'tLj technische universitat
dortmund

Embedded & Real-
time Operating
Systems

Peter Marwedel
TU Dortmund,
Informatik 12
Germany

2008/11/24

fakultat fur informatik
informatik 12

Structure of this course

New

3: Embedded clustering
System HW

5: Scheduling,

HW/SW-Partitioning,

A

8: Testing

2: Specifications || applications to MP-

Mapping
4: Standard
S_oftware, Re.al- 6- Evaluation <> 7: Optimization of
Time Operating - EValualion ™ Embedded Systems
Systems

Book chapter 4.3

technische universitat = fakultat far O p. marwedel, 2
dortmund informatik informatik 12, 2008 - e

Reuse of standard software components

Knowledge from previous designs to be
made available in the form of intellectual
property (IP, for SW & HW).

= Operating systems

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Embedded operating systems
- Requirement: Configurability -

Configurability
No single RTOS will fit all needs, no overhead for
unused functions tolerated <= configurability needed.
= simplest form: remove unused functions (by linker ?).
= Conditional compilation (using #if and #ifdef commands).
= Dynamic data might be replaced by static data.
= Advanced compile-time evaluation useful.
= Object-orientation could lead to a derivation subclasses
Verification a potential problem of systems
with a large number of derived OSs:
= Each derived OS must be tested thoroughly;
= potential problem for eCos (open source RTOS from Red
Hat), including 100 to 200 configuration points [Takada, 01].

technische universitat = fakultat far O p. marwedel, 4
dortmund informatik informatik 12, 2008 -

Example: Configuration of VxWorks

Mﬂm I default

:

f EI {;} Heal'l'gltnrrf'g Vrwlorks

. @ C++ components

|j ﬂ apphcation components
=g development tool components
S sy

=] lil!’lBH

8 Rzt

.l WDB agent components
-l Windwiew components

-p# kernvel object show routine
- loader components

o
g target shell components
hardware

network components

obsolete components

operating spstem components

FER N 8 | NTCE R RN —

E] LIal

I Remove Componentis)

C++ symbol demangler
syrmbal table
dowrloaded symboal table

e

93572 14360 1058 1743

timex

target debugaing
shell banner
target thell
target loader

A75052 4808 ZA7I6 4085?5

Automatic dependency analysis and size calculations allow users to quickly custom-

tailor the VXWORKS operating system.

technische universitat

dortmund

fakultat fur
informatik

© Windriver

O p. marwedel,
informatik 12, 2008

-pdf

t_tools/ide/tornado2/tornado 2 ds

http://www.windriver.com/products/developmen

&)

Embedded operating systems
-Requirement: Disc and network handled by tasks-

= Disc & network handled by tasks instead of integrated
drivers. Relatively slow discs & networks can be handled by
tasks.

= Many ES without disc, a keyboard, a screen or a mouse.

= Effectively no device that needs to be supported by all
versions of the OS, except maybe the system timer.

Embedded OS Standard OS
application software application software
middleware | middleware middleware |middleware
device driver |device driver “ operating system

kernel device driver |device driver

technische universitat = fakultat far O p. marwedel, 6
dortmund informatik informatik 12, 2008 -V

Example: WindRiver Platform Industrial Automation

TOOLS

WIND RIVER PLATFORM /A

TORNADO® |0 GNU & DIAB Compilers

o et

-—_

Reference Hardware and Bring-up Tools

* Optionad

B Core Runtime
B Multimedia
[Foundation Connectivity

{_lIndustrial Ethernet & Fieldbus

["] Enterprise Connectivity

"] Hardware & Bring-up Tools

technische universitat
dortmund

= fakultat fir O p. marwedel,
informatik informatik 12, 2008

© Windriver

Embedded operating systems
- Requirement: Protection is optional-

Protection mechanisms not always necessary:

ES typically designed for a single purpose,

untested programs rarely loaded, SW considered reliable.
(However, protection mechanisms may be needed for safety
and security reasons).

<

Privileged /O instructions not necessary and
tasks can do their own 1/O.

