hJ technische universitat 'ﬁ fakultat fur informatik
dortmund informatik 12

Mapping:
Applications - Processors

Peter Marwedel
TU Dortmund, Informatik 12
Germany

2008/12/01

Structure of this course

New

3: Embedded clustering
System HW

5: Scheduling,

HW/SW-Partitioning,

A

8: Testing

2: Specifications || applications to MP-

Mapping
4: Standard
Software, Real- 6: Evaluation kol 7 Optimization of
Time Operating - EValuation ™ Embedded Systems
Systems
Book chapter 4.2
technische universitat = fakultat far O p. marwedel, - 2.

dortmund informatik informatik 12, 2008

Scope of mapping algorithms

Useful terms from hardware synthesis:

= Resource Allocation
Decision concerning type and number of available resources

= Resource Assignment
Mapping: Task - (Hardware) Resource

= xX to yy binding:
Describes a mapping from behavioral to structural domain,
e.g. task to processor binding, variable to memory binding

= Scheduling
Mapping: Tasks — Task start times
Sometimes, resource assignment is
considered being included in scheduling.

technische universitat = fakultat far O p. marwedel, 3
dortmund informatik informatik 12, 2008 TV T

Real-time scheduling

Assume that we are given a task graph G=(V,E).
\l/

Def.: A schedule s of G is a mapping @4.@
VT

of a set of tasks V to start times from domain T.

\
\
\
AY
AY
\
\

~o \
\\ RENRY \
\ RS N
\ AR N
\ ~ N
\ \ ~o \
~
’ | h | “ A > | » t
»

Typically, schedules have to respect a number of constraints,
Incl. resource constraints, dependency constraints, deadlines.
Scheduling = finding such a mapping.

technische universitat = fakultat far O p. marwedel, 4
dortmund informatik informatik 12, 2008 -

Classes of mapping algorithms
considered in this course

= Classical scheduling algorithms
Mostly for independent tasks & ignoring communication,
mostly for mono- and homogeneous multiprocessors

= Hardware/software partitioning
Dependent tasks, heterogeneous systems,
focus on resource assignment

= Dependent tasks as considered in architectural
synthesis
Initially designed in different context, but applicable

* Design space exploration using genetic algorithms
Heterogeneous systems, incl. communication modeling

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Classification of scheduling algorithms

real-time scheduling

soft deadlines

hard deadlines
—

periodic aperiodic
preemptive non—preemptive preemptive non—preemptive
static dynamic static dynamic static dynamic static dynamic
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008 - 6-

Hard and soft deadlines

real-time scheduling

hard deadlines soft deadlines

perioic aperiodic
preemptive non—preemptive preemptive non—preemptive
static dynamic static dynamic static dynamic static dynamic

| ¥

@«.gl

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.

We will focus on hard deadlines.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Periodic and aperiodic tasks

real-time scheduling

- T

" hard deadlines soft deadlines

N A

preemptive non-preemptive preemptive non—preemptive

SN SN N N

static dynamic static dynamic static dynamic static dynamic
Def.: Tasks which must be executed once every p units of

time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Preemptive and non-preemptive scheduling

real-time scheduling

- T

hard deadlines soft deadlines
periodic aperiodic
. on-preemptive

static dynamic static dynamic static dynamic static dynamic

* Non-preemptive schedulers:
Tasks are executed until they are done.

Response time for external events may be quite long.
* Preemptive schedulers: To be used if
- some tasks have long execution times or
- if the response time for external events to be short.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

Centralized and distributed scheduling

= Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several
pProcessors.

* Mono- and multi-processor scheduling:
- Simple scheduling algorithms handle single processors,

- more complex algorithms handle multiple processors.
« algorithms for homogeneous multi-processor systems

» algorithms for heterogeneous multi-processor systems
(includes HW accelerators as special case).

technische universitat = fakultat far O p. marwedel, 10
dortmund informatik informatik 12, 2008 - -

Dynamic/online scheduling

= Dynamic/online scheduling:
Processor allocation decisions
(scheduling) at run-time; based on the
information about the tasks arrived so
far.

HISTORY

real-time scheduling

- T
hard deadlines soft deadlines
periodic aperiodic
preemptive non-preemptive preemptive non—preemptive

technische universitat = fakultat far O p. marwedel, 11
dortmund informatik informatik 12, 2008 - -

Static/offline scheduling

= Static/offline scheduling:
Scheduling taking a priori knowledge about arrival
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by
timer. Timer controlled by a table generated at
design time.

Time Action WCET
10 start T'L 12
17 send M5 @
22 stop T1 .
38 stat T2 | 20 Dispatcher
47 send M3
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008

- 12 -

Time-triggered systems (1)

In an entirely time-triggered system, the temporal control
structure of all tasks is established a priori by off-line support-
tools. This temporal control structure is encoded in a Task-
Descriptor List (TDL) that contains the cyclic schedule for all
activities of the node. This schedule considers the required
precedence and mutual exclusion relationships among the
tasks such that an explicit coordination of the tasks by the
operating system at run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It
looks at the TDL, and then performs the action that has been

planned for this instant [Kopetz]. time [acion [worn
10 start T1 12

17 send M5 @
s | sn | o

Dispatcher

47 send M3

technische universitat = fakultat far O p. marwedel, 13
dortmund informatik informatik 12, 2008 - -

Time-triggered systems (2)

... pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may
be poor.

technische universitat = fakultat far O p. marwedel, 14
dortmund informatik informatik 12, 2008 - -

Schedulability

Set of tasks is schedulable under a set of
constraints, if a schedule exists for that set
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for
schedule checked. (Hopefully) small
probability of not guaranteeing a schedule
even though one exists.

Necessary tests: checking necessary

conditions. Used to show no schedule exists.

