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Chapter 1

Introduction

1.1 Motivation

Mobile and embedded systems are susceptible to transient faults in the underlying hard-

ware [1]. The reasons are rising integration density, low voltage operation and environ-

mental in�uences such as radiation and electromagnetic interference. Transient faults may

alter the execution state or incur soft-errors. Bit�ips are a direct cause of transient faults,

appear due to particle strike or interfering electromagnetic �elds, and can be found in the

register, processor, main memory, or other parts of a system.

The consequences of bit�ips are di�cult to predict, but in the worst case they may lead

to catastrophic events such as unrecoverable system failure. Recently, a japanese sattelite

Hitomi crashed, because its control loop got corrupted. According to investigations [2] there

was a bit�ip in the satellite's rotation control. This made the satellite rotate uncontrollably,

leading to a crash. The �nancial damage was severe, since building and launching such a

satellite costs a few hundred million Euros. To prevent such catastrophies, the intuitive

method is to utilize software-based approaches and protect the system by using redundant

execution, error-correction code, etc. [3, 4, 5, 6, 7]. Comparison or majority-voting can

be used for detection and correction for example. However, redundant execution or error-

correction code can lead to 2x-3x execution overhead, e.g. when N-redundancy is used, in

which case N components of the system have at least one backup component. Nevertheless,

due to spacial limitations and mobility of embedded systems, energy consumption and

utilization should be minimized as much as possible, thus the intuitive method seems to

be unsuitable.

Instead of over-provisioning with extra circuit or execution time, sometimes errors can

be tolerated, so that there is no need for such a drastic measure such as redundant exe-

cution. Due to the fact that the input or output of control applications is not perfectly

accurate since they are a�ected by the noise of the enviroment, control tasks might tolerate

a limited number of errors causing only a downgrade of control performance, as opposed

to leading to an unrecoverable system state. In previous studies on control applications

1
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Figure 1.1: Path-tracing experiment [8]

FAIL

FAIL
Figure 1.2: When faults are injected, there is either increased steering actions or complete fail [9]

and their tolerance against errors, techniques have been proposed for delayed [10, 11] or

dropped [12, 13] signal samples. This exploration was also shown with a LegoNXT path-

tracing application [8]. Its path tracing task was prepared for experiments and then exe-

cuted with a fault injection mechanism, while the number of fault-free tasks was recorded

to �nd the minimum number m of correct task instances in a sliding window size k. This

robustness requirement is later referred to as (m, k), which in theory should keep the robot

on the track when it is enforced on a task with error protection. While continuously going

forward, the robot executed the task path-tracing. While it followed the line using light

sensor information, a decision was made for each instance of the task to fail.

This error caused the robot to steer towards the outside of the track, leading to an

increase in steering actions. In the worst case the robot left the track completely, without

being able to �nd the track again. This scenario was marked as a failed run. After trying

this experiment with di�erent settings concerning the faults, the minimum number of

correct instances in a given window with size k was derived.

It turns out that the path tracing task can tolerate up to ten faults in a sliding window

size of k = 16, which is shown in Figure 1.3. Considering this phenomenon and the

conclusions in previously mentioned studies about fault tolerance in control applications,

we assume that a control task can tolerate a limited number of errors.
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Figure 1.3: The constraint of the control application is (6, 16) in a sliding window size of k = 16 [8]

Experiments can be run to verify if this tolerance property can be quanti�ed with the

(m, k)-�rm real-time task model, which enforces m correct runs out of any k consecutive

instances to be correct. The (m, k) constraint only provides a minimum acceptable con-

trol performance, thus only executing m instances correctly and skipping the next m − k
instances is not su�cient. The objective is to have high quality of control, e.g. a higher

distance on the track, or more stable balancing behavior most of the time, without paying

too much resource, additionally the system should still be robust in the worst case. The

margin of tolerable errors allows for usage of di�erent protection schemes or even ignore

soft-errors occasionally in such a way, that overhead can be decreased.

It is important to examine when to compensate, or even ignore errors, while simul-

taniously considering overhead and quality of control. One way is to just adopt a static

pattern, e.g. {0, 1, 1, 1} and comply to (3, 4) by using error protection on the tasks de-

noted as "1", while the other tasks indicated as "0" are executed without any protection.

However, this approach would only be reasonable for very high fault rates, since m task

instances would be executed with error protection using redundant executions, as a result

paying execution time and overhead. Most of the time in real-life scenarios, faults happen

rarely, and using the static approach would be over-provisioning. Recently, software-based

run-time adaptive approaches were proposed [8] which exploit reliable executions and only

follow the static pattern in cases in which the constraint would be violated. The results

of [8] demonstrate that the (m, k) constraint of the path tracing task can not only be

utilized to prevent the robot from leaving the track, but can also be used to decrease the

overall utilization of the system by applying the newly proposed approaches.

The purpose of this thesis is to verify the results in [8] by replicating and enhancing

the experiments with other experiment settings than before, and by doing so to reach

more general conclusions about fault tolerance of control tasks and the proposed soft-error

handling techniques.
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1.2 Thesis Goals

The main goal of this thesis is to expand the research which was already done in [8] through

testing the proposed techniques in di�erent experiment setups. An answer to the following

question is desired: "It worked on sensor data, but will it also work on other parts of the

robot?". To con�rm the results in the paper and to test if they can be used in a di�erent

spectrum, the experiments will be done with varying con�gurations, e.g. changing the

system settings such as di�erent forward speed, using di�erent tracks with varying path-

line widths, and magnitudes of curvature. Furthermore, fault injection will not be limited

to sensor data only. In this thesis the e�ects of fault injection into motor steering values,

the e�ects of concurrent fault injection into sensor and motor data, and the e�ectiveness

of the proposed error handling techniques will be examined. Following points will be the

main focus of this thesis:

• Find (m, k) constraints for di�erent experiment setups.

• Test these (m, k) constraints and evaluate their e�ectiveness in terms of preventing

the robot from fails.

• Examine the e�ectiveness of the compensation techniques with respect to overall

utilization of the delivered (m, k) requirements under di�erent fault rates.

Di�erent Soft-Error Handling techniques, which determine the way (m, k) is enforced will

be presented as well. In addition to the aforementioned points, this thesis should also

provide the basic knowledge about [8], while serving as a summary of this research from a

perspective of a bachelor student.

1.3 Thesis Structure

After the introduction, the background of transient faults, fault injection and control tasks

are presented in Section 2. The di�erence between faults, errors, and system failures are

also in the main focus.

Afterwards, the system model and notations, which are necessary to describe the is-

sues [8] are introduced. Task versions, the robustness requirement (m, k), and patterns

used to decide when to execute which task version are covered. Once the basics are dis-

cussed, the most important concepts in [8] are picked out as a central theme in the third

section of this thesis. The soft-error handling techniques S-RE, S-DR, D-RE, and D-DR

will be described in detail and their slight di�erences will be distinguished.

The practical part about the experiments will follow in the fourth section, the hardware

and software which are used for experiments in this thesis is then presented in detail. In

section �ve, the studied application is explored. The two control tasks and their charac-

teristic properties are studied. The topic of the sixth section is fault injection. In that
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part of the thesis, how and where faults are injected is the central point. In the following

section, previous experiments concerning the error handling techniques in [8] are taken as

a starting point, and taken as a guideline for further experiments. A description of the

new experiment setups and the corresponding implementation follows.

The eighth section presents the collected data using �gures, which will allow to display

the results of the experiments. An analysis of the data will follow which will include a

comparison with the experiment results in [8]. Finally, a conclusion at the end of the

thesis summarizes the results of the experiments, and deduces whether the experiment

results con�rm the previous experiments on error handling techniques.
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Chapter 2

Background

In this chapter, transient faults and their impact will be explained �rst. The di�erence

between faults, errors, and system failures is particularly important. Then, an explanation

of application models, task versions, and execution patterns follows as they are needed

to describe soft-error handling techniques. The (m, k) constraint and its patterns play a

major role in this thesis and their importance are highlighted by examples.

2.1 Causes of Transient Faults

Transient faults can occur in underlying hardware due to rising integration density, low

voltage operation and environmental in�uences such as radiation and electromagnetic in�u-

ences [1]. Through ionization, molecules and atoms which indicate the status of transistors

are removed from their original place, if the radiation or electromagnetic in�uence is high

enough [1]. This can cause a bit�ip which means that a zero turns into a one or the other

way around. The consequences of bit�ips are very di�cult to predict, in the worst case they

could lead to irrecoverable system failure. This is the reason why they are so dangerous

and need to be prevented, when the system executes critical tasks. By lowering the voltage

operation and integration density, the chances of faults increases, because less electrons are

used to distinguish the state of the hardware. Furthermore, neighboring elements in the

hardware (or also neighboring systems) can in�uence each other as when available space

on hardware gets tighter.

7
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2.2 Transient Faults

2.2.1 Impact of Transient Faults

In some cases, transient faults have no noticeable consequences, because the �ipped bit

is not harmful to the system. A simple example is a scenario in which a bit was already

read, the �ip occurs after reading, and is ready to be overwritten. Another example is

the situation in which the bit�ip is not relevant for the result, such as in an OR chain for

example.

In the worst case, faults cause a system failure and lead to a system crash. If a variable

points to a certain location in the memory, a �ipped bit in this variable may result in

accessing wrong or faulty execution code, or even access to invalid memory locations,

which will lead to a system crash in most cases. On the other hand, some faults may

remain unnoticed. If a variable in the memory is a�ected and its value is manipulated,

computation could proceed as planned but with faulty output values. This is called Silent

Data Corruption (SDC) and will be classi�ed in the next section.

2.2.2 Classi�cation of Faults, Errors, and Failures

Generally, a single-bit �ip in the memory hierarchy (RAM, Caches, Registers) and burst

multi-bit �ips count as faults, even if the faulty bit is not read by the system. If the faulty

bit is read by the system, errors may occur. A detection of a fault will cause an error,

speci�ed as "true Detected Unrecoverable Error (DUE)" [14, p. 23], if the outcome of the

program is a�ected. On the other hand, if the outcome is not a�ected, it will be speci�ed

as "false DUE" . However, if the outcome of the program is a�ected and if the fault is not

detected by the system (either because protection wasn't used or it bypassed the detection

mechanisms), then the scenario will count as a system failure and will be de�ned as Silent

Data Corruption (SDC). However, not all unnoticed faults are malicious. If the outcome

of the program is not a�ected and if there was no error protection, then there will be no

error. This scenario is called "benign fault". Figure 2.1 illustrates these scenarios in a

diagram.

2.2.3 Fault Detection and Correction Methods

One might argue that faults are very unlikely and one might have heard of very small

numbers for the occurrence of faults, e.g. 0.044 to 0.066 FIT/Mbit for DRAM fault rate,

where FIT/Mbit is the unit of measure for expected failures per 109 hours and 220 bits [14,

p. 45]. However, the "Jaguar" supercomputer at Oak Ridge Tennesee for example has

approximately one failure every six hours [14, p. 45]. What's more, the decrease in size

and increase in capabilities of modern hardware, their importance is expected to rise in

the future. As a general rule in software based fault detection, instruction duplication is

used to detect faults. A method called SWIFT proposed by Reis et al. [15] is an approach
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Figure 2.1: E�ects of Soft-Errors, red stands for failure (SDC), yellow for DUE, and green for

benign and corrected faults, adapted from [14]

which solely relies on software and can be used as a foundation for other approaches when

adjustments and optimization are implemented for speci�c areas of application. In this

thesis only software based fault detection and correction will be considered. Instruction

duplication and majority voting are the two methods used in this thesis to identify faults

or to correct faults respectively.

2.3 Where Faults Occur

In [8] and in this thesis, soft-error handling techniques are applied on tasks, more precisely,

on instances of tasks. A task is an instance of a running program, which is being executed

and managed (scheduling, memory allocation, security measures, etc.) by the operating

system. Periodic tasks with a certain execution time all have the property Di = ei and
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will be used to analyze the properties of soft-error handling. An instance of a task will be

called job.

In reality, faults can happen in every part of the hardware, but in this thesis and in

the following experiments which model real-life scenarios, we assume that faults can only

occur in sensor sampling and motor steering data, represented by bit�ips in certain memory

areas. Consequently these bit�ips represent faults on the function body in a task. This

allows us to assume that faults in our experiments only happen in some speci�c areas of

the task instance, in this case only in those areas in which sensor and motor steering values

are stored.

2.4 System Models

In this section models and notations which are used in this thesis are explained.

2.4.1 Control Application Model

A Control Application has a set of control tasks Γ = {τ1, τ2, . . . , τn} which are all inde-

pendent and preemptive. The output of each task will be used by itself again in the next

instance, forming a closed loop feedback control application. Each task is periodic with a

period Ti and a deadline Di, which is equal to Ti throughout the whole thesis for simplic-

ity of presentation. The control tasks τi release their task instances by the period Ti. To

have a measure which quanti�es the inherent tolerance of tasks to recover from previous

instance's lack of or faulty output, the (mi, ki) constraint is introduced. It measures the

task's robustness against faults. mi and ki are both positive integers and 0 < mi ≤ ki.

This means that m out of any k consecutive task instances have to be correct for the con-

trol application to function without errors or system failures. If the (mi, ki) constraint is

ful�lled and a minimum of mi out of ki consecutive instances are correct (without errors),

then there will be no noticeable e�ects on the system application, besides a downgrade of

quality of control, such as increased steering actions in the LegoNXT experiment. However,

if the constraint is not ful�lled, for example when only 9 instances are correct when the

minimum allowed value mi is equal to 10, then the system application is at danger and a

successful and correct execution can not be guaranteed. In the worst case, the system may

undergo system failure. It is important to note that the robustness requirement (mi, ki)

can be given using analytical or empirical methods [8, p. 8]. Empirical methods will be

used in experiments in this thesis and will be discussed in later parts of the thesis.