Example: Let switch be the address of some switch
Simply use

e
load register,switch o w
instead of OS call.

technische universitat = fakultat far O p. marwedel, 8
dortmund informatik informatik 12, 2008 - O-

Embedded operating systems

- Requirement: Interrupts not restricted to OS -

Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since

embedded programs can be considered to be tested,
since protection is not necessary and
since efficient control over a variety of devices is required,

it is possible to let interrupts directly start or stop tasks (by
storing the tasks start address in the interrupt table).

More efficient than going through OS services.

Reduced composability: if a task is connected to an
interrupt, it may be difficult to add another task which also
needs to be started by an event.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Embedded operating systems
- Requirement: Real-time capability-

Many embedded systems are real-time (RT) systems and,
hence, the OS used in these systems must be real-time
operating systems (RTOSes).

|

@«.gl

technische universitat = fakultat far O p. marwedel, 10
dortmund informatik informatik 12, 2008 - -

Real-time operating systems
- Real-time OS (1) -

Def.. (A) real-time operating system is an operating system
that supports the construction of real-time systems
The following are the three key requirements
3. The timing behavior of the OS must be predictable.
[1 services of the OS: Upper bound on the execution time!
RTOSs must be deterministic:
= unlike standard Java,
= short times during which interrupts are disabled,
= contiguous files to avoid unpredictable head

movements.
[Takada, 2001]

technische universitat = fakultat far O p. marwedel, 11
dortmund informatik informatik 12, 2008 - -

Real-time operating systems
- Real-time OS (2) -
1. OS must manage the timing and scheduling

= OS possibly has to be aware of task deadlines;
(unless scheduling is done off-line).

= OS must provide precise time services with high
resolution.

[Takada, 2001]

technische universitat = fakultat far O p. marwedel, 12
dortmund informatik informatik 12, 2008 - -

Time services

Time plays a central role in “real-time” systems.
Actual time is described by real numbers.
Two discrete standards are used in real-time equipment:

* International atomic time TAl
(french: temps atomic internationale)
Free of any artificial artifacts.

= Universal Time Coordinated (UTC)
UTC is defined by astronomical standards

UTC and TAIl identical on Jan. 1st, 1958.
30 seconds had to be added since then.
Not without problems: New Year may start twice per night.

technische universitat = fakultat far O p. marwedel, 13
dortmund informatik informatik 12, 2008 - -

Internal synchronization

Synchronization with one master clock
. Typically used in startup-phases
Distributed synchronization:
3. Collect information from neighbors
4. Compute correction value
5. Set correction value.
Precision of step 1 depends on how information is collected:
Application level: ~500 us to 5 ms
Operation system kernel: 10 ps to 100 us
Communication hardware: < 10 ys

technische universitat = fakultat far O p. marwedel, 14
dortmund informatik informatik 12, 2008 - -

Byzantine Error

Erroneous local clocks can have an impact on the computed
local time.

Advanced algorithms are fault-tolerant with respect to
Byzantine errors. Excluding k erroneous clocks is possible
with 3k+1 clocks (largest and smallest values will be
excluded.

Many publications in this area.

technische universitat = fakultat far O p. marwedel, 15
dortmund informatik informatik 12, 2008 - -

External synchronization

External synchronization guarantees consistency with actual
physical time.

Recent trend is to use GPS for ext. synchronization

GPS offers TAl and UTC time information.

Resolution is about 100 ns.

‘ technische universitat == fakultat fir O p. marwedel, 16
dortmund . W informatik informatik 12, 2008 - -

Problems with external synchronization

Problematic from the perspective of fault tolerance:
Erroneous values are copied to all stations.
Consequence: Accepting only small changes to local time.

