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Abstract

Over the last decades, the increase of real-time and embedded system has lead to
a more in depth analysis of this field of computer science. Traditional scheduling theory
cannot be considered alone for the analysis of such complex systems. Moreover, distributed
systems would need to verify the system performance as a whole: the analysis over the
single components may be too pessimistic. The cost of such systems has to be minimised,
therefore it is not possible to over-allocate resources in order to compensate for a too
pessimistic performance analysis.

For this reason, many verification and validation methods have been implemented and
developed in the last years. One of them, the MPA-RTC Framework (Modular Performance
Analysis with Real-Time Calculus) has gained particular attention both within academia
and industry sectors.

Real-Time Calculus offers a powerful mathematical back-round for the design stage
performance analysis of distributed systems. It uses the concept of curves in order to rep-
resent potentially every event and resource patterns, both as incoming and outgoing values,
thus providing an intuitive modelling framework for complex distributed and embedded
systems, subject to real-time constrains.

However, real-time calculus suffers from an exponential complexity of its operation.
Even simple models need minutes to be analysed in the real-time calculus toolbox. Fur-
thermore, in same cases the computation is even impossible due to memory overflow errors.
In order to reduce its complexity, extensions of real-time calculus, such as finitary real-time
calculus, have been recently introduced. Nevertheless, they do not solve all the problems.

In this work we present a different approach to reduce the complexity of real-time
calculus in some particular cases. In fact, a fixed-priority component, described by re-
al-time calculus as a top-down chain of greedy-processing components, can be efficiently
modelled using traditional scheduling theory. We will show how to adapt the current
state-of-the-art of traditional scheduling theory to the event models described by real-time
calculus. Moreover, we will present a fully polynomial-time approximation scheme that
efficiently substitutes some of the operations within real-time calculus. To conclude, we
also present a first implementation of these concepts, providing an evaluation between the
original real-time calculus toolbox and our framework.
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Zusammenfassung

In den letzten Jahrzehnten hat die zunehmende Verbreitung von eingebetteten und
Echtzeit-Systemen zu einer Erweiterung der Analysemethoden für solche Systeme in der
Informatik geführt. Die Anwendung der traditionellen Scheduling-Theorie ist zur Analyse
von derart komplexen Systemen häufig nicht mehr ausreichend. Darüber hinaus muss die
Leistung eines verteilten Systems als Ganzes analysiert und bewertet werden, denn eine
getrennte Analyse der einzelnen Komponenten könnte zu pessimistische Ergebnisse liefern.
Darüber hinaus müssen die Produktionskosten für solche Systeme minimiert werden, was
es unmöglich macht, überschüssige Ressourcen zu allokieren, um eine Überabschätzung bei
der Performance-Analyse zu kompensieren.

Aus diesem Grund wurden in den letzten Jahren viele Verifizierungs- und Validierungs-
verfahren entwickelt und implementiert. Das MPA-RTC-Framework (Modular Performan-
ce-Analyse mit Real-Time-Calculus) hat sowohl in der Forschung als auch in der Industrie
besondere Aufmerksamkeit erlangt.

Real-Time Calculus bietet die Möglichkeit einer leistungsfähigen mathematischen Per-
formance-Analyse, die bereits in der Entwicklungsphase von verteilten Systemen eingesetzt
werden kann. Es nutzt das Konzept von Kurven, um jedes potenziell mögliche Ereignismu-
ster sowie die zur Verfügung stehenden Ressourcen zu repräsentieren, wodurch ein intuitives
Modellierungs-Framework für komplexe verteilte eingebettete Systeme mit Echtzeitanfor-
derungen entsteht.

Ein Problem von Real-Time Calculus ist allerdings, dass es bei der Anwendung über
eine exponentielle Komplexität verfügt. Selbst einfache Modelle benötigen Minuten, um
in der Real-Time Calculus Toolbox analysiert zu werden. Weiterhin wird in bestimmten
Fällen die Berechnung aufgrund eines Speicherüberlaufs sogar unmöglich. Um die Kom-
plexität zu reduzieren, wurden in den letzten Jahren verschiedene Erweiterungen - wie
beispielsweise finitary Real-Time Calculus - vorgestellt. Nichtsdestotrotz werden durch die-
se Erweiterungen die Probleme nicht vollständig gelöst.

In dieser Arbeit wird ein neuartiger Ansatz vorgestellt, um die Komplexität der Real-Ti-
me Calculus-Analyse für einige Anwendungsfälle zu reduzieren. Beispielsweise wird eine
Fixed-Priority-Komponente in Real-Time Calculus als eine Top-Down-Kette von sogenann-
ten Greedy Processing Components (GPC) dargestellt. Eine solche Verkettung kann mit

iii



iv

Hilfe der traditionellen Scheduling-Theorie effizient modelliert und analysiert werden. Es
wird gezeigt, wie die State of the Art der traditionellen Scheduling-Theorie auf die von
Real-Time Calculus beschriebenen Ereignismodelle angepasst werden kann. Darüber hin-
aus wird ein Voll-Polynomialzeit-Approximationsschema (FPTAS) präsentiert, das einige
von den in Real-Time Calculus angewendeten Operationen durch effizientere Operationen
ersetzen kann. Abschießend wird eine erste Implementierung dieser Konzepte vorgestellt
und eine vergleichende Analyse zwischen der ursprünglichen Real-Time Calculus Toolbox
und dem vorgestellten Framework durchgeführt. german
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Chapter 1

Introduction

The last decades, real-time systems have become ubiquitous in everyday situations.
From smart-phones, to in-car multimedia, and up to the Airbus AFDX Network system,
these all need to work under certain constrains, i.e. bus bandwidth, CPU speed, whilst
delivering the computation results within a predefined amount of time.

As an intuitive example for real-time system, we can look at a multimedia application,
such as a video-streaming device. In this situation the CPU has to process the video file
and deliver the correct pixel matrix to a display. If the CPU fails to deliver a frame at
a certain point of the video reproduction, this frame becomes useless, even if it had been
processed correctly.

In particular case, the failure to deliver the result on time does not have a strong impact
on the end-users: they will only miss one frame and probably barely notice it. However,
such a failure to deliver the result on time could lead to catastrophic consequences in some
applications: if the air-bag control unit fails to process an event sent by the sensor which
recognise an incident, this could lead to the loss of a human life1.

1.1 (Embedded) Real-Time Systems

From the above examples, it is immediately clear that a real-time system has different
characteristics than a general-purpose system such as a desktop computer. These properties
are well summarised by Buttazzo in [8], of which we give here a quick overview:

Timeliness: the computed result has to be delivered within a time frame, also called
deadline. The correctness of the computation does not depend only on the result
but also on the time at which this is delivered. The time constrains are usually
divided in three categorise: hard, if violating the timeliness produces a catastrophic
consequence; firm, if the result not delivered on time is useless; and soft, if the result
looses its value after missing the deadline.

1See also the Patriot missile incident reported in [8] p.3.
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2 CHAPTER 1. INTRODUCTION

Predictability: given the importance of its timeliness, a real-time system needs to be
predictable in ideally every situation. The tasks and properties of the system should
be known a-priori in order to analyse them offline before deploying the system.

Reliability: if one of the components fails - both hardware (HW) or software (SW) -, the
system should be able to operate further without crashing completely.

Efficiency: most real-time systems are embedded in small appliances. It is therefore often
needed to take into account memory space, energy efficiency, code size, and other
constrains.

Robustness: real-time systems are designed for the worst case scenario. Overloads and
peaks need to be considered at the system design stage.

The definitions presented above clearly show that the predictability of a real-time sys-
tem is extremely important when analysing it. The ideal situation would be to give a 100%
guarantee over the system’s life time [36], though it is impractical, if not impossible, to do
so for more complex systems.

The most important method in order to achieve predictability is the scheduling policy.
In this way, with an offline analysis of the system’s characteristics, we can derive - if possible
- a feasible schedule of the system tasks, so that all of them will meet their deadlines.

The predictability of a system depends on various factors: from the CPU properties
up to the programming language characteristics, all of these components introduce some
sort of non-determinism, which affects the derivation of an exact worst-case execution time
(WCET) needed to adopt the correct scheduling policy.

Furthermore, many real-time systems are embedded in some control units. Each of
these units can cover a wide range of different components, architectures, and tasks that
have to be processed, making a case generalisation impossible. The components may also
need to communicate with each other: one processed task may be the incoming task of the
next component. In such a so called distributed system, it is clearly impossible to derive
the overall predictability by analysing each task or component as a single entity.

1.1.1 Simulation and Formal Methods

For this reason, evaluation and validation methods have been widely used in order to
verify if the designed system will satisfy the given requirements. There are mainly two
different approaches to this problem:

Simulation is nowadays widely used in the embedded system industry for performance
verification. Tools like System C, VHDL and Matlab/Simulink have been largely
extended in order to give a higher abstraction level and modularity in the modelling
process of a given system. Furthermore, as these tools are more and more used in
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the industry design phases, standard components of embedded systems have already
been implemented and thus can be reused[42]. Moreover, simulations can potentiality
represent any given system with complex and dynamic interactions on the same [28].

However, the hardware-software simulation process is typically computationally com-
plex and running time execution is often long. The model construction is not a trivial
task and the result might also not be detailed enough to meet the system require-
ments. In addition, simulation is a trace-based method. This means, that in order to
determine, for example, a worst-case execution time, the designer has to provide the
model with an input trace that will cover this scenario. In general, a performance
analysis on every possible situation over a model is not feasible due to the state-s-
pace explosion. In fact, if we consider all the possible inputs combinations, the cases
needed to be evaluated grow very rapidly, thus making a full analysis impossible.

Formal Methods of performance analysis uses a different approach. The core of this
technique is the utilisation of a formal method, i.e a mathematical tool, that allows
a higher abstraction level w.r.t. simulation. The main advantage is that we are
able to derive hard or even exact bounds regarding the performance of the system.
Moreover, the higher abstraction level can simplify the representation of the system
without altering its behaviour. However, this methods can hardly be automated,
that means that the model of the system has to be done by hand, since errors in the
implementation could lead to a false result. Furthermore, only basic systems can be
analysed since more complex ones lead to a state-space explosion.

Some authors, such as Perathoner in [28], describe an additional category of validation
methods: the state-based verification, such as for example the timed-automata [18]. The
advantage of this methods is that they derive an exact boundary of system performance.
However, the state-space explosion “severely inhibits their practical application” [28, p.9],
meaning that for large and complex system, the space-exploration grows exponentially,
thus implicating long execution times for the validation.

1.1.2 Modular Performance Analysis with Real-Time Calculus

Real-time calculus (RTC) represents a formal method for performance analysis that
has become well-known amongst the scientific community. This mathematical framework
is embedded into the so-called Modular Performance Analysis (MPA), which defines an
analytical method for the performance evaluation of distributed systems [28].

The advantage of MPA-RTC is that it does not consider tasks like in the classical
real-time scheduling analysis, but works instead with event and resource streams. The
idea is to model an incoming event stream as a pair of curves defined over a time interval,
and not over time: the curves will then represent the upper and lower bound of incoming
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events within a time interval. The same methodology is used to represent a resource
stream. This pair of curves are then used as input elements for an abstract component,
which can model a CPU or a bus system. The function of this abstract component is to
derive the timing properties of the analysed system and to calculate the outgoing event and
remaining resource curves. In real-time calculus this is mainly done by using a so-called
greedy processing component (GPC), which acts in a greedy fashion for a first-in first-out
buffer under the resource availability condition[41]. Through this component it is possible
to determine the maximum delay, i.e. the amount of time that passes from the task arrival
to its completed execution, and the maximum buffer of a task, i.e. the maximum amount
of events that will be stored in the first-in first-out (FIFO) queue.

It is clear to see that with such a representation, we can easily interconnect more
components in order to model a distributed system. In fact, one of the main advantages of
MPA-RTC is the possibility of analysing end-to-end delays of multi-component systems.

However, even though MPA-RTC offers a high abstraction level for formal verification,
it suffers from a huge drawback. Since the curves are unlimited for definition, it is im-
possible to represent them exactly. Instead the MATLAB R©toolbox for real-time calculus
uses a segment representation for the curves, with an aperiodic and a periodic part. The
complexity of real-time calculus depends then on the number of segments used to represent
the curves, yet even a simple plus operation augments exponentially the number of these
segments.

1.2 Motivation

The high complexity of real-time calculus has been the object of academic research in
the last few years, see the works [38] and [41]. In 2013, Guan et al. in [17], proposed
an extension called finitary real-time calculus in order to reduce the overall complexity.
The idea is to truncate the curve after a particular point while still obtaining the same
precision as in the original framework. However, though reducing the complexity, the
finitary real-time calculus is still of pseudo-polynomial complexity.

The motivation of this work is to reduce, in some particular cases, the overall complexity
of real-time calculus by adding a “controlled” error in its curve representation. Real-time
calculus defines a fixed-priority component [42], which is depicted in figure 1.1. This is done
by hierarchically interconnecting in a top-down fashion a number of GPC components for
the given task numbers. However, this method is practically inefficient, since computing
the maximum delay of the lowest priority tasks one has to derive the remaining resource
curves after every GPC component.

This work aims to implement a new component within real-time calculus, which uses
classical scheduling analysis in order to examine a set of tasks that have to be scheduled in a
fixed-priority fashion. This component can calculate the delay of the single tasks, whilst not
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computing every remaining resource curve except for the last, which is represented in figure
1.2. Ideally the component would also derive the outgoing events curves, nevertheless this
would require a more in-depth study of both curves representations and classical scheduling
theory.
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1.3 Work Structure

In this chapter we presented the concepts handled through this work. Real-time system
and schedulability analysis were introduced, as well as simulation and formal methods for
system validation.

Real-time calculus plays a central role in this work, for this reason chapter 2 will be
dedicated to formally define its basic concepts. The abstraction level given by the curve
representation of concrete streams is described in this chapter. Moreover we introduce the
different event models that are more common within this framework, i.e. periodic tasks,
periodic tasks with jitter and periodic tasks with burst. The last section of the chapter
will introduce the performance analysis components that are used in real-time calculus,
whilst maintaining the focus on the concrete components.

Chapter 3 firstly introduces the min-plus max-plus algebræ, which are both an ad-
vantage and a drawback of RTC. The high complexity of the framework, based on the
operation on infinite curves, is here reported. Furthermore, we will provide an overview
of the related work of the complexity reduction methods for real-time calculus: first the
curve representation will be defined and an then the so-called finitary real-time calculus
will be analysed. In addition, an overview of the current approximation methods used in
real-time calculus will be given.

In chapter 4 we introduce the main concepts of classical scheduling theory, which we
used in order to implement a new component for real-time calculus. We will concentrate
on fixed-priority algorithms and subsequently introduce the theory of polynomial time
approximation schemes and their application in scheduling theory.

Chapters 5 and 6 represent the main contribution of this work, with the former formally
defining the idea and the algorithm implemented in the latter, with the evaluation of the
new component. In chapter 5 we introduce the concepts developed under the classical
scheduling theory. At first we refine the idea of a new PJD∗ component for real-time
calculus, then we extend the current work in the field of approximate scheduling analysis
in order to bind it to the real-time calculus framework.

In chapter 6 we present the implementation of the algorithm, which has been done
using MATLAB R©. The decision is based on the fact that the original RTC-Framework
[40] has been implemented in the same programming language, so that our implementation
and the original can be directly compared.

Chapter 7 concludes this work by underlying open problems and possible future devel-
opments.
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1.4 Related Work

The central research of this work is of course based on real-time calculus. In the year
2000, Thiele et al. [39] presented their framework, outlining how it would be possible to
model discrete events systems without recurring to classical scheduling theory2. Inspired
by the network calculus theory by Boudec et al. [7] extending the work of Cruz in [12],
real-time time calculus is based on the min-plus/max-plus algebra, which has a wide lit-
erature available, see for example Schwiegelshohn and Thiele in [35], Baccelli et al. in [5]
and Cuninghame-Greene in [13].

Consequently real-time calculus has become popular within the scientific community
for its easy to understand semantic and its high abstraction level, which allow a straight-
forward implementation of a distributed system. Focusing on the timing properties of a
model, RTC has also been widely studied for its possible interconnection with other formal
methods. For example, Phan et al. in [30] presented a Multi-Mode Real-Time Calculus
which aims to solve the problem of the statelessness of the RTC. The idea is to try to define
a state-based model such as in the timed automata method specified in [3] and [18]in order
to represent states in real-time calculus as well. In addition, Santinelli et al. in [34] extend
the framework to the domain of probabilistic real-time systems.

However, due mainly to the widespreadness of RTC, its drawbacks have also been
analysed. In an internal report, Suppinger et al. [38] firstly remark how the curve must
not be analysed in its entirety, but only a part of it can suffice. However, this point was
given as an input. Later, Guan and Yi in [17], in their finitary real-time calculus work,
formally defined the concept of maximum busy window slice to successfully analyse a pair
of curves by truncating them after a mathematically determined point. Nevertheless the
complexity the finitary RTC still remains pseudo-polynomial.

Additionally, some studies on real-time calculus focused on the possibility of approx-
imating the curves. Wandeler gives in [41] a possibility of a linear approximation of the
curves by a single linear function, which was however way too pessimistic. Chakraborty
et al. in [9] proposed a three-pieces approximation for the curves, but did not report any
evaluation on the same. Later Albers et al. in [1] and [2] analysed this approach and
concluded that it is not suitable for complex systems.

For this reason, we turned our attention to the enormous literature in the field of clas-
sical scheduling theory. The well-know results of Liu and Layland in [22] caught our atten-
tion for the domain of fixed-priority scheduling algorithms. These algorithms, as mentioned
above, are modelled by real-time calculus by interconnecting GPCs components. Further-
more, aside from the rate-monotonic scheduling scheme, the deadline-monotonic priority

2To be precise, a first glimpse of the work was firstly introduce on the internal journal of the TIK
department at the ETH Zürich by Naedele, Thiele and Eisenring, although it was than named Variable
Task Model. See [24]
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assignment reported by Lehoczky in [21] showed a necessary and sufficient feasibility test
for periodic tasks with deadlines smaller or equal to their periods. Their approach used the
so-called workload analysis in order to derived and exact schedulability test. From these
works, various papers extended this field during the last 30 years, among which Audsley et
al in [4] proposed a deadline-monotonic scheduling theory, with sufficient - and necessary
and sufficient tests, which points out the period-related complexity.

