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A B S T R A C T

This paper considers global earliest-deadline-first (EDF) and global rate-monotonic
scheduling for a general task model for parallel sporadic real-time tasks. In
particular, each sporadic real-time task is characterized by the general directed
acyclic graph (DAG). This paper provides the utilization-based analysis to test
the schedulability of global EDF and global rate-monotonic scheduling. We
show that if on unit-speed processors, a task set has total utilization of at most
m and the critical path length of each task is smaller than its deadline, then
global EDF can schedule that task set on m processors of speed 3+

√
5

2 ≈ 2.6181,
defined as the capacity augmentation bound. Together with the lower bound on
the speeding up, we close the gap for global EDF when m is sufficiently large.
This is the best known capacity augmentation bound for parallel DAG tasks
under any scheduling strategy. In addition, we also show that global rate mono-
tonic scheduling has a capacity augmentation bound of 2+

√
3 ≈ 3.7321 with

a similar analysis procedure, the best known capacity augmentation bound for
fixed priority scheduling of the general DAG tasks. For global EDF and global
RM, we also present utilization-based schedulability analysis tests based on the
utilization and the maximum critical path utilization.
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1I N T R O D U C T I O N

In the last decade, multicore processors have become ubiquitous and there has
been extensive work on how to exploit these parallel machines for real-time
tasks. In the real-time systems community, there has been extensive research
on scheduling task sets with inter-task parallelism — where each task in the task
set is a sequential program. In this case, increasing the number of cores allows
us to increase the number of tasks in the task set. However, since each task
can only use one core at a time, the computational requirement of a single
task is still limited by the capacity of a single core. Recently, there has been
some interest in design and analysis of scheduling strategies for task sets with
intra-task parallelism (in addition to inter-task parallelism), where individual
tasks are parallel programs and can potentially utilize more than one core in
parallel. These models enable tasks with higher execution demands and tighter
deadlines, such as those used in autonomous vehicles [30], video surveillance,
computer vision, radar tracking and real-time hybrid testing [28]

In this paper, we consider the general directed acyclic graph (DAG) model.
We prove that both global EDF and global rate-monotonic schedulers provide
strong performance guarantees, in the form of capacity augmentation bounds, for
scheduling these parallel DAG tasks.

One can generally derive two kinds of performance bounds for real time
schedulers. The traditional bound is called resource augmentation bound (also
called processor speed-up factor). A scheduler A provides a resource augmenta-
tion bound of b > 1 if it can successfully schedule any task set T on m proces-
sors of speed b as long as the ideal scheduler can schedule T onm processors of
speed 1. A resource augmentation bound provides a good notion of how close
a scheduler is to the optimal schedule, but has a drawback. Note that the ideal
scheduler is only a hypothetical scheduler, meaning that it always finds a feasi-
ble schedule if one exists. Unfortunately, Fisher et al. [26] proved that optimal
online multiprocessor scheduling of sporadic task systems is impossible. Since,
often, we can not tell whether the ideal scheduler can schedule a given task set
on unit-speed processors, a resource augmentation bound may not provide a
schedulability test.

The other kind of bound that is commonly used is a utilization bound. A sched-
uler A provides a utilization bound of b if it can successfully schedule any task
set which has total utilization at most m/b on m processors.1 A utilization
bound provides more information than a resource augmentation bound does;
any scheduler that guarantees a utilization bound of b automatically guaran-
tees a resource augmentation bound of b as well. In addition, it acts as a very
simple schedulability test in itself, since the total utilization of the task set
can be calculated in linear time and compared to m/b. Finally, a utilization
bound gives an indication of how much load a system can handle; allowing us
to estimate how much over-provisioning may be necessary when designing a
platform. Unfortunately, it is often impossible to prove a utilization bound for

1 A utilization bound is often stated in terms of 1/b; we adopt this notation in order to be consistent.
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2 introduction

parallel systems; often, we can construct pathological task sets with utilization
arbitrarily close to 1, but which can not scheduled on m processors.

Li et al. [33] defined a concept of capacity augmentation bound which is similar
to the utilization bound, but adds a new condition. A scheduler A provides a
capacity augmentation bound of b if it can schedule any task set T which sat-
isfies the following two conditions: (1) the total utilization of T is at most m/b,
and (2) the worst-case critical-path length of each taskΦi (execution time of the
task on an infinite number of processors)2 is at most 1/bth fraction of its dead-
line. A capacity augmentation bound is quite similar to a utilization bound: It
also provides more information than a resource augmentation bound does; any
scheduler that guarantees a capacity augmentation bound of b automatically
guarantees a resource augmentation bound of b as well. It also acts as a very
simple schedulability test. Finally, it can also provide help while designing a
platform by allowing one to estimate the load it is expected to handle.

There has been some recent research on proving both resource augmentation
bounds and capacity augmentation bounds for various scheduling strategies
for parallel tasks. This work falls in two categories. In decomposition-based strate-
gies, the parallel task is decomposed into a set of sequential tasks and these se-
quential tasks are scheduled using existing strategies for scheduling sequential
tasks on multiprocessors. In general, decomposition based strategies require
explicit knowledge of the structure of the DAG off-line in order to apply the
decomposition. In non-decomposition based strategies, the program can unfold
dynamically since no offline knowledge is required.