2.4.2 Soft-Error Handling on Task Level

Software-based fault tolerance techniques can be used to protect tasks and the resources

which are accessed by them. Redundant execution, special encoding of data [16], or control

�ow checking [15] are required for error detection. However, if error correction or rather the
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capacity to recover is desired, additional workload is required in form of increased redun-

dancy and majority voting [17]. As indicated in the �rst part of the thesis, not all errors

lead to system failures, but errors might merely deviate the output [18]. Thus selective

protection can be applied, raising e�ciency but reducing the quality of control, with the

cost of having to allow deviating or in the worst case incorrect output. It is also important

to note that critical system failures can be protected against through the enforcement of

a robustness requirement such as (mi, ki). The �ne-tuning of raising e�ciency through

selective protection and reduction of quality of control is paramount in the third chapter.

2.4.3 The Three Task Versions

Considering redundant execution and majority voting, task instances can be modeled to

have three di�erent execution times, meaning they will be available in three di�erent ver-

sions: unreliable version τui , error detecting version τdi , and error correcting or reliable

version τ ri . The unreliable version is the least protected version, it allows incorrect output

values and only protects from errors that would a�ect the remaining system. If error detec-

tion is used, the execution time of the task instance increases compared to the unreliable

version as a matter of course, and it is called error-detecting version. To achieve error

correction, the output of an instance of a task can be compared with a replica. Full error

correction and detection is available if the task is executed using the third version and is

thus called reliable.

As a method to correct errors, majority voting will be used. In that mechanism, the

same task instance is executed three times and its results are compared. ci is used when

referring to the the worst case execution time, while τi is used to refer to the speci�c version

of the task, so a task τi has a WCET ci. The more protection desired, the higher the WCET

of the task instance due to overhead, so we assume that cui < cdi < cri holds. In Figure 2.2

below the three task versions and their relative execution times are depicted. When τdi

is executed, it needs two times the execution time of τui whereas τ ri needs three times its

duration. The cases in which a replica has the same faulty result and thus errors remain

unnoticed are not considered in this thesis and in the presented techniques. We assume

that detection and correction always work correctly. However, we relax this assumption by

allowing imperfect detection and correction, since the unreliable task versions τui are used

to detect or correct errors.

2.4.4 Schedulability and Scheduling

In all cases, we assume that the system runs on an uniprocessor system and adopts Rate-

Monotonic Scheduling to schedule control tasks from the scheduling queue. All control

tasks have a �xed priority, in which τ1 has the highest priority and τn has the lowest.

Furthermore, if all the tasks meet their speci�c deadline while (mi, ki) holds for each task

τi, then the schedule is feasible. However, it is not di�cult to see that there might be
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Figure 2.2: The di�erent task versions and their execution times relative to each other [9]

problems concerning missed deadlines and other task related problems. If it is pessimisti-

cally assumed that only error correction versions of a task are used, then the schedule

may not be feasible. In the following chapters methods that prevent this scenario will be

presented. Nevertheless, scheduling will not be a central topic in this thesis. For further

information [8, p. 4] can be referred to.

2.4.5 Selection of Task Versions

Always deciding to pick the correction version of a task instance is a possible method,

but by far not a good one in terms of energy consumption and execution time. Especially

if always executing the correction version is not particularly needed, because of energy

consumption and the limitations on embedded systems. Control tasks can tolerate some

errors at the cost of quality of control, so often times it is over-provisioning to always

execute τ ri . All jobs of a task simply don't need to be correct, if the corresponding (mi, ki)

constraint allows it. After ruling out the method called "Fully Robust" (run all instances

with a reliable version) the question that arises is: "How do we know when to decide which

version of a task to execute?". To give an answer to that question, a few examples will

follow, which will motivate Pattern-Based Execution and Dynamic Compensation.

Task (mi, ki) cui cdi cri Ti

τ1 (2, 4) 1 1 + ε 2 4

τ2 (1, 1) x x 5 8

Table 2.1: Example task set properties [8]

Table 2.1 shows two tasks and their characteristics. The robustness of a task is denoted

by its corresponding (mi, ki) constraint, while the di�erent versions of the task with their

corresponding WCET can also be found in the table. τ2 always has to execute the cr2

version due to the (1, 1) constraint, which forces correct executions and thus the activation
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of error detection and correction on every task. This could be a critical task which has to

be free of errors in every instance, such as the task in charge of balancing the robot.

In Figure 2.3 in the �rst diagram, τ1 and τ2 are both executed only using the τ
r
i version

of the task, with full protection. This causes τ2 to miss its deadline, since τ1 only allows it

to execute four time instances when it needs �ve. However, due to the (2, 4) constraint of

τ1, not all jobs needs to be correct; to be speci�c, only two task need to be fully protected

while the remaining two tasks are allowed to be erroneous. If these are erroneous, they can

only cause a downgrade of quality of control. Their correctness is not checked, meaning

that errors are allowed in two out of the four instances.

τ1 (2, 4)
τ2

τ2 misses its deadline!
0 2 4 6 8 10 12 14 16 18 20

(1, 1)

τ1 (2, 4)
τ2

0 2 4 6 8 10 12 14 16 18 20

(1, 1)

τ1 (2, 4)
τ2

0 2 4 6 8 10 12 14 16 18 20

(1, 1)

τ1 (2, 4)
τ2

τ2 misses its deadline!
0 2 4 6 8 10 12 14 16 18 20

(1, 1)

Figure 2.3: The red blocks stand for reliable executions, the orange blocks stand for executions

with error detection, and the blue blocks stand for the unreliable version. The cross means that

the correctness of the speci�c instance has no e�ect on (mi, ki). Adapted from [8].

In the second diagram in Figure 2.3 τ1 is executed with a static distribution. In an

alternating pattern τ1 is executed without any kind of protection using τu1 and with full

protection using τ r1 . This allows task τ2 to �nish computing before a new period begins.

A technique similar to this will be introduced as Static Pattern-Based Reliable execution.

While the utilization is 100%, which is worrying in terms of energy consumption, the

correctness of already executed tasks is not made use of. Making use of already executed

correct task instances will be a central topic in the next chapter. The technique which
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uses this approach is called Dynamic Compensation and it enhances Static Pattern-Based

Reliable Execution making run-time decisions by recognizing when the reliable version of

a task has to be executed to just guarantee the satisfaction of the (mi, ki) constraint. It

is important to note that this approach always executes the detection version of a task,

unless the execution of reliable versions is enforced through (mi, ki).

To give an introductory example, in the third diagram, the �rst and the third job are

assumed to be erroneous. After the third instance, two instances are erroneous already

and the system can't allow any more errors, thus it is forced to execute the fourth instance

with full protection. Full protection is only activated on the fourth instance, since an error

in it would violate the (mi, ki) constraint. The correctness of the second task instance and

the errors on the �rst and third are remembered by the system in this case to make a run-

time decision on the fourth instance. In the last diagram however, the �rst two instances

have errors, which forces the system to execute the last two with full protection to satisfy

(mi, ki), but this doesn't leave enough execution time for τ2 and it misses its deadline on

the second instance.

These examples show that applying Error Detection and Correction is not a trivial task.

The (mi, ki) constraint has to be ful�lled while schedulability has to be considered. Fully

protecting every task leads to over-provisioning and relying on static approaches potentially

leads to high energy consumption while not taking advantage of already correct runs. The

dynamic approach seems to do a better job at saving energy by utilizing correct runs and

span (mi, ki) to its limit, but it may have problems with scheduling.

It is apparent that it is especially important for embedded systems to give this topic

more consideration in order to prevent system failures, reduce energy consumption and

utilization, while ful�lling (mi, ki), minimizing overhead and considering schedulability.

Static Pattern-Based Reliable Execution and Dynamic Compensation will therefore be the

main focus in the following parts of the thesis.
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Soft-Error Handling Techniques

The allocation of the reliable executions for a task τi to enforce (mi, ki) constraints using

(m, k) patterns will be discussed in this section. Pattern-Based Reliable execution will

be introduced �rst as it forms the basic concepts on which the dynamic compensation

technique builds on.

3.1 Pattern Based Reliable Execution

The most e�cient way to fully utilize fault tolerance is by executing the reliable version of

the task only at the essential instances. In Static Pattern-Based Reliable Execution, if only

m out of k instances need to be correct, then only m of those tasks need to be executed

using full protection. To have a means to partition jobs and thus have an "execution plan"

of when to execute which task version, the (m, k)-pattern [19, 20] is introduced.

De�nition 1: The (m, k)-pattern of task τi is a binary string Φi =
{
φi,0, φi,1, . . . φi,(ki−1)

}
which satis�es the following properties: φi,j is a reliable instance if φi,j = 1 and a unreliable

instance if φi,j = 0, while
∑ki−1

j=0 φi,j = mi [8].

If the robustness requirement (3, 5) is prede�ned, a corresponding (m, k) pattern would be

Φ = {0, 1, 0, 1, 1} for example. To remember the position in the string, we assume that

an index points at the corresponding value of the bitstring for implementation purposes.

As for pursuing the sequence in the string, executing all instances which are denoted with

a 1 with full protection and not using any protection on the instances marked with a 0

satis�es the (3, 5) requirement. Directly executing the reliable versions is called Reliable

Execution (RE). As the examples show in section 2.4.5, this approach is not the only option.

Detection and Recovery (DR) gives a try with a fault-detecting version before executing

the reliable version in the same period. In order to highlight the di�erence between the

two variations, an example for each strategy follows. In both cases, the (m, k)-pattern

Φ = {0, 1, 0, 1, 1} with the corresponding (m, k) constraint (3, 5) will be speci�ed for a task

τi. Pattern-Based Reliable Execution directly executes the reliable versions whenever there

15
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is a 1 in the bitstring and executes the unreliable version if there is a 0. {τu, τ r, τu, τ r, τ r}
would then be the schedule for this speci�c task. Referring to execution time, the sum of

the execution times for one completion of the string is 2cu + 3cr.

On the other hand, Pattern-Based Detection and Recovery �rst gives a try with the

detection version of a task whenever the index of the pattern points to a one. If an error is

detected when executing τd, the reliable version of the task is executed immediately after.

A possible schedule may look like following if we assume that an error occurs in the third

instance:
{
τu, τd + τ r, τu, τd, τd

}
. The sum of the execution times in the worst case is

2cu + 3(cd + cr) because errors occur every time the system gives a try with the detection

version; it has to follow it up with the reliable version immediately. Figure 3.1 shows the

reliable execution in the �rst diagram. The system just follows the pattern, and if an error

occurs in one instance, then it will either be corrected by the reliable versions, or the error

will be tolerated, because the (m, k) constraint is always ful�lled. In the second diagram,

the system follows the pattern as well, but always gives a try with the detection version

�rst if the bit in the pattern is a 1. There is an error in the second instance, so the system

has to execute the reliable version afterwards immediately.

E
S-RE

0 2 4 6 8 10 12 14 16 18 20

E
S-DR

0 2 4 6 8 10 12 14 16 18 20

Basic Detection Version Reliable

Figure 3.1: Examples for the static approaches for (3, 5) with the pattern {0, 1, 0, 1, 1}, adapted
from [9]

Especially when executing DR, there could be concerns about the execution time and

the schedulability of tasks, because executing τd + τ r seems a lot. For one thing, there

are tools to validate the system schedulability. Using the multiframe task model which is

proposed by Mok and Chen [21] allows for transformation of each task to a multiframe

real-task τi with ki frames, period Ti and an array of di�erent execution times, through

which a task "slides". Assuming execution times c0i = 1, c1i = 4, c2i = 4 as the frames, the

array for task τi would be a set, such as {1, 4, 4} and the task would have an execution

time of one on the �rst and four on the second and third instance. In this case ki is equal

to three, so the (mi, ki) constraint determines the pattern. This model allows to set up

a formula Yi(p) which calculates the maximum of the sum of the execution times of any

p consecutive frames of a task τi through which an schedulability test can be carried out.

For more information on schedulability [8, p. 4] can be referred to.
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3.2 Dynamic Compensation

Soft-errors happen randomly from time to time, and the likelihood of their occurrence is

generally not very high. As the previous examples show, the pattern based static techniques

are too pessimistic as they allocate and execute the task versions as if soft-errors were more

likely as they are in reality. Minimizing the executions of τ r tasks is one of the main goals

in this approach, as τ r is very costly considering execution time and energy consumption.

We only want to execute τ r if it is absolutely necessary.

Dynamic Compensation enhances Static Pattern-Based Reliable Execution by making

decisions on-the-�y. The main idea is to postpone the moment the system enforces (mi, ki)

by exploiting the correctness of successful executions of task instances, while complying

with (mi, ki). In the worst case, when all unreliable task versions are wrong, the system

will stick to the pattern and will thus execute S-RE in the sense that the instances marked

with "1" will be executed using full protection. However, all instances that are marked

with "0" in the (m, k)-pattern will be executed with the error the detection version τd in

order to detect errors or verify correctness and take further actions from there on.

This part of the thesis will �rst discuss the main principle behind postponing using

examples and then prove why the enforcement of (mi, ki) can be postponed. After that,

an algorithm will be presented which illustrates dynamic compensation in pseudo-code.

Afterwards, at the end of this chapter examples will show the di�erence between the static

and the dynamic approaches. This chapter concludes the basics which are necessary to

understand the principles and techniques which are used in the experiments.

Proposition 1: Successful executions using τdi postpone the enforcement of (mi, ki).

