partitioned Scheduling Strategies
	Task Splitting and Highest-Priority Task Splitting
	l-Failure-Proof Multicore Systems with Dynamic Real-Time Guarantees
	Timing Tolerable Task Migration
	Conclusion

	Appendix
	List of Figures
	List of Algorithms
	Bibliography
	Affidavit (Eidesstattliche Versicherung)