For decomposed strategy, most prior work considers synchronous tasks (sub-
category of general DAGs) with implicit deadlines. Lakshmanan et al. [31]
proved a capacity augmentation bound of 3.42 for partitioned fixed-priority
scheduling for a restricted category of synchronous tasks3 by decomposing
tasks and scheduling the decomposed tasks using a deadline monotonic sche-
duling strategy. Saifullah et al. [42] provide a different decomposition strat-
egy for general parallel synchronous tasks and prove a capacity augmentation
bound of 4 when the decomposed tasks are scheduled using global EDF and 5
when they are scheduled using partitioned DM. Kim et al. [30] provide a differ-
ent decomposition strategy for these synchronous tasks and prove a capacity
augmentation bound of 3.73 using global deadline monotonic strategy. In the
respective papers, these results are stated as resource augmentation bounds,
but they are in fact the stronger capacity augmentation bounds. Nelisson et
al. [39] proved a resource augmentation bound of 2 for general synchronous
tasks.

For non-decomposition strategies, researchers have studied primarily global
earliest deadline first (G-EDF) and global rate-monotonic (G-RM). Andersson
and Niz [5] show that global EDF provides resource augmentation bound of
2 for synchronous tasks with constrained deadlines. Both Li et. al [33] and
Bonifaci et. al [16] concurrently showed that global EDF provides a resource
augmentation bound of 2 for general DAG tasks with arbitrary deadlines. In
their paper, Bonifaci et al. also proved that G-RM provides a resource augmen-
tation bound of 3 for parallel DAG tasks with arbitrary deadlines. In addition,

2 critical-path length of a sequential task is equal to its execution time
3 Fork-join task model in their terminology



introduction 3

Agrawal et. al also provide a capacity augmentation bound of 4 for global EDF
for task sets with implicit deadlines.

In summary, the best known capacity augmentation bound for implicit dead-
lines tasks are 4 for DAG tasks using global EDF, and 3.73 for parallel syn-
chronous tasks using decomposition combined with global DM. The contribu-
tions of this paper are as follows:

1. We improve the capacity augmentation bound of global EDF to 3+
√
5

2 ≈
2.6181 for DAGs. When the number of processors, m, is large, there is a
matching lower bound for global EDF due to [33]; therefore, this result
closes the gap for large m. In addition, this is the best known capacity
augmentation bound for any scheduler for parallel DAG tasks.

2. We show that global RM has a capacity augmentation bound of 2+
√
3 ≈

3.7321. This is the best known capacity augmentation bound for any
fixed-priority scheduler for DAG tasks. Even if we restrict ourselves to
synchronous tasks, this is the best bound for global fixed priority sche-
duling without decomposition.

3. For global EDF and global RM, we also present their resource augmen-
tation factor as a function of the utilization and the maximum critical
path utilization. Moreover, we also present utilization-based schedulabil-
ity analysis tests based on the utilization and the maximum critical path
utilization.

The paper is organized as follows. Section 2 defines the DAG model for
parallel tasks and provides some definitions. Section 3 presents a canonical
form to give an upper bound of the work of a DAG that should be done in a
specified interval length. Section 4 proves that global EDF provides the capacity
augmentation bound of 2.6181. Section 5 shows that global RM provides the
capacity augmentation bound of 3.7321. Section 7 concludes this paper.



2 S Y S T E M M O D E L

We now present the details of the DAG task model for parallel tasks and some
additional definitions.

task model This paper considers a given set T of independent sporadic
real-time tasks {τ1, τ2, . . . , τn}. A task τi represents an infinite sequence of ar-
rivals and executions of task instances (or also called jobs). We consider the
sporadic task model [38, 11] where, for a task τi, the minimum inter-arrival time
or period Ti represents the time between consecutive arrivals of task instances,
and the relative deadline Di represents the temporal constraint for executing the
job. If a task instance of τi arrives at time t, the execution of this instance must
be finished no later than the absolute deadline t+Di and the release of the next
instance of task τi must be no earlier than t plus the minimum inter-arrival
time, i..e, t + Ti. In this paper, we consider implicit deadline tasks where each
task τi’s relative deadline Di is equal to its minimum inter-arrival time Ti; that
is, Ti = Di.

Each task τi ∈ T is a parallel task; we consider a general model for deter-
ministic parallel tasks, namely the DAG model. Each task is characterized by
its execution pattern, defined by a directed acyclic graph (DAG). Each node
(subtask) in the DAG represents a sequence of instructions (a thread) and each
edge represents dependency between nodes. A node (subtask) is ready to be
executed when all its predecessors have been executed. Throughout this paper,
as it is not necessary to build the analysis based on specific structures of the
execution pattern, only two parameters related to the execution pattern of task
τi are defined:

• total execution time (or work) Ci of task τi: This is the summation of the
worst-case execution times of all the subtasks of task τi.