To prove this proposition we suppose that a static pattern Φi is given. As explained

earlier, Φi is a binary string, containing the information about which version of a task

should be executed. It was discussed earlier that Dynamic Compensation allows to exploit

the correctness of completed and successful executions of unreliable instances. To be

speci�c, Dynamic Compensation counts the successful executions of unreliable instances,

and then utilized their correct execution. These completed and correct task instances are

de�ned as S and stand for success. S allows us to greedily postpone the adoption of the

original static pattern Φi. One can imagine that S is inserted into the bitstring, but only

at the beginning of the pattern. S or multiple S can only be inserted before a zero, as only

zeros give the system "a chance" to tolerate an error. If we take the bitstring {0, 1, 0, 1, 1}
for example, it will have the form {S, 0, 1, 0, 1} at t = 1 and {S, S, 0, 1, 0} after two time

units t = 2 of a cycle, when t = 0 is the starting point. Because of the successful execution

of two task instances which are denoted as S in the bitstring, the string at t = 2 now

lacks the last two "1"s from the original bitstring. These two are pushed out of the string,

and thus the adoption of the original pattern can be postponed. If the (mi, ki) pattern

was (3, 5), two instances out of mi = 3 were already processed correctly at t = 2, which
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X

E
(3,5) 1 X 1 1

E

0 2 4 6 8 10 12 14 16 18 20

S

X
(3,5) X 1 X 1

E E

0 2 4 6 8 10 12 14 16 18 20

Figure 3.2: Example for the inserting S for (3, 5) with the pattern {0, 1, 0, 1, 1},adapted from [9]

means that only one more task instance needs to be correct for (mi, ki) to be ful�lled. It

should be noted that S instances are always executed with τdi in order to identify successful

execution or errors. S can be explained as "giving a try with the detection version and

having success with it".

In Figure 3.2 the insertion mechanism can be seen. In the upper diagram, the system

gives a try with a detection version �rst, since the string begins with a "0". An S is

inserted before the bitstring, because no error is detected. This means that we only need

to execute two more task instances with using a reliable task version, since one was correct

already, thus the adoption of the pattern is postponed and a "1" is pushed out at the end

of the pattern. For the next instance, the system gives a try with the detection version

again, but this time an error occurs. There was only one "0" in front of the "1", which

means there is only one chance to fail. Because the chance was used, the system needs to

run the reliable version in the third instance again. It gives a chance with the detection

version on the fourth instance, but an error occurs, thus the pattern is not postponed any

further and no more "1" are pushed out. In the lower diagram an error occurs in every

instance of the detection version. This is the worst case, there is no postponing and no

"1"s are pushed out, the systen just follows the pattern.

Theorem 1: Given a control task τi with a (mi, ki) constraint and static pattern Φi. If

there are x successful executions of τdi when inserted as S into the sequence of operations,

task τi can still enforce the (mi, ki) constraint with the given pattern Φi for any consecutive

ki jobs, in which x ≥ 0 [8].

The theorem was proven by using contradiction, assuming that the insertion of x suc-

cessful executions of S violate (mi, ki) in the interval t to t + kiTi. For the contradiction

to be wrong, the number of successful executions needs to be less than mi within that

interval, after inserting S. The interval starts with a 0,1 or S, including ki consecutive

executions. If x successful executions of S are inserted into the original sequence, then

x original instances from the bitstring are pushed out. Successful executions can only be

inserted before a 0 in the bitstring, because only zeros give a the chance to tolerate errors.

Because S are only inserted before 0, only x "1"s can be pushed out. Therefore, for every

inserted S, a 1 is pushed out, and because S is a correct execution, the amount of reliable

instances is still mi, thus the number of correct instances doesn't change when inserting
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S. The contradiction is reached here. However, there are still questions that could arise:

Were we just lucky that there are "1"s at the end of our bitsting ? What happens if the

bitstring ends with a "0" ? Can we push "0"s out ?

To answer this issue, replenishment counters are introduced next, which separate the

original pattern into sub-patterns which begin with 0 and end with 1. These counters

monitor the current status of fault tolerance and aid in run time execution in the algorithm.

If the pattern {0, 0, 1, 0, 1, 1} is given, it is divided into {0, 0, 1} and {0, 1, 1}, two partitions.
The general rule is to divide the original static pattern into smaller patterns that start with

0 and end with 1. After rearranging, the number of partitions are counted and their number

is saved in pi. The counters oij and aij are needed next. The index of the task is denoted

as i and j describes the current partition in which the system is working. Counter oij

describes the number of unreliable instances in each partition and aij counts the number

of reliable instances in the static pattern, but for each partition respectively. Consequently,

the counter oij stands for the chances in a partition the system has to be wrong, as it records

the number of the "0"s.

To give an example we consider the pattern {0, 0, 1, 0, 1, 1}. In this case pi = 2, oi1 = 2

, ai1 = 1, oi2 = 1, ai2 = 2, and thus Oi = {2, 1} and Ai = {1, 2}. There are two unreliable
instances in the �rst partition, oi1 = 2 and one reliable ai1 = 1, whereas in the second

partition, there is one unreliable oi2 = 1 instance and there are two reliable instances

ai2 = 2.

If oij is used up by errors, the system then has to follow the original pattern like in

RE. To model that kind of switching behavior, a mode indicator Π is used to be able to

distinguish the execution status of dynamic compensation. With the de�nition of Π =

{tolerant, safe} the current status of the task can be speci�ed. If the tolerance counter

oij is depleted and the system thus isn't allowed to give any more tries, because more

insertions would violate the (mi, ki) constraint in case of an error. Π will then be set to

safe. This causes the system to just execute the task instances with the reliable version.

However, if the task can still tolerate errors because the tolerance counter is not depleted,

then Π will be set to tolerant. In this case the system still has chances, and S could

potentially be inserted into the pattern, thus the system is allowed to give a try with the

detection version.

3.2.1 Algorithm for Dynamic Compensation

The algorithm works on one of the partitions of an (m, k)-pattern, at the beginning

the index j will be passed while the mode will be set depending on whether the tolerance

counter oij is not zero. Subsequently, if Π is in tolerant mode, the algorithm executes τdi

and saves whether a fault was detected or not. If a fault is detected, then the tolerance

counter oij will be decreased by one, and after k instances it has to be increased back.
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1: procedure dyn_Compensation(mode Π, index j)

2: if Π is tolerant_mode then

3: result = execute(τdi );

4: if Fault is detected in result then

5: oi,j = oi,j − 1;

6: Enqueue_Error(oi,j);

7: if oi,j is equal to 0 then

8: Set Π to safe_mode;

9: Set ` to ai,j ;

10: end if

11: end if

12: else

13: either Detection_Recovery() or Reliable_Execution();

14: ` = `− 1;

15: if ` is equal to 0 then

16: Set Π to tolerant_mode;

17: j = (j + 1) mod ki;

18: end if

19: end if

20: Update_Age(Oi);

21: end procedure

Algorithms 3.1: Dynamic compensation of task τi with (mi, ki), adapted from [8]

If oij is fully depleted, or to be exact equal to zero, then the system has to be set into

safe mode which forces the system to only execute reliable instances. As explained earlier,

aij stores the number of reliable executions, thus in Line 9 the value of aij is stored in l.

If pi is in safe mode, then l will be decremented step by step till it is equal to 0, when this

happens the task will be set back to tolerant mode and the index j will be incremented,

meaning that the next partition will be processed by the algorithm. When the system

is in safe mode, there are two di�erent strategies which can be pursued. Detection and

Recovery (RE) will always execute the unreliable instance of the task with fault detection

�rst, although oij is already depleted. Thus the system still gives a try with the detection

version and only executes the reliable version if it �nds an error in the detection version.

Reliable Execution (RE) on the other hand will always execute the reliable version directly

if the system is in safe mode. The techniques will be called D-DR (Dynamic Detection

and Recovery) and D-RE (Dynamic Reliable Execution) in the rest of the thesis.

Because of Theorem 1 we know that the algorithm will always enforce (mi, ki). Suc-

cessful executions of unreliable instances only postpone the enforcement of (mi, ki) and
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in the worst case, if all unreliable instances are erroneous, the system will still follow the

static pattern since no S were inserted.

3.3 Summary of Soft-Error Handling techniques

In this thesis �ve soft-error handling techniques were presented in total. They are ordered

by their overall utilization, beginning with the highest value. D-DR shows the lowest overall

utilization out of all proposed techniques [8]. To give a quick overview, the techniques are

presented one below the other.

To give a quick overview, the proposed techniques in [8] are all shown in Figure 3.3, in

which D-DR performs the lowest regarding overall utilization among them.

In Figure 3.3 in the �rst diagram the system uses S-RE and just follows the pattern

{0, 1, 1} for the constraint (2, 3). When using S-DR, the system �rst gives a try with an

unreliable version, but has to execute the correction version because faults occur in the

second and third task instance. When D-RE is used, the system gives a try with the

detection version in the �rst task instance. The task turns out to be correct, so the system

still has one chance to be wrong, thus it gives a try with the detection version again in

the second task instance. An error occurs in the second instance, but since the system

can tolerate one error due to its constraint, it can move on without taking action against

the error. However, the system has to execute a reliable task version in the third task

instance to comply to (2, 3), since an error already occurred in the second instance. The

only di�erence between D-DR and D-RE is that D-DR still gives a try with the detection

version, although the constraint would be broken if an error occurred. The system detects

an error and executes the reliable version afterwards.

• Fully Robust (FR): Runs all instances with reliable version τ ri .

• Pattern-Based Execution (default task version: τui )

� S-RE: Runs task version τ ri for instances marked as "1".

� S-DR: Runs task version τdi for instances marked as "1" and recovers executing

τ ri if an error is detected in τdi .

• Dynamic Compensation (default task version: τdi )

� D-RE: Runs execution version τ ri for instances marked as "1" if the tolerance

counter is depleted.

� D-DR: Runs execution version τdi for instances marked as "1" if the tolerance

counter is depleted. Runs execution version τ ri for recovery if an error is detected

in τdi .
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S-RE

0 2 4 6 8 10 12 14

S-DR

0 2 4 6 8 10 12 14

D-RE

0 2 4 6 8 10 12 14

D-DR

0 2 4 6 8 10 12 14

Figure 3.3: This example illustrates the di�erent techniques. (mi, ki) is (2, 3) and the static

pattern is Φ = (0, 1, 1). Soft-errors happen in the second and third instance and are marked with

stripes. The Blue block is unreliable, the orange block is the version with detection, and red block

is reliable. Adapted from [8].



Chapter 4

Hard- and Software used for

Experiments

In this chapter, the hard- and software used in the experiments will be described. The

chapter will begin with the presentation of the robot hardware and its parts into which

faults are injected. After that, the Real-Time Operating System nxtOSEK will be pre-

sented brie�y.

4.1 Lego Mindstorms NXT Robot

The Lego Mindstorms NXT brick will be used as the computing unit for all experiments

in this thesis. It runs the Real-Time Operating System nxtOSEK which allows us to code

custom applications with C/C++ and provides access to the robots sensors and motors.

Figure 4.1: The Lego Minstorms NXT brick. All pictures of photos of the robot are from

shop.lego.com

23
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The brick can take input from its ports at the bottom, which can connect up to fours

sensors. On the top are three output ports located which can control up to three motors.

The self-balancing robot [22] uses two motors and four sensors are connected, of which

only three will be used in the experiments. On the bottom are two light sensors located,

which are able to help to follow a black line, which is drawn on paper. If there is no enough

light, the sensors can turn on their infrared lights on to be able to track the line.

Figure 4.2: NXT Servo Motor Figure 4.3: NXT Light Sensor

The microcontroller is powered by an Atmel 32-bit ARM main processor, which runs at 48

Mhz, while having 64 KB RAM and 256 KB �ash memory. The co-processor is an 8-bit

AVR ATmega48 processor running at 8 Mhz with 512 Bytes RAM and 4 KB �ash [23, p.

12].

Figure 4.4: The self-balancing robot on a cir-

cular track, from [9]

Figure 4.5: Gyro Sensor

Figure 4.4 shows the complete robot. Its core consists of the brick, and the two servo

motors can be seen on the sides. The two wheels are directly connected to the motors,

whereas the motors are connected to the brick through the ports on top. On the very

bottom, the two light sensors are mounted and connected to the brick through the ports

at the bottom. By keeping the line between the sensors, the robot can trace the path. A

sonar sensor is installed in top the brick, but is not used for experiments in this thesis.

The Gyro Sensor which can be seen in Figure 4.5 is mounted behind the brick, behind the

red Lego-piece over the USB-port.
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4.2 nxtOSEK

The open source platform OSEK was developed for and by several di�erent companies from

all around the world in the automotive industry. It o�ers the possibility of implementing

real-time operating systems on hardware in the automotive industry. The port of OSEK on

the NXT provides a C/C++ programming environment on the robot using the GCC tool

chain. The C API allows us to access the motor, sensors, the display, and other devices.

It also allows us to upload programs in C directly to the memory.

Applications which run on nxtOSEK mainly have to consist of two types of �les. The

OIL �le has to be written in the OIL language. With it one can declare tasks and their

alarms, stacksize, etc. which provides the freedom to modify low level operations. In

the C �le, motor-, display-, sensor-and other functions can be accessed. However, tasks

de�ned in the OIL �le have to be called before calling these funtions. Examples about

implementation details will be covered in the following chapters. More information can be

found on the homepage of the project [24].

4.3 OSEK Implementation Language (OIL)

The inforation for this section can be looked up in [25]. As explained earlier, applications

for this robot consist of two parts, there is the OIL-�le and the C-�le. Tasks are de�ned in

the OIL-�le, while tasks are called in the C-�le. In the OIL �le, a set of OIL objects can be

de�ned, while the CPU is the container for all objects. OS, TASK, COUNTER, ALARM,

and RESOURCE are just a few OIL objects, and the ones used in this application. The

�le in our application starts with the CPU container with the CPU speci�cation. At the

end of the curly bracket, a semicolon has to be included.