Many time formats too restricted,;
e.g..: NTP protocol includes only years up to 2036

Full seconds, UTC, 4 bytes; Binary fraction of second, 4 bytes

Range up the years 2036; 136 year wrap around cycle

For time services and global synchronization of clocks
synchronization see Kopetz, 1997.

technische universitat = fakultat far O p. marwedel, 17
dortmund informatik informatik 12, 2008 - -

Real-time operating systems
- Real-time OS (3) -

1. The OS must be fast
Practically important.

[Takada, 2001]

technische universitat = fakultat far O p. marwedel, 18
dortmund informatik informatik 12, 2008 - -

RTOS-Kernels

Distinction between

= real-time kernels and modified kernels of standard OSes.

application software

middleware | middleware

device driver | device driver

real—-time kernel

application software

middleware

middleware

operating system

device driver

device driver

Distinction between

= general RTOSes and RTOSes for specific domains,
= standard APlIs (e.g. POSIX RT-Extension of Unix,

technische universitat = fakultat fir
dortmund informatik

ITRON, OSEK) or proprietary APIs.

[p. marwedel,
informatik 12, 2008

- 19-

Functionality of RTOS-Kernels

Includes
" processor management,)
" memory management, resource management

= and timer management;
= task management (resume, wait etc),
" Inter-task communication and synchronization.

technische universitat = fakultat far O p. marwedel, 20
dortmund informatik informatik 12, 2008 - -

Classes of RTOSes according to R. Gupta
1. Fast proprietary kernels

Fast proprietary kernels
For complex systems, these kernels are inadequate,

because they are designed to be fast, rather than to be

predictable in every respect
[R. Gupta, UCI/UCSD]

Examples include
QNX, PDOS, VCOS, VTRX32, VXWORKS.

technische universitat = fakultat far O p. marwedel, 21
dortmund informatik informatik 12, 2008 - -

Classes of RTOSes according to R. Gupta
2. Real-time extensions to standard OSs

Real-time extensions to standard OSes:
Attempt to exploit comfortable main stream OSes.
RT-kernel running all RT-tasks.

Standard-OS executed as one task.

non-RT task 1| non-RT task 2

RT-task 1| RT-task 2

device driver |device driver Standard-0S

real-time kernel

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;
less comfortable than expected

technische universitat = fakultat far O p. marwedel, 29
dortmund informatik informatik 12, 2008 - -

Example: RT-Linux

; RT-tasks cannot use
@ standard OS callls.
M Commercially available from
Tseheduler ™ fsmlabs (www.fsmlabs.com)

Linux-Kernel @

_ driver) I

A A

interrupts !

y

RT-Scheduler _
Interrupts

[RT—Linux

'interru pts

A 4

Hardware

technische universitat = fakultat far O p. marwedel, 23
dortmund informatik informatik 12, 2008 - -

Example: Posix 1.b RT-extensions to Linux

Standard scheduler can be replaced by POSIX scheduler
implementing priorities for RT tasks

\ \ I / Special RT-calls and
| POSIX 1.b scheduler A standard OS calls
Linux-Kernel e .
Easy programming,
\ driver Y no guarantee for
/0, interrupts meeting deadline

Hardware

technische universitat = fakultat far O p. marwedel, 24
dortmund informatik informatik 12, 2008 - -

Evaluation (Gupta)

According to Gupta, trying to use a version of a standard OS:
not the correct approach because too many basic and
inappropriate underlying assumptions still exist such as
optimizing for the average case (rather than the worst
case), ... ignoring most if not all semantic information, and
independent CPU scheduling and resource allocation.
Dependences between tasks not frequent for most
applications of std. OSs & therefore frequently ignored.
Situation different for ES since dependences between tasks
are quite common.

technische universitat = fakultat far O p. marwedel, 25
dortmund _ informatik informatik 12, 2008 - -

Classes of RTOSes according to R. Gupta
3. Research systems trying to avoid limitations

Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and
Melody

Research issues [Takada, 2001]:
* low overhead memory protection,
= temporal protection of computing resources
= RTOSes for on-chip multiprocessors
= support for continuous media
= quality of service (Qo0S) control.
Competition between
= traditional vendors (e.g. Wind River Systems) and
= Embedded Windows XP and Windows CE

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Market

- 26 -

Summary

= General requirements for embedded operating systems
 Configurability, I/O, interrupts
= General properties of real-time operating systems
* Predictability
* Time services, synchronization
* Classes of RTOSs, device driver embedding

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 27 -