From this work, Fisher and Baruah opened the approximation algorithms theory for
fixed-priority tasks [15]. At first the authors restricted their attention to a feasibility test
for task with constrain deadline, but they soon extended it to arbitrary deadlines [14].
Nevertheless, later research done by Nguyen et al. [25] showed that the approximation
algorithm for arbitrary deadline tasks was not correct and proposed a modification of the
same. The key point of this particular task model is that more than one job of a task can
be present at the same time, hence leading to a more complex analysis.

Furthermore, the focus on approximation algorithms moved to the workload analysis,
since deriving the worst-case response time of a tasks will give an exact schedulability
test. Richard et al. in [31] extended the algorithm of Fisher and Baruah both within the
response time analysis and the periodic tasks with jitter domain. Later, in 2014, Nguyen et
al. [26] continued this research to include a response time analysis for tasks with arbitrary
deadlines.



Chapter 2

Real-Time Calculus

Over the last few years, increasing competition among industry has led to a progressive
decrease of the time-to-market span. Since the early stages of the design phase, it is
necessary to verify that the system can meet the desired requirements. A performance
evaluation is essential at the very first steps of the system construction. The designer is
faced with problems such as how much memory the system should have or the minimum
processor speed needed in order for the end system to meet all the specified characteristics.
Furthermore, due to the high demand of maximising the profit, i.e. avoiding unnecessary
costs, it is not any more possible to over-allocate resources for the designed system [29].

This particular area of the development process takes the name of system-level perfor-
mance analysis [41]. As already mentioned in the introduction, there are basically two
ways to perform a system level analysis: simulation and formal methods.

The widespread utilisation of simulation methods such as System C or VHDL gives the
designer the possibility of modelling basically every system. Due to a high modularisation,
one can reuse some previously built components within a new model. However, a simulation
method usually has a high computation complexity, making the process itself really slow.
Moreover the simulation needs an input trace, which is usually difficult to represent, due
to the fact that the state space of a model is vast. Furthermore, in order to calculate,
for instance, the worst-case or best-case scenario, the designer has to feed the model with
the appropriate trace. It is clear that with the increasing of the complexity of the system
this becomes impossible. This leads to the so called corner cases, i.e. the situations that
cannot be discover with the simulation process and are therefore left out of the performance
analysis process (See figure 2.1).

Nevertheless, particularly in the field of soft real-time system, simulation is widely used.
In this area, one looks more at the average case than at the worst or best case scenarios,
making simulation tools suitable for purpose of analysis [28].

Formal methods for system-level performance analysis give the designer a much higher
level of abstraction. The goal is not to try to find an approximation to the real worst-case

9
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Figure 2.1: Comparison between the range of considered domain D: real implementation, simu-
lation, and formal analysis [41].

or best-case, but to give an upper and lower bound of execution. If, for example, we
consider the end-to-end delay of our system, the computed result using a formal method
will always return either the exact value or a larger one. That means that, if successful,
we can guarantee that our system will meet its requirements.

However, formal methods also have theirs drawbacks. Their modelling scope is fairly
limited: usually the components we are able to represent are restricted due to the fact that
is not always easy to reproduce their behaviour mathematically. Moreover the mathemat-
ical depiction of the system may also be not tight enough for our purposes - the so called
abstraction loss -, leading to a possible over-estimation of the resources needed. Another
important issue of formal methods is their implementation complexity: usually these meth-
ods are not that easy to understand and this process is, at the time of writing, difficult to
automatise. For this reason the implemented model of a system could also not be detailed
enough for our purposes or could even contain implementation errors since it has to be
made by hand.

Nevertheless, the higher abstraction level and the possibility of analysing a system from
its early design stages have made formal methods an interesting field of research over the
last decade. Among the frameworks used for formal performance analysis, real-time calcu-
lus has known an increasing popularity since its first presentation. The main advantage
of real-time calculus is that it can ideally represent every possible event model, due to the
fact that its representation of tasks is done by means of curves based on real input traces.
Moreover, the same concept is extended in order to represent different resource patterns,
giving the framework a wide spectrum of implementation.
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In this chapter we introduce real-time calculus formalisms and definitions. Our main
focus will be on the representation of curves and the operations thereupon, as these charac-
teristics have motivated this work. In order to better understand the semantic of real-time
calculus, we introduce the concepts of convolution and deconvolution, which are based on
the min-plus and max-plus algebræ, the core of this mathematical framework.

2.1 RTC - Basic

Real-time calculus has its basis in the Network Calculus (NC) [7], a theory of deter-
ministic queuing for communication networks. RTC was first presented by Thiele et al.
in [39] and aims to extend network calculus to the domain of real-time systems. To do
so, RTC exploits the characteristics of events and resource streams in order to underline
their timing properties. Instead of concentrating on some particular event model, RTC
uses curves defined over a time interval to represent potentially every possible incoming
stream.

2.1.1 Event Models

The first thing to notice about RTC is that instead of working within a time domain,
it is defined over an interval domain. Using a sliding-window technique over a concrete
trace of incoming events, we are interested in finding out how many events will at most
or at least be delivered within this window, i.e. the interval. Doing so for every interval
produces the curves used for the analysis.

Let R(t) denote a concrete event stream within the time frame [0, t). The α(∆) curve
is a tuple [αl(∆), αu∆] representing the lower arrival curve and upper arrival curve respec-
tively, which are on the other hand abstract events models [42]. It is once again important
to notice that the αs curve is defined over a time interval ∆ > 0, i.e. in every time interval
of length ∆ we will have at least αl(∆) and at most αu∆ incoming events.

Formally stated, the relationship between concrete and abstract streams are given by
the following definition:

αl(t− s) ≤ R(t)−R(s) ≤ αu(t− s),∀s < t (2.1)

Although RTC has the expressiveness of representing potentially any event stream, it
is sometimes easier to use a formal description depicting the event model. We give here a
quick overview on the most common patterns used in real-time calculus.

Periodic Tasks The most simple task pattern is the periodic one. In this case tasks
arrive every p units of time. The upper arrival curve depicts the behaviour of having an
incoming event coinciding with the starting time of the interval we consider, whilst the
lower arrival curve describes the situation of having “just missed” an event, so an event
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happening first after p time units (See figure 2.2). A periodic task is formally described in
terms of curves by the following equations:

αl(∆) =

⌊
∆

p

⌋
, αu(∆) =

⌈
∆

p

⌉
(2.2)
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Figure 2.2: Arrival Curves for a period task with p = 3

Periodic Tasks with Jitter Another common pattern for task analysis is the one in-
fluenced by a jitter. A jitter is a deviance of the event arrival time that can be either
delayed or anticipated with respect to the original period. In this behaviour the jitter is
defined as j ≤ p. Figure 2.3 represents the arrival curves for such a pattern. The upper
curve depicts the case where all of the arrival times are anticipated by j time units, while
the lower shows all the events to be delayed by j units. The upper and lower curves are
defined by:

αl(∆) =

⌊
∆− j
p

⌋
, αu(∆) =

⌈
∆ + j

p

⌉
(2.3)
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Figure 2.3: Arrival Curves for a task with period p = 4 and jitter j = 2

Periodic Tasks with Burst The last common pattern found in literature is a so called
periodic task with burst, usually called a pjd. This particular model represents the con-
dition where the jitter is not bounded any more by the period of the task, but the events
still cannot overlap each other. This means that if we use the sliding window approach, we
could also find conditions where we have an increased number of incoming events within
the considered interval: this takes the name of burst region [32]. In order to bound this
region, an addition parameter d ≥ 0 is introduced, which depicts the minimum inter-arrival
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time between two consecutive events (see Richter et al. in [33] and [32]). The distance can
be seen as the impossibility of delivering more than one event within d by some sensor or
CPU.

This model is widely used within the RTC domain. Its expressiveness is suitable to
represent many concrete input traces, so that Künzli et al. in [19] derived an algorithm to
transform ideally every event stream by means of a so called pjd model. On one hand, this
representation reduces the computation complexity of the framework, but on the other it
introduces the field of approximation in RTC. In fact, some error is necessarily introduced
in the computation process by depicting a general arrival curve as a pjd model. The curve
representation for the upper bound takes now the form of a minimum function - that is
because the burst region is bounded by the minimum distance d:

αl(∆) =

⌊
∆− j
p

⌋
, αu(∆) = min

(⌈
∆ + j

p

⌉
,

⌈
d

p

⌉)
(2.4)
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Figure 2.4: Arrival Curves for a task with period p = 3 and jitter j = 5 and minimum inter-arrival
distance d = 1

2.1.2 Resource Models

Similarly, real-time calculus uses resource streams in order to represent elements of the
system such as CPUs or buses. A concrete resource stream C(t) characterises the resource
availability within the time interval [0, t). Again, we are more interested in an abstract
resource model. These are defined in this case by the tuple β(∆) = [βl(∆), βu(∆)] over
any time interval of length ∆ ≥ 0, which correspond to a so called lower service curve and
upper service curve respectively. The relation between the resource stream and the service
curve is stated by the following equation:

βl(t− s) ≤ R(t)−R(s) ≤ βu(t− s), ∀s < t (2.5)

At this point is worth noticing that whilst the method of reproducing the event and
resource stream appears to be the same, this is slightly different by means of the domain.
In fact the arrival curves are defined for the number of events over a time interval, while
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the service curves denote the number of cycles within the interval ∆. The difference can
be stated by defining if the curve are event based or resource based. Usually in the RTC
literature one can find the event based curves expressed by α. To obtain the resource based
curve one can easily use a factor w characterising the number of cycles needed in order to
process an event for a given task, i.e. α(∆) = w · α(∆).

However, as Stoimenov in [37] stated, real-time calculus is also capable of handling
different execution times for a task, i.e. two events of the same task can have distinct
cycle requirements. This can be expressed by means of a so called workload curve. The
workload curve is a tuple γ(v) = [γl(v), γu(v)] denoting the minimum/maximum resource
units needed to compute any v subsequently events. The relation between arrival, service,
and workload curves is straightforward: if we represent all our curves as resource based,
we obtain:

αl(∆) = γl(αl(∆))

αu(∆) = γu(αu(∆))

Even though the service curves in real-time calculus are able to theoretically express
every resource model, some basic patterns have been formally described in order to simplify
the comprehension of the framework.

Fully Available Resource A fully available resource is the easiest pattern we can im-
plement. Let us take for example a CPU, whose cycles depend on the processor speed. In
RTC these are expressed through the bandwidth parameter b, representing the available
cycles per time unit. In figure 2.5 the bandwidth is set to one delivered cycle every one
time unit. Formally this is stated by:

βl(∆) = βu(∆) = B ·∆ (2.6)
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Figure 2.5: Service Curves for a resource with 100% availability, B = 1.
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Bounded Delay Although widely used in the literature, a given resource may not be
fully available in all situations. For example, a task may have to wait a certain amount of
time BD, called bounded delay, while the resource is fully dedicated to another task [23].
In this case at any point in time the resource may not be available for the current task,
whereas after the determined bound the bandwidth is still defined by B. The following
equation gives its mathematical description.

βl(∆) = B ·∆−BD, βu(∆) = B ·∆ (2.7)
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Figure 2.6: Service Curves for a resource with bounded delay BD = 3 and B = 1.

Time Division Multiple Access Another case of resource sharing is characterised by
the so called time division multiple access. Within this pattern, the resource is divided
into cycles of length c, each containing a number of slots si with a pre-given length. Each
slot is assigned exclusively to a fixed task or task-set, so that the resource is allocated with
bandwidth B for si units of time every c units, as expressed by the formulæ:

βl(∆) =

(⌊
∆

c
· s+ min (∆ mod c, s)

⌋)
·B (2.8)

βu(∆) =

(⌊
∆′

c
· s+ min

(
∆′ mod c, s

)⌋)
·B (2.9)

where ∆′ = max(∆− c+ s, 0).

2.1.3 Concrete and Abstract Components

In an embedded system, the above mentioned input traces are typically processed by
some component such as a CPU that will than produce an outgoing event trace for the
computed tasks, thus consuming some processor cycles in order to do that.

This behaviour is represented in RTC by means of a concrete component. The R
and C streams are processed through this component and it will derive the corresponding
outgoing event stream R′ and the remaining resource stream C ′.
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Figure 2.7: Service Curves for a a time division multiple access resource, with a s = 1 slot every
c = 3 cycles and B = 1.

Again, since the exact concrete streams are not known during the design phase, we are
more interested in considering an abstract representation of the component. The outgoing
event curve is expressed by the tuple α′(∆) = [α′l(∆), α′u(∆)] and the remaining service
curve by β′(∆) = [β′l(∆), β′u(∆)]. The resulting streams will depend on the semantic of
the component and can be formally defined by the following equations:

α′ = fα(α, β) (2.10)

β′ = fβ(α, β) (2.11)

One of the still open challenges of real-time calculus is indeed to formally define new
semantics for equations 2.10 and 2.11. However one type of abstract component has become
widely use in the RTC examples. This component takes the name of greedy processing
component (GPC), whose characteristics have been summarised by [42] (see also figure
2.9):

• the component is triggered by incoming events;

• a fully preemptable task is instantiated at every event arrival to process the incoming
event;

• active tasks are processed in a greedy fashion in FIFO order;

• the resources’ availability restricts the computation.

2.2 Performance Analysis

In this section we introduce the mathematical description for analysing a GPC com-
ponent. We start by reporting the backlog and delay definitions for a single component.
After that, we present the semantic of a network of components in real-time calculus and
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we conclude by describing the currently available scheduling policies within the real-time
calculus toolbox.

2.2.1 Backlog and Delay

Using the curve representation it is possible to perform an analysis over a model,
deriving hard bounds for the system performance. If we consider a GPC component as
a single unit, we can calculate the amount of buffer space required bmax by the incoming
events FIFO queue as well as the maximum delay dmax of incoming events. The dmax is
defined as the maximum amount of time passed from the arrival time of an event to its
completed execution. As we can see from figure 2.10, bmax represents the maximum vertical
distance and dmax the maximum horizontal distance between the upper arrival curve αu

and the lower service curve βl. Formally, the buffer is given by the following equation:

bmax ≤ sup
λ≥0

{
αu(λ)− βl(λ)

}
:= Buf(αu, βl) (2.12)

while the delay is mathematically described by:

dmax ≤ sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ+ τ)}

}
:= Del(αu, βl) (2.13)

2.2.2 Network of Components

However, the most important characteristic of real-time calculus is the simplicity of
representing a distributed system. From its semantics, it is easy to see that in order to
represent a multi-unit system, one has to directly interconnect the abstract components
modelling the different parts of the considered architecture.
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Let us take for example a system consisting of two CPUs sharing a bus, which has to
compute a single input event stream. The first CPU receives the events from some external
unit, performs a computation for each event and forwards the result to the second CPU,
which will also execute the event delivering the final result. Let us assume that the bus
implements a TDMA policy, meaning that the communication bus is probably shared with
some other resource, about which we do not have any information.

In order to model such a system, we need to firstly derive the outgoing streams. For
an incoming event stream R(t) and a resource stream C(t), the definition of the remaining
resource stream is straightforwardly given by C ′(t) = C(t) − R(t), whilst the outgoing
resource stream can be derived by:

R(t) = inf
0≤λ≤t

{R(λ) + C(t)− C(λ)} (2.14)

It is clear that if we take the output curves as the input for the next components,
we are able to model the system as an interconnection of the components. Moreover,
the advantage of using real-time calculus is that it is possible to compute the so called
end-to-end delay of the task we are analysing. One option would be to add the dmax
of every single component, in this case the two CPUs and the bus. However, already
in network calculus [7], Le Boudec et al. demonstrate that such a computation for the
end-to-end delay is too pessimistic. In fact, the worst-case scenario of an event stream,
such as a burst situation, can only appear if the stream is considered as a single entity,
whereas a sequence of components cannot: this behaviour is called “pay burst only once”.
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2.2.3 Scheduling Policies

The possibility of representing single entities by means of a GPC component does not
only represent an advantage for distributed systems, but can also be used in order to model
scheduling policies such as fixed-priority.

For example, a FIFO scheduling policy can be achieved by joining together the different
events sub-streams, processing them through a GPC, and then using a fork operations to
derive the single outgoing sub-streams [28].

Another example of scheduling policy with GPC components is the pre-emptive fixed-
priority scheduling. Let us assume a set T of τi tasks, with i = 1, ..., n. The priority
is denoted by the subscript with 1 being the highest and n the lowest priority. In order
to reproduce this scheduling policy, one needs to construct a top-down chain of GPC
components reflecting the priority assignment. The remaining service curve computed for
the GPCi task will be the service curve of the GPCi+1 component.

In this way, it is easy to represent any fixed-priority scheduling policy, such as rate
monotonic. However, in order to do so, every outgoing service curve has to be derived.
Moreover, as we will shown in chapter 3, the complexity of many real-time calculus opera-
tions depends on the number of segments needed to represent a curve. It is easy to see that
the remaining service curve will be more and more complex to describe, thus exponentially
increasing the computation complexity for the lowest priority tasks.

From this observation we based the main idea of this work: instead of considering a
fixed-priority scheduling as an interconnection of GPC components, we could perform an
analysis of the task set using classical scheduling theory.
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Chapter 3

Real-Time Calculus Complexity

As already mentioned in the previous chapters, real-time calculus suffers from an in-
trinsic drawback. In real-time calculus, the curves have a major role in the performance
analysis. In fact, they represent the only input needed in order to model a system: as
Stoimenov reports, the curves are “first class citizens”[37]. However, many RTC opera-
tions are defined for an interval ∆ ≥ 0, thus obviously leading to a high computational
complexity.

Already in Wandeler’s Ph.D. thesis [41, p.159], the author points out this problematic:

The major problem arises from the fact, that the various [curves] are defined for
the infinite range of positive real numbers ∆ ∈ R ≥ 0. However, for practical
computation we require that the [curves] have a finite representation, and that
applying any of the curve operations leads to a result in a finite time.

3.1 Mathematical Basics

In order to better understand the problem of real-time calculus high complexity, we
present in this section its mathematical core, i.e. the min-plus and max-plus algebræ.

3.1.1 Min-Plus and Max-Plus Algebræ

The core of RTC is based on the min-plus and max-plus algebra. In contrast to the
plus-times algebra [41], two operations are defined, min (max ) and plus, and replace the
traditional addition and multiplication operators.

Formally, if we consider a finite or infinite set of elements S, the min-plus algebra is
denoted by (S ∪ {∞},min,+). The same logic applies to the max-plus algebra: (S ∪
{∞},max,+).