CPU ATMEL_AT91SAM7S256

{

. . .

} ;

Code 4.1: The CPU container.

To initialize the operating system, hook routines and OS status need to be de�ned. We

de�ne STATUS as EXTENDED, while no hook routines are used.

CPU ATMEL_AT91SAM7S256

{

OS LEJOS_OSEK

{

STATUS = EXTENDED;

STARTUPHOOK = FALSE;

SHUTDOWNHOOK = FALSE;
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PRETASKHOOK = FALSE;

POSTTASKHOOK = FALSE;

USEGETSERVICEID = FALSE;

USEPARAMETERACCESS = FALSE;

USERESSCHEDULER = FALSE;

} ;

APPMODE appmode1 {} ;

. . .

} ;

Code 4.2: Initialising OSEK.

Next, APPMODE needs to be set, which de�nes the di�erent modes of operation for an

application. For nxtOSEK applications, appmode1 always has to be used. Afterwards,

task objects can be de�ned. AUTOSTART decides whether a task is activated at system

start-up. If FALSE is used, an ALARM-object needs to be de�ned to activate a de�ned

task. With PRIORITY the tasks priority can be set. The lowest priority is zero (0) and

larger numbers denote a lower priority. With ACTIVATION the maximum number of

queued activation requests for a task can be set. When it is set to "1", then it means

that only once instance of a task can be active at any single time. With SCHUDULE,

the preemptability of a task can be set. FULL means preemtable and NON means non-

preemptable. STACKISIZE speci�es the size of the stack of a task.

CPU ATMEL_AT91SAM7S256

{

OS LEJOS_OSEK

{

. . .

} ;

/∗ De f i n i t i o n s o f a p e r i o d i c a l task : OSEK_Task_ts1

TASK OSEK_Task_ts1

{

AUTOSTART = FALSE;

PRIORITY = 2 ;

ACTIVATION = 1 ;

SCHEDULE = FULL;

STACKSIZE = 512 ; /∗ bytes ∗/
} ;
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ALARM OSEK_Alarm_task_ts1

{

COUNTER = SysTimerCnt ;

ACTION = ACTIVATETASK

{

TASK = OSEK_Task_ts1 ;

} ;

AUTOSTART = TRUE

{

APPMODE = appmode1 ;

ALARMTIME = 1 ;

CYCLETIME = 4 ;

} ;

} ;

. . .

COUNTER SysTimerCnt

{

MINCYCLE = 1 ;

MAXALLOWEDVALUE = 10000;

TICKSPERBASE = 1 ;

} ;

} ;

Code 4.3: De�ning tasks, alarms, and system counters in OSEK

To activate the task, an alarm needs to be set. The alarm works on basis of a counter, which

is de�ned down below. The action of the alarm is to activate the task using ACTIVATE-

TASK and the task name need to speci�ed. The alarm should be started automatically,

while appmode needs to be speci�ed the same as earlier. ALARMTIME should always

be set to "1", meaning it will expire after one time unit. CYCLETIME activates the

alarm every four time units. The counter represents the tick source for alarms. A tick

is a time unit used for measuring internal time, the smallest unit of time which can be

distunguished by the system. TICKSPERBASE sets the number of ticks which are needed

to reach the counter-speci�c unit. MAXALLOWEDVALE limits the counter value, in our

case the counter value is not allowed to surpass 10000. For a cyclic alarm which is linked

to the counter, MINCYCLE speci�es the minimum allowed number of counter ticks, here

it is set to "1". With these tools new tasks can be implemented or the existing ones can be

modi�ed. For futher information on OIL, the o�cial document about System Generation

by the OSEK group can be referred to [25].
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4.4 Calling Tasks in C

The tasks de�ned in the OIL �le can be called in the C �le and their speci�cations will

be applied. Tasks need to be terminated at the end, to interact correctly with alarms and

new task instances of the same task due to the periodicity provided by nxtOSEK.

TASK(OSEK_Task_ts1)

{

. . .

TerminateTask ( ) ;

}

. . .

TASK(OSEK_Task_ts2)

{

. . .

TerminateTask ( ) ;

}

Code 4.4: Calling tasks in C
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The Studied Application

In the following sections, the inner workings and underlying concepts of the di�erent tasks

will be discussed. It is important to understand how the application works, to comprehend

the e�ects of faults on the application performance. In the subsequent part, the main topic

will be how and where faults were injected in previous experiments in [8], as well as where

faults will be injected in further experiments.

The application mainly consists of three tasks, the �rst task is responsible for keeping

the robot balanced on two wheels. The second task traces the path using the light sensors,

while a third task runs in the background and is responsible for showing output on the

display. A fuzzy approach, which is used in the path tracing and balancing task, allows the

robot to move more �uidly, while balancing out outliers by taking the weight o� of single

computation results through considering past computation results in the decision making

process.

5.1 Fuzzy Table

Fuzzy technology can be used to enhance fault tolerance on control systems. The path

tracing application for example �rst reads crisp sensor values, and fuzzi�es them. In the

next step it computes an output value based on the last ten input values and proceeds

with defuzzifying. This produces crisp values, which can be used by the system again. A

fuzzy approach enhances the fault tolerance in this system, because the in�uence of single

faults on the control application is decreased through the consideration of outputs of past

computations. Using a fuzzy table also smoothens the values, and balances outliers. Thus,

if wrong sensor or motor data occur, its e�ect will be counterbalanced by using the fuzzy

table, and as a consequence the application can tolerate faulty values. Secondly, the path

tracing and the balancing of the robot operate smoother, e.g. the steering behavior of the

robot becomes less abrupt when the fuzzy table makes the value of the the steering angle

change slowly. The con�gurations of the fuzzy table, e.g. its size, the threshold at which a

one is stored in the fuzzy table for path tracing, the way of summation of the motor input

29



Chapter 5. The Studied Application 30

values, and the weighting of the current and last ten motor input values, all these setting

are chosen on empirical basis. The system could be run with other settings, but testing

them out is out of scope for this work.

5.2 Error Handling

In this application only the path tracing and the balancing task adopt soft-error handling

techniques for fault tolerance. Depending on the system setting, both tasks are executed

with Static or Dynamic Compensation. After the balancing task and the path tracer task

are activated by their alarms, the system has to decide which task version the task at hand

has to execute. When the system executes this the path tracing task, three versions as dis-

cussed in Section 2.4.3 are available: unreliable version, fault detection version and reliable

version. Depending on the system setting, it uses either Static Compensation or Dynamic

Compensation to decide the task version. Algorithm 3.1 or a simpler version to execute

a static technique will executed. This is the "top layer" of this application, consequently

the task version is chosen before any other activity starts. It is not di�cult to notice that

protection techniques cause overhead. Before the application starts, Algorithm 3.1 will be

executed, taking up resources, execution time and memory for counters and patterns. For

the simplicity of presentation, the path racing task is chosen in the following example to

explain the how the compensation techniques work.

5.3 Path Tracing

The path tracing task allows the robot to trace a black line on a track. After choosing the

task version, the system will �rst call the function which gets the data from the light sensors.

To avoid abrupt steering maneuvers, a fuzzy table is used which smoothens the steering

values of the robot. The values from the light sensors are read �rst and then fuzzy�ed to

covert them into a fuzzy format to store them in the fuzzy table; the information from the

sensor is converted into "1" or "0". These values are then stored in a table which stores

ten entries, the ten last light sensor values. The table has two rows and ten columns.

In the �rst row, the "1"s and "0"s for the decision "turn right" are stored, whereas in

the second row the information for "turn left" is stored. In every instance of a task, the

system will read light sensor values from the left and the right sensor once and will store

the corresponding information in the fuzzy table. Processing the light sensor values is

illustrated in Figure 5.1 in the �rst to states in the blue state. To write sensor information

rightsum 1 0 1 1 0 1 0 0 1 1
∑

= 6

leftsum 0 0 0 1 1 1 1 0 0 1
∑

= 5

Table 5.1: The fuzzy table for the turn value
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on form of 1 or 0 into the fuzzy table, sensor data has to be read �rst. Depending on

whether the sensor data exceeds a certain threshold or not, 1 or 0 are written into the

fuzzy table, while simultaneously adapting the index of the fuzzy structure. In practice,

that means that if the light sensor is detecting a certain lack of light, then it means that

this sensor has to be hovering right above the black (lightless) path line. Imagine the robot

tracing the path, but with the light sensors just besides the black line. Assuming we stand

behind the robot and it drives away from us on a straight line, if the right light sensor

suddenly hovers over the line, then the robot has to turn to the direction of the light sensor

which detected less light, e.g. if the right sensor detects that it is above the path line, then

the robot has to turn right, otherwise it would leave the track, since the left sensor will be

outside the track if the path is not too wide.

The threshold which dictates whether 1 or 0 is written into the fuzzy table, is 600 in

this case, the maximum possible value from the sensor is 1023 and the minimum value is

0. A greater value means less light (or lower re�ection). After storing the 1 or 0 from the

right sensor into the �rst row and the 1 or 0 from the left sensor into the second row, the

index pointer is incremented, rerolling it by working with the modulo operator if the index

exceeds the length of the table. That way the oldest value will always be overwritten. This

is the process of fuzzifying sensor data and storing it into the table. After that the "1"s

need to be summed up to calculate a value called "turn" which is the information needed

for steering.

The turn value de�ned as a static variable at the very beginning of the code, so it will

keep its value between invocations. It tells the robot to turn to a certain direction and

is modi�ed by dedicated function. At �rst, there is a loop which iterates through all ten

entries of this table. The values rightsum and leftsum which are de�ned at the beginning

of the function serve as a means to add up the entries in the fuzzy table. As explained

earlier, the entries in the fuzzytable save the ten recent decisions to turn the robot to the

left and to the right in form on one and zero.

The turn value is the actual steering value, and the extreme values are de�ned as -100

(turn sharply to the left) and +100 (turn sharply to the right). First, leftsum is calculated

and subtracted from the turn value, next, rightsum is calculated and its calue is added to

the turn value afterwards. If the subtraction of leftsum and rightsum result to zero, then

it means that they had the same value, thus no steering takes place. If leftsum is higher

than rightsum, then more will be subtracted from the turn value, which corresponds to

making a turn to the left. If the number of ones for calculating rightsum are higher, the

turn value will be positive, which will cause a turn to the right.
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Figure 5.1: The path tracer task illustrated in a �owchart

• If leftsum= 0, nothing will be subtracted from the turn value.

• If 1 ≤ leftsum ≤ 3 after summing up the ten recent entries, it means that there

were two or three "1"s in the last ten light sensor samplings. In this case 50 will be

subtracted from the turn value.

• In case of 4 ≤ leftsum ≤ 6, then 80 will be subtracted.

• In case of leftsum≥ 7, then 100 will be subtracted.

The value rightsum is calculated the same way, the only di�erence is that the values are

added and not subtracted. In the end the corresponding values of rightsum and leftsum

are added to each other. In Table 5.1, the resulting turn value is −80 + 80 = 0, since

rightsum is six and leftsum is �ve, thus the robot will drive forward without turning. If
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leftsum is equal to zero and rightsum equal to ten, then the turn value is +100, this causes

the robot to turn to the right.

Figure 5.1 illustrates the the path tracing task in a �owcart. To summarize, the path

tracing task calls the functions which start the compensation, which in turn call the path

tracing code, while deciding the execution version of a task. When the path tracing task

is starts, it samples sensor data from the light sensors �rst. Then the sampled data is

fuzzy�ed to ones and zeros and stored in the fuzzy table. After �lling the fuzzy table

with the newest light sensor sampling data, the ten values which correspond to previous

sensor sampling data, the ones and zeros in the fuzzy table are summed up, to calculate

the current turn value. The application then leaves the turn value, till the balance task

�nishes processing it.

5.4 NXTway-GS (Self-Balancing)

The �rst and most important duty this task has is to balance the robot on two wheels.

After initializing the task and its values, the application calls the balance control function.

The internal control theory will be treated like a black box in this thesis. Faults are not

injected into the balance controller, but on the output value of the balance control. The

balance control code [26] was developed using MATLAB with Simulink and was generated

automatically, and a detailed description is out of scope for this work, only the properties

which are manipulated in this work will be discussed. For this work, the most important

arguments are power motor left (pwml) and power motor right (pwmr). They are de�ned

at the beginning, are signed 8 bit values and determine the strength of the impulses which

are sent to the motors. Although they appear in the parameter list, these are the output

values of the balance function and thus cause the wheels to turn in a speci�c manner,

including turning and forward motion, while balancing the robot on two wheels. At the

end of the task these two values are sent directly to left and right motor respectively.

After the balance function �nishes executing, there are three execution versions for

sending the motor input value to the motors, the unreliable-, fault detection-, and error

detection version. The fuzzy table works di�erently in this task. After trying out di�erent

settings, the conclusion was drawn that fuzzifying the motor input into "1" and "0" or to

10, 20, 30,... etc. is not possible, since the robot can't balance itself in that case. The

task's motor input values change very slowly, and tend to oscillate around a certain values

with small changes, as can be seen in Table 5.2. This behaviour needs to be preserved

for the balancer to work properly. This is the reason for using the real values, seperating

them in groups destroy the balancer. The last ten motor input values are saved in the

fuzzy table, but for the left and right motor separately. The �rst step in the application

is always to store the current motor steering value (which is not sent to the motor yet) in

the fuzzy table. Subsequently, all the last ten entries in the fuzzy table are added and then

divided by ten, to calculate he average of the last ten motor input values of the last ten
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rightsum -4 -4 -11 -9 -8 -8 -7 -6 -6 -5

leftsum -4 -4 -11 -9 -8 -8 -7 -6 -6 -5

Table 5.2: The fuzzy table for the motor input values. In this example the values are the ten

�rst values after the 16. balancer task instance.

task instances. Then, in the last step, the average of the last ten values is added to the

motor input value of the current instance, and then halved. Weighting them equally, this

calculates their average, and this value is sent to the motors, determining their impulses.