• critical-path length Φi of task τi: This is the length of the critical path
in the given DAG, in which each node is characterized by the worst-
case execution time of the corresponding subtask of task τi; critical path
length is the worst case execution time of the task on an infinite number
of processors.

Given a DAG, obtaining work Ci and the critical-path length Φi [43, pages
661-666] can both be done in linear time.

For notational brevity, the utilization Ci
Ti

of task τi is denoted by ui. The
total utilization of the task set is U∑ =

∑
τi∈T ui. Moreover, let the critical

path utilization of task τi, denoted as ∆i, be ΦiTi . Also, let ∆max is the maximum
critical path utilization of task set T, i.e., ∆max = maxτi∈T ∆i. Finally, we also
define Vi as ∆max · Ti.

processor model and global scheduling This paper considers sche-
duling a task set on a uniform multiprocessor or multicore consisting of m

4



system model 5

identical processors or cores. Specifically, we only consider global policies in
which an instance of a subtask/task can be migrated among the m processors.
In global scheduling, there is a global queue for the subjobs (subtask instances)
that are ready to be executed.

This paper will explore two global scheduling policies, global earliest-deadline-
first (global EDF, or G-EDF) and global rate monotonic (global RM, or G-RM),
to decide the priority orders of the subjobs in the global queue. In G-EDF, a
subjob has higher priority than another if its absolute deadline of the job that
contains it is earlier. In G-RM, a subjob of a task τi has higher priority than
another subjob of a task τj if Ti 6 Tj. For the simplicity of presentation, it is
assumed that the tasks are sorted by increasing deadline so that Ti 6 Tj if i 6 j.

utilization-based schedulability test As mentioned in Section 1

we analyze algorithms in terms of their capacity augmentation bound. The
formal definition is presented here:

Definition 2.0.1 Given a task set T with total utilization of U∑, a scheduling algo-
rithm A with capacity augmentation bound b can always schedule this task set
on m processors of speed b as long as T satisfies the following conditions on speed 1
processors.

Utilization does not exceed total cores,
∑
τi∈T

ui 6 m (1)

For each task τi ∈ T, the critical path Φi 6 Di (2)

Since no scheduler can schedule a task set T on m unit speed processors unless
Conditions (1) and (2) are met, capacity augmentation bound automatically
leads to a resource augmentation bound. This definition can be equivalently
stated (without reference to the speedup factor) as follows: Condition (1) says
that the total utilization U∑ is at most m/b and Condition (2) says that the
critical-path length of each task is at most 1/b times its relative deadline, that
is, ∆max 6 b. Therefore, in order to check if a task set is schedulable we only
need to know the sum of the task utilizations, and the maximum critical path
utilization. Note that a scheduler with a smaller b is better than another with a
larger b, since b = 1 means that A is an optimal scheduler.



3 C A N O N I C A L F O R M O F A D A G TA S K

In this section, we will represent each task τi using its canonical form DAG. Note
each task can have an arbitrarily complex DAG structure which is difficult to
analyze and may not even be known to the scheduler before runtime. However,
given the known task set parameters (work, critical path length, utilization,
critical-path utilization, etc.) we represent each task using a canonical DAG
which allows us to upper bound the demand of the task in any given interval
length t. These results will play important building blocks when we analyze
the capacity augmentation bounds for global EDF in Section 4 and global RM
in Section 5.

We first classify each task τi as a light or heavy task. A task is a light task if
its utilization ui = Ci/Ti 6 ∆max. Otherwise, if τi’s utilization ui > ∆max, then
we say that τi is heavy.

For analytical purposes, instead of considering the complex DAG structure
of individual tasks τi, we consider a canonical form τ∗i of task τi. The canonical
form of a task is also represented by a DAG, but it is a much simpler DAG. In
particular, each (node) subtask of task τ∗i has execution time ε, which is positive
and arbitrarily small. (For presentation clarity, we assume that Viε and Ci

ε are
both integers.) Light and heavy tasks have different canonical forms described
below.

• The canonical form τ∗i of a light task τi is simply a chain of Ci/ε nodes,
each with execution time ε. Note that task τ∗i is a sequential task.

• The canonical form τ∗i of a heavy task τi is a little more complex. It starts
with a chain of Vi/ε− 1 nodes each with execution time ε. Therefore, the
total work of this chain is Vi − ε. The last node of the chain forks all the
remaining nodes. That is, all the remaining (Ci − Vi + ε)/ε nodes have
an edge from the last node of this chain, but no other edges. Therefore,
all these forked subtasks can execute entirely in parallel.

Due to the assumption that Viε and Ci
ε are both integers for each task τi, we

know that the above construction of the canonical form τ∗i results in a feasible
DAG structure. Figure 1 provides an example for such a transformation for a
heavy task. It is important to note that the canonical form τ∗i does not depend
on the internal DAG structure of τi at all. On the other hand, it depends only
on the task parameters of task τi and the maximum critical path utilization
∆max of the task set, since Vi = ∆max · Ti.