21
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Let f(t) : S −→ R be a function. If we extend the min-plus algebra in the same
way as the plus-algebra. The integral operator becomes therefore the infimum (supremum
respectively) [7]:

inf
0≤s≤t

{f(s)}, sup
0≤s≤t

{f(s)}

Two of the key operations of real-time calculus are convolution and deconvolution.
These operations come from the system analysis area and are widely used in the signal
processing field. In network and real-time calculus these operations are used in order
to relate two input curves f and g. In signal theory, where the domain is continuous,
i.e. t ∈ (R), the integral operator is used to convolute the function, whereas in NC
and RTC if we extend the min-plus/max-plus algebra, the convolution is depicted by the
infimum/supremum operators, respectively.

3.1.1 Definition (Convolution and Deconvolution). Let f , g be two functions. We
define min-plus convolution ⊗, min-plus deconvolution �, max-plus convolution ⊗ and
max-plus deconvolution � as:

⊗ : (f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)} (3.1)

� : (f � g)(∆) = sup
λ≥0
{f(∆ + λ)− g(λ)} (3.2)

⊗ : (f⊗g)(∆) = sup
0≤λ≤∆

{f(∆− λ) + g(λ)} (3.3)

� : (f�g)(∆) = inf
λ≥0
{f(∆ + λ)− g(λ)} (3.4)

If we consider for example the min-plus convolution, it is already clear why real-time
calculus has a high complexity. In ⊗ in order to calculate the convolution of the two
functions we need to consider every interval ∆ ≥ 0 and for each interval we have to shift
the variable λ over the interval.

3.1.2 Deriving Incoming Curves

Convolution and deconvolution are used in order to derive the input streams of the
model. Without entering into the details, the following equations describe this mathemat-
ical relation, for an incoming stream R and a resource C:

αu(∆) = R�R (3.5)

αl(∆) = R�R (3.6)
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βu(∆) = C � C (3.7)

βl(∆) = C�C (3.8)

The demonstration is straightforward. Consider αu(∆), from the above relation we have
αu(∆) = supλ≥0{R(∆ + λ) − R(λ)} ≥ R(∆ + λ) − R(λ), ∀∆ ≥ 0, which is its definition
from equation 2.1.

3.1.3 Greedy Processing Component

In the same way, real-time calculus describes a greedy processing component with the
convolution and deconvolution operations. In order to obtain the output curves the input
arrival and service curve are convoluted or de-convoluted. For a proof of these relations
refer to Wandeler’s thesis [41].

αu
′

= min
{

(αu ⊗ βu)� βl, βu
}

(3.9)

αl
′

= min
{

(αl � βu)⊗ βl, βl
}

(3.10)

βu
′

= (βu − αl)�0 (3.11)

βl
′

= (βl − αu)⊗0 (3.12)

3.2 Representation of Curves

It is clear that defining curves for a ∆ ≥ 0 yields a problem in terms of the curve
representation. The incoming streams need to be somehow represented, i.e. it is not
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possible - since they need a finite data structure - to work with infinite curves. In fact, the
original Matlab Toolbox for real-time calculus already addresses this problem and suggests
a solution for it [40].

The RTC-Toolbox implements a data structure in order to represent only a subset of the
so called variability characterisation curves (VCC). For a given increasing function, such
as the concrete stream R, the VCCs are defined as the upper and lower curves bounding
R, like αl and αu. Wandeler in [41] defines a taxonomy over the set of the VCCs.

In the area of piecewise linear functions, the finite piecewise linear curves are those
depicted by a single linear function, like for example the curve for a fully available resource.
The irregular curves of the infinite class cannot be expressed mathematically for obvious
reasons. Periodic curves such as a those for periodic tasks or for the TDMA policy have a
compact representation since it is possible to just “repeat” the period over and over. More
interesting are the regular curves. In this case the curves are divided into two parts: an
aperiodic part, for example for the burst region, and a periodic part which reflects the long
term behaviour of the curve.

The complexity of real-time calculus depends precisely on this representation: the
computation time of many RTC operations is proportional to the number of segments
needed to represent a curve [17]. Moreover, the complexity particularly increases if the
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two considered curves have a period prime to each other[41]. Guan et al. in [17] define
this problem as a period explosion.

For example, let us take a simple plus operation over two periodic curves, with a period
of 4 and 5 time units respectively: the resulting curve will already have a period of 20 time
units, and the number of segments needed passes from one for each curve to a total of 8
segments (See figure 3.2). In fact, even in the current RTC-Toolbox implementation, if the
period increases with every operation, the memory needed for the curves data structure
will quickly reach the maximum amount available, yielding the OUT OF MEMORY-error in
the Java-Kernel of the framework [17].

3.3 Finitary Real-Time Calculus

In 2013 Guan et al. [17] proposed an extension to real-time calculus named finitary
real-time calculus. The idea behind this extension, is that it is not always needed to work
on curves defined for a ∆ ≥ 0, but it is possible to achieve the same results as in the original
framework by only considering the curves up to a point called maximal busy window slice
(MBS). Its visual representation is depicted in figure 3.3.

This concept does not only work when calculating the maximum delay dmax and the
maximum buffer bmax, but it is also extended for GPC components. In this case however,
the finitary real-time calculus analysis becomes more complex. In fact, if we consider a
single GPC component, the analysis for an interval ∆ is bounded by the interval [∆,∆ +

MBS] and [0,MBS] depending on the operation and curves considered, thus reducing the
framework computation demand.

Nevertheless, a problem arises when considering a network of components. Finitary
real-time calculus defines a so called finitary deconvolution which bounds only the λ vari-
able. Yet, it also needs to bound the ∆ variable, i.e. cutting off the curve after some point.
In this circumstance, it is not possible to bound the ∆ a priori, as we need to ensure that
the outgoing curves will be defined at least for the MBS of the next component.

The authors define a theorem, which states that in order to describe an output curve
between [0, x], we need to consider the incoming α and β over a range [0, x + T ], where
T ≥ MBS(α, β) (see theorem 4 in [17]). This means, if we know the maximum busy
window slice of the last component of the network, we could proceed backwards in order
to find the MBS of each component of the model. However, this is impractical, since
knowing the MBS of the last component means analysing the whole network as a normal
RTC-model. In fact, we would need to derive every outgoing stream of every component.

To solve this problem, the authors of finitary real-time calculus propose a three-steps
strategy for analysing a network of components:

1. use a linear approximation of the incoming stream in order to quickly analyse the
network and compute an MBS upper bound for every component;
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Figure 3.3: Maximum Busy Window Slice

2. proceed backwards to find the “truncation” point of every curve;

3. analyse the model with finitary deconvolution and convolution, i.e. with finitary
GPC;

The complexity of this procedure is pseudo-polynomial. Practically, finitary real-time
calculus drastically increases the computation time needed to analyse a network. In partic-
ular, the evaluation shows that finitary real-time calculus does not depend on the period
of the considered curves, whereas the time needed by the original RTC framework rapidly
grows depending on the hyper-period of the incoming curves.

However, as the authors underline, a higher utilisation of the considered curve set needs
a much higher computation time. If the total utilisation stays under 80%, finitary RTC
speeds the computation up to 1000 times, while after this threshold it drops to factor 20.
Such a behaviour is explained by the fact that in case of higher utilisation, the remaining
service curves will have much longer periods, thus shifting the MBS point to much bigger
values.

3.4 Curve Approximation

Finitary real-time calculus improves drastically the original real-time calculus in terms
of efficiency. As the evaluation in [17] shows, the practical benefits decreases with the
growth of the component utilisation. Other methods use the approximation of the curves
in order to reduce the RTC-Complexity, however this is done at the detriment of the
exactness.
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Figure 3.4: Delay comparison between the original arrival curve and its approximation

3.4.1 Linear Approximation

The easiest way to approximate an arrival curve is done by means of its slope. To
derive an approximation of the curves, the idea is to first obtain the slope of the curve
and then to calculate the smallest y-interception of the line equation, so that the tightest
over-approximation line bounding the original curve can be defined.

The slope of a function is defined as:

s(f) , lim
∆→∞

(
f(∆)

∆

)
(3.13)

The approximation can then be obtained as follows. Let y = mx+ b denote the equation
of the line. Given any event stream function f(∆), we set:

m = s(f(∆)) (3.14)

b = inf{bu | ∀∆ : mx+ bu ≥ f(∆)} (3.15)

This approach has been used by Guan et al. in [17] in order to perform a pre-analysis
over a network of components. The complexity for finding the tightest over-approximation
of the arrival curve is pseudo-polynomial.

Even though the computation complexity of the framework remains high, this simple
method allows a quick analysis of a system model. In addition, since real-time calculus
already adds some pessimism to the system performance analysis, this method appears to
be unsuitable for performing an end-to-end delay computation of the system [2].



28 CHAPTER 3. REAL-TIME CALCULUS COMPLEXITY

Moreover, Wandeler in his Ph.D. thesis points out how pessimistic this approximation
can be. If we consider a simple example as in figure 3.4, where the arrival curve is rep-
resented by a pjd curve with p = 3, j = 5 and d = 1 and the service curve models a
bounded delay with D = 3 and B = 1, the corresponding delay is originally calculated for
dmax = 4, whereas its value for the approximated αu is d̂max = 5, 667, which means it is
already overestimated by ∼ 41% more than the exact delay.

For this reasons, a simple linear approximation of the arrival curve appears to be in-
sufficient for a satisfactory analysis. As we have seen, the complexity of real-time calculus
depends on the number of segments describing the curve, therefore a linear approximation
drastically decreases it, since we now have only one segment depicting the curve. Nev-
ertheless, already in simple cases the approximation error is too pessimistic. Moreover,
with this method we are not able to bound the over-estimation given by the approximate
analysis. Therefore, we do not consider linear approximation as a suitable method for the
aims of this work.



Chapter 4

Scheduling Theory

As Guan et al. shows in [17], finitary real-time calculus reduces the complexity of the
overall RTC-Framework from exponential to pseudo-polynomial. This has been done by
considering only the so-called maximum busy-period size (MBS): Guan proves in the paper
[17] that the maximum delay and the maximum backlog always take place within this
initial region. This means that cutting off the curve after a determined point does not
influence the overall analysis.

Nevertheless, since the MBS has to be calculated for each and every component of the
system, the outgoing streams need to be defined over an interval long enough to contain
the MBS of the next one. For some operations however, the number of components needed
in order to analyse the system can be reduced using classical scheduling theory, e.g. in
order to get a simple feasibility analysis over a task set or to derive the worst-case response
time of a particular task: this represents the main contribution of this work.

In fact, if we consider a fixed-priority component (FP) in real-time calculus, we notice
that it is built by interconnecting two or more greedy processing components, with the
top-down order denoting the priority level of the tasks. This means, that in order to
analyse the delay and buffer from the second highest priority task onwards, we have to
obtain every remaining service curve of the higher priority tasks. In this manner, even
a schedulability test over a task set is of exponential complexity (see also figures 1.1 and
1.2).

In the field of scheduling theory, such task models are widely researched and constantly
improved. For this reason, we turned our attention to these results in order to find a
possible integration of scheduling theory with the real-time calculus framework.

4.1 Classical Scheduling Theory

Traditional scheduling theory does not consider curves and streams. Instead, a schedu-
lability problemQ is defined mainly over a given task set of n tasks T = {τ1, τ2, ..., τn}, a set
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of m processors P = {P1, P2, ..., Pm} and a set of s types resources R = {R1, R2, ..., Rs}. A
schedulability analysis over the problem Q aims to assign for every task τi of T a processor
Pi and a resource Ri, such that all the tasks can be completed within certain constrains
[8].

The task constraints are determined by different task models and system assumptions.
The following list gives an overview of the most common assumptions:

Static vs Dynamic: in a static system scheduling decisions are taken based on fixed
parameters, that do no change during the execution of the system. Instead, a dynamic
system bases its scheduling decisions on parameters that can change over time;

Pre-emptive vs Non-Pre-emptive: a pre-emptive task means that its execution can
be interrupted at any time by another task, according to a determined policy, even
if it did not finish its computation. A non-pre-emptive task will instead continue its
execution until the end;

Optimal vs Heuristic: an optimal algorithm tries to find the best task schedule for a
given parameter. Instead a heuristic algorithm aims to return any feasible schedule,
but it does not guarantee that this would be the best solution.

In this work we are mainly interested in static-priority pre-emptive scheduling algo-
rithms. This set is composed by the widely known and researched fixed-priority scheduling
policies. In the next section we formally define the task model that we analysed for this
thesis.

4.2 Task Model

Before explaining the properties of rate monotonic and deadline monotonic, we shall
introduce the notation and the semantic of the considered task model. A set T of n tasks
is defined by τi : i = 1, ..., n tasks. Each task can release more than one job, with τi,j we
denote the jth instance of task τi. The time point at which the jth job of task τi becomes
available is called arrival time ai,j . The term is also reported as release time ri,j .

The amount of time needed by the processor to fully complete each job of τi is given
by ei. The time at which the job has to be completed w.r.t. its release time ri, is called
relative deadline Di. This means, that the system has to complete the job before this
time. Otherwise, the task is said to not be schedulable and can lead to the consequences
reported in chapter 1. The finishing time of a job is given by fi,j .

Another important metric parameter is the response time of a task. The response time
is defined by the finishing time and the release time, i.e. Ri,j = fi,j − ri,j . The worst-case
response time of a task τi is intuitively defined by Ri = maxj>0(Ri,j).
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In the following sections we mainly consider periodic tasks, i.e. every task τi is com-
posed by an infinite sequence of jobs, which are regularly released. We define pi as the
period of task τi. Analogously, the release time of a job could undergo a so called jitter (see
also chapter 2). This means that the arrival time can be shifted at most by a ±ji. Usually
the minimum inter-arrival time of a periodic task is given by its period. Nevertheless, in
cases where a jitter is defined, a parameter di < pi can be used to describe a minimum
inter-arrival time between tasks that are subject to a long jitter, i.e. ji > pi.

To summarise, a periodic task can be completely described by the tuple (p, j, d), which
can be used in order to derive a worst-case response time Ri, w.r.t. a task set T . The Ri
can then be compared to the relative deadline Di of each task in order to verify if the task
set is schedulable. To be more precise, there are three types of relative deadlines which are
considered in the literature:

implicit deadline: the relative deadline is equal to the period of the task, i.e. Di =

pi, ∀τi ∈ T ;

constrained or bounded deadline: the relative deadline is equal to, or smaller than
the period of the task, i.e. Di ≤ pi,∀τi ∈ T ;

arbitrary deadline: the relative deadline is no longer bounded to the period, i.e. Di can
also assume larger values than pi,∀τi ∈ T .

Furthermore in order to derive Ri, we also need to consider the scheduling policy of
T . As mentioned above, a scheduling policy returns an assignment of which tasks has
to run on a processor at a certain point in time. A fixed-priority pre-emptive scheduling
policy for periodic tasks with or without jitter or inter-arrival time returns a schedule
depending on the priority level πi of the task τi. Let us assume a priority ordering over
the τi : i = 1, ..., n, i.e. for each k < j, then task τk has a higher priority than τj . The set
hp(τi) denotes all the tasks that have higher priority than τi. According to a fixed-priority
pre-emptive scheduling, a higher priority task will always interrupt at its release time the
execution of a lower priority task. That means, a task τi can be executed if no job of the
tasks hp(τi) is currently waiting to be executed.

4.2.1 Rate Monotonic Scheduling Algorithm

The problem now is shifted to how to determine the priorities. The rate-monotonic
algorithm assigned to each task a priority depending on the period of the tasks. For periodic
tasks with implicit deadlines, the smaller the period, the bigger the priority assignments.
The RM algorithm has been proven by Liu and Leyland [22] to be optimal among the
class of static priority tasks with implicit deadlines, i.e. Di = pi. This means, that if
a fixed-priority algorithm can schedule a given task set, than this set is also schedulable
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by RM. Moreover, the authors derive in the same paper the least upper bound for the
processor utilisation over a task set. The utilisation factor of a task τi is defined by:

Ui =
ei
pi

(4.1)

and subsequently the total utilisation of a task set is given by the sum of all tasks’ utilisa-
tion:

U =

n∑
i=1

ei
pi

(4.2)

The least upper bound Ulub defines the minimum utilisation factor over all sets of tasks
that fully utilise the processor, i.e. below this bound every task set is schedulable by RM,
whereas above this bound a task set is schedulable only for suitable periods of the tasks.
Formally, for RM the Ulub is described for a set of n tasks by:

Ulub = n(2
1
n − 1) (4.3)

which for n −→∞ converges to ' 0, 69.
The least upper bound gives a quick schedulability test for a task set. However, this test

is not exact. In fact, a task set can also be schedulable if its total utilisation exceeds the
Ulub. This represents the so called utilisation-based schedulability test, which is sufficient,
but not an exact test for the rate monotonic. For this reason, a workload analysis has
been developed by Lehoczky et al. in [21]. These methods are based on the analysis
of the workload function between a requested interval, typically between (0, Di], that is
from the release time of the task and its deadline. If between these interval there exists
a point where the workload function lies below the time function f(t) = t denoting a
100% available processor, then the task set is schedulable by a fixed-priority algorithm.
We do not go into details in this section, since the workload function will be the core of
the approximate algorithm for the PJD* component. It is however important to underline
that the schedulability test for the RM algorithm based on the workload analysis is of
pseudo-polynomial complexity.

4.2.2 Deadline Monotonic Scheduling Algorithm

Another widely used priority assignment technique is the so called deadline-monotonic
algorithm. In this case the priorities of each tasks are assigned w.r.t. their relative deadline,
i.e. the shorter the deadline, the higher the priority is. For such task sets the DM algorithm
is proven to be optimal [21].

For the DM algorithm the workload analysis is even more important; in fact the total
utilisation for a task set is now bounded by:

U =

n∑
i=1

ei
Di
≤ n(2

1
n − 1) (4.4)
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Task Model Complexity

implicit deadlines pseudo-polynomial
constrained deadlines pseudo-polynomial
arbitrary deadlines exponential

Table 4.1: Complexity for sporadic task models [16].

which has however been shown to be too pessimistic [8].

To conclude this overview of priority assignments, we consider a set of tasks subject
to arbitrary deadlines. In this task model we can no longer assume that the worst-case
scenario of the task set happens when all of the tasks release a job at the same time. In
fact, for the implicit and constrained deadlines model, the analysis is based on the fact
that the worst-case response time of a task τi happens when all the other higher priority
tasks simultaneously release a job. Then, we only need to consider the first job release by
task τi. This represents the so called critical instant theorem.