Formula 5.1 shows the formula to calculate the motor input value (miv). First all ten fuzzy

table values (ftv) are summed up, then added to the current miv (cmiv), and in the end

the sum is divided by two. To sum up the way of working of the balancer task, Figue 5.2

shows that the balance function is executed �rst, followed by the compensation. Then the

motor input value is read and stored in the fuzzy table. Formula 5.1 calculates the current

motor input value, which then is sent to the motors.

miv =
(
∑
ftv)
10 + cmiv

2
(5.1)
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Figure 5.2: The balancer task illustrated in a �owchart
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Chapter 6

Fault Injection

This chapter will cover how and where faults are injected in the experiments. First, the

original design of fault injection into sensor sampling data in [8] is discussed, then the fault

injection into motor steering values is explained. To avoid confusion, it is important to

note that every instance of an unreliable task only has certain values which are prone to

faults. In case of the path tracing task, only the light sensor value is prone to faults. In

the same way, faults are only injected into the output value of the balance function. The

τui version of the task is always prone to faults, even when it is used to execute τdi , when

two identical task instances are needed to be able to compare, these two identical task

instances are unreliable τui instances. In the same way, the three task instances which are

needed to correct errors when executing τ ri , are also prone faults since every single one of

them is an unreliable τui instance. Generally speaking, only τui are available, and τdi and

τ ri are built using τui as a basis and then comparing them to each other.

6.1 Decisions to Inject Faults

To inject faults, an experiment function is declared in a separate �le. This function has an

object as a parameter, which stores certain information about the injection, e.g. the fault

rate, and the number of injections. In the beginning of this experiment function, a random

number is generated, so a "dice" is rolled, by calling a random number generating function.

After incrementing the counter for the number of injections, the dice-value is compared

to the a value which is generated depending on the fault rate of the speci�c task. If the

the fault rate is small, then it is more likely for the random number to be bigger, so fault

injection is less likely. Depending on the result of the comparison, the binary is returned

to the calling function. The experiment function is only called by the path tracing and the

balancer task, to inform them about whether a fault should be injected. The two tasks

always store their fault rates and pass them to the experiment function.

37
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U8 experiment ( unrel_exp_t∗ param)

{

i n t d i c e = rand ( ) ;

++param−>value_tot ;

i f ( d i c e > param−>value_rate )

{

re turn FI_SUCCESS ; // no f a u l t

}

++param−>value_cnt ; // increment counter f o r number o f i n j e c t i o n s

re turn FI_FAIL ; // i n j e c t f a u l t

}

Code 6.1: The experiment function

6.2 Fault Injection in Light Sensor Values

When executing the path tracing task, the function responsible for compensation and thus

deciding which task version to execute depending on the compensation setting is called.

All three task versions do the same execution steps. They read the sensor data from the

light sensors, then convert the data to store it in the fuzzy table, and subsequently evaluate

the data in the table to calculate the turn value, which decides the steering action. Fault

injections in this task takes place after the original light sensor value has been read, as

can be seen by following the arrows to the red state in Figure 6.1. The task �rst calls an

injection function, which passes the fault rate to the experiment function, thus obtaining

the information whether a fault should be injected. Then, this information (inject or don't

inject a fault) in the injection function makes it either return the correct or a faulty value,

depending on the injection information. When the current task is an unreliable instance

without detection or correction, then the value which is returned when a fault needs to be

injected is either 0x0 or 0xFFFF, the minimum and maximum possible light sensor values,

and the decision is made by comparing the correct value to 0x7FFF, which is 0xFFFF

divided by two. If the correct value is lower 0x0 will be returned, and if the correct value

is higher 0xFFFF will be returned to the calling function, which is the path tracing task.

If the current task version is an error-detecting one, then an error detecting injection

function will be called instead, in which the unreliable version of the inject-function will

be called two times. To have a means to compare two values and detect a fault, the same

sensor value needs to be computed twice. This means that the experiment function and

thus the "dice-rolling" will be will be absolved twice, since each sampling of an unreliable

sensor value is prone to faults.
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Figure 6.1: The path tracing task illustrated in a �owchart, with fault injection

6.3 Fault Injection in Motor Steering Values

At �rst, the task calls the balance control function, which is responsible for balancing the

robot. As explained earlier, the balancer function has two output values, pwml (power

motor left) and pwmr (power motor right). The faults are injected into these two values,

but only after they are generated by the balance control function, this is highlighted in

Figure 6.2, compensation and fault injection only take place after the balance function

executes (yellow state).

Earlier experiments concluded that the balance application is very sensitive towards

faults. Even very low fault rates cause the control loop to crash and it can only function

using the constraint (1, 1). Due to the complexity of the balancer application and its

vulnerability to faults, the injection takes place on the two output values of the balancer

function, which are the motor impulses for the left and right motor forward motion and

steering. These two output values are computed and then send to the motors. The balance

control model indicates that these two values are not sent back in form of feedback to the

control function. However, experiments support the thesis that the injection of faults into

these values can still destroy the control loop and make the robot lose balance and fall.

These two output values are used for steering and forward speed, but not for balancing,

thus fault injection in this task will take place after the values leave the balance function.
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When the motor input values are computed, they are ready to be send to the motors.

Just like in the path tracing task, the compensation function is called, which decides the

execution version of the task instance, but in this case the motor input value has to be

passed down as well. First, the tasks sends the fault rate and the correct motor input

values to the injection function, which in turn calls the experiment function to decide

whether a fault should be injected, and then returns a faulty value in case of fault, and the

correct value in case of no fault. The value which is returned to the balancer task is either

the minimum or the maximum allowed motor input value, which is +100 or −100. When

the balancer task receives the value, it stores it in the fuzzy table. Subsequently, the task

evaluated the fuzzy table and calculates a motor input value using the last ten entries,

while weighting the current value and the fuzzy value equally as in Formula 5.1. After

this, the task sends the motor input value to the corresponding motor. It is important to

note that faults are injected independently in the left and in the right motor value.

Figure 6.2: The balancer task illustrated in a �owchart, with fault injection
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Fault Injection Experiments

As explained in Section 1.2, one of the main goals of this thesis are to �nd (m, k) for the

path tracing and the balancing task through experiments, and afterwards testing these

constraint by enforcing them with a certain fault rate to �nd out if the constraint prevents

the experiment from failing. If enforcing the (m, k) constraint succeeds in keeping the

robot on the track till the very end of it, then we empirically prove that (m, k) exists and

can be enforced to guarantee successful runs, thus preventing failures. In this chapter,

the experiment setup will be explained �rst. Then, the empirical method to �nd possible

(m, k) candidates will be discussed, and the experiment results from the search for (m, k)

for sensor and motor injection will be presented. The subsequent section will present the

experiment data for (m, k)-enforcement with di�erent experiment settings.

Figure 7.1: The whole track from above

41



Chapter 7. Fault Injection Experiments 42

7.1 Experiment Setup

The size of the paper the track is drawn on is Din A0 (84, 1× 118, 9cm). When measured

till the inner line, the elliptical track can be described with a = 105 cm and b = 68 cm, a

width of 2 cm, and a a total lengths of around 160 cm. The reason for the choice of this

speci�c track is, inter alia, that it features elements of a straight and a curved line. The

robot will always begin on the side with the smaller radius unless speci�ed otherwise. The

�rst 30-40 cm proceed almost like a straight line, and the curvature increases the more the

robot reaches the end of the track.

Figure 7.2: Initial position of the robot Figure 7.3: Starting block

In [27] the simulation settings "straight line" and "curved line" are chosen for their

speci�c experiments in which the path tracking control of four-wheel steering autonomous

with vehicles with actuator failues is examined. An ellipse is a combination of the two.

Because tests were already done on a circular track for sensor injection in [1], a di�erent

track was chosen to prove that (m, k) also exists for di�erent types of tracks. An elliptical

track is also mathematically easy to describe, easy to reproduce, and measuring distances

can be done precisely in a reasonable manner. The distances will be measured at the

end of the robot through measuring the angles. In the area around π
2 , at the end of the

track, the ellipse can be approximated as circle with a constant radius, which simpli�es

comparing distances of di�erent experiment runs, because the reached distance before or

after π
2 can be calculated by the angle alone. This is also the reason why there is a piece

of paper which extends the end of the track. The starting point also has a paper attached

to it, because the space is needed, so that the robots sensors begin on the main part of the

track. The paper also ensures that the ground pro�le and the light distribution is always

consistent. The starting block ensures that the robot starts in a balances state. It has a

height of around 8.5 cm and was built using simple Lego stones. It is always places 10.5

cm afar from the main paper.

A bit of practice is needed to familiarize with the initial starting angle of the robot

when it is put against the starting block to begin the experiment. If the robot leans too

much forwards when leaning against the block, it would fall without the balance control.
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It will try to compensate that imbalance by driving forward very fast for a few centimeters.

The same applies to the scenario in which the robot is tilted backwards too much, then

it might stand still for a few moments, trying to push itself against the starting block, to

reach a balanced states. If this movement in the beginning is too severe, it can a�ect the

experiment results, so when setting the robot up by leaning it against the starting block,

the initial angle should roughly be always the same, without any deviation ideally. This

issue caused a bit of confusion when doing the experiments, but this will be explained in

the following sections.

There are also two more tracks available, they only di�er in width. The �rst track has

a width of 2 cm, whereas the thinner line has a width of 1 cm and the thicker one a width

of 4.5 cm. 2 cm is roughly the distance between the two light sensors, while 1 is smaller

than this distance, and 4.5 cm exceeds the distance between the light sensors, so the robot

registers black on both sensors in the starting position. The course of action is �nding

(m, k) using the 2 cm track and then trying to apply this (m, k) to the thinner and thicker

tracks to �nd out if it still guarantees runs without. The prediction is that a thinner line

needs a higher constraint, whereas a thicker line manages with a looser constraint.

7.2 Finding (m, k) empirically

Because the robot's I/O limitations, e.g. lack of a �le system, no internet, problematic

bluetooth connectivity, (m, k) candidates need to be displayed on the built-in screen, and

the process of analyzing experiment data needs be done on the robot's hardware. To ana-

lyze experiment data and to be able to �nd (m, k), the experiment part of the application

features a data structure to record the number of correct and faulty task instances, called

experiment set. The memory units in this hardware consists of bytes, and the type of the

executed task version is stored in one continuous bitmap. A task with a fault is stored

as a "0" whereas fault free tasks are stored as a "1". Whenever a fault is injected, the

currently active task calls a function which adds a "0" to the experiment set, standing for

"the current task is erroneous". If no fault is injected and the running task is correct, a

"1" is added to the bitmap. This way all executed task versions can be recorded, which

allows us to analyze the experiment set, and thus �nd possible (m, k) candidates.

The experiment set has a char pointer which stores the starting memory address of

the experiment set. There is also a pointer to the memory address of the last byte of the

memory for the set, which can be set in the beginning to determine the experiment set

size. A third char pointer to a memory address provides an index to store the information

about the current position in the bitmap. A second index provides information about the

current position in a byte cell. Figure 7.4 illustrates the bitmap with its pointers and its

index for the bitposition. If we assume that the string 10111101...00000101...00000000 is

the experiment set which is being �lled, a possible constellation could be that the �rst

pointer stores the memory location of the �rst byte, the second pointer stores the address
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Figure 7.4: The structure of the bitmap in the memory

of the current byte which is �lled at the moment, the third pointer determines the end of

the bitmap, while an unsigned 8-bit integer index provides information about the current

bit up to which the bu�er is �lled, e.g. it could be the seventh bit in the second byte

when counting from the right. "1"s and "0"s are added to the set by shifting the bit in

the integer variable to the left, and then using AND or OR operations to insert it into the

set. It is rerolled if the highest bit is reached, while the pointer which points at the byte

which is currently �lled is incremented, which causes a jump to the next byte, in case the

one byte is full. When setting the size of the experiment set, the number of bytes is used.

In the experiments which were done for this thesis, a experiment set size of 664 and 560

bytes was chosen, since the size of the sets decides the total number of executed tasks, and

a number around 600 lets the robot drive till the very end of the track. This number needs

to be divisible by eight, since the byte cells are addressed in 8-bit steps.

The (m, k) constraint can then be found by letting the robot trace the path successfully

�rst, while recording the "1"s and "0"s in the experiment set. When the robot �nishes

tracing, a background task starts analyzing the experiment set, and tries to �nd minimal

m for di�erent window sizes. At �rst, the loop checks the minimal m e.g. beginning with

k = 3 in a sliding window, this means that the �rst three bits of the experiment set are

checked, and the minimal number of "1"s is stored. Then, the second, third, and fourth

bits are analyzed, and again the minimal number of "1"s is stored. After the analysis of

(m, 3) is �nished, the minimal m is displayed on the screen of the robot. Subsequently, the

same procedure is done with (m, 4), and m is increased by one after the analysis �nishes,

and this goes up to k = 16.
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Depending on the fault injection rate, the displayed (m, k) will di�er, m will be lower

naturally the higher the fault rate, since there will be more faulty tasks. The goal is to

�nd minimal m, and this requires pushing the fault rate near the maximum. The fact

that there were a minimum of m correct task instances in a sliding window size k, the

experiment didn't fail, and this is the reason why the recorded (m, k) should in theory

prevent the robot from failing when enforced on system with fault injection.

Only if the run is successful then the possible (m, k) are noted down. If the fault rate

gets too high, the robot will get o� track, or lose balance and fall down, counting as a

failed run, and the (m, k) of the failed runs are never noted down.