As an additional analysis tool, we define a hypothetical scheduling A∞ which
must schedule a task set T on an infinite number of processors, that is, m = ∞.
Since the system has an infinite number of processors, the prioritization of the
subjobs becomes unnecessary and A can obtain an optimal schedule by sim-
ply assigning a subjob to a processor as soon as that subjob becomes ready
for execution. Using this schedule, all the tasks respond in their critical-path
length, that is, a job of task τi finishes exactly Φi time units after it is released.

6
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Figure 1: A heavy DAG task τi with Φi = 12, Vi = 12, Ci = 20, and Ti = Di = 20 and
its canonical form, where the number in each node is its execution time.

Therefore, if Φi 6 Ti for all tasks τi in T, the above schedule always meets the
deadlines of the tasks. We denote this schedule as S∞. Similarly, S∞,α is the re-
sulting schedule when A∞ schedules tasks on processors of speed α > 1. Note
that S∞,α finishes a job of task τi exactly Φi/α time units after it is released.

We now define some notations based on S∞,α. We say that maximum load
worki(t,α) for task i as the maximum amount of work that S∞,α may do on
the subjobs of τi in any interval of length t. Let qi(t,α) be the total work
finished by S∞,α between the arrival time ri of task instance τi and time ri + t.
That is, from ri + t to ri + Ti, i.e., interval length Ti − t, the remaining Ci −
qi(t,α) workload (execution time) has to be finished. Clearly, both qi(t,α) and
worki(t,α) depend on the structure of the DAG. We can derive worki(t,α) as
follows:

worki(t,α) =Ci − qi(Ti − t,α) t 6 Ti⌊
t
Ti

⌋
Ci +worki(t−

⌊
t
Ti

⌋
Ti) t > Ti.

(3)

For the canonical form τ∗i , let q∗i (t,α) be defined with the same definition
of qi(t,α) for task τi. As the canonical form in task τ∗i is well-defined, we
can derive q∗i (t,α) directly. Note that ε can be arbitrarily small, and, hence, its
impact is ignored when calculating q∗i (t,α). Suppose that V ′i is min{Ci,Vi}. For
both heavy and light tasks, the first V ′i unit of work is sequential. Therefore, it

is clear that q∗i (t,α) is α · t when t < V ′i
α . Moreover, if task τi is a heavy task,

we also have q∗i (
Vi
α ,α) is Ci.

We can now define the canonical workload work∗i (t,α) as the maximum
workload of the canonical task τ∗i in any time interval length in schedule S∞,α.
For a light task τi, where Ci/Ti 6 ∆i, and τ∗i is a chain, it is easy to see that
the canonical workload is

work∗i (t,α) =
0 t < Ti −

Ci
α

α(t− (Ti −
Ci
α )) Ti −

Ci
α 6 t 6 Ti⌊

t
Ti

⌋
Ci +work

∗
i (t−

⌊
t
Ti

⌋
Ti) t > Ti.

(4)
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t
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

qi(t, 2)
q∗i (t, 2)

qi(t, 1)

q∗i (t, 1)

(a) q∗i (t,α) and qi(t,α)
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(b) work∗i (t,α) and worki(t,α)

Figure 2: q∗i (t,α), qi(t,α), work
∗
i (t,α) and worki(t,α) for the heavy task τi with Ti =

20 in Figure 1.

Similarly, for heavy tasks, where Ci/Ti > ∆i, when ε is arbitrarily small, we
have

work∗i (t,α) =
0, t < Ti −

Vi
α

Ci − Vi +α(t− (Ti −
Vi
α )), Ti −

Vi
α < t 6 Ti⌊

t
Ti

⌋
Ci +work

∗
i (t−

⌊
t
Ti

⌋
Ti) t > Ti.

(5)

Figure 2 provides an illustrative example for demonstrating q∗i (t,α), qi(t,α),
work∗i (t,α), and worki(t,α) of the heavy task τi defined in Figure 1 when Ti =
20, α = 1, and α = 2. It can be observed that work∗i (t,α) > worki(t,α) in this
example. In fact, the following lemma proves that work∗i (t,α) > worki(t,α)
for any t > 0 and α > 1.
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Lemma 1 For any t > 0 and α > 1,

work∗i (t,α) > worki(t,α).

Proof. Suppose that V ′i is min{Ci,Vi}. For both heavy and light tasks, the first
V ′i unit of work is sequential. Therefore, it is clear that q∗i (t,α) is α · t when

t <
V ′i
α . According to the definition, we have qi(t,α) > α · t > q∗i (t,α) when

t < Φi
α .

In addition, q∗i (
V ′i
α ,α) = Ci, since at t = V ′i/α, S∞,α finishes the job since

Φi = V
′
i for all τ∗i . Moreover, since the critical path length Φi 6 Vi, for all i, we

have qi(
Φi
α ,α) = Ci, since S∞,α finishes a job of task τi exactlyΦi/α time units

after it is released. Since Φi 6 V ′i , we can conclude that q∗i (t) 6 qi(t) for any
0 6 t < Ti. Combining this fact with the definition of work(t,α) (Equation (3)),
we complete the proof.