Instead, for an arbitrary deadlines model, this is not true. In fact, as Lehoczky shows
in [20], the worst-case response time can also take place for a later job release of task τi.
In this situation we have to take into account the number of job releases in the level-i busy
period, which represents the period within which only jobs of tasks of priority greater or
equal than i are being executed. We will return on this particular task model in chapter 5.

4.3 Polynomial-Time Approximation Scheme

As we have already mentioned above, the feasibility test for static-priority and sporadic
task models is known to be at best of pseudo-polynomial complexity [16]. Pseudo-polyno-
mial means that the test runs in polynomial time if the input is given in the numeric form
- i.e. base 10 -, but it is exponential in the binary form, that means, it depends on the
number of bits necessary to represent the given input.

For sporadic systems with implicit deadline Lehoczky et al. presented in [21] a pseu-
do-polynomial feasibility test. The same complexity is reached by the feasibility test of
Audsley et al. in [4] for sporadic tasks with constrained deadlines. The overall high com-
plexity is due to the fact that the test is in fact of polynomial complexity, since it depends
on the values of the task, which means that the test is of pseudo-polynomial complexity,
since it depends on the length of the input.

Moreover, for task systems with arbitrary deadlines Lehoczky shows [20] that the com-
plexity for the feasibility test is exponential. Table 4.1 reports the complexity for the
various cases.
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In order to reduce the computational complexity of such algorithms, it is sometimes
possible to trade the exactness of the computation with the running time of the decision
test. The idea is to design an algorithm which runs in polynomial time and approximates
the optimal algorithm by a ratio ρ(n): that is called a ρ(n)-approximation algorithm [11].

The ratio ρ(n) is given by considering the computation cost C and C∗ of the optimal
and the approximation algorithm respectively. The maximum function considers both
maximisation and minimisation problems, i.e.:

max

(
C

C∗
,
C∗
C

)
≤ ρ(n) (4.5)

In this context an approximation scheme denotes an approximation algorithm that
takes a problem Q and a value ε > 0 that defines the approximation ratio of the algorithm,
i.e. for a fixed ε we will obtain a (1− ε)-approximation algorithm.

If the scheme runs in polynomial time for every ε > 0 with respect to the size of the
input n, the approximation scheme is said to be a polynomial-time approximation scheme
(PTAS). Furthermore, since with the decrease of the factor ε the algorithm may change its
running time very rapidly, i.e. consider a O(n(2/ε)) algorithm, we also want to bound the
running time by a constant factor which decreases/increases as ε decreases/increases.

If a polynomial-time approximation scheme runs in polynomial time both over the
size n of the input and the factor 1/ε, than it is referred to as a fully polynomial-time
approximation scheme.

4.4 FPTAS for Static-Priority Tasks

The fully polynomial-time approximation scheme has been applied to the feasibility
problem of static priority tasks. The goal is to somehow bound the total number of points
that needs to be checked in order to prove the schedulability, as it originally depends on
the task period [15].

Albers et al. in [1] derive a fully polynomial-time approximation scheme for sporadic
tasks in order to solve the feasibility problem for dynamic scheduling algorithms. Follow-
ing this approach, Fisher et al. in [15] extend this work to the domain of fixed priority
algorithms.

The idea is to approximate the request-bound function by means of a given acceptance
error ε, which also gives the approximation level of the request-bound function. Intuitively,
the fully polynomial-time approximation scheme represents an algorithm to compute the
feasibility of a system for constrained deadline synchronous periodic tasks. The complexity
of the algorithm is not based on the number of periods any more, but instead it depends
on the number of tasks n and the number of steps k, for which the request-bound function
is exactly represented. Formally, the complexity for checking the feasibility of a system is
O(n2k).
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In the next chapter, we present an FPTAS, which covers most of the task models
implemented by real-time calculus. In particular, we extend the current results to a periodic
task with burst model, so we can analyse a set of tasks in a new way than the FP component
implemented by the RTC-Toolbox.
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Chapter 5

Real-Time Calculus and Classical
Scheduling Theory

Even though real-time calculus offers a powerful framework to model distributed sys-
tems, the complexity of some of its operation can be reduced in order to perform an anal-
ysis over a single component. In this chapter we present a novel approach to implement a
fixed-priority scheduling policy for a single component.

5.1 A new Component: PJD*

The computation of every remaining service curve is not strictly necessary for perform-
ing certain operations over a task set. For example, let us suppose that our FP component
aims to model a Rate Monotonic or Deadline Monotonic scheduling policy. Assuming we
have three tasks, in order to compute the delay for the third task, we need to derive two
additional remaining service curves, one after the other.

Nevertheless, if we take a look at classical scheduling theory, the fixed-priority schedul-
ing policy has been extensively researched over the last 40 years. From Liu and Layland’s
bound in [22] to Buttazzo’s textbook [8], this area of study has prospered and the available
literature, use cases, and new developments are countless.

The idea of combining the available results in real-time calculus operations presented
in this thesis stems from this background. In particular, the widely known rate monotonic
(RM) and deadline monotonic (DM) fixed-priority scheduling policies have been investi-
gated in order to derive a new component for real-time calculus.

The PJD* component is based on the widely used GPC component of real-time calcu-
lus. We will consider an incoming event curve described by the parameters p, j, and d,
and a resource curve modelling a fully available processor or a bounded delay behaviour.
We will show how to introduce classical schedulability analysis in order to perform a

37
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pseudo-polynomial approximate feasibility test and to derive an approximate worst-case
response time.

The development of this work will start from the basic task model, such as the periodic
one, up to the more general periodic tasks with burst. We will also analyse both a fully
available processor and the bounded delay model.

5.2 FPTAS for Periodic Tasks

As already presented in chapter 2, real-time calculus mathematically describes certain
task models in order to easily represent some common task patterns. We could therefore
apply the extensive results in the field of classical scheduling analysis to these particular
task models. However, while strictly periodic tasks are widely studied, be it for implicit,
bounded, or arbitrary deadlines, periodic tasks with jitter are not so commonly found in
the literature. Moreover, the periodic task with burst is, to the best of our knowledge,
only treated within the context of formal methods and compositional analysis, such as in
[32], [19], [28] and [29].

Therefore, in order to cover all the RTC event models, we need to extend the current
results of Fisher et al. in [15] and [14], and Nguyen in [25], [27] and [26] to the domain of
periodic tasks with jitters and in particular to periodic tasks with burst.

The easiest case to analyse is a task set T of strictly periodic tasks and constrained
deadlines. Classical scheduling theory uses a so called request-bound function (RBF) to
bound the total execution request of a task τi at time t:

RBF (τi, t) :=

⌈
t

pi

⌉
ei (5.1)

The cumulative request-bound function represents the sum of all execution requests of the
set hp(τi) denoting all task with a higher priority than τi. The equation defining this
function is given by:

Wi(t) := ei +
∑

τj∈hp(τi)

RBF (τj , t) (5.2)

The exact schedulability test for a periodic task set with constrained deadlines using a
fixed-priority algorithm is reported by Buttazzo in [8], which reformulates the original
theorem of Lehoczky, Sha, and Ding in [21] and states:

Theorem (1). A set of fully pre-emptive tasks with constrained deadlines is schedulable
by a fixed-priority algorithm if and only if

∀i = 1, ..., n, ∃t ∈ (0, Di] : Wi(t) ≤ t (5.3)

From this background, Fisher and Baruah firstly derived in [15] FPTAS for a set of
periodic tasks with bounded deadlines. The idea is based on the observation that the
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Figure 5.1: Approximated RBF for a k = 3 factor

RBF (τi, t) is discontinuous every pi time units. After a certain numbers of steps the
RBF is approximated by simply relaxing the ceiling function in order to get a linear
approximation. The number of steps, for which the RBF is being represented exactly,
depends on the approximation factor 0 < ε < 1 and is formally defined by:

k :=

⌈
1

ε

⌉
− 1 (5.4)

Intuitively, the FPTAS takes ε as input along with the task set that has to be analysed.
This parameter will define the k−1 steps where the RBF is exactly computed. The function
is mathematically described by R̂BF as follows:

R̂BF (τi, t) =

RBF (τi, t) if t ≤ (k − 1)pi

(t+ pi)
ei
pi

otherwise
(5.5)

Let us suppose an approximation factor ε which gives a k = 3, then figure 5.1 gives a
visual representation of the exact and approximated functions.

Consequently, the cumulative request-bound function has to be modified as well in order
to consider the now approximated RBF. This is done by simply substituting in equation
5.2 the RBF with the R̂BF function:

Ŵi(t) := ei +
∑

τj∈hp(τi)

R̂BF (τj , t) (5.6)

At this point, if we use the approximate cumulative request-bound function along with
theorem 1, we will no longer obtain an exact feasibility test for our task set. In fact, the
Ŵi(t), can now exceed the original Wi(t) in terms of the intersection point with f(t) = t.
Moreover, we cannot guarantee the infeasibility of the task set any more. It could be
possible that an intersection point is not found between t ∈ (0, Di], but the task can still
be scheduled.
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For this reason, two other theorems are used for the analysis together with the approx-
imate cumulative request-bound function:

Theorem (2). In a synchronous periodic task set, task τi is feasible under a deadline
monotonic scheduling policy if:

∃t ∈ (0, Di] : Ŵi(t) ≤ t (5.7)

With the FPTAS, we cannot guarantee the infeasibility of the task. Nevertheless we
can bound the infeasibility to a slower processor, that means:

Theorem (3). In a synchronous periodic task set, task τi is infeasible under a deadline
monotonic scheduling policy for a processor with (1− ε) of the original capacity, if:

∀t ∈ (0, Di] : Ŵi(t) > t (5.8)

To be precise, Fisher states in [15, p.7] that “we must effectively ignore (1 − ε) of the
processor capacity for the test to become exact ”.

In order to prove these theorems, it is more practical to first prove a set of properties
and lemmas, so that the theorems will easily follow. We report here only their statements,
as they will be similarly extended to comprehend different tasks models in the following
sections. For the original proof refer to [15].

Property (1). ∀t ≥ 0, R̂BF (τi, t) ≥ RBF (τi, t). That means, the approximate request-
bound function is an upper bound for the exact request-bound function.

Property (2). If R̂BF (τi, t) > RBF (τi, t), then we have calculated at least k− 1 steps of
the arrival curve, i.e. RBF (τi, t) ≥ kei

Property (3). ∀t, then the approximation never exceeds the arrival curve by more than
one step size, i.e. R̂BF (τi, t)−RBF (τi, t) ≤ ei.

Property (4). The last property shows that the approximated function is bounded above
by the request-bound function multiplied by the factor k+1

k , that is ∀t ≥ 0, RBF (τi, t) ≤
R̂BF (τi, t) ≤

(
k+1
k

)
RBF (τi, t).

Lemma (1). If Ŵi(t) ≤ t, then Wi(t) ≤ t. That is, if the approximate cumulative request-
bound function is below f(t) = t, therefore the exact cumulative request-bound function is
below f(t) = t as well.

Lemma (2). If Ŵi(t) > t, then Wi(t) >
k
k+1 t, i.e. if the approximate cumulative request-

bound function is above f(t) = t, thus the exact cumulative request-bound function is above
the line f(t) = k

k+1(t).
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5.2.1 Testing Set for Periodic Tasks

While approximating the request bound function simplifies the analysis over the long
term curve, the complexity of the feasibility test still remains high, i.e. pseudo-polyno-
mial. This can be overcome by limiting the testing set for which the functions Wi(t) and
Ŵi(t) have to be evaluated. In fact, since the cumulative request-bound function is a step
function, we would need to evaluate it intuitively only at its edges as reported in [21] and
[8].

However, the test still runs in pseudo-polynomial time, since the number of testing
points depends on the period of the tasks. The exact testing set for a task τi in a periodic
task model is defined by Fisher and Baruah in [15] as:

Si :=

{
t = bpa : a = 1, ..., i; b = 1, ...,

⌊
Di

pa

⌋}
(5.9)

The key point of the FPTAS lies precisely in this set. In fact, given the approximation
rate ε we can bound the testing points to the parameter k. Therefore, the testing set is
not dependent any more on the task periods, but on the number i of tasks and the number
k of steps for which the request-bound functions are exactly computed.

Formally, given an approximation factor ε, the approximate cumulative function Ŵi(t)

needs to be tested for the points defined in the following set [16]:

Ŝi := {t = bpa : a = 1, ..., i− 1; b = 1, ..., k − 1} ∪ {t = Di} (5.10)

For the approximate testing set, we need to additionally prove that the set is sufficient.
That means, if ∀t ∈ Ŝi, Ŵi(t) > t, then ∀t ∈ (0, Di], Ŵi(t) > t. Let us assume a pair
of testing points t1, t2 ∈ Ŝi, with t1 < t2. We then call this points adjacent, if no other
scheduling point in Ŝi lies between them, i.e. there exists no point t ∈ Ŝi such as t1 <
t < t2. If for these two adjacent points we have that t1, t2 in Ŝi, for which Ŵi(t) > t1 and
Ŵi(t) > t2, then, since the cumulative function in non decreasing, we have that for every
time point t in the interval (t1, t2), Ŵi(t) > t. This result can easily be extended to all the
points in Ŝi, thus proving the statement.

5.2.2 Response Time Analysis for Periodic Tasks

To conclude the analysis for the periodic task model, we present the response time
analysis applying to it. Since the schedulability analysis for theorem 1 is in fact based
on a time-demand analysis, worst-case response time can be derived using the cumulative
request-bound function and the resource function f(t) = t.

In [31], Richard et al. extended the feasibility analysis of Lehoczky, Sha, and Ding [21],
in order to derive the exact worst-case response time of a feasible task.

The points derived by the testing sets are defined as scheduling points of the task set.
In particular, we are interested in the critical scheduling point, which is defined as:
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5.2.5 Definition (Critical Scheduling Point). For a task τi, the critical scheduling
point over its testing set Si is defined as:

t∗ := min{t ∈ Si : Wi(t) ≤ t} (5.11)

If such a point exists, we can thus state the relationship between point t∗ and the wcrt as
follows:

5.2.6 Theorem (wcrt). For a feasible task τi, the worst-case response time is determined
by its critical scheduling point t∗.

Proof. If the task is feasible, then the point t∗ exists within the testing set Si. If we depict
the testing set as Si = {ti1, ..., til} in an increasing order and with til denoting the deadline
Di of the task, the critical scheduling point would be t∗ = tij, with 1 ≤ j ≤ l. This point is
the first scheduling point such as Wi(t) ≤ t, so that ∀t ∈ {ti1, ..., tij−1}, then Wi(t) > t and
∀t ∈ {tij , ..., til}, therefore Wi(t) ≤ t. Since the cumulative request-bound function Wi(t)

is non decreasing, there exists a point t in the interval (tij−1, tij ] such that Wi(t) = t. The
scheduling points represent the task release, therefore there would not be any task release
between t and t∗, thus Wi(t) = Wi(t

∗). The worst-case response time is thus defined by
Ri = Wi(t

∗).

As the authors point out, this method only works for feasible tasks. In fact, if the
feasibility test fails, we would have no point in Si intersecting the function f(t), hence we
would have to consider more testing points for the task.

In the approximate analysis we are more interested in bounding the approximate worst-
case response time for a given approximation factor ε, in the same way as in the approximate
cumulative function analysis. First, we define the approximate worst-case response time.

5.2.8 Definition (Approximate worst-case response time). For a task τi, the ap-
proximate worst-case response time is defined as:

R̂i := min{t > 0 : Ŵi(t) = t} (5.12)

The proof that R̂i is bounded follows from the two following lemmas, which are defined by
Nguyen et al. in [26]:

1 Lemma. Let us assume a task τi with relative deadline Di, then:

R̂i ≤ Di ⇐⇒ ∃t ∈ Ŝi : Ŵi(t) ≤ t (5.13)

Proof. The “only if ” part is proven by the definition Ŵi(R̂i) = R̂i. For the “if ” part, we
can use the same approach as above. Let t∗ once more denote the critical scheduling point
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of the approximate testing set Ŝi. Let us consider the ordered scheduling points {tij , ..., til}.
Then, assuming t∗ = tij, ∀t ∈ {ti1, ..., tij−1}, we have Ŵi(t) > t and ∀t ∈ {tij , ..., til}, thus
Ŵi(t) ≤ t.

However, since the approximate cumulative request-bound function is not a step function
any more, but instead could have a positive slope between two scheduling points due to the
approximation, we cannot use the same assumption as above. Specifically, if t is the time
between (tij−1, tij ] which intersects the line given by t, it does not mean that Ŵi(t) = Ŵi(t

∗).
However, since both Ŵi(t) and t are positively increasing, there exists only one point between
(tij−1, tij ] which corresponds to the intersection Ŵi(t) = t, thus ∀t < R̂i, then Ŵi(t) > t.
Therefore, if ∃t ∈ Ŝi : Ŵi(t) ≤ t, then it implies that for this time point we have t ≥ R̂i, and
since the testing set is limited from above by the deadline Di, then we have that R̂i ≤ Di.

2 Lemma. We are now able to bound the approximate worst-case response time. For a
task τi then:

Ri ≤ R̂i ≤
(
k + 1

k

)
Ri (5.14)

Proof. By lemma 2, we know that Wi(R̂i) ≤ Ŵi(R̂i). For a fully available processor
we know that Ŵi(R̂i) = R̂i, therefore Ri ≤ R̂i, since the intersection point of the exact
cumulative request-bound function lies at the same point or before the intersection point of
the approximate request-bound function.

Furthermore the lemma give us also that Ŵi(
k+1
k Ri) ≤ k+1

k Wi(
k+1
k Ri). The function

k+1
k Wi(

k+1
k Ri) can be seen as the execution of the task with its worst-case execution time

augmented by k
k+1 (see [15] and [26]). The worst-case response analysis gives therefore

k+1
k Wi(

k+1
k Ri) = k+1

k Ri, which by lemma 1 gives R̂i ≤ k+1
k Ri

To conclude, we can summarise the results in the following theorem:

Theorem (RTA Bound). The approximate worst-case response bound R̂i is on the one
side an upper bound for the exact response time Ri and, on the other side, a lower bound for
the worst-case response time for a k

k+1 -capacity processor. The proof follows from equation
5.14 of the lemma above.