7.2.1 (m, k) Candidates for Sensor Injection

When trying to �nd (m, k) candidates, a version of the system without any protection or

compensation is used. We are only interested in �nding a minimum of m correct instances

in a given window size k, with which the experiment succeeds. For this reason faults

were injected with di�erent fault rates. Beginning with a fault rate of 5% per instance,

the displayed (m, k) were noted down. Increasing the fault rate slowly in 5% steps gives

enough time to get used to the experiment, especially setting the robot in a neutral angle

at the very beginning. The size of the experiment set was chosen as 664 bytes, as this

setting gives us the desired length of the experiment, while the forward speed will always

be 25 in all experiments, unless speci�ed otherwise.

When the fault rate is low, between 5% and 15%, then the recorded (m, k) di�er a

lot. (12, 16), (10, 16), and (7, 16) can be found for these fault rates. These should only

be chosen for enforcement if the quality of control of the task with below15% is desired.

However, this much quality of control is not needed, as there are less strict (m, k) which

also keep the robot on track, so choosing these constraints would be over-provisioning. The

faults were almost unnoticeable, and did not a�ect the robots ability to trace the path, so

the fault rate needed to be increased further. From 20% to 30% (m, k) seems to stabilize

a bit with (5, 16) in both cases.

Then, from 30% fault rate on, there seems to be a sharp line, (5, 20) appears all the

time up to around 52% fault rate. It appeared in every try when experiments were made

in steps of 1%, so for 35 up to 52% all tries displayed (5, 20), and thus a stable (m, k)

constraint was found. Another alternative constraint, (4, 16) appeared almost all the time

too, but ultimately (5, 20) was chosen, as it easier to enforce by the compensation.

If the fault rate is over around 52%, then the experiment fails, the robot doesn't trace

the path su�ciently and leaves the track. For the reason, the (m, k) constraints from failed

runs are not useful for our purposes.
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Fault rate % 5 10 15 20 25 30 35 40

(m,k) (12,16) (10,16) (7,16) (5,16) (5,16) (5,20) (5,20) (5,20)

Figure 7.5: (m, k) constraints and fault rates for sensor injection, excerpt from Table A.1 and

Table A.2

7.2.2 (m, k) Candidates for Motor Injection

In this part, fault injection into sensor data was completely turned o�, as we are only

interested in the behavior of the system when faults are injected into the actuators. Finding

an (m, k) constraint was not as straightforward as in sensor injection. When running

experiments with increasing fault rates, e.g. 30%, 60%, and 100%, the balance of the

robot was not severely disrupted as it was assumed. The higher the fault rate, the more

the robot swung back and forth, but never losing its balance completely. Thus, the robot

could still trace the path successfully without leaving it, only the distance decreased because

the jolting causes the robot to stop or drive backwards for a few millimeter between the

forward leaps. The behavior of the robot with 100% fault rate can be compared to the

the shaking of a car with manual transmission, when a high gear is engaged during its

start-up, but it's shaking during the entirety of the run. This situation is not suitable for

injecting faults and searching (m, k) candidates, since no clear distinction can be made

between a failed and a successful run. It would be much more desirable to have the robot

lose balance and fall, or leave the track when injecting faults into the motors.

The reason for the fact that the robot doesn't lose balance despite a fault rate of 100%

is that we use a fuzzy table to smoothen erroneous input. The values which are put into

the fuzzy table when injecting errors are +100 and −100. If we assume that +100 and

−100 appear equally often, then it could be the case that the faults cancel each other out

in the fuzzy table, thus passing a rather neutral value to the motors. To gauge the �ow

of the motor input value without fault injection, the motor input values were displayed on

the screen in earlier experiments, the values changed slowly, with no abrupt changes, and

they oscillated from positive to negative during the measurements.

To further test this assumption, only +100 is used as the value which is used to inject

an error. This gives us the behavior we want, the robot actually loses balance and falls

down with a very low fault rate. A fault rate around 16% is enough to cause the robot to

lose balance, and this is the maximum fault rate for this task. (10, 16) was chosen as the

candidate, as it is more stable and allows more quality of control, and it corresponds to a

pattern of tasks with around 12% fault rate.

If faults are injected with a higher percentage than 16%, then the balancing of the

robot behaves like a bridge which is stimulated by external forces which match its natural

oscillation, leading to its destruction trough intense swaying. Since the robot drives on

two wheels and balances itself through weight transfer in an oscillating manner, we can
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assume that the system has its own natural oscillation. Mechanical resonance occurs when

a system's response to a stimulation with its natural frequency is a greater amplitude of

movement. When too many faults are injected, the robot makes a leap forward, and has to

balance itself by driving backwards again, then has to balance out that backward movement

by leaping forward again. This way it increases its own swaying every time it tries to correct

the previous one, and thus falls on its back or on its sensors, losing balance. It can be

concluded that although the injection takes place outside of the balancer application, the

motor input value still has a major impact on the control loop and is able to corrupt it,

thus it makes sense to protect it from soft-errors.

Fault rate % 6 7 8 9 10 12 14 16

(m,k) (11,16) (11,16) (11,16) (11,16) (11,16) (10,16) (10,16) (8,16)

Table 7.1: (m, k) constraints and fault rates for motor injection, Table A.3 and Table A.4

7.3 Testing (m, k)

In the following sections the constraints (5, 20) for the sensors and (10, 16) for the motors

is tested on a system with error compensation, with varying fault rates. The fault rates are

always chosen signi�cantly above the maximum tolerable fault rate of the tasks, so that

the system has to compensate and enforce (m, k) to prevent the system from failing. If

the fault rate would be below the maximum fault rate, then the compensation would not

prevent the system from failing, thus a fault rate needs to be chosen which undoubtedly

leads to a fail.

To prove empirically that a combination of a (m, k) constraint with a speci�c fault rate

keeps the robot from failing, all combinations of constraints and fault rates are conducted

with 20 runs. When testing 25% with (10, 16) for motor injection for example, 20 runs

of the experiment with these settings are done. If all 20 runs are successful, then the

combination of the constraint and the fault rate is marked as "Y". If only a few, e.g. one

or two runs failed, then the experiment set and the starting angle of the robot is checked.

If these sources of errors can be excluded, then the combination of the constraint and

the fault rate is marked as "N", and we assume that the experiment fails due to a loose

constraint. If the number of failed runs is signi�cantly higher than one or two, then the

combination is also marked as "N" too. This is done for all combinations in Table 7.2 and

Table 7.3.

The compensation technique used to enforce (m, k) in the following sections will be

Static Reliable Execution. The focus of these experiments is testing whether the previously

found (m, k) prevent the system from failing, and for these purposes S-RE su�ces, while

keeping the workload of the compensation low. Moreover, the di�erence in performance
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between e.g. S-RE and D-DR in this system is not noticeable in the experiment with the

naked eye, and is only noticeable when measuring the execution time of the tasks.

7.3.1 Testing (m, k) for Sensor Injection

At �rst, (5, 20) with a fault rate of 60% was tried. The robot did not track the path at all

using S-RE, and the experiment failed every time. The feeling came up that changing (m, k)

doesn't make a di�erence in the system. Changing (5, 20) to (20, 20) in the application still

showed the same results, no tracing, and there was no di�erence in the robot's behavior.

(20, 20) did not show the behavior which is expected from a constraint which guarantees

"every instance correct", it just behaved like a system without protection. It seemed like

no compensation was taking place.

After checking out the code, it becomes clear where the issue lies for this problem.

When correcting faults, unreliable faulty instances are used. If there is a 60% fault rate,

more than half of the instances will be faulty, and this leaves the error correction version

vulnerable to faults. If these faulty values are used for correcting, and compared to each

other in majority voting, then the result of the majority voting and thus the "reliable

value" will be incorrect. For this issue there can be four possible scenarios:

• If all three values are correct when no fault was injected into either, then the output

of the majority voting will be correct.

• Two correct values and one faulty one is the second scenario, in this case the output

will also be correct.

• If there are two faulty values and one correct value, then the output of the majority

voting will be incorrect, and the reliable instance will not be reliable any more.

• When all three instances are incorrect, the output will we incorrect too. With a 60%

fault rate the �rst and second scenario are not very likely, but therefore the third

and fourth are more likely to happen. Considering the fact that the injection uses

the same minimum or maximum values for an erroneous value, it is likely that there

are three di�erent values in the majority voting.

To remedy this issue, "ideal correction" is used, meaning that the error correction

instances will always be correct, no matter how high the fault rate. This is done by simply

replacing the code in the error detection version with a direct call to the light sensor

sampling function, removing the injection part completely from this version of the task.

This makes error correction instances independent from unreliable instances, and allows

us to enforce (m, k). Error correction versions will theoretically always be correct, barring

real soft-errors.

After replacing the code in the reliable version of the path tracer with "ideal correction",

with the standard light sensor sampling function in the API, (5, 20) was tested again with
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60% fault rate. With this setting the path tracing is successful. To gauge how low m can

get, it was reduced step by step, and it turns out (2, 20) is the constraint with the lowest

m, which keeps the robot on track. The same experiment was done for 80% fault rate, and

it turns out that m needs to be higher when the fault rate is higher.

(m,k) (5,20) (4,20) (3,20) (2,20) (1,20)

60% FR Y Y Y Y N

80% FR Y N N N N

100% FR Y N N N N

Table 7.2: (m, k) constraints for sensor injection with fault rates of 60%, 80%, and 100% where

"Y" stands for stable and "N" stands for fail - number of tries can be looked up in Table A.1

7.3.2 Testing (m, k) for Motor Injection

To gauge the stability of (10, 16), three di�erent fault rates are chosen. 25%, 50%, and

100% are all higher than the maximum tolerable fault rate of the balance task, and cover

low-, mid-, and high fault rate scenarios.

It turns out that (10, 16), our initial candidate, is never stable, and always leads to a

loss of balance, even with only 25% fault rate. There is not one constraint that is stable

for all fault rates, except for (16, 16). The higher the fault rate, the higher m needs to be

for the system to not fail. However, the lower m, the more the robot tends to swing back

and forth, but can balance itself again when m is high enough. The fails are all due to the

intense swinging of the robot, it either falls to the front on its two light sensors, or on its

back on its gyro sensor. The lower m and the higher the fault rate, the more intense the

swaying. One could argue that 20% fault rate should be chosen too, and (10, 16) could

be enough to keep the robot in balance, but 20% is too near to the maximum fault rate.

There is not a strict boundary for the maximum fault rate, but it is lower than 20%, and

that is too close to 16 − 17%, the e�ects of the compensation might not take any e�ect,

and the robot might balance itself without compensation, so fault rates of which is known

to de�nitely cause a fault need to be chosen.

(m,k) (16,16) (15,16) (14,16) (13,16) (12,16) (11,16) (10,16)

25% FR Y Y Y Y Y Y N

50% FR Y Y Y N N N N

100% FR Y N N N N N N

Table 7.3: (m, k) constraints for motor injection with fault rates of 25%, 50%, and 100% where

"Y" stands for stable and "N" stands for fail - - number of tries can be looked up in Table A.2
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7.4 Case Study

7.4.1 Concurrent Fault Injection into Motors and Sensors

In reality, faults can occur in every part of the hardware. Generally, injecting faults by

choosing the part of the hardware into which the fault should be injected randomly is

an ideal representation of faults, but such injection methods would be very expensive.

Allowing faults in the balance and path tracing task creates a model which is a little more

realistic, since faults can occur in the motor input and in light sensor values. Enforcing

(5, 20) with a fault rate of 60% for the light sensors and (11, 16) with 25% for the motors,

the robot fails in 10% of all runs, by getting o� track. Trying the same experiment setting

with (8, 20) and (13, 16), the robot successfully traces the path in all runs, while making a

better impression overall following the path more closely.

7.4.2 Di�erent Track Widths

All experiments were done on a track with a widths of 2 cm. To �nd out whether the (m, k)

constraints which were found in Section 7.2.1 still keep the robot from driving o� track and

provide a certain quality of control depending on the choice of the constraint, experiments

with di�erent track widths. In this section, only fault injection into the sensors will be

studied, since injecting faults into the motors mainly disturbs the balance of the robot,

causing no signi�cant steering actions.

There are two additional tracks available. The thinner line has a widths of 1cm, while

the thicker line is 4.5 cm wide. The 1 cm track is thinner than the distance between the

two light sensors, while the 4.5 cm line is so wide that the two light sensors are over the

black line in the starting position. The idea is to have one line to be thinner, while the

other line to be wider than the distance between the light sensors. The goal is to �nd out

whether (5, 20), which was found in Section 7.2.1, can still prevent the system from failing

when a di�erent path line widths is chosen. The assumptions are the following:

• To keep the quality of control high when a thinner path line is chosen, the system

needs a tighter (m, k) constraint, since it has less leeway to recover from errors.

• If a thicker path line is chosen, then a more relaxed (m, k) constraint can be chosen

to have su�cient quality of control, since it has more leeway to recover.

To prove the �rst point empirically, the (5, 20) constraint is enforced on the line with

1 cm width, with a fault rate of 80% on the path tracing task. 80% is chosen in this case

since this fault rate causes the system to fail every time without protection, while m = 5

is minimal, as can be seen in Table 7.2.

In the �rst set of the experiment, the robot only successfully traces the path in 7/20

tries. The robot always goes o� track near the end of the track, when the curvature
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increases. (5, 20) does not su�ce for a track with 1 cm widths, the system fails in more

than half of the tries, and this is the reason why m has to be increased.

To increase m signi�cantly with the goal to prevent the robot from having failed runs,

the constraint (8, 20) is chosen next. The rest of the settings remain the same. This time

the robot traces the path better, with 18/20 successful tries. There are still unsuccessful

tries, and to be able to guarantee a successful run, m has to be increased further.