Moreover, the following lemma provides an upper bound of the density
(workload that has to be finished divided by the interval length) for both heavy
and light tasks

Lemma 2 For any task τi (heavy or light), we have

worki(t,α)
t

6
work∗i (t,α)

t
6

ui

1− ∆max
α

(6)

for any t > 0 and α > 1.

Proof. The first inequality in Inequality (6) comes from Lemma 1. We prove this
lemma by showing that the second inequality in Inequality (6) holds for light
tasks and heavy tasks. We first note that the right hand side is non-negative;
that is, 1− ∆max

α > 0, since α > 1, and 0 < ∆max 6 1. There are two cases:

Case 1: 0 < t 6 Ti — We further consider light and heavy tasks separately as
follows:

• If τi is a light task, where the function work∗i (t,α) is defined in
Equation (4): Therefore, for any 0 < t 6 Ti, we have

work∗i (t,α) −
Ci
Ti
· t 6 α(t− Ti +

Ci
α

) −
Ci
Ti
· t

= (t− Ti)(α−
Ci
Ti

)

61 (t− Ti)(α− 1)

6 0,

where we get the step 61 by relying on three assumptions: (a) t 6
Ti; (b) since τi is a light task, we have CiTi 6 ∆max 6 1; and (c) α > 1.

As we observed above, the RHS of Inequality (6) is non-negative.
Therefore, the said inequality holds for any light task τi for any
0 < t 6 Ti.

• If τi is a heavy task, where the function work∗i (t,α) is defined in
Equation (5). Inequality (6) holds naturally when 0 < t < Ti −

Vi
α
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since the left hand side is 0 and right hand side is non-negative. For
any t such that Ti −

Vi
α 6 t 6 Ti, we have

work∗i (t,α)
t

=
Ci +αt−αTi

t

= α+ Ti(
ui −α

t
),

Therefore, work
∗
i (t,α)
t is maximized either (a) when t = Ti −

Vi
α if

ui − α > 0 or (b) t = Ti if ui − α < 0. If (b) is true, Inequality (6)
is obvious since we know that work

∗
i (Ti,α)
Ti

= ui 6
ui

1−∆max
α

. If (a) is

true, then we have

work∗i (Ti −
Vi
α ,α)

Ti −
Vi
α

=
Ci − Vi

Ti −
Vi
α

=
Ci − Ti∆max

Ti −
Ti∆max
α

=
ui −∆max

1− ∆max
α

6
ui

1− ∆max
α

.

Therefore, Inequality (6) holds for any heavy task τi for any 0 <
t 6 Ti.

Case 2: t > Ti — Suppose that t is kTi + t ′, where k is
⌊
t
Ti

⌋
and 0 < t ′ 6 Ti.

By Equation (4) and Equation (5) and the results known for 0 < t ′ 6 Ti,
we have

work∗i (t,α)
t

=
kCi +work

∗
i (t
′,α)

kTi + t ′

6
kuiTi +

ui
1−∆max

α

t ′

kTi + t ′

6
(kTi + t

′) · ui
1−∆max

α

kTi + t ′

6
ui

1− ∆max
α

.

We will use the result of this lemma in Sections 4 and 5 to derive bounds on
global EDF and global RM scheduling.
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In this section, we will use the results from Section 3 to prove the capacity

augmentation bound of 3−1/m+
√
5−2/m+1/m2

2 ≈ (3+
√
5)/2 for global EDF

scheduling of parallel DAG tasks. For large m, this is tight, since Li et al. [33]
showed that global EDF can not provide a capacity augmentation bound of less
than (3+

√
5)/2 when m is large. In addition, we also show a lower bound of

3−2/m+
√
5−12/m+4/m2

2 when m > 3.

4.1 upper bound on capacity augmentation of g-edf

Our analysis builds on the analysis used to prove the resource augmentation
bounds by Bonifaci et al. [16]. We first review the particular lemma from the
paper that we will use to achieve our bound.

Lemma 3 If

∀t > 0, (α ·m−m+ 1) · t >
n∑
i=1

worki(t,α),

the task set is schedulable by G-EDF on a platform with speed α.

Proof. This is based on a reformulation of Lemma 3 and Definition 10 in [16].

Theorem 1 The capacity augmentation bound for G-EDF is
3− 1

m+
√
5− 2

m+ 1

m2

2 .

Proof. According to Lemma 2, for any α > 1, it is clear that

sup
t>0

∑
τi
worki(t,α)
t

6
∑
τi

sup
t>0

work∗i (t,α)
t

6

∑
τi
ui

1− ∆max
α

6†
m

1− 1
α

, (7)

where sup is the supremum of a set of numbers.
Therefore, if

m

1− 1
α

6 (α ·m−m+ 1),

we can also conclude that the schedulability test for G-EDF in Lemma 3 holds.
Therefore, if (α ·m−m+ 1) · (1− 1

α ) > m, then the task set is schedulable. In
order to calculate α, we can solve the equivalent quadratic equation

mα2 − (3m− 1)α+ (m− 1) = 0.