5.3 FPTAS for Periodic Task with Jitter

Moving on to other task models, a periodic task with jitter is defined with a parameter j
denoting the deviance of the task releasing time w.r.t. the time axis. Most of the literature
in classical scheduling analysis tends to bound the jitter to the period of the task. In such
a case the RBF is defined as follows:

RBFpj(τi, t) :=

⌈
t+ ji
pi

⌉
ei (5.15)
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Intuitively, the jitter produces in the worst case a shifting of ji of the task release time.
In real-time calculus, this pattern is represented by the following equation for the arrival
curves:

αu(∆) :=

⌈
∆ + ji
pi

⌉
ei (5.16)

Following the work of Fisher and Baruah in [15], we could use the same approach in
order to derive an FPTAS for this particular task model. The approximation scheme takes
as input a value ε, 0 < ε < 1, by which the computation accuracy can be defined. Through
the parameter k we are able to define the approximate request-bound function as:

R̂BF pj(τi, t) =

RBF pj(τi, t) if t ≤ (k − 1)pi − ji

(t+ pi + ji)
ei
pi

otherwise
(5.17)

Similarly, the equation for the approximate cumulative request-bound function is given
by:

Ŵi(t) := ei +
∑

τj∈hp(τi)

R̂BF pj(τj , t) (5.18)

Correctness of the Approximation

Property (1 - pj). ∀t ≥ 0, R̂BF pj(τi, t) ≥ RBF pj(τi, t)

Proof. For all t ∈ (0, (k−1)pi−ji], then by definition we have that R̂BF pj(τi, t) = RBF pj.

For t > (k − 1)pi − ji then we need to prove that (t + pi + ji)
ei
pi
≥
⌈
t+ji
pi

⌉
ei. That is

true because of the relaxation of the ceiling function, i.e R̂BF pj(τi, t) = (t + pi + ji)
ei
pi

=(
t+ji
pi

+ 1
)
ei ≥

⌈
t+ji
pi

⌉
ei.

Property (2 - pj). If R̂BF pj(τi, t) > RBF pj(τi, t), then we have calculated at least k−1

steps of the arrival curve, i.e. RBF pj(τi, t) ≥ kei

Proof. If we have R̂BF pj(τi, t) strictly bigger than RBF pj(τi, t), it implies that t > (k −
1)pi − ji. Hence, RBF pj(τi, t) =

⌈
t+ji
pi

⌉
ei >

⌈
(k−1)pi−ji+ji

pi

⌉
ei = (k − 1)ei.

Property (3 - pj). ∀t, then the approximation never exceeds the arrival curve by more
than one step size, i.e. R̂BF pj(τi, t)−RBF pj(τi, t) ≤ ei.

Proof. Again, if t ≤ (k−1)pi−ji, then R̂BF pj(τi, t) = RBF pj(τi, t) and thus R̂BF pj(τi, t)−
RBF pj(τi, t) = 0 ≤ ei.

For t > (k − 1)pi − ji we have that R̂BF pj(τi, t) − RBF pj(τi, t) =
(
t+ji
pi

)
ei + ei −⌈

t+ji
pi

⌉
ei ≤

(
t+ji
pi

)
ei + ei − t+ji

pi
ei = ei.
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Property (4 - pj). The last property shows that the approximated function is bounded
above by the request-bound function multiplied by the factor k+1

k , that is ∀t ≥ 0, RBF pj(τi, t) ≤
R̂BF pj(τi, t) ≤

(
k+1
k

)
RBF pj(τi, t).

Proof. For t ≤ (k−1)pi, then R̂BF pj(τi, t) = RBF pj(τi, t), since k ≥ 1, for all 0 < ε < 1

then
(
k+1
k

)
> 1 and thus the relation holds.

If t > (k − 1)pi, therefore by property 1 -pj we have that RBF pj(τi, t) ≤ R̂BF pj(τi, t).
For property 3 -pj we know that R̂BF pj(τi, t) ≤ RBF pj(τi, t) + ei and for property 2 -pj
we get RBF pj(τi, t) + ei ≤ RBF pj(τi, t) +

RBF pj(τi,t)
k . This proves the statement.

Following the same verification scheme adopted in [15], we can now proceed to define
a series of lemmas for the considered model.

Lemma (1 - pj). If Ŵi(t) ≤ t, then Wi(t) ≤ t.

Proof. By property 1 -pj, the summation of the approximated request-bound function is big-
ger than or equal to the sum of the exact request-bound function of all higher priority tasks.
Formally,

∑
τj∈hp(τi)

R̂BF pj(τj , t) ≥
∑

τj∈hp(τi)
RBF pj(τj , t). Furthermore, the definitions of

Wi(t) and Ŵi(t) give us ei +
∑

τj∈hp(τi)
R̂BF pj(τj , t) ≤ t ⇒ ei +

∑
τj∈hp(τi)

RBF pj(τj , t) ≤ t,

which proves the lemma.

The following lemma bounds from below the error given by the approximation. If the
approximate cumulative request-bound function lies above the line f(t) = t, then the exact
cumulative request-bound function must lie above the line f(t) = k

k+1 t.

Lemma (2 - pj). If Ŵi(t) > t, then Wi(t) >
k
k+1 t.

Proof. By definition, Ŵi(t) = ei +
∑

τj∈hp(τi)
R̂BF pj(τj , t) > t. Using property 4 -pj, this

implies that ei+
∑

τj∈hp(τi)

(
1 + 1

k

)
RBF pj(τj , t)⇒

(
1 + 1

k

)(
ei +

∑
τj∈hp(τi)

RBF pj(τj , t)

)
> t,

which gives

(
ei +

∑
τj∈hp(τi)

RBF pj(τj , t)

)
> k

1+k t.

We are now able to prove that i) if there exists a point between the task releasing time
and its deadline, where the approximate cumulative request-bound function lies below the
line f(t) = t, then the task can be scheduled under the original task set. Otherwise, the
task is not feasible under a processor with (1 − ε)-times the original processor speed. In
this way, we are able to prove theorems 2 and 3 for the periodic task with jitter model.

Proof (Theorem 2 - pj). Recall theorem 2, it states that if ∃t ∈ (0, Di] : Ŵi(t) ≤ t, then
the task set is schedulable under DM. Let us assume a t0 ∈ (0, Di], for which Ŵi(t0) ≤
t0. That means, by lemma 1 - pj that Wi(t0) ≤ t0, hence for theorem 1 the task set is
schedulable.
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Proof (Theorem 3 - pj). The theorem originally describes a lower bound for the infea-
sibility of the task considered, i.e. if ∀t ∈ (0, Di] : Ŵi(t) > t, then the task τi is infeasible
on a processor of (1 − ε) capacity. The proof is derived by contradiction. Let us assume
that ∀t ∈ (0, Di], Ŵi(t) > t, but the task is still feasible on a (1 − ε) slower processor.
From 5.4, we have that 1 − k

k+1 ≤ ε, i.e. for theorem 1 there is a t0 ∈ (0, Di] so that

Wi(t0) ≤ (1− ε)t0 ≤
(

k
k+1

)
t0. However, for lemma 2 - pj we have that if Ŵi(t0) > t0 then

Wi(t0) > k
k+1 t0, which is a contradiction, hence task τi is infeasible on a (1− ε) processor.

5.3.1 Testing Set for Periodic Tasks with Jitter

As we mentioned above, in our PJD* component we consider sets of tasks with con-
strained deadlines and jitters; in this way, we simplify the analysis to only the first job of
a task. For an exact analysis the testing set of a periodic with jitter task model, where
0 ≤ ji ≤ Di for a task τi, is defined by:

Si :=

{
t = bpa − ja : a = 1, ..., i; b = 1, ...,

⌊
D′i + ja
pa

⌋}
∪
{
D′i
}

(5.19)

with D′i denoting D′i = Di − ji The elements contained in this set depend again on the
tasks’ periods, that give a pseudo-polynomial number. Using the approximation factor ε
we can bound the number of elements of the set to the value of k [31]:

Ŝi := {t = bpa − ja : a = 1, ..., i− 1; b = 1, ..., k − 1} ∪ {t = Di − ji} (5.20)

The sufficiency of the testing set for the periodic task with jitter model can be easily
proven as the one for the periodic task model.

5.3.2 RTA for Periodic Tasks with Jitter

For the periodic task with jitter model, we need to take into account the deviance given
by the jitter. In this case, as Richard et al. in [31] as well as Chen et al. in [10] show, the
worst-case response time analysis is similar to that of periodic tasks, but since the jitter
produces a shifting in the arrival time of a job task, this job has to wait at most ji units
of time before being processed, therefore the wcrt is given by:

Ri = Wi(t) + ji (5.21)

The proof that the first testing point in the set Si which satisfiesWi(t) ≤ t, is related to
Ri like in the above equation 5.21 and is conceptually similar to the one shown in theorem
5.2.6, therefore we do not report it.

Similarly, we can define the bounds for the approximate worst-case response time of a
task τi. The proof is basically the same as in the case of strictly periodic tasks, however we
need to take into account the jitter deviance ji both in the exact and in the approximate
case, but the analysis still remains the same.
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Figure 5.2: Comparison between a task with jitter and with an additional minimum inter-arrival
distance.

Formally, the approximate worst-case response time for a periodic task with jitter is
given by:

R̂i := min{t > 0 : Ŵi(t) = t}+ ji (5.22)

Since we add to every element of the inequality 5.14 the term ji, all the proofs still hold.

5.4 FPTAS for Periodic Task with Burst

Real-time calculus widely uses a particular arrival pattern for the incoming tasks: the
so called periodic task with jitter and minimum inter-arrival time. This pattern was firstly
presented by Richter in his PhD-thesis [32]. Traditionally, the minimum inter-arrival time
of a task is given by its period. However, in cases where the jitter exceeds the period of
the task, it is often necessary to reduce its influence on incoming events.

For example, in a task with period p = 2 and jitter j = 5, we could have up to 3

incoming events at the same time (see figure 5.2). Nonetheless, if, for example, the jobs
are delivered by some type of sensor, it may be impossible to have all of them arriving at the
same time. Instead, they can be generated at most within a minimum interval between
them. For this reason, parameter d is introduced, and with it the concept of burst. A
burst corresponds to a time interval where the sporadic incoming events are nevertheless
bounded.

Let us denote the pjd task model as a periodic task τi with a period pi, a jitter ji
and a minimum inter-arrival distance di, plus the computation time ei. The value of di is
bounded from above by the period, i.e. di < pi. The behaviour of such a task is represented
in real-time calculus by the following equation:

αu(∆) = min

(⌈
∆ + ji
pi

⌉
,

⌈
∆

di

⌉)
ei (5.23)
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Figure 5.3: Request-bound function (solid line) for a pjd task.

This event model is widely used in the RTC literature, for example by Wandeler in
[42] and by Künzli in [19]. In order to reduce its computation effort, we could extend the
same approach used by Fisher and Baruah in [14] so that we can derive an approximation
scheme for our PJD* component. The main idea is to relax the ceiling function for the pjd
task after k steps of the upper arrival curve. Nevertheless, since now the request-bound
function is defined trough a minimum function, we need to carefully consider the point
where the approximation takes place, as the model is now described by two functions.

The request-bound function for a periodic task with jitter and minimum inter-arrival
time is defined by which one of the two functions

⌈
t+ji
pi

⌉
and

⌈
t
di

⌉
dominates the other.

In figure 5.3, we can see how the two functions are represented. The dash line denotes
that the function is dominating the other, the solid line represents when the function is
dominated and corresponds to the request-bound function. Formally:

RBFpjd(τi, t) := min

(⌈
t+ ji
pi

⌉
,

⌈
t

di

⌉)
ei (5.24)

Again, the ε-parameter as defined in equation 5.4 denotes the error tolerated by our
approximation and gives us the k = d1/εe − 1 number of steps for which we calculate the
exact response-bound function.

As already shown above, the behaviour of the request-bound function is now described
by two functions defining two distinctive regions: the burst-region and the periodic with
jitter region.
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Figure 5.4: Approximation Point before and after tburst.

Intuitively, the approximate RBF given by the relaxation of the ceiling function can be
described by (t+ di)

ei
di

or (t+ pi + ji)
ei
pi

depending on which function dominates the other
5.4. Formally, the approximate request-bound function is now given by:

R̂BF pjd(τi, t) =



if
⌈
t
di

⌉
<
⌈
t+ji
pi

⌉
then RBF pjd(τi, t), for t ≤ (k − 1)di

(t+ di)
ei
di

otherwise

if
⌈
t+ji
pi

⌉
≤
⌈
t
di

⌉
then RBF pjd(τi, t), for t ≤ (k − 1)pi − ji

(t+ pi + ji)
ei
pi

otherwise

(5.25)

Nevertheless, an important property considered in the previous case is now missing.
The burst region represents in fact a periodic task with arbitrary deadlines model. The
period of the task is now given by the minimum inter-arrival distance between two tasks,
nevertheless since in the other models we assumed implicit deadlines, i.e. pi = Di, we
have now arbitrary deadlines in this region. In this particular case the critical instant of
a task set is not depicted any more by the simultaneous release of a job for every task, as
Lehoczky demonstrated in [20].

That means, we can no longer base our feasibility test only on the first job of a
task, since the worst-case response time could also take place in a later release. The
request-bound function remains the same, however the cumulative request-bound function
has now to consider more than the first job.

In fact, for a time point x, the cumulative request-bound function is now given by:

Wi(l, x) := min
t≤x

 lei +
∑

τj∈hp(τi)
RBF pjd(τj , t)

t

 (5.26)
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Thus leading to an approximate request-bound function defined as follows:

Ŵi(l, x) := min
t≤x


lei +

∑
τj∈hp(τi)

R̂BF pjd(τj , t)

t

 (5.27)

Therefore, theorem 1 is no longer valid. Lehoczky presents in [20] a method for
analysing the schedulability of a set of tasks with arbitrary deadlines. The number of
jobs that has to be considered is bounded by the level-i busy period. A level-i busy pe-
riod is a time interval within which only jobs of priority equal or bigger than i are being
executed. Moreover, Lehoczky proves that the longest worst-case response time happens
within the level-i busy period initiated by the simultaneous release of a job for every task
of priority i or higher (see [20, p.203]).

For this reasons, the schedulability test must meet two conditions. Let us consider the
first job release of task τi. On the one side, we need to check if there exists a time point
∈ (0, Di] such as Wi(1, Di) ≤ 1. That means, τi,l will meet its deadline. On the other side,
we also need to verify if the level-i busy period has terminated. That means, there exists
a time point ∈ (0, pi] such as Wi(1, pi) ≤ 1. If such a point exists, then the level-i busy
period has been completed and we can stop our computation. If there is no such point,
then it means that the level-i busy period continues with the second job release of task
τi. As Lehoczky explains, for the second job we need to verify the following inequalities:
Wi(2, pi +Di) ≤ 1 and Wi(2, 2pi) ≤ 1.

Let us denote with Ni the number of jobs contained by the busy period. This number
is given by the following equation:

Ni = min
l
{l : Wi(l, lpi) ≤ 1} (5.28)

Similarly, the number of jobs in the approximate level-i busy period is defined as:

N̂i = min
l

{
l : Ŵi(l, lpi) ≤ 1

}
(5.29)

With this definition, we are able to extend theorem 1 to the case of tasks with arbitrary
deadlines.

Theorem (Feasibility for Arbitrary Deadlines). A set T of n tasks with arbitrary
deadlines is feasible if and only if:

max
1≤i≤n

max
l≤Ni

Wi(l, (l − 1)pi −Di) ≤ 1 (5.30)

It is clear that the complexity of the test increases with the need to check every job
of a task τi within the level-i busy period. We will first show the correctness of the
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approximation, and then how the approximate set of scheduling points can be derived.
Moreover, we will show how it is not necessary to test every job within the busy period, so
that the approximate feasibility test and the approximate response time analysis are again
of pseudo-polynomial complexity.

Correctness of the Approximation

Since the R̂BF pjd function has changed, we need to prove again the four properties
and the two lemmas in order to verify the correctness of the approximation. For this event
model we need to carefully consider in which region the approximation starts.

Property (1 - pjd). ∀t ≥ 0, R̂BF pjd(τi, t) ≥ RBF pjd(τi, t)

Proof. Let us suppose a time point t such as
⌈
t
di

⌉
<
⌈
t+ji
pi

⌉
. That means, the time point t

lies within the burst region. In this case, if t ≤ (k−1)di, then we calculate the exact request-
bound function, hence R̂BF pjd(τi, t) = RBF pjd(τi, t). On the other hand, we have that
t > (k−1)di, so that the R̂BF pjd(τi, t) = (t+di)

ei
di

= ( tidi +1)ei ≥
⌈
t
di

⌉
ei = RBF pjd(τi, t).

The second case happens if we have a time point t, for which
⌈
t+ji
pi

⌉
<
⌈
t
di

⌉
. In the

same way, if t ≤ (k − 1)pi − ji, then we compute the request-bound function exactly,
i.e. R̂BF pjd(τi, t) = RBF pjd(τi, t). If t > (k − 1)pi − ji, the we have R̂BF pjd(τi, t) =

(t+ pi + ji)
ei
pi

=
(
t+ji
pi

+ 1
)
ei ≥

⌈
t+ji
pi

⌉
ei = RBFpjd(τi, t), which proves the property.

Property (2 - pjd). As shown above, the second property states that if R̂BF pjd is strictly
larger than RBFpjd, then we have already an execution demand of k · ei. Formally if
R̂BF pjd > RBFpjd, then RBFpjd ≥ kei.

Proof. In the same way as above, we need to consider the two different situations. Let us
suppose a time point t0 for which

⌈
t0
di

⌉
<
⌈
t0+ji
pi

⌉
. If we have that R̂BF pjd > RBFpjd, then

by definition t0 > (k− 1)di, otherwise the two functions would be the same. Therefore, the
time point t0 is larger than (k − 1)di. The exact request-bound function is defined at this
point as RBF pjd(τi, t0) =

⌈
t0
di

⌉
ei >

⌈
(k−1)di
di

⌉
ei = (k− 1)ei. Since RBFpjd increases by ei

with every step, we have RBFpjd ≥ kei.
For the other case, let us suppose that for t1 we have

⌈
t1
di

⌉
≥
⌈
t1+ji
pi

⌉
. Since we assume

that the two request-bound functions are not equal, we have that t1 > (k−1)pi−ji. The exact
request-bound function is represented by RBF pjd(τi, t1) =

⌈
t1+ji
pi

⌉
ei >

⌈
(k−1)pi−ji+ji

pi

⌉
ei =

(k − 1)ei.

Property (3 - pjd). The third property bounds the approximation of R̂BF pjd, i.e. ∀t ≥
0, then R̂BF pjd(τi, t)−RBF pjd(τi, t) ≤ ei

Proof. As usual we consider the two cases. For a time point t0 such that
⌈
t0
di

⌉
<
⌈
t0+ji
pi

⌉
.