(10, 20) is chosen to weed out unsuccessful runs. Enforcing this constraint keeps the

robot on the track in every run (20/20 successful tries), without unsuccessful runs. (10, 20)

seems to be the constraint which has to be chosen if a system is desired which never leaves

the track.

For the second point, (5, 20) is enforced �rst with 80% fault rate on a track with 4.5

cm widths. For this setting the tracing task makes a solid impression, and always traces

the task without going o� track. Testing (4, 20) shows the same result, the robot traces

the path perfectly without problems. However, trying (3, 20) the robot never traces the

task and tracing doesn't seem to work for such a low m. (4, 20) is su�cient to prevent the

robot from failing in this case.

7.4.3 Overall Utilization

In [8] the four error handling techniques S-RE, S-DR, D-RE, and D-DR are applied on a

path tracing task with a (3, 10) constraint, which was found and tested using the same

methods which are described in this thesis. The reason why �nding (m, k) is so important

is the fact that it allows us to minimize energy consumption and overall utilization by

applying these techniques. It can be seen in Figure 7.6 that the experiment results of

the overall utilization test in [8] indicate that D-DR performs lowest regarding overall

utilization, with varying fault rates and increasing m.
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Figure 7.6: Overall utilization measured for the task path tracing with a (3, 10) constraint [8]

We also found and tested (m, k) robustness requirements on path tracing with (5, 20)

and balance control tasks with (11, 16) successfully in Sections 7.2 and 7.3. With those

robustness requirements, we evaluate the e�ectiveness of the four compensation techniques,

to prove that the (m, k) requirements we found can be used to reduce the overall utilization
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(5,20), 20% FR S-RE S-DR D-RE D-DR

p 4741 4739 4744 4741

u 3365 3555 x x

d x 1184 4279 4276

r 1185 413 465 465

cui 160 160 x x

cdi x 180 180 180

cri 300 300 300 300

U 0.19 0.19 0.19 0.19

Table 7.4: Values needed to calculate overall utilization

U. To calculate the overall utilization, the execution times of each task version, the number
of executions of each task version, the period of the task, and the number of all executions

is needed. We denote the values u, d, and r as the number of unreliable, detection, and

reliable versions of a task, respectively. The value p is the number of periods (e.g. the

number of times the path tracing task is activated).

To calculate the overall utilization, we pro�le the execution time of each task versions:

cui = 160 µs, cdi = 180 µs, and cri = 300 µs. The period of path tracing task is Ti = 1000 µs.

In Table 7.4, the execution numbers for each task version and the number of periods are

illustrated. The way we calculate the overall utilization are as follows:

USRE =
u · cui + r · cri

p · Ti
(7.1)

USDR =
u · cui + cdi · (d− r) + cri · (d+ r)

p · Ti
(7.2)

UDRE =
cdi · d+ cri · r

p · Ti
(7.3)

UDDR =
cdi · (d− r) + cri · (d+ r)

p · Ti
(7.4)

To cover the worst case, the highest recorded execution time should be used to calculate

overall utilization. An example calculation follows:

USRE =
3365 · 160 + 1185 · 300

1000 · 4741
= 0.19 (7.5)

It turns out that �nding a setting for which the techniques show the argued bene�t

is not an easy task. In Table 7.4 for example, all values for overall utilization show no

di�erence at all. The main reason for this problem lies in the length of the execution

times. Since the execution time of unreliable, detection, and reliable versions were too

close in our system, executing reliable versions was not punished with a su�cient cost.
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Figure 7.7: (5,20) with di�erent fault rates for path tracing
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Figure 7.8: (10,20) with di�erent fault rates for path tracing

In order to make the execution of reliable versions more costly, we changed the execution

times of our reliable instances to 700 µs, while the detection version is set to 120 µs and

the unreliable version to 100 µs, which are motivated by safety-critical systems. In the

avionics industry for example, �ve identical instances are used as the multiple replicas to

recover from soft-errors [28].

When calculating the results1 for the (5, 20) robustness requirement for the path trac-

ing task, Figures 7.7-7.9 indicate that D-DR always outperforms S-RE in terms of overall

utilization. When choosing tighter (m, k) requirements than (5, 20), D-DR always outper-

forms all the other techniques, as can be seen in Figures 7.8-7.9. Interestingly, the results

of S-DR are often close to the results of D-DR. Since S-DR also bene�ts from runtime

decision, it can even outperform D-DR in case of (5, 20). If we only consider the static

compensation techniques, i.e, S-RE and S-DR, we can see that the increased m makes

1Data for calculating overall utilization can be found in Figure B.1.
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Figure 7.9: (15,20) with di�erent fault rates for path tracing
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Figure 7.10: (11,16) with di�erent fault rates for balance control

S-RE consume a lot utilization. However, S-DR can save a lot overall utilization, since

mostly there are no faults in the additional tries with the detection version.

The more we tighten (m, k) requirements, the higher the di�erence between S-RE

and D-DR. The biggest margin is 0.35 for (15, 20) and 10% fault rate, con�rming the

e�ectiveness for D-DR with low fault rates. On the other hand, all experiments indicate

that the margin between S-RE and D-DR decreases when the fault rates are higher. The

most distinct example is in Figure 7.7 with 30% fault rate; the di�erence between S-RE and

D-DR is strikingly low with 0.04. We can observe that the fault rate has more impact on

the overall utilization ratio between D-DR and S-RE than the tightness of (m, k) robustness

requirements. By exploring (11, 16) for the balance control, we can observe that D-DR still

outperforms all the other techniques under all tested fault rates. We only present (11, 16),

since it is already a tight requirement, and has a similar tightness to (15, 20).
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7.5 Analysis of Experiment Results

Following conclusions can be drawn when evaluating the experiment results for �nding and

enforcing (m, k) constraints:

1. Finding and testing the e�ectiveness of (m, k) for fault injection into sensor data

con�rm the experiment results in [8]. The (m, k) constraint of a control task for

sensor sampling data can be found empirically and can then be used to prevent the

robot from failing. Thus, an (m, k) constraint exists and can be enforced to guarantee

successful executions.

2. (m, k) constraints exists for the balance control task in this application. When in-

jecting faults into motor input values in delicate tasks such as the balancing task

which can only tolerate low fault rates, (m, k) can be found too, but m has to be

adjusted to the fault rate. Higher fault rates require a stricter constraint.

3. (m, k) can be found and enforced not only on di�erent control tasks, but also on

di�erent robots. In [1] a three wheeled nxt robot was used to �nd and test (m, k),

and for this thesis a robot which balances on two wheels. This partially supports the

proposition that (m, k) can be found and enforced for tasks in other systems too.

4. Increasing m increases the number of successful experiment runs, thus the higher m,

the higher the quality of control.

5. Finding a certain (m, k) in successful runs, and then trying to enforce them may still

lead to system fails, although the corresponding experiment set kept the robot in

balance when trying to �nd constraints. Although (m, k) should theoretically prevent

the robot from failing, it fails to do so. This means that �nding and enforcing (m, k)

has its limits, and it may be due to compensation overhead, or an other problem

which was not found yet.

6. When multiple tasks are running, and if their empirically found (m, k) constraints

are enforced concurrently, then m may need to be increased to prevent fails.

7. Only �nding (m, k) doesn't su�ce, it may need to be adapted to the circumstances

or to di�erent situations, e.g. if the path is thinner, a tighter constraint is needed to

prevent fails.

8. D-DR is still the dominant compensation technique in most cases in terms of lowest

utilization, despite di�erent experiment settings.

To prove the �rst point an elliptical track was chosen, since a circular track was already

used in [8]. To �nd candidates for (m, k), the task version constellation is recorded in a

bitmap format as the experiment set for successful runs. This allows to look for the minimal
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m, which is the minimal number of successful task instances in a certain window size k.

Enforcing the constraint (5, 20) for sensor injection with a fault rate that would cause the

system to fail, kept the robot on track. This proves the e�ectiveness of (m, k) for arbitrary

fault rates. However, the e�ectiveness of (m, k) was shown by recording the distances the

robot achieved on the track. The same was done for all experiment runs. It turns out that

the average distances do not change noticeably, they seem to change randomly. Distances

should not be used to measure the quality of control in experiments with balancer, since

there are multiple variables which in�uence the robot's distance, e.g. starting angle on the

block and incline of the ground. The di�erences in the reached distances are marginal,

although there is a trend which suggests that the tighter the constraint, the higher the

distance. Using a fault rate of 80%, (3, 20) reaches a distance value of 3.2, whereas (5, 20)

reaches a value of 10.7.

The same argument applies for injection into motor input values. In this case (10, 16)

was found empirically. However, as explained in the �fth point, there are still problems

and open questions concerning motor injection. An (m, k) constraint was found where m is

the minimal number of "1"s in a sliding window. In the runs that were done to �nd (m,k),

the robot was stable with the amount of "1"s in the pattern. But if the (m, k) which was

found in successful runs is enforced with compensation, the robot can't balance itself unless

the constraint is (16,16) using a fault rate of 100%. Theoretically, any fault rate should

work for (10, 16), since the compensation enforces a certain amount of correct tasks, or

"1"s. Only (11, 16) in combination with a fault rate of 25% prevents the robot from losing

balance and (10, 16) is not enough to keep the robot, although it should theoretically. If the

fault rate is increased, e.g. to 50%, then (14, 16) needs to be chosen as the constraint, if m

is lower, the experiment run will fail. If 100% fault rate is chosen, only (16, 16) will prevent

the robot from falling. This behavior was not observed in the sensor injection experiment.

This could mean that the balancer task is very susceptible to faults and injecting faults

while putting maximum strain on the compensation will lead to fails, it could also be the

case that the compensation overhead is caused by following S-RE, which may slow down

the execution of tasks, this could especially be crucial in delicate tasks which operate in

real-time, such as the balancer. Another possibility is that the search for (m, k) candidates

is �awed in some way. An answer or solution to this issue can not be given at this point.

Measuring the time delay caused by the compensation and then adding this time with wait

functions may allow to investigate whether the compensation overhead is the root of the

problem.

In [8], the experiment for �nding and enforcing (m, k) was only done for a robot which

drives on three wheels, it does not have balancer task. The next step to further support

the proposition that (m, k) can be found for tasks on other systems too is to �nd and test

constraints on completely di�erent systems, e.g. a di�erent robot model.

The conclusion in the fourth point is supported by all experiment results. For sensor

injection, increasing m always leads to an increase of the success ratio of the runs. This
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is independent from the fault rate. In the same way, increasing m in motor injection also

increases the amount of successful runs.

For the sixth point, faults are injected into motor and sensor data, while both tasks

are protected with S-RE. (5, 20) with a fault rate of 60% for the sensors and (11, 16) with

25% for the motors are set as constraints and fault rates. When injecting faults only in

one task, and leaving the other one without injection, then the robot never fails. However,

when enforcing (5, 20) and (11, 16) with fault injection concurrently, the quality of control

decreases, and leads to failed runs in 10% of all runs. Enforcing (8, 20) and (13, 16) with the

same fault rates increases the quality of control, and prevents the system from failing in all

cases. When there is fault injection in both tasks, then the fault of one task may in�uence

the other task. If faults occur successively in di�erent tasks, then the combination of the

e�ects of the faults could lead to an unexpected fail, e.g. if both access the motors. This

is the reason why one could consider choosing a tighter (m, k) constraint when multiple

tasks need to be protected.

For the eighth point, we can conclude that it is not bene�cial to execute D-DR all

the time without further consideration, although it seems to be the dominant technique

in most cases. When fault rates or interference noise are higher, the margin of bene�t

between D-DR and S-RE is too small. Therefore the choice between the techniques should

be considered thoroughly. D-DR must use the detection version, whereas the simplest ap-

proach S-RE only needs the unreliable version. If we only consider the static compensation

techniques for the simpler implementation, S-DR could also be a very good choice.
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Chapter 8

Conclusion

The goal of this thesis was to verify and expand the research in [8], through �rst retracing

and replicating the experiments which were already done, to be able to take the approaches

and apply them on di�erent experiment settings. This allowed us to reach more general

conclusions about fault tolerance of control tasks and the proposed soft-error handling

techniques. The methods to �nd and test (m, k) were originally only successfully applied

for fault injection into sensor sampling data. In this thesis, the same methods were applied

for fault injection into motor steering values.

In [8] (m, k) constraints were found for fault injection into sensor data, they were

tested and their e�ectiveness was assessed through tests on a circular track. Finding the

(m, k) constraint of a task allows to enforce and test it with di�erent soft error handling

techniques, which aim to minimize energy consumption, overall utilization, and execution

time, which are paramount in embedded systems. The e�ectiveness of the presented error

handling techniques is shown in [8] using the constraint (3, 10), while testing di�erent fault

rates and higher m.

Finding (m, k) constraints for other experiment settings was the main objective in this

thesis. To verify the previous results, (5, 20) was found for an elliptical track, by injecting

faults into the light sensors of a two wheeled self-balancing robot. In [8] the constraint

for a circular track for the same robot was (4, 16). This con�rms that (m, k) constraints

exist in control applications in which a limited number of errors, e.g. through noise of the

environment, can be tolerated and only cause a downgrade of quality of control. It also

became clear that the system may need di�erent constraints for di�erent situations, e.g.

when there is more curvature, or when the path line is very thin.

Just to change the tracks was not enough, so fault injection into motor values was tried.