11
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Figure 3: The resource augmentation bound of G-EDF when m is sufficiently large.

which solves to α =
3− 1

m+
√
5− 2

m+ 1

m2

2 .
We now state a slightly more general corollary relating the resource augmen-

tation bound to the total utilization.

Corollary 1 The resource augmentation bound for G-EDF is
∆max+

U∑
m +1− 1

m+

√
(∆max+

U∑
m +1− 1

m )2−4(1− 1
m )∆max

2 .

Proof. The proof is the same as in the proof of Theorem 1 without taking the
inequality 6† in (7). Therefore, if

U∑
1− ∆max

α

6 (α ·m−m+ 1),

⇒mα2−(m∆max +U∑ +m− 1)α+(m− 1)∆max > 0, (8)

we can also conclude that the schedulability test for G-EDF in Lemma 3 holds.
By solving the above inequality, it can be proved that the inequality holds when

α >
∆max+

U∑
m +1− 1

m+

√
(∆max+

U∑
m +1− 1

m )2−4(1− 1
m )∆max

2 .
Figure 3 illustrates the resource augmentation bound of G-EDF provided in

Corollary 1 when m is sufficiently large, i.e., m = ∞, by varying
U∑
m and ∆max.

The previously known resource augmentation bound for EDF in such a case is
2 [16]. As can be seen from the figure, this corollary provides a tighter resource

augmentation bound for small values of
U∑
m and ∆max, but looser bound for

larger values.
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4.2 lower bound on capacity augmentation of g-edf

As mentioned above, Li et al.’s lower bound [33] demonstrates the tightness of
the above bound for large m. We now provide the lower bound of the capacity
augmentation bound for small m.

Consider a task set T with two tasks, τ1 and τ2. Task τ1 starts with sequen-
tial execution for 1− ε amount of time and then forks m−2

ε + 1 subtasks with
execution time ε. Here, ε is assumed to be a positive number that is very small
and 1

εm is assumed to be a positive integer. Therefore, the total work of task τ1
is C1 = m− 1 and its critical-path length Φi = 1. The minimum inter-arrival
time of task τ1 is 1.

Task τ2 is simply a sequential task with work/execution time of 1− 1
α and

minimum inter-arrival time also 1 − 1
α , where α > 1 will be defined later.

Clearly, the total utilization is m and the critical-path length of each task is
at most the relative deadline (minimum inter-arrival time).

Lemma 4 When α <
3− 2

m−δ+
√
5− 12

m+ 4

m2

2 and δ = 2ε− g(ε) and m > 3,

1− 2ε

α
+
m− 2

mα
> 1−

1− 1
α

α
. (9)

Proof. By solving

1− 2ε

α
+
m− 2

mα
= 1−

1− 1
α

α
,

we know that the equality holds when α is equal to
3− 2

m−2ε+
√
5− 12

m+ 4

m2
−g(ε)

2 ,
in which g(ε) is a function of 1ε and approaches to 0 when ε approaches 0.

Therefore, when α <
3− 2

m−2ε+
√
5− 12

m+ 4

m2
−g(ε)

2 , it is clear that 1−εα + m−2
mα >

1−
1− 1

α
α . Now, by setting δ to 2ε, we reach the conclusion.

Theorem 2 The capacity augmentation bound for G-EDF is at least
3− 2

m+
√
5− 12

m+ 4

m2

2 ,
when ε→+ 0.

Proof. Consider the system with two tasks τ1 and τ2 defined at the beginning
of Section 4.2. Suppose that the arrival time of task τ1 is at time 0, and the
arrival time of task τ2 is at time 1− 1

α + ε
α . By definition, the first jobs of τ1

and τ2 have absolute deadlines at 1 and 1+ ε
α . Therefore, G-EDF scheduling

will execute the sequential execution of task τ1, and then execute the sub-jobs
of task τ1, and then execute τ2.

The finishing time of task τ1 by running at speed α is not earlier than

1− ε

α
+
m−2
ε ε

mα
=
1− ε

α
+
m− 2

mα
.

Therefore, the finishing time of task τ2 is not earlier than

1− ε

α
+
m− 2

mα
+
1− 1

α

α
.
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Figure 4: The upper bound of G-EDF provided in Theorem 1 and the lower bound in
Theorem 2 with respect to the capacity augmentation bound.

If 1−εα + m−2
mα +

1− 1
α
α > 1+ ε

α , then we know that task τ2 misses its deadline.
By Lemma 4, we reach the conclusion.

Figure 4 illustrates the upper bound of G-EDF provided in Theorem 1 and the
lower bound in Theorem 2 with respect to the capacity augmentation bound. It
can be easily seen that the upper and lower bounds are getting closer when m
is larger. When m is 100, the gap between the upper and the lower bounds is
roughly about 0.01622.

4.3 utilization-based schedulability test

We conclude this section by extending the above analysis to provide a utilization-
based schedulability test based on ∆max and U∑ in the following corollary.