If t0 ≤ (k − 1)di, then it implies that R̂BF pjd(τi, t0) − RBF pjd(τi, t0) = 0 ≤ ei, since
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the two RBFpjd are the same function for t0. On the other hand, if t0 > (k − 1)di, then
R̂BF pjd(τi, t0)−RBF pjd(τi, t0) = (t0+di)

ei
di
−
⌈
t0
di

⌉
ei ≤ (t0+di)

ei
di
− t0
di
ei = ei+

t0ei
di
− t0ei

di
=

ei.
If for a time point ti we have

⌈
t1
di

⌉
≥
⌈
t1+ji
pi

⌉
, we need to consider as well, whether the

two request-bound function are the same or a different function. For the first situation,
t1 ≤ (k− 1)pi− ji so that R̂BF pjd(τi, t1)−RBF pjd(τi, t1) = 0 ≤ ei. If, on the other hand,
t1 > (k − 1)pi − ji, then R̂BF pjd(τi, t1)− RBF pjd(τi, t1) = (t1 + pi + ji)

ei
pi
−
⌈
t1+ji
pi

⌉
ei ≥

(t1 + pi + ji)
ei
pi
− t1+ji

pi
ei = ei + (t1+ji)ei

pi
− t1+ji

pi
ei = ei.

Property (4 - pjd). Finally the fourth property allows us to bound from below the ap-
proximation of the exact function. Formally: ∀t ≥ 0, RBF pjd(τi, t) ≤ R̂BF pjd(τi, t) ≤(
k+1
k

)
RBF pjd(τi, t).

Proof. For the first case, where given a time point t0 for which
⌈
t0
di

⌉
<
⌈
t0+ji
pi

⌉
, we consider

at first if t0 ≤ (k−1)di, then R̂BF pjd(τi, t0) = RBF pjd(τi, t0). Since k ≥ 1, for 0 < ε < 1,
we have k+1

k > 1, therefore RBF pjd(τi, t0) = R̂BF pjd(τi, t0) ≤ (k+1
k )RBF pjd(τi, t0). For

t0 > (k − 1)di, then by property 1 - pjd we know that RBF pjd(τi, t0) ≤ R̂BF pjd(τi, t0).
Property 3 - pjd gives R̂BF pjd(τi, t0) ≤ RBF pjd(τi, t0) + ei. Finally property 2 - pjd
implies RBF pjd(τi, t0)+ei ≤ RBF pjd(τi, t0)+

RBF pjd(τi,t0)
k , and therefore R̂BF pjd(τi, t0) ≤

(k+1
k )RBF pjd(τi, t0).
The case for which

⌈
t1
di

⌉
≥
⌈
t1+ji
pi

⌉
is similarly proven.

We now need to modify lemmas 1 - pj and 2 - pj in order to extend the results to the
pjd model.

Lemma (1 - pjd). If Ŵi(l, t) ≤ t, then Wi(l, t) ≤ t

Proof. The proof is straightforward and resembles the one for lemma 1 - pj. Indeed, by def-
inition we have Ŵi(l, t) = lei+R̂BF pjd(τi, t), which we prove to be ≥ lei+RBF pjd(τi, t) =

Wi(l, t).

Lemma (2 - pjd). If Ŵi(l, t) > t, then Wi(l, t) >
k
k+1 t

Proof. From property 4 - pjd, we know that if lei+R̂BF pjd(τi, t) > t, then lei+RBF pjd(1+
1
k )(τi, t)⇒ (1 + 1

k ) (lei +RBF pjd(τi, t)) > t since (1 + 1
k ) is a positive value. Therefore we

conclude (lei +RBF pjd(τi, t)) = Wi(l, t) > ( k
1+k )t.

5.4.1 Testing Set for Period Tasks with Burst

As in the previous models, we define a testing set for the periodic task with burst
FPTAS. Since we are using a minimum function to define the request-bound function, the
testing set has to take into account both the burst region and the jitter region.
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The testing set of a task τi also depends on the job ending the busy period. However,
we do not known if the busy period ends within the burst region or the jitter region.

Let us denote with B the smallest job release which ends the busy period, therefore we
could have the following situation:

1. if the busy period ends within the burst region, then:

Wi(l, t) ≤ ldi (5.31)

2. instead, if the busy period ends within the jitter region, then:

Wi(l, t) ≤ lpi − ji (5.32)

We can notice that the smallest job l which satisfies equation 5.31 must satisfy equation
5.32 as well. Therefore, we can define B as:

B := min
l

(Wi(l, t) ≤ ldi) (5.33)

Therefore, the exact testing set can be formally define it as:

Si := {t = bda : a = 1, ..., i; b = 1, ..., B}∪

{t = bpa − ja : a = 1, ..., i; b = 1, ..., B}
(5.34)

For the approximate testing set, we first define the value of ti,burst, which represents
the point delimiting the two approximate curves:

ti,burst =
jidi

pi − di
(5.35)

The number of steps in both regions is delimited by the value of
⌈
ta,burst
da

⌉
− 1, which

gives the number of jobs releases by a task τa within the burst region. The first job released
after ta,burst is released at time

⌈
ta,burst
da

⌉
pa − ja.

Also in this case, the approximation factor ε defines the number of steps exactly com-
puted. However, the point where the actual steps occur depends again on which of the two
functions is dominated. Moreover we will show later in the chapter why the point ti,burst
is important:

Ŝi :=

{
t = bda : a = 1, ..., i− 1; b ∈ N : b ≤ (k − 1) ∧ b ≤

⌈
ta,burst
da

⌉
− 1

}
∪{

t = bpa − ja : a = 1, ..., i− 1; b ∈ N :

⌈
ta,burst
da

⌉
≤ b ∧ b ≤ (k − 1)

}
∪ {ti,burst}

(5.36)

Nevertheless, since now the approximate cumulative request-bound function depends
also on the number of jobs within the level-i busy period, the approximation scheme in-
troduced above is not of polynomial complexity any more. In fact, as Fisher points out
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in [14], the number of jobs that has to be consider within the level-i busy period does not
depend on the value of n and ε. The exact length of the busy period can be found by
solving the following equation:

t =

i∑
j=1

min

(⌈
t+ ji
pi

⌉
,

⌈
t

di

⌉)
ei (5.37)

It is clear that the number of jobs within the level-i busy period leads to a pseudo-poly-
nomial complexity. Nevertheless, we can define an approximate analysis in order to limit
the complexity and to derive an FPTAS for the periodic with burst task model.

We begin by defining the approximate response time for our task model. In this case,
the intersection point Ri,l between the cumulative request-bound function for the lth job
and the line given by f(t) = t does not describe a response time any more, since the job
could have also been released at a later time than 0. Moreover, the burst and jitter regions
differentiate the definition as follows:

RTi,lburst := Ril − (l − i)di (5.38)

RTi,ljitter := Ril − ((l − i)pi − ji) (5.39)

Consequently, for the approximate response time we have:

R̂T i,lburst := R̂il − (l − i)di (5.40)

R̂T i,ljitter := R̂il − ((l − i)pi − ji) (5.41)

We will denote simply with R̂i,l if the job type does not matter in the analysis. The
approximate worst-case response time for the approximate level-i busy period containing
N̂i is therefore defined as:

R̂T i := max
l≤N̂i

R̂T i,l (5.42)

Reducing the number of tested jobs

In order to reduce the complexity of the approximation scheme, we can adapt the
analysis of Nguyen et al. in [26] to our task model. In this paper it is proven that the
derivation of the worst-case execution time of a task can be done by analysing the intervals
defined by two adjacent testing points of the set Ŝi. Between these points the longest
response time is always given by the first job of the task τi completed within the interval.
Moreover, checking if the last job released by task τi completes within the interval returns
if the level-i busy period has terminated or not.
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3 Lemma. Let us assume two adjacent scheduling points t1, t2 in Ŝi such as t1 < t2. For
two jobs l, h of task τi, such as l < h, that have their intersection points R̂il , R̂ih lying
between the interval (t1, t2], we then have that:

R̂T i,l ≤ Di = pi ⇒ R̂T i,h ≤ Di = pi (5.43)

Moreover, we can define a lemma for verifying that the level-i busy period terminates
within two adjacent points t1, t2. If the last job h of task τi completed its execution before
the release of another job of task τi, then the level-i busy period terminates within (t1, t2].
We will at first consider only the jobs within the burst region.

4 Lemma. For two adjacent scheduling points t1, t2 in Ŝi such as t1 < t2 and for two job
releases l, h of task τi, such as l < h, then we have that:

R̂T i,h > di ⇒ R̂T i,l > di (5.44)

Proof. The proof of lemmas 3 and 4 is equivalent to showing that R̂T i,l > R̂T i,h. The
value of ejdj represents the utilisation of the task τj in the burst region. We shall denote this
utilisation with Uj,burst. Moreover, at the time point t1 there could also be tasks for which
the approximation has already started, i.e. for task τj such as j < i, we have that either
(k − 1)dj ≤ t1 or (k − 1)pj − jj ≤ t1. We denote with Tburst and Tjitter the sets of tasks
whose approximation has already started at time t1 and whose approximate request-bound
function is described by (t + dj)

ej
dj

and (t + pj + jj)
ej
pj

respectively. Then, for the lth job
release we can write the approximate cumulative request-bound function for a time point
t ∈ (t1, t2] as:

Ŵi(l, t) = lei +
∑

τj∈hp(i)

R̂BF pjd(τj , t)

= lei +
∑

τj /∈{Tburst∨Tjitter}

RBF pjd(τj , t) +
∑

τj∈Tburst

(t+ dj)Uj,burst +
∑

τj∈Tjitter

(t+ pj + jj)Uj

= lei +
∑

τj /∈{Tburst∨Tjitter}

RBF pjd(τj , t) +
∑

τj∈Tburst

djUj,burst +
∑

τj∈Tjitter

(pj + jj)Uj+

+ t

 ∑
τj∈Tburst

Uj,burst +
∑

τj∈Tjitter

Uj


(5.45)
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Let us A and B denote:

A = lei +
∑

τj /∈{Tburst∨Tjitter}

RBF pjd(τj , t) +
∑

τj∈Tburst

djUj,burst +
∑

τj∈Tjitter

(pj + jj)Uj

B =
∑

τj∈Tburst

Uj,burst +
∑

τj∈Tjitter

Uj

(5.46)

Therefore we have that:

Ŵi(l, t) = A+Bt (5.47)

The values of A and B are constant in the interval (t1, t2]. From the definition of the
approximate cumulative bound function we know that Ŵi(h, t) = Ŵi(l, t)+(h−l)ei, therefore
we can rewrite it as:

Ŵi(h, t) = (h− l)ei +A+Bt (5.48)

The intersection points R̂i,l and R̂i,h of Ŵi(l, t) and Ŵi(h, t) can therefore be rewritten as:

R̂i,l =
A

1−B

R̂i,h =
A+ (h− l)ei

1−B

(5.49)

Thus giving us the following result:

R̂i,h − R̂i,l =
A+ (h− l)ei

1−B
− A

1−B
= (h− l) ei

1−B

= (h− l)di
Ui,burst
1−B

= RHS

(5.50)

The overall utilisation U is usually smaller than one. However, in this case, since the
length of di is strictly smaller than pi, we could also have an utilisation Uburst ≥ 1. Let us
denote with Tburst and Tjitter, the tasks lying in the burst or jitter region respectively at time
point t, the total utilisation is now given by Ui,burst +

∑
τj∈Tburst Uj,burst +

∑
τj∈Tjitter Uj.

The original proof of Nguyen in [26] is based on the assumption that the total utilisation
is smaller than one, in order to derive that Ui,burst

1−B < 1 and thus proving the lemmas.
Nevertheless, we cannot follow the same idea since we do not know if the total utilisation
is bigger or smaller than 1.

Instead, we can notice that if the total utilisation of the considered task up to τi is bigger
than one, i.e. Ui,burst +

∑
τj∈Tburst Uj,burst +

∑
τj∈Tjitter Uj > 1, than we would have no job

of task τi completed between the interval (t1, t2], since the approximate cumulative request
bound function will have no intersection point with the line f(t) = t, thus lemmas 3 and
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4 will have no meaning in this case. In fact, if we consider the actual number of released
jobs by task τi at time t, we have that:

Ŵi(t) ≥
⌈
t

di

⌉
ei +

∑
τj∈hp(i)

RBFpjd(τj , t)

≥ t

di
ei +

∑
τj∈Tburst

t

dj
ej +

∑
τj∈Tjitter

(t+ jj)
ej
pj

≥ t

di
ei + t

 ∑
τj∈Tburst

Uj,burst +
∑

τj∈Tjitter

Uj


≥ t

Ui,burst +
∑

τj∈Tburst

Uj,burst +
∑

τj∈Tjitter

Uj


> t since we assume a total utilisation bigger than one

⇒ Ŵi(t)

t
> 1

(5.51)

On the other hand, if the total utilisation at time t1 of all the jobs j ≤ i is smaller than
one, i.e. Ui,burst +

∑
τj∈Tburst Uj,burst +

∑
τj∈Tjitter Uj ≤ 1, then we have that:

1−B = 1−
∑

τj∈Tburst

Uj,burst −
∑

τj∈Tjitter

Uj

≥ 1−
∑

τj∈Tburst

Uj,burst −
∑

τj∈Tjitter

Uj

>

Ui,burst +
∑

j∈Tburst

Uj,burst +
∑

j∈Tjitter

Uj

− ∑
τj∈Tburst

Uj,burst −
∑

τj∈Tjitter

Uj

= Ui,burst

⇒
Ui,burst
1−B

< 1

(5.52)

Thus, we have that RHS < (h − l)di and therefore R̂i,h − R̂i,l < (h − 1)di, meaning
that R̂T i,l > R̂T i,h.

To summarise the results, we have that for every two completed jobs within two adjacent
scheduling points of Ŝi, the longest response time is always given by the job released the
soonest. Therefore, in order to calculate the worst-case response time of the task τi, we
only need to test the first completed job for every interval given by two adjacent scheduling
points of the testing set.

Moreover, we need to test this job only for the intervals that correspond to the level-i
busy period. In addition, testing the last job completed will return if the level-i busy period
terminates within this interval. In fact, given the relation above, if the last completed job
terminates not later that the release of the next job, i.e. its R̂T i,last < di, then also all the
other jobs will finish before this time, thus the level-i busy period terminates.
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To identify the index of the last job released that has been completed by time t, Nguyen
in [26] defines the following lemma:

5 Lemma. For a task τi, the last job completed by time t is defined as:

lasti(t) =

 t−∑τj∈hp(i) R̂BDpjd(τj , t)

ei

 (5.53)

Proof. The proof is equivalent to showing that if the lth job has been completed by time
t, so did all the other jobs smaller than l. Moreover, all the jobs bigger than l will not be
completed by this time:

∀l, l ≤ lasti(t) then Ŵi(l, t) ≤ t

∀l, l > lasti(t) then Ŵi(l, t) > t

Let us denote with a the function

⌊
t−
∑
τj∈hp(i)

R̂BDpjd(τj ,t)

ei

⌋
. By the properties of the floor

function we know that:

t−
∑

τj∈hp(i) R̂BDpjd(τj , t)

ei
− 1 <

 t−∑τj∈hp(i) R̂BDpjd(τj , t)

ei


t−

∑
τj∈hp(i)

R̂BDpjd(τj , t)− ei <

 t−∑τj∈hp(i) R̂BDpjd(τj , t)

ei

 ei
t− ei < aei +

∑
τj∈hp(i)

R̂BDpjd(τj , t)

t− ei < Ŵi(a, t)

We have that ∀l > a, then ∀l ≥ a+ 1, thus Ŵi(l, t) ≥ Ŵi(a, t) + ei > t.
Similarly, for the properties of the floor function we have that: t−∑τj∈hp(i) R̂BDpjd(τj , t)

ei

 ≤ t−
∑

τj∈hp(i) R̂BDpjd(τj , t)

ei t−∑τj∈hp(i) R̂BDpjd(τj , t)

ei

 ei ≤ t− ∑
τj∈hp(i)

R̂BDpjd(τj , t)

aei +
∑

τj∈hp(i)

R̂BDpjd(τj , t) ≤ t

Ŵi(a, t) ≤ t

Therefore ∀l ≤ a, then Ŵi(l, t) ≤ Ŵi(a, t) ≤ t.

To summarise the analysis of the pjd model, we note that the original FPTAS presented
by Fisher and Baruah in [15] was considering periodic tasks with bounded deadlines. In
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their following work [14], they presented an extension in order to include arbitrary deadlines
as well. To limit the necessary jobs that have to be tested, they based their assumptions
on the fact that only one job can be completed within two adjacent scheduling points.

However, later Nguyen et al. in [25] demonstrate that this assumption is wrong, since
more jobs can be completed within an interval. Therefore, they develop a new scheme in
order to reduce the number of tests. In lemmas 3 and 4 we adapted this scheme so that it
can be used within our PJD* component.

In the previous sections we have shown how to reduce the complexity of both schedu-
lability test and response time analysis for periodic tasks and periodic tasks with jitter.
This can be done by limiting the testing set as we did for Ŝi in the periodic, and periodic
with jitter tasks model. The number of scheduling points in these sets is a polynomial
number depending on the number of task i and the approximation factor k. However, this
approximation scheme is fully polynomial only for constrained deadlines tasks.

We assumed for the simplest cases to have implicit deadlines, thus pi = Di. In the
periodic task with burst model, we face however the problem of having arbitrary deadlines
for the jobs released within the burst region, since our period is now di < Di. In this case,
even if the number of scheduling points in the approximate testing set remains polynomial,
we need to check more than the first job released. The critical instant theorem, for which
only the first job of a synchronous release gives the wcrt of the task, is no longer valid. As
Lehoczky shows in [20], a later job of task τi could have a longer response time.

The number of jobs to be tested can be limited by analysing the level-i busy period.
Lehoczky shows in [20] that the worst-case level-i busy period is given by the simultaneous
release of a job for every task of the task set. However, the number of jobs within the
level-i busy period is pseudo-polynomial. Moreover, the jobs released between two adjacent
scheduling points of Ŝi are also a pseudo-polynomial number.

For this reasons, we introduced in our FTPAS for the pjd model the lemmas above
(see 3 and 4), so we can limit the complexity of our FPTAS again. This can be done, since
we have shown that the longest response time is always given by the first completed job
between two adjacent scheduling points. Moreover, to verify if the busy period terminates,
we only need to check if the last job completed within the interval finishes before the release
of the next job of task τi, i.e. R̂T i,last < di. In conclusion, equation 5.53 gives a simple
formula in order to obtain the last completed job by time t.