First, applying the methods to �nd (m, k) for motor injection seemed hopeless, since the

balancing task could not tolerate any errors, and fell down every time. Even very low

fault rates destroyed the robot's balance. By trying to circumvent the balance control

through injecting faults into the balance functions' output value, which is responsible

for the strength of the signal which is sent to the motors, the task could tolerate fault
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rates up to 16%. This gives us the margin to inject faults, and it was possible to �nd

potential (m, k) candidates. (10, 16) seemed to be a �tting constraint after analyzing the

experiment data, and thus it was tested with di�erent fault rates. By limiting the fault

rate to 25%, which is reasonable since faults do not occur that often in reality, (11, 16) was

found as a stable constraint. When higher fault rates occur in the balancing task, then the

constraint needs to be tighter. This behavior was not observed in the path tracing task,

since its (5, 20) constraint still kept the robot from going o� track, despite 100% fault rate.

Theoretically, the robot should not lose balance, even in the case of 100% fault rate, since

the constellation of its task pattern is a pattern which would occur if (10, 16) was enforced.

This question still remains open and a de�nite answer can not be given at this point, but

one could assume that it has to do with the nature of the task, since the balancing task is

very susceptible to faults.

The last step for injection experiments was to inject faults into motor and sensor data

concurrently. It revealed that enforcing the individual (m, k) constraints may not guarantee

successful executions, the constraints possibly need to be tightened to guarantee successful

executions in every run. When testing di�erent path widths, the (m, k) constraint needed

to be tightened too, e.g. the 1 cm wide line needs a (10, 20) constraint to trace the path

successfully, while a (4, 20) constraint su�ces for a 4.5 cm wide path line, and (5, 20)

su�ces for a path width of 2 cm.

In the end, to test the e�ectiveness of the four proposed soft-error handling techniques,

the found (m, k) constraints were tested with di�erent fault rates and increasing m. Al-

though it is still the dominant technique in most cases, it turns out that D-DR is not

always the best choice in all cases, S-DR could be a viable trade-o� between protection

and overhead.

However, the model which was used in [8] and in this thesis has its downsides too.

First, faults only occur in particular parts of the robot. They should ideally occur in other

parts of the robot randomly too, e.g. in RAM or register, to have a more realistic model.

As for experiments, the two wheeled robot is di�cult to use, it requires practice to get

used to setting up the robot into the same starting position every time, and sometimes a

wrong starting angle distorts the experiment data. Also, the robot does not have much I/O

capabilities, thus the only method to retrieve information is using the screen. Nonetheless

the hardware and especially the operating system allow for high customizability and free-

dom, and this allows us to use the system as a tool to search, �nd, test and enforce (m, k)

constraints.

The satellite Hitomi was touched upon in the very beginning, and the reason it crashed

was a soft error in its rotation control. The NXT robot can be seen as a model for

this satellite. It has a similar task to "rotation control", which is its balance control.

An (m, k) constraint exists for its balancing task, and the task can tolerate faults without

falling down. Finding more (m, k) constraints on di�erent systems will hopefully give more

insight to certain questions in the future, e.g. "Why can one observe certain constraints,
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but not enforce them to prevent failure?". The results in this �eld of research, in which

the aim is to minimize energy consumption while at the same time preventing failures and

guaranteeing a certain quality of control, and the methods and techniques discussed in this

thesis have a lot of possible areas of application in the present and in the future, e.g. in the

automotive, aviation, or space craft industry. Research in this �eld may prevent failures

in the future.
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Appendix A

(m, k) Tables

(m,k) (5,20) (4,20) (3,20) (2,20) (1,20)

60% FR 20/20 20/20 20/20 20/20 17/20

80% FR 20/20 17/20 10/20 0/20 0/20

100% FR 20/20 7/20 0/20 0/20 0/20

Table A.1: (m, k) constraints for sensor injection with fault rates of 60%, 80%, and 100%, number

of successful runs out of 20

(m,k) (16,16) (15,16) (14,16) (13,16) (12,16) (11,16) (10,16)

25% FR 20/20 20/20 20/20 20/20 20/20 20/20 13/20

50% FR 20/20 20/20 20/20 13/20 0/20 0/20 0/20

100% FR 20/20 15/20 9/20 5/20 6/20 2/20 4/20

Table A.2: (m, k) constraints for motor injection with fault rates of 25%, 50%, and 100%, number

of successful runs out of 20
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Success Fault Rate % correct tasks K=16 K=17 K=18 K=19

Y 5 5027 (12,16)

Y 10 4759 (10,16)

Y 15 4480 (7,16)

Y 20 4184 (5,16)

Y 25 3941 (5,16)

Y 30 3669 (4,16)

Y 35 3369 (4,16)

Y 40 3126 (4,16)

Y 45 2934 (3,16)

Y 50 2660 (2,14)

Y 55 2333 (1,14)

N 60 2114

Y 34.9 3369 (4,16) (4,17) (5,18) (5,19)

Y 36 3325 (4,16) (4,17) (5,18) (5,19)

Y 37 3277 (4,16) (4,17) (5,18) (5,19)

Y 38 3219 (4,16) (5,17) (5,18) (5,19)

Y 39 3171 (4,16) (4,17) (5,18) (5,19)

Y 40 3132 (4,16) (4,17) (5,18) (5,19)

Y 41 3081 (4,16) (4,17) (5,18) (5,19)

Y 42 3061 (4,16) (4,17) (5,18) (5,19)

Y 43 3015 (4,16) (4,16) (4,17) (5,18)

Y 44 2960 (3,16) (4,16) (4,17) (5,18)

Y 45 2943 (3,16) (3,16) (4,17) (4,18)

Y 46 2879 (3,15) (3,16) (3,16) (3,17)

Y 47 2826 (2,15) (3,16) (3,16) (3,16)

Y 48 2770 (2,15) (3,16) (3,16) (3,16)

Y 49 2716 (2,14) (3,15) (3,15) (3,16)

Y 50 2670 (2,14) (3,15) (3,15) (3,16)

Y 51 2601 (2,14) (2,15) (2,15) (3,16)

Y 52 2531 (2,14) (2,15) (3,15) (3,16)

N 53 2483

Figure A.1: Left side of the table of (m, k) candidates for the path tracing task, red means failed

run, green indicates possible (m, k) candidates, and the yellow constraints were found increasing

the size of k. Only contraints for k > 16 are relevant
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K=20 K=21 K=22 K=23 K=24 K=25 K=26

(5,20)

(5,20)

(5,20)

(5,19) (5,20)

(5,19) (5,20)

(5,19) (5,20)

(5,19) (5,20)

(5,20) (6,21)

(5,20) (6,21)

(5,20) (6,21)

(5,20) (6,21)

(5,19) (5,19) (6,20)

(5,19) (5,19) (5,20)

(5,19) (5,19) (5,20)

(4,18) (5,19) (5,20)

(4,17) (5,18) (5,19) (5,20) (5,20)

(4,17) (4,18) (5,19) (5,20) (5,20)

(4,17) (4,17) (5,18) (5,18) (5,19) (5,20)

(4,17) (4,17) (4,18) (5,18) (5,19) (5,20)

(3,17) (3,17) (3,18) (3,18) (4,19) (4,19) (4,20)

(3,17) (3,17) (4,18) (4,18) (4,19) (4,19) (5,20)

Figure A.2: Right side of the table of (m, k) candidates for the path tracing task, red means failed

run, green indicates possible (m, k) candidates, and the yellow constraints were found increasing

the size of k
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Success Fault Rate % correct tasks K=6 K=7 K=8 K=9

Y 8.0 4138 (2,6) (3,7) (4,8) (5,9)

Y 7.5 4165 (2,6) (3,7) (4,8) (5,9)

Y 7.0 4185 (3,6) (4,7) (4,8) (5,9)

Y 7.2 4159 (2,6) (3,7) (4,8) (5,9)

Y 7.8 4147 (2,6) (3,7) (4,8) (5,9)

Y 6.8 4195 (3,6) (4,7) (4,8) (5,9)

Y 6.0 5005 (3,6) (4,7) (4,8) (4,9)

Y 6.2 4995 (3,6) (4,7) (4,8) (5,9)

Y 6.4 4989 (3,6) (4,7) (4,8) (5,9)

Y 6.6 4974 (3,6) (4,7) (4,8) (5,9)

Y 6.8 4970 (3,6) (4,7) (4,8) (5,9)

Y 7.0 4958 (3,6) (4,7) (4,8) (5,9)

Y 7.2 4949 (2,6) (3,7) (4,8) (5,9)

Y 7.4 4942 (2,6) (3,7) (4,8) (5,9)

Y 7.6 4934 (2,6) (3,7) (4,8) (5,9)

Y 7.8 4920 (2,6) (3,7) (4,8) (5,9)

Y 8.0 4910 (2,6) (3,7) (4,8) (5,9)

Y 8.5 4844 (2,6) (2,7) (3,8) (3,9)

Y 8.8 4870 (2,6) (2,7) (3,8) (3,9)

Y 9.0 4862 (2,6) (2,7) (3,8) (3,9)

Y 9.2 4849 (2,6) (2,7) (3,8) (3,9)

Y 9.4 4833 (2,6) (2,7) (3,8) (3,9)

Y 9.6 4826 (2,6) (2,7) (3,8) (3,9)

Y 9.8 4811 (2,6) (2,7) (3,8) (3,9)

Y 10.0 4802 (2,6) (2,7) (3,8) (3,9)

Y 11.0 4802 (2,6) (2,7) (3,8) (3,9)

Y 12.0 4704 (2,6) (2,7) (3,8) (3,9)

Y 14.0 4602 (2,6) (2,7) (3,8) (3,9)

Y 15.0 4547 (2,6) (2,7) (3,8) (3,9)

Y 16.0 4490 (2,6) (2,7) (3,8) (3,9)

N 17.0

Figure A.3: Left side of the table of (m, k) candidates for the balancing task, red means failed

run, green indicates possible (m, k) candidates
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K=10 K=11 K=12 K=13 K=14 K=15 K=16

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (10,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (7,11) (8,12) (9,13) (10,14) (10,15) (11,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(6,10) (6,11) (7,12) (8,13) (9,14) (10,15) (11,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (7,14) (8,15) (9,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (7.13) (8,14) (9,15) (10,16)

(4,10) (5,11) (6,12) (6.13) (7,14) (8,15) (8,16)

(4,10) (5,11) (6,12) (6.13) (7,14) (8,15) (8,16)

Figure A.4: Right side of the table of (m, k) candidates for the balancing task. Red means failed

run, green indicates possible (m, k) candidates
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(5,20), 10% S-RE S-DR D-RE D-DR (10,20), 10% S-RE S-DR D-RE D-DR
Sum 4747 4742 4750 4750 Sum 4744 4742 4750 4750
#u 3562 3557 #u 2374 2372
#d 1185 4750 4750 #d 2370 4750 4750
#r 1185 217 0 0 #r 2370 442 0 0

unrel 100 100 unrel 100 100
det 120 120 120 det 120 120 120
rel 700 700 700 700 rel 700 700 700 700

0.25 0.14 0.12 0.12 0.4 0.18 0.12 0.12

(5,20), 20% S-RE S-DR D-RE D-DR (10,20), 20% S-RE S-DR D-RE D-DR
Sum 4741 4739 4744 4741 Sum 4745 4745 4741 4740
#u 3356 3555 #u 2375 2375
#d 1184 4279 4276 #d 2370 4031 4740
#r 1185 413 465 465 #r 2370 838 710 237

unrel 100 100 unrel 100 100
det 120 120 120 det 120 120 120
rel 700 700 700 700 rel 700 700 700 700

0.25 0.17 0.18 0.18 0.4 0.23 0.21 0.16

(5,20), 30% S-RE S-DR D-RE D-DR (10,20), 30% S-RE S-DR D-RE D-DR
Sum 4745 4746 4743 4743 Sum 4745 4743 4747 4747
#u 3560 3561 #u 2375 2373
#d 1185 3363 4743 #d 2370 3257 4747
#r 1185 619 1380 613 #r 2370 1227 1490 753

unrel 100 100 unrel 100 100
det 120 120 120 det 120 120 120
rel 700 700 700 700 rel 700 700 700 700

0.25 0.2 0.29 0.21 0.4 0.29 0.3 0.23

(15,20), 10% S-RE S-DR D-RE D-DR (11,16), 10% S-RE S-DR D-RE D-DR
Sum 4745 4742 4748 4743 Sum 4745 4742 4744 4744
#u 1190 1187 #u 1485 1485
#d 3555 3128 4743 #d 3257 4744 4744
#r 3555 670 1620 271 #r 3260 602 961 185

unrel 100 100 unrel 100 100
det 120 120 120 det 120 120 120
rel 700 700 700 700 rel 700 700 700 700

0.55 0.21 0.32 0.16 0.51 0.2 0.26 0.14

(15,20), 20% S-RE S-DR D-RE D-DR (11,16), 20% S-RE S-DR D-RE D-DR
Sum 4748 4740 4746 4747 Sum 4745 4743 4745 4745
#u 1190 1185 #u 1485 1485
#d 3555 2256 4747 #d 3258 2622 4745
#r 3558 1311 2490 890 #r 3260 1219 2123 762

unrel 100 100 unrel 100 100
det 120 120 120 det 120 120 120
rel 700 700 700 700 rel 700 700 700 700

0.55 0.31 0.42 0.25 0.51 0.3 0.38 0.23

(15,20), 30% S-RE S-DR D-RE D-DR (11,16), 30% S-RE S-DR D-RE D-DR
Sum 4745 4742 4743 4746 Sum 4744 4742 4745 4748
#u 1190 1187 #u 1485 1485
#d 3555 1607 4746 #d 3257 1852 4748
#r 3555 1824 3136 1614 #r 3259 1665 2893 781

unrel 100 100 unrel 100 100
det 120 120 120 det 120 120 120
rel 700 700 700 700 rel 700 700 700 700

0.55 0.4 0.5 0.35 0.51 0.36 0.48 0.24

Figure B.1: Overall utilization data for all constraints and fault rates.
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