Corollary 2 If

U∑ 6
m

1
1−∆max

+ 1− 1
m

,

then the task set can be feasibly scheduled by using G-EDF.

Proof. This is proved by performing the schedulability test at the platform
with speed α. In that platform with speed α, the critical path utilization among

the tasks is at most ∆max
α and the total utilization is

U∑
α . The following proof an-

alyzes the speed-up factor α that can guarantee the schedulability at a platform
with speed α by assuming that ∆max

α is given as an input Y.
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Figure 5: The utilization bound schedulability test for G-EDF with respect to given ∆max.

Similar to the proof of Theorem 1 without taking the condition ∆max 6 1 in
the inequality 6† in (7), we know that if

m

1− ∆max
α

6 (α ·m−m+ 1),

⇒ α >
1

1− Y
+ 1−

1

m
, (10)

we can also conclude that the schedulability test for G-EDF in Lemma 3 holds
at the platform with speed α. This implies that when the total utilization at
speed α is no more than m

1
1−Y+1−

1
m

, we can guarantee the schedulability of this

task set at a platform with speed α.
By the above argument, if the platform with speed α is the platform that we

would like to test the schedulability of G-EDF, we already reach the conclusion.



5 G - R M S C H E D U L I N G

This section presents the proof that G-RM provides a capacity augmentation

bound of 2− 1
2m +

√
3− 1

m + 1
4m2

≈ 2+
√
3 for large m. The structure of the

proof is very similar to the analysis in Section 4.
Again, we use a lemma from [16], restated below.

Lemma 5 If

∀t > 0, 0.5 · (α ·m−m+ 1) · t >
n∑
i=1

worki(t,α),

the task set is schedulable by G-RM on a platform with speed α.

Proof. This is based on a reformulation of Lemma 6 and Definition 10 in [16].
Note that that analysis in [16] is for deadline-monotonic scheduling, by giving a
subjob of a task higher priority if its relative deadline is shorter. As we consider
task sets with implicit deadlines, deadline-monotonic scheduling is the same
as rate-monotonic scheduling.

By using Lemma 5, with similar proofs in Theorem 1 and Corollary 1 we
have the following results.

Theorem 3 The capacity augmentation bound for G-RM is
4− 1

m+
√
12− 4

m+ 1

m2

2 .

Proof. In the similar manner as the proof of Theorem 1, for any α > 1, we
know that

sup
t>0

∑
τi
worki(t,α)
t

6
m

1− 1
α

. (11)

Therefore, if

m

1− 1
α

6 0.5(α ·m−m+ 1),

we can also conclude that the schedulability test for G-RM in Lemma 5 holds.
By solving the inequality above, we know that m

1− 1
α

6 0.5(α ·m−m+ 1) holds

when α >
4− 1

m+
√
12− 4

m+ 1

m2

2 .
The result in Theorem 3 is the best known result for the capacity augmen-

tation bound for global fixed-priority scheduling for general DAG tasks with
arbitrary structures. Interestingly, Kim et al. [30] get the same bound of 2+

√
3

for global fixed-priority scheduling of parallel synchronous tasks (a subset of
DAG tasks).

The strategy used in [30] is quite different. In particular, in their algorithm,
the tasks undergo a stretch transformation which generates a set of sequential
subtask (each with its release time and deadline) for each parallel task τi in the

16
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original task set. These subtask are then scheduled using a global DM schedu-
ling algorithm [13]. Note that even though the parallel tasks in the original task
set are implicit deadline tasks, the transformed sequential tasks are only con-
strained deadline tasks — hence the need for deadline monotonic scheduling
instead of rate monotonic scheduling.

The following, slightly more general, corollary relates the resource augmen-
tation bound to the utilization.

Corollary 3 The resource augmentation bound for G-RM is

∆max +
2U∑
m + 1− 1

m +

√
(∆max +

2U∑
m + 1− 1

m )2 − 4(1− 1
m )∆max

2
.

Proof. The proof is the same as in the proof of Corollary 1. Therefore, if

U∑
1− ∆max

α

6 0.5(α ·m−m+ 1),

⇒mα2−(m∆max + 2U∑ +m− 1)α+(m− 1)∆max > 0, (12)

we can also conclude that the schedulability test for G-EDF in Lemma 3 holds.
By solving the above inequality, it can be proved that the inequality holds when

α >
∆max+

2U∑
m +1− 1

m+

√
(∆max+

2U∑
m +1− 1

m )2−4(1− 1
m )∆max

2 .
Figure 6 illustrates the resource augmentation bound of G-RM provided in

Corollary 3 when m is sufficiently large, i.e., m = ∞, by varying
U∑
m and

∆max. The previously known resource augmentation bound for global RM is 3
[16]. As can be seen from the figure, this corollary provides a tighter resource

augmentation bound for small values of
U∑
m and ∆max, but looser bound for

larger values.

Corollary 4 If

U∑ 6
m

2
1−∆max

+ 1− 1
m

,

then the task set can be feasibly scheduled by using G-RM.