However, this analysis works if the level-i busy period terminates before the last schedul-
ing point contained in the testing set. When the level-i busy period continues beyond this
point, the approximate cumulative request-bound function is described by the approxima-
tion of all higher priority tasks.

Furthermore, since in the pjd model the RBF is described by the two functions for the
burst and jitter regions, we do not know which one is used after the last scheduling point of
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Ŝi for all the higher priority tasks. For this reason, we can take into account the following
observation. If we add one more point in the testing set, i.e. ti,burst = jidi

pi−di , we have that:

1. after this point, lemmas 3 and 4 are still valid, since the proof still holds, but the
verification that the level-i busy period terminates is now done by checking whether
the response time of the last completed job is smaller than the period and not the
minimum inter-arrival distance, hence R̂T i,last < pi;

2. by including tj,burst for all tasks τj , j ≤ i, we ensure that after the last scheduling
point in Ŝi, the cumulative approximate request-bound function is described by only
the sum of the approximate request-bound functions within the jitter region.

Therefore, if the busy period does not terminate with the last scheduling point, then
∀t > t1 = max(Ŝi), we have that:

Ŵi(l, t) = lei +
∑

τj∈hp(i)

(t+ pj + jj)
ej
pj

(5.54)

6 Lemma. The longest response time of task τi for a time point t > max(Ŝi) is given by
the job released the soonest, i.e.:

∀l, h so that l < h : R̂T i,l > R̂T i,h (5.55)

Proof. As we did in lemmas 3 and 4 we can rewrite the approximate cumulative request-
bound function as:

Ŵi(l, t) = lei +
∑

τj∈hp(i)

(t+ pj + jj)
ej
pj

= lei +
∑

τj∈hp(i)

(pj + jj)Uj + t
∑

τj∈hp(i)

Uj

Let A = lei +
∑

τj∈hp(i)

(pj + jj)Uj

Let B =
∑

τj∈hp(i)

Uj

⇒ Ŵi(l, t) = A+ tB

For every t > max(Ŝi), we have that A and B are constant, moreover, by definition, we
have Ŵi(h, t) = Ŵi(l, t) + (h− l)ei, thus yielding:

Ŵi(h, t) = (h− l)ei +A+ tB
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The intersection points R̂i,l and R̂i,h of the line f(t) = t with the functions Ŵi(l, t) and
Ŵi(h, t) respectively, is thus given by:

R̂i,l =
A

1−B

R̂i,h =
A+ (h− l)ei

1−B

(5.56)

Therefore we can derive that:

R̂i,h − R̂i,l =
A+ (h− l)ei

1−B
− A

1−B
= (h− l) ei

1−B

= (h− l)pi
Ui

1−B
= RHS

As we did above, we now need to prove that Ui
1−B < 1. This can be shown since the total

utilisation of the task set is U < 1:

1−B = 1−
∑

τj∈hp(i)

Uj

>
∑
τj∈T

Uj −
∑

τj∈hp(i)

Uj

≥ Ui

Thus Ui
1−B < 1 ⇒ RHS < (h − l)pi, therefore R̂i,h − R̂i,l < (h − l)pi, or equivalently

R̂T i,l > R̂T i,h.

Consequently, if after testing all the scheduling points in Ŝi, the level-i busy period has
not yet terminated, in order to derive the longest response time after this point, we only
need to test the first job that has not completed its execution by time t0 = max Ŝi. This
can be easily done by using formula 5.53, and by considering the next job release h of task
τi. Moreover, after the last scheduling point, we can define the longest response-time by
considering the intersection point Ŵi(h, t) = t, so that:

R̂i,h =
hei +

∑
τj∈hp(i)

(
ej +

jj
pj

)
1−

∑
τj∈hp(i) Uj

⇒ R̂T i,h = R̂i,h − ((h− 1)pi − ji)

(5.57)

5.4.2 RTA for Periodic Tasks with Burst

To conclude, we want to bound the approximate worst-case response time to the factor
ε so that we can have a lower and upper bound of the task system analysis. To do so, we
first prove that the intersection point between the approximate cumulative request bound
function is bounded from above and below by the following property:
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Property. Let us consider a task τi ∈ T , then ∀l ∈ N̂i, we have:

Ri,l ≤ R̂i,l ≤
k + 1

k
Ri,l (5.58)

Proof. We know that the approximate cumulative request-bound function is an upper bound
for Wi,l(t), therefore the intersection point must lie at the same point as Ŵi,l(t) or before,
so Ri,l ≤ R̂i,l. We also know, that if Ŵi,l

(
( k
k+1)t

)
≤ k+1

k Wi,l

(
( k
k+1)t

)
. If we consider

a k
k+1 capacity processor, i.e. k

k+1f(t), then k+1
k Wi,l

(
( k
k+1)t

)
=
(

( k
k+1)t

)
which is an

intersection point for the lower capacity processor, thus
(

( k
k+1)t

)
= k+1

k Ri,l.

7 Lemma. The approximate worst-case response time is bounded by the following relation:

R̂T i ≤ R̂T i ≤
(
k + 1

k

)
RT i (5.59)

Proof. We can derive from the lemma above that:

RT i,l ≤ R̂T i,l ≤
(
k + 1

k

)
RT i,l (5.60)

Now we need to prove that the inequality still holds for every job in the level-i busy
period. By definition we know that for every job in the busy period, the wcrt exceeds the
minimum inter-arrival time di (otherwise we would not have a busy period). Let us denote
with Ni the jobs in the exact busy period: ∀l ∈ Ni then either RT i,l > di or RT i,l > pi + ji

imply ∀l ∈ Ni, R̂T i,l > di or R̂T i,l > di. Therefore the number of jobs in the approximate
busy period is equal or bigger, i.e. Ni ≤ N̂i. Similarly, from equation 5.60, we know
that ∀l ∈ Ni, R̂T i,l > di ⇒ ∀l ∈ Ni, k+1

k RT i,l > di, or for the jobs in the burst region
∀l ∈ Ni, R̂T i,l > pi + ji ⇒ ∀l ∈ Ni, k+1

k RT i,l > pi + ji, therefore the number of jobs in
the busy period of a k

k+1 -capacity processor is always equal or bigger, i.e. N̂i ≤ k+1
k Ni.

Recalling the definition of RTi, we then have:

max
l≤Ni

RT i,l ≤ max
l≤N̂i

R̂T i,l ≤ max
l≤( k+1

k )Ni

(
k + 1

k

)
RT i,l (5.61)

and thus proving the lemma.

To summarise, the scheduling points in Ŝi∪ti,burst are sufficient to determine the worst-
case response time of the pjd model. For every interval between two adjacent scheduling
points t1, t2 of the testing set, we need to test the first completed job in order to derive the
longest response time within the interval. The index of this job is given by formula 5.53,
i.e. lasti(t1) + 1. Moreover, to determine whether the level-i busy period terminates by
time t2, we only have to check the job with the index given by lasti(t2).

Adding the point ti,burst to the testing set guarantees that after analysing the last
scheduling point of Ŝi, the approximate request-bound function of all the higher priority
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tasks will be described by the function (t + pj + jj)
ej
pj
. We proved with lemma 6 that we

only need to check the job with index lasti (max(Si)) + 1.
Therefore, we can now conclude the approximate response-time analysis with the fol-

lowing theorem:

Theorem (RTA-pjd - Bound). The approximate worst-case response time bound R̂T i
is on the one side an upper bound for the exact response RTi and on the other side a lower
bound for the worst-case response time for a (1− ε)-capacity processor.

5.5 Bounded Delay Resource Model

Real-time calculus can also be used in order to model different CPU behaviours. For
example, a widely used resource pattern is the so called bounded delay. Intuitively, such a
stream represents a resource which will be available only after some time BD. This model
is therefore represented by the pair (BD,B), where BD denotes the maximum delay and
B is the total bandwidth of the resource. We will assume that the resource bandwidth is
100% after the initial delay.

A bounded delay resource can be represented by the following equation:

βl(∆) := max (0,∆−BD) (5.62)

With a similar method as in [15] and [14], we could extend the model in order to
consider this particular behaviour as well.

That means, the schedulability test for the task τi has to also take into account the
possibility that the resource will not be available during the maximal busy window. We
present now a theorem derived from the original workload analysis proposed in 1989 by
Lehoczky, Sha, and Ding in [21].

Theorem (1 -Bounded Delay). In a task model with a bounded delay BD resource
availability for a fully pre-emptive task set under a fixed priority algorithm, a task τi is
said to be feasible if

∃t ∈ (0, Di], so that Wi(t) ≤ t−BD (5.63)

Proof. We can observe that the task τi finishes its computation at time t ∈ (0, Di] if and
only if all the higher priority jobs and the computation time ei have been completed at time
t. This amount is given by the cumulative request-bound function Wi(t) and is completed
at time t if and only if Wi(t) ≤ t−BD.

In this particular case, we do not change the approximation scheme of the request-bound
function. Therefore the correctness of the approximation still holds, meaning that the
properties 1 - pjd, 2 - pjd, 3 - pjd, and 4 - pjd are still valid.
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What we need to prove are lemmas 3 and 4 that are then used in order to extend
theorems 2 and 3.

Lemma (1 - BD). If Ŵi(t) ≤ t−BD, then Wi(t) ≤ t−BD.

Proof. This is obviously true given lemmas 1 and 1 - pjd.

The following lemma bounds the error from below, given the approximation factor ε.
If the approximate cumulative request-bound function lies above the line f(t) = t, then
the exact cumulative request-bound function must lie above the line f(t) = k

k+1 t.

Lemma (2 - BD). If Ŵi(t) > t−BD, then Wi(t) >
k
k+1(t−BD).

Proof. By definition,

Ŵi(t) = ei +
∑

τj∈hp(τi)

R̂BF pj(τj , t) > t−BD

⇒ ei +
∑

τj∈hp(τi)

(
1 +

1

k

)
RBF pj(τj , t)

⇒
(

1 +
1

k

)ei +
∑

τj∈hp(τi)

RBF pj(τj , t)

 > t−BD

⇒

ei +
∑

τj∈hp(τi)

RBF pj(τj , t)

 >
k

1 + k
(t−BD)

(5.64)

Thus proving the theorem.

We are now to prove the theorems bounding the approximation.

Theorem (2 - Bounded Delay). In a synchronous periodic task set representing a pjd
event model and a resource model given by the bounded delay function f(t) = t−BD, task
τi is feasible under a deadline monotonic scheduling policy if:

∃t ∈ (0, Di] : Ŵi(t) ≤ t−BD (5.65)

Proof. Again, let us suppose a t0 ∈ (0, Di] so that Ŵi(t) ≤ t − BD, then by lemma 1 -
BD Wi(t) ≤ t−BD. For theorem 1 - BD we have that task τi is schedulable under DM.

Theorem (3 - Bounded Delay). In a synchronous periodic task set representing a pjd
event model and a resource model given by the bounded delay function f(t) = t−BD, task
τi is infeasible under a deadline monotonic scheduling policy for a processor with (1− ε) of
the original capacity, if:

∀t ∈ (0, Di] : Ŵi(t) > t−BD (5.66)
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Proof. By contradiction, let us assume that for all t ∈ (0, dli] the approximate cumulative
request-bound function lies above f(t), i.e. Ŵi(t) > t−BD, but the task τi is still feasible
on a (1 − ε) processor. Since we have 1 − k

k+1 ≤ ε and for theorem 1 - BD there is a
t0 ∈ (0, Di], so that Wi(t0) ≤ (1− ε)(t0 −BD) ≤ ( k

k+1)(t0 −BD). Nevertheless according
to lemma 2 - BD Ŵi(t0) > t0−BD implies Wi(t0) > k

k+1(t0−BD), which contradicts the
assumption, thus proving the theorem.

The same proofs can easily be extended to the pjd model, we just have to consider the
shifting given by BD in the analysis.

5.6 Outgoing Curves Derivation

At this point, in order for the PJD∗ component to be complete, we need to derive the
outgoing event curve and the remaining resource curve. While computing the remaining
resource curve is not complicated, the outgoing events curve has to be carefully considered,
as we will now show.

For the remaining resource curve what we need to do is to add every arrival curve with
a simple plus operation and subsequently use a GPC component in order to derive the
curve.

On the other hand, the derivation of every outgoing event stream is not straightforward.
Due to a deeper analysis needed to study this particular behaviour, this was not considered
as part of this thesis and will be mentioned as future work in the concluding chapter.
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Chapter 6

Algorithm Implementation and
Evaluation

In this chapter we report the implemented algorithm and the evaluation that has been
done. For the implementation we chose to use the MATLAB R©programming language, in
order to have a common interface with the RTC-Toolbox.

A better evaluation of the PJD* component and real-time calculus would be to use
its extension, i.e. finitary real-time calculus. However the framework was never openly
published. Moreover, the original RTC-Toolbox is based on a closed source Java-Kernel
for the curves’ representation. A solution to this would have been an own implementation
of finitary-RTC, which was however beyond the scope of this thesis.

6.1 Pseudo-Code

The algorithm we implemented takes as input a task set T and of course an approxima-
tion factor ε. The first part of the algorithm serves as an interface to the whole framework,
see algorithm 1. The input tasks are given as parameters to the algorithm with the desired
approximation factor.

If the task set is feasible, then the algorithm gives a positive answer and additionally
return the approximate worst-case response time of the lowest priority task.

In the algorithm described in 1, after the usual initialisation, the value of k is derived
from the approximation factor ε (line 2). After that we compute the necessary testing set
of the task set (line 3).

The for-cycle in lines 4-6 is used to compute the approximate cumulative request bound
function for the n − 1 higher priority task, with the nested for-cycle computing it for the
scheduling points of the set Ŝn.

Finally, line 8 returns the feasibility test of the computed approximate cumulative
bound function, and returna the wcrt, if successful.

67
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Algorithm 1: ApproximationAlgorithm
Data: e[n], p[n], j[n], d[n], D[n]: task set
ε: approximation factor
Result: feasible: feasibility of the task set
wcrt: worst-case response time

1 initialise variables;
2 k =

⌈
1
ε

⌉
− 1;

3 Ŝn = TestingSet (e[n], p[n], j[n], d[n], D[n], k);
4 for i← 1 to n− 1 do
5 for j ← 1 to SizeOf (Ŝn) do
6 Ŵ [j] = Ŵ [j] +ApproxRbf (i,j)

7 for j ← 1 to SizeOf (Ŝn) do
8 Ŵ [j] = C[n] + Ŵ [j] ; /* Add the computation time for the last task */

9 feasibile, wcrt = Schedulable (Ŵ [n],Sn);
10 if feasible then
11 return wcrt

12 return feasible;

We will now illustrate the algorithm for the computation of the scheduling point set.
In this case, we chose to separate the different task models, even though it could be done
within the same piece of code. However for clarity and debugging purposes this solution
was much more suitable to our needs.

The algorithm is self explanatory, it just implements equations 5.10, 5.20 and 5.34
reported in chapter 5. The only critical point lies within the burst case. In fact, as we
have already shown, we need to consider both the burst region and the jitter region. If
the number of steps given by k is satisfied within the burst region, then we would have a
periodic behaviour given by d[i]-times the number of steps.

On the other hand, if the burst region is not sufficient to cover the accuracy parameter,
then we need to add the edges of the jitter region, since it would be now dominated by the
minimum inter-arrival distance, i.e. the period between two consecutive point is described
by the task period p[i]. Therefore, we introduced in algorithm 2 the else clause in line 20.

Additionally, as we have seen in the previous chapter, we always need to consider the
first job release in the jitter region, even if this would not be covered by the k number of
steps, hence line 21.

The algorithm will then return the scheduling set points after sorting the array and
eliminating the same values appearing for two or more tasks.
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Algorithm 2: TestingSet
Data: e[n], p[n], j[n], d[n], D[n]: task set
k: accuracy constant
Result: Ŝn: array of the scheduling points

1 initialise variables;
2 switch TaskModel do
3 case periodic
4 for i← 1 to n− 1 do
5 for j ← 1 to k − 1 do
6 AppendTo(Ŝn, p[i] ∗ j)

7 AppendTo(D[n])

8 case jitter
9 for i← 1 to n− 1 do

10 for j ← 1 to k − 1 do
11 AppendTo(Ŝn, p[i] ∗ j − j[i])

12 AppendTo(D[n]− j[n])

13 case burst
14 for i← 1 to n− 1 do
15 tburst := j[i]∗d[i]

p[i]−d[i] ;

16 for j ← 1 to k − 1 do

17 if j ≤
⌈
tburst
d[i]

⌉
− 1 then

18 AppendTo(Ŝn, d[i] ∗ j)

19 else
20 AppendTo(Ŝn, p[i] ∗ j − j[i])

21 AppendTo(tburst)

22 SortAndPrune(Ŝn);
23 return Ŝn

Moving back to the main interface, algorithm 1 computes the approximate request-bound
function for the scheduling points of Ŝn. The algorithm is again straightforward and im-
plements the equations of the approximate request-bound functions w.r.t. the task model
considered.

The periodic and jitter cases are easy to understand, however the burst case needs once
more a careful implementation. In fact, in this case, we not only have a simple if-then-else
clause, but we need to consider how the burst region and approximation region are related
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Algorithm 3: ApproxRBF
Data: i: task, tj : scheduling point
Data: R̂BF (i, tj): approximate request-bound function

1 initialise variables;
2 switch TaskModel do
3 case periodic
4 if tj ≤ (k − 1) ∗ p[i] then
5 R̂BF (i, tj) =

⌈
tj
p[i]

⌉
∗ e[i]

6 else
7 R̂BF (i, tj) = (tj + p[i]) ∗ e[i]p[i]

8 case jitter
9 if tj ≤ (k − 1) ∗ p[i]− j[i] then

10 R̂BF (i, tj) =
⌈
tj+j[i]
p[i]

⌉
∗ e[i]

11 else
12 R̂BF (i, tj) = (tj + p[i] + j[i]) ∗ e[i]p[i]

13 case burst

14 if
⌈
tj
d[i]

⌉
<
⌈
tj+j[i]
p[i]

⌉
then

15 if tj ≤ (k − 1)d[i] then

16 R̂BF (i, tj) =
⌈
tj
d[i]

⌉
∗ e[i]

17 else
18 R̂BF (i, tj) = (tj + d[i]) ∗ e[i]d[i]

19 else
20 if tj ≤ (k − 1) ∗ p[i]− j[i] then
21 R̂BF (i, tj) =

⌈
tj+j[i]
p[i]

⌉
∗ e[i]

22 else
23 R̂BF (i, tj) = (tj + p[i] + j[i]) ∗ e[i]p[i]

24 return R̂BF (i, tj)

to each other. Due to the minimum function used to mathematically describe this model,
we always have two different functions possibly representing a time point. Moreover, for a
considered time point t, we need to check if the approximating steps are already satisfied
or not (lines 15 and 20). Algorithm 3 implements therefore equation 5.25.