Proof. The proof is identical to the proof of Corollary 2 by following Theorem 3

instead of Theorem 1.
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Figure 6: The resource augmentation bound of G-RM when m is sufficiently large.
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6R E L AT E D W O R K

In this section, we review closely related work on real-time scheduling, concen-
trating primarily on scheduling task sets with parallel tasks.

Real-time multiprocessor scheduling considers scheduling sequential tasks
on computers with multiple processors or cores and has been studied exten-
sively (see [22, 12] for a survey). In addition, platforms such as LitmusRT [19,
17] have been designed to support these task sets. Here, we review a few
relevant theoretical results. Researchers have proven both resource augmen-
tation bounds, utilization bounds and capacity augmentation bounds. The best
known utilization bound for global EDF for sequential tasks on a multiproces-
sor is 2 (traditionally stated as 1/b = 50%)[9]; therefore, global EDF trivially
provides a resource and capacity augmentation bound of 2 as well. Partitioned
EDF and versions partitioned static priority schedulers also provide a utiliza-
tion bound of 2 [35, 6]. Global RM provides a capacity augmentation bound of
3 [4] to implicit deadline tasks.

For parallel real-time tasks, most early work considered intra-task paral-
lelism of limited task models such as malleable tasks [32, 21, 29] and moldable
tasks [37]. Kato et al. [29] studied the Gang EDF scheduling of moldable paral-
lel task systems.

Researchers have since considered more realistic task models that represent
programs that are typically generated by commonly used general purpose par-
allel programming languages such as Cilk family [1, 14], OpenMP [2], and
Intel’s Thread Building Blocks [41]. These languages and libraries generally
support primitives such as parallel-for loops and fork/join or spawn/sync in
order to expose parallelism within the programs. Using these constructs in
various combinations generates tasks whose structure can be represented with
different types of DAGs.

Tasks with one particular structure, namely parallel synchronous tasks, have
been studied more than others in the real-time community. These tasks are
generated if only we use only parallel-for loops to generate parallelism. Lak-
shmanan et al. [31] proved a (capacity) augmentation bound of 3.42 for a
restricted synchronous task model which is generated when we restrict each
parallel-for loop in a task to have the same number of iterations. General syn-
chronous tasks (with no restriction on the number of iterations in the parallel-
for loops), have also been studied [42, 30, 39, 5]. (More details on these results
were presented in Section 1) Chwa et al. [20] provide a response time analysis.

If we do not restrict the primitives used to parallel-for loops, we get a more
general task model — most easily represented by a general directed acyclic
graph. A resource augmentation bound of 2− 1

m for G-EDF was proved for a
single DAG with arbitrary deadlines [10] and for multiple DAGs [16, 33]. A
capacity augmentation bound of 4− 2

m was proved in [33] for tasks with for
implicit deadlines. Liu and Anderson [34] provide a response time analysis for
G-EDF.

19



20 related work

There has been significant work on scheduling parallel systems in the non-
real time context [40, 24, 23, 7, 8, 25]. In this context, the goal is generally to max-
imize throughput; tasks have no deadlines or periods. Various provably good
scheduling strategies, such as list scheduling [27, 18] and work-stealing [15]
have been designed. In addition, many platforms have been built based on
these results: examples include parallel languages and runtime systems, such
as the Cilk family [1, 14], OpenMP [2], and Intel’s Thread Building Blocks [41].
While multiple tasks on a single platform have been considered in the con-
text of fairness in resource allocation [3], none of this work considers real-time
constraints.
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In this paper, we consider parallel tasks in the DAG model and prove that

global EDF provides a capacity augmentation bound of 3−1/m+
√
5−2/m+1/m2

2 6

(3+
√
5)/2 ≈ 2.618 to parallel tasks with implicit deadlines and global RM pro-

vides the capacity augmentation bound of 2− 1
2m +

√
3− 1

m + 1
4m2

6 2+
√
3 ≈

3.73 to these tasks. These are the best known bounds for these schedulers for
DAG tasks. In addition, for a large enough number of processors m, the global
EDF bound of (3+

√
5)/2 is tight, since there exists a matching lower bound.

Moreover, the global EDF bound of (3+
√
5)/2 is the best known capacity aug-

mentation bound for any scheduler for parallel tasks. For global EDF and global
RM, we also present utilization-based schedulability analysis tests based on the
utilization and the maximum critical path utilization.

There are several directions of future work. Global RM capacity augmenta-
tion bound is not known to be tight. The current lower bound of the capacity
augmentation bound of G-RM is 1/0.37482 ≈ 2.668, inherited from the sequen-
tial sporadic real-time tasks without DAG structures [36]. Therefore, it is worth
investigating a matching lower bound or lowering the upper bound. In addi-
tion, it would be interesting to investigate if the lower bound of 2.618 for global
EDF is a general lower bound for any parallel scheduler or if it is possible to
design schedulers that beat this bound. Finally, all the known capacity aug-
mentation bound results are restricted to implicit deadline tasks; it would be
interesting to generalize capacity augmentation bounds for constrained and
arbitrary deadline tasks.

21
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