What is now left to do is to verify the conditions of schedulability for the task model
and, if successful, to derive the worst-case response time respectively. In this case the
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Algorithm 4: Schedulability

Data: Ŵ [n]: approximate cumulative request-bound function
Ŝn: testing points
Result: feasible: boolean for feasibility
wcrt: approximate worst-case response time if feasible

1 initialise variables;
2 if Bounded Delay then
3 Ŝn = Max(Ŝn −BD, 0)

4 switch TaskModel do
5 case periodic
6 for i← 1 to SizeOf (Ŝn) do
7 if Ŵ [i] ≤ Ŝn then
8 feasible = true;
9 wcrt = Ŵ [i];

10 break;

11 else
12 feasible = false;

13 case jitter
14 for i← 1 to SizeOf (Ŝn) do
15 if Ŵ [i] ≤ Ŝn then
16 feasible = true;
17 wcrt = Ŵ [i] + ji;
18 break;

19 else
20 feasible = false;

21 case burst
22 /* Implemented Separately */

23 BurstCase (Ŝn,)

24 return feasible, wcrt

schedulability test depends also on the resource model we implemented, so we need to
differentiate the two cases for the full availability and the bounded delay.

This can be done by modifying the time point given by the testing set. In fact, the
bounded delay case shifts the line f(t) = t by the value BD, but function has to remain
above zero. Our implementation checks whether the resource model depicts a bounded
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Algorithm 5: SchedulabilityBurst

Data: R̂BF pjd[n]: approximate cumulative request-bound function
Ŝn: testing points
Result: feasible: boolean for feasibility
wcrt: approximate worst-case response time if feasible

1 initialise variables;
2 /* Get the index of the last job released */

3 I[SizeOf (Ŝn)] = LastReleased (Ŝn, R̂BF pjd[n], ei);
4 for i← 2 to SizeOf (Ŝn) do
5 if I[i]>lastactive then
6 nextjob=lastjob+1;
7 y = computation request released by higher priority jobs at time Ŝn(i− 1);
8 wa = y + nextjob*e[i] + R̂BF pjd(Ŝn(i− 1));
9 wb = nextjob*e[i] + R̂BF pjd(Ŝn(i));

10 /* Check if intersecting */

11 intersection = GetIntersection ([Ŝn(i− 1), Ŝn(i)], [wa,wb]);
12 /* Determine response time */

13 rt = intersection− (nextjob− 1) ∗ d[n];
14 /* Determine worst-case response time */

15 wcrt = max(wcrt, rt);
16 /* Check if busy period has terminated */

17 wa = y + I(i)*ei + R̂BF pjd(Ŝn(i− 1));
18 wb = y + I(i)*ei + R̂BF pjd(Ŝn(i));
19 intersection = GetIntersection ([Ŝn(i− 1), Ŝn(i)], [wa,wb]);
20 rta = intersection− (I(i)− 1) ∗ d[n];
21 lastjob=I(i);
22 if rta <= d[n]&&Ŝn(i) ≤ tn,burst then
23 lastactive = -1;
24 break;

25 if rta <= p[n]&&Ŝn(i) > tn,burst then
26 lastactive = -1;
27 break;

28 if lastactive != -1 ; /* Level-i busy period not terminated */

29 then
30 nextjob=LastReleased (max(Ŝn))+1;

31 wcrt=
nextjob∗e[n]+

∑
τj∈hp(n)

(
e[j]+

j[j]
p[j]

)
1−
∑
τj∈hp(n)

U [j] − (nextjob− 1)p[n] + j[n];

32 if wcrt ≤ D[n] then
33 feasible = true;

34 return feasible, wcrt
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delay, and, if so, subtracts BD to every time point t in the set Ŝn (see line 2-3 in algorithm
4).

After this, the algorithm proceeds to differentiate the event model considered, however
for the periodic and jitter case the procedure remains similar, since we only have to check
one job of task τi. For every scheduling point the algorithm checks increasingly whether its
cumulative request-bound function lies below line f(t), which could either be t or t−BD,
see lines 7 and 15 in 4.

If such a time point exists, then the algorithm computes the wcrt w.r.t. the event
model considered, see lines 9 and 17 in 4.

For the burst case, we need to consider potentially more than one job in the burst
region, hence the algorithm not following the same procedure as in the previous cases.

In order to complete the computation of the wcrt, we need to determine whether the
level-i busy period has finished or not between two scheduling points. To do that, we need
the index of the first job released within two scheduling points. Equation 5.53 provides the
index of the last job released, which has been completed by time t. Line 3 of algorithm 5
implements this relation for every scheduling point of Ŝn.

With line 4 we proceed to check every scheduling point. At first we verify if a job
completes within the interval considered (Ŝn(i − 1), Ŝn(i)]. If so, we compute the sum of
all execution requests released by higher priority jobs at time Ŝn(i− 1) (Line 7).

After that, lines 8-9 calculate the coordinates of the cumulative request-bound function
at points Ŝn(i − 1) and Ŝn(i), in order to derive the response time of the completed job
(Line 13). Furthermore, if the level-i busy period terminates within this interval, the
intersection point for the cumulative request-bound function and job I(i) has to be found.
If so, then the computation stops and the algorithm returns the calculated wcrt. If not,
then we proceed to check the other scheduling points.

If after considering all the testing point in the scheduling points set the level-i busy
period has not yet terminated, then we can use equation 5.57. Lines 25 to 28 implements
this situation.

The algorithm has been modelled over the one reported by Nguyen et al. in [26].

6.2 Evaluation

In this section we present the evaluation results derived through the comparison be-
tween the PJD* component and a chain of GPC components of the original RTC-Toolbox.

In order to perform a meaningful comparison between our implementation and the
RTC-Toolbox, we had to introduce some limitations for the generated task sets. Firstly,
we bound the task periods and jitters. In our task generator we chose a period of at most 10
time units. For longer periods, the RTC-Toolbox is extremely slow: for example, already
for task with p = 20, on one side the RTC-Toolbox incurs in the OUT-OF-MEMORY error
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Figure 6.1: Acceptance Ratio. Periodic tasks. RTC and FPTAS

more often, on the other side it takes up to one minute to complete a single experiment
over a task set, whereas our framework computes it in 0, 014 seconds.

For all these reasons, the evaluation performed between the two frameworks has to
undergo some hard restrictions. Furthermore, alongside the FPTAS, we also have imple-
mented the exact analysis theory, so that we could also perform some evaluation indepen-
dently from the RTC-Toolbox.

For the experiments we implemented a task generator based on the UUniFast algorithm
of Bini et al. [6]. The generator takes as input the total utilisation desired and returns a
vector of tasks’ utilisation uniformly distributed in O(n):

1 % UUniFast from Bini and Buttazzo
2 sumU = u t i l i s a t i o n ; % the sum of n uniform random va r i a b l e s
3 u t i l i s a t i o n s = ze ro s (1 , n_tasks ) ; % i n i t i a l i z a t i o n
4 f o r i =1:n_tasks−1,
5 nextSumU = sumU.∗ rand ^(1/( n_tasks−i ) ) ; % the sum of n−i

uniform random va r i a b l e s
6 u t i l i s a t i o n s ( i ) = sumU − nextSumU ;
7 sumU = nextSumU ;
8 end

The same MATLAB function rand is used to generate random periods and jitters, with
periods chosen between [1, 10], and jitters depending on the task model. For the model
with constrained jitters, they were strictly smaller than the respective task periods. When
considering implicit deadlines, we set pi = Di. For bounded deadlines we used the rand to
generate deadline smaller than or equal to the period. For arbitrary deadlines we generated
a random value between the interval [1, 20].
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Figure 6.2: Acceptance Ratio. Periodic tasks with jitter. RTC and FPTAS

For the periodic with burst model, the jitter could be at most 20-time units. More-
over, for this model we also used the rand function to generate the minimum inter-arrival
distance, which is bounded by the period, as in the original RTC-Toolbox.

After the task generation, the PJD* framework is called with the implementation of
the above algorithms.

We observed in our experiments, that the computed exact worst-case response time
was always the same as the delay calculated by the RTC-Toolbox, while, as expected, the
FPTAS returned a wcrt depending on the accuracy factor considered. In figure 6.1 we
show the results for periodic tasks and k = {1, 3, 5, 7} respectively, note that we cannot
distinguish the curves given by RTC-Toolbox and the exact analysis as they are the same.
As we can see, the higher the approximation factor, the smaller the difference between the
two curves.

All the evaluation results were performed for 100 experiments for every utilisation step,
i.e. every utilisation from 0, 5 to 0, 95 with a 0, 05 step. We could not include an utilisation
equal to 1 because the RTC-Toolbox, in most cases, does not terminate its computation.

In the following figure 6.2, we considered the periodic tasks with jitter model, again
with k = {1, 3, 5, 7}. As mentioned above, the jitter is bounded by the period. In this case
the resulting curves are not monotonically decreasing, since the influence of the jitter can
prevent the schedulability of a task set, even if the utilisation is smaller.

For the event model of periodic tasks with burst, we had an unexpected result. While
for higher approximation factors, the acceptance ratio remains as expected, for a lower ε,
our implementation returns a positive feasibility also when the RTC Toolbox does not (see
figures 6.3).

Even though our framework carefully implements the model developed in the previous
chapters, the results differ from what expected.
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Figure 6.3: Acceptance Ratio. Periodic tasks with burst. RTC and FPTAS

Periodic Periodic with Jitter Periodic with Burst

RTC 80.3 81.2 123.9

FPTAS 0.5 0.7 0.8

Table 6.1: Run-Time Comparison between RTC and FPTAS for periods ≤ 10. Time is in
milliseconds.

One problem arises from the fact that for this model, we could not perform an evaluation
for a utilisation larger that 0, 75. This was due to the fact that most of the time the
computation of the RTC-Toolbox failed. The reason was given by the error RTC-error
X and Y must be wide-sense increasing curves. As we have seen in chapter 3, the
RTC-Toolbox introduces some level of approximation for the represented curves, though
this approximation is not bounded.

The arrival curves representing a pjd model are much more complex than the ones for
periodic tasks or periodic tasks with jitter. In fact, while the last two models are essentially
depicted by a curve with period p after an offset p − j, the burst task model has a more
expressive aperiodic part, and the combination of other GPC components leads to a not
periodical resource curve.

In addition, the problems encountered by using non-integer computation times within
the RTC-Toolbox, suggest that an analysis over the curve representation within the Java-K-
ernel of RTC has to be done in order to better understand where these unexpected results
come from.
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Periodic Periodic with Jitter Periodic with Burst

RTC 540.3 602.5 772.7

FPTAS 0.5 0.6 0.7

Table 6.2: Run-Time Comparison between RTC and FPTAS for periods ≤ 20. Time is in
milliseconds.

6.2.1 Run-Time Comparison

To conclude, we present the results obtained analysing the run time of our implemen-
tation and the RTC Toolbox. The FPTAS Framework outperforms the original real-time
calculus implementation by up to a factor 200 in the burst case (see table 6.1), even for
periods smaller than 10.

If we bound the periodic to 20 time units (see table 6.2), then the run-time for real-time
calculus drastically increases. For the simple periodic tasks case we have a speed-up ratio
of factor 1000, whilst the FPTAS remains on the same scale. Furthermore, we observed
in our experiments that whilst the average computation time of real-time calculus could
still be acceptable, we also have peaks were the computation hangs for more seconds. For
example, in the periodic with burst task model, for periods bigger than 20 time units, the
computation time can be up to 7 seconds, whereas the FPTAS remains constant.

The same behaviour was indeed reported in the finitary real-time calculus paper [17].
Moreover, the authors point out that for the same task set, if just one period is increased by
two time units, the computation time required by the framework increases exponentially.
This due to the period explosion problem reported in chapter 3. In fact, if the periods con-
sidered are prime between each other, the time needed to complete the execution drastically
increases.

Due to the impossibility of accessing the Java-Kernel of RTC, we had to limit our
evaluation to a task set formed by three tasks. In fact, the MATLAB interface of the
RTC-Toolbox uses the Java-Kernel to represent the curve. We are not able then to perform
some sort of for-cycle to represent the curve: for example, it is not possible to use the task
generator we implemented in order to initialise n event curves for RTC, instead this needs
to be done by hand. Furthermore, as we started our implementation, the new MATLAB
version was not compatible with the RTC-Toolbox 1.

In addition, the RTC-Toolbox fails to cope well with computations times represented
by double variables. In fact, it was not possible to perform a reasonable evaluation if the
computations were represent with number with four digits decimal number, which is how
the double variables are represented in MATLAB. Again, the closed source Java-Kernel

1A new released of the RTC-Toolbox was only recently published in mid September 2015, towards the
conclusion of this work, see http://www.mpa.ethz.ch/Rtctoolbox/Overview, last consulted on 01.11.2015

http://www.mpa.ethz.ch/Rtctoolbox/Overview
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could not be investigated to understand the reason of this error. The MATLAB interface
performs the RTC operation over the curves that are however implemented within the Java
Library. Nevertheless we could perform a stable evaluation if the decimals were limit to
three digits. Here we report the error we got:

Error using rtcfloor (line 23)

Java exception occurred:

java.lang.IllegalArgumentException: CurveSegments in periodicPart

are not strictly increasing.

6.3 Complexity of the FPTAS

As we can see from algorithm 2, the number of points contained in the set Ŝi will be
at most:

1 + (i− 1)(k) (6.1)

that is, one for the relative deadline of the task, and at most (k− 1) steps for every higher
priority task plus one testing point for the approximate request-bound function.

The computation of the approximate cumulative request-bound function is also depend-
ing on this value. Moreover, the schedulability has to be also evaluated for this number of
points.

In our case, we consider only the testing points for the last task, however the framework
could be adapted to evaluate the feasibility and wcrt for every tasks. Therefore, the
complexity would have to take into account at most

∑n
i=1 1 + (i− 1)(k − 1), which gives

an overall complexity of O(n2k).

Since parameter k is related to ε by k :=
⌈

1
ε

⌉
− 1, we therefore have a complexity of

O(n
2

ε ): this is the complexity given by a fully polynomial-time approximation scheme, as
we have seen in chapter 4.

Particular attention should be given to the case of a periodic task with burst. As
we have seen before, we would need to potentially check l jobs within the burst region.
However, it has been demonstrated that we only have to consider the first and the last jobs
released within the interval delimited by two adjacent scheduling points of Si, and this can
be done in constant time O(n).

For this reasons we can conclude that our approximation scheme for a PJD∗ is indeed
a fully polynomial-time approximation scheme.

Theorem (Complexity of PJD*). Given a task set T of n tasks τi : i = 1, ..., n with
implicit deadline and described by a triple p, j, d. Given an approximation factor ε ∈ (0, 1),
there exists an algorithm Aε, such that it runs in polynomial time both in n and ε, i.e.
O(n

2

ε ). The algorithm has the following properties:
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1. if the task set is infeasible on a 1-capacity processor, than the algorithm returns the
infeasibility

2. if the task set is feasible on a (1-ε)-capacity processor, than the algorithm returns the
task set as being feasible. Furthermore, it derives an approximate worst-case response
time bounding from above the exact wcrt. The approximate response time derives is
similarly bounded from above by the 1

1−ε -exact wcrt.

3. in other cases the algorithm can either return the task set as being feasible or infea-
sible.
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Chapter 7

Conclusions

We presented a different approach to analyse particular task models and scheduling
policies within the real-time calculus framework. In our work, we introduced a link between
classical scheduling theory and real-time calculus.

Due to the generality of real-time calculus, we firstly developed an approximate analysis
for periodic task models, and then we moved onto more expressive use cases in order to
always cover the most important task patterns originally implemented in RTC.

We have shown that for implicit deadlines, i.e. a rate monotonic scheduling policy, the
PJD* component can be easily implemented for a pseudo-polynomial feasibility test within
the MPA framework. Moreover, we have shown how a periodic task with burst behaves
differently due to the intrinsic arbitrary deadlines derived for the burst region. However
the performance analysis developed for this task model is much more complex that the one
introduced for periodic tasks and periodic tasks with jitter.

The approach taken throughout this work was to start with the simplest cases and
then move to more complex behaviours. Nevertheless the research needed to cover all the
possible patterns used in the MPA framework would have needed more than the required
six months of work.

In fact, although our implementation was extended in order to also cover the bounded
delay case, the time division multiple access resource model needs much deeper analysis.
In fact, as we have seen in the introductory chapters, the resource curve of this model
is not any more represented by a single line, but has a more complex behaviour instead.
On one side, it is possible to extend our implementation without any approximation of
the TDMA-resource function. On the other side, an approximation of the behaviour of
the same could be introduced. Again, the analysis of this resource model needs further
research in the field of TDMA.

We also presented a quick derivation for the remaining resource curve, given by adding
all the incoming events and performing a convolution operation with the resource curve.
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We eliminated in this way the need of computing a remaining resource curve for every task
of the considered set.

Furthermore, we have shown that our implementation can speed up the analysis by an
average factor of 200, but it increases with the total utilisation. Moreover, the original
RTC-framework does not cope well with task set of more than 4-5 tasks, whereas our
implementation of the FPTAS was tested for up to 100 tasks without problems. In addition,
in order to perform a comparison between the two frameworks we also needed to limit the
periods of the tasks, otherwise the RTC framework failed to finalise the analysis due to
the OUT-OF-MEMORY error, whilst our implementation did not have such a limitation.

However, our implementation can still be improved by introducing a derivation for
the outgoing event curves. In fact, at this point, this represents a huge drawback in our
framework, since it does not permit a full integration within the RTC-Toolbox.

Finally, as a future work, we believe that an extensive comparison between our frame-
work and finitary real-time calculus is indeed necessary. In particular, the derivation of
the remaining resource curve and every outgoing event curve can benefit from the reduced
complexity in finitary real-time calculus.

To conclude, the PJD*-framework we presented still lacks completeness with respect to
all the possible resource and event models within real-time calculus. However, it introduces
a novel idea to cope with some of the huge drawbacks of real-time calculus. In addition, it
would be interesting to adapt the framework to also consider dynamic scheduling policies
as earliest-deadline first or some more complex behaviours such as fixed-priority servers or
dynamic-priority servers.
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