There may be cases in which no schedule
exists & we cannot prove it.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

schedulable

- 15 -

Cost functions

Cost function: Different algorithms aim at minimizing
different functions.

Def.: Maximum lateness =
max_, ... (completion time — deadline)

Is <0 if all tasks complete before deadline.

T1 —
T2 ' HM
o.® aX' la
> 1
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008

- 16 -

[]
technische universitat fakultat fur informatik
dortmund informatik 12

Classical scheduling algorithms
for aperiodic systems

Peter Marwedel
TU Dortmund, Informatik 12

Aperiodic scheduling
- Scheduling with no precedence constraints -

Let {T. } be a set of tasks. Let:
= C,be the execution time of T,

= d. be the deadline interval, that is,

the time between T, becoming available

and the time until which T, has to finish execution.
= (. be the laxity or slack, definedas ¢, = d. - c,

= f.be the finishing time.
Availability of Task | - - - = d

technische universitat = fakultat far O p. marwedel, 18
dortmund informatik informatik 12, 2008 - -

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

=

fi

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

technische universitat = fakultat far O p. marwedel, 19
dortmund informatik informatik 12, 2008 - -

Optimality of EDD

EDD is optimal, since it follows Jackson's rule:

Given a set of n independent tasks, any algorithm that
executes the tasks in order of non-decreasing (absolute)
deadlines is optimal with respect to minimizing the maximum
lateness.

Proof (See Buttazzo, 2002):
= Let 0 be a schedule produced by any algorithm A
= IfA#2EDD - OT_, T,,d, <d,, T, immediately precedes
T,ino.

= Let o' be the schedule obtained by exchanging T, and T,

technische universitat = fakultat far O p. marwedel, 20
dortmund informatik informatik 12, 2008 - -

Exchanging T,and T, cannot increase lateness

Max. lateness for T,and T, incis L__ (a,b)=f.-d

max

Max. lateness for T,and T, inc'is L' _ (a,b)=max(L",L")

max

Two possible cases
1. L'zL":- L' (ab)=f —-d <f-d=L__(a,b)

max max

since T, starts earlier in schedule ©'.
2. L'sL'): - L' (ab)=Ff —-d,=f—-d<f —d =

max

a b) since f,=f, and d d,
(a,b)

L e

vl (

max) - max

o T, T,

o [T, |7, [T
|

f.=f,

technische universitat = fakultat far O p. marwedel, 21
dortmund informatik informatik 12, 2008 - -

EDD is optimal

= Any schedule o with lateness L can be transformed into an
EDD schedule o with lateness L" < L, which is the minimum
lateness.

= EDD is optimal (g.e.d.)

technische universitat = fakultat far O p. marwedel, 29
dortmund informatik informatik 12, 2008 - -

Earliest Deadline First (EDF)
- Horn’s Theorem -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum

lateness.

technische universitat = fakultat far O p. marwedel, 23
dortmund informatik informatik 12, 2008 - -

Earliest Deadline First (EDF)
- Algorithm -

Earliest deadline first (EDF) algorithm:
= Each time a new ready task arrives:

= |t is inserted into a queue of ready tasks, sorted by their
absolute deadlines. Task at head of queue is executed.
= |If a newly arrived task is inserted at the head of the queue,
the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n?),
(less with binary search or bucket arrays).

Sorted queue

ON N NON

f
Executing task

technische universitat = fakultat far O p. marwedel, 24
dortmund informatik informatik 12, 2008 - -

Earliest Deadline First (EDF)

- Example -
arrival [duration | deadline
T1 0 10 33
1'Ia§k\arrivals T2 | 4 3 28
Voo T3| 5 10 29
T1 —
Ql
T2 N
o ! //'Iﬁ'k\ !|'|'| 1 | | I
0 2 4 8 10 12 14 16 18 20 22 t
Earlier deadline | | Later deadline
& preemption %~ No preemption
technische universitat = fakultat far O p. marwedel, . 25

dortmund

informatik

informatik 12, 2008

Optimality of EDF

To be shown: EDF minimizes maximum lateness.
Proof (Buttazzo, 2002):

* Let o be a schedule produced by generic schedule A

= Let 0., schedule produced by EDF

* Preemption allowed: tasks executed in disjoint time
intervals

= o divided into time slices of 1 time unit each

= Time slices denoted by [t, t+1)

= Let o(t): task executing in [t, t+1)

= Let E(f): task which, at time t, has the earliest deadline

= Let t(f): time (=f) at which the next slice of task E(f)
begins its execution in the current schedule

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 26 -

Optimality of EDF (2)

If 0 # 0-,, then there exists time t. o(t) # E(t)
ldea: swapping o(t) and E(t) cannot increase max. lateness.

@
. t=4; o(f)=4; E(t)=2; t.=6; o(t,)=2 &
T1 [v »
T, ? - .
T3 : [l > ¢
T4 T T T - T T ! T T ! T T 4 — >
0 2 4 6 8 10 12 14 16
T, E—— olf)=2; olt)=4 — .t
T, [- .
T, [l . ¢
T4 T T T T - T ! T T ! T T 4 T >
0 2 4 6 8 10 12 14 16

If o(t) starts at =0 and D=max{d.} then o.,- can be obtained
from o by at most D transpositions. [Buttazzo, 2002]

Optimality of EDF (3)

Algorithm interchange: Using the same argument as in
{ for (=0 to D-1) { the proof of Jackson’s algorithm,
if (o(t) # E(t)) { it is easy to show that swapping
a(tz) = o(?); cannot increase maximum
o(t) = E(t); }}} lateness; hence EDF is optimal.

Does interchange preserve schedulability?
1. task E(f) moved ahead: meeting deadline in new
schedule if meeting deadline in o
2. task o(f) delayed: if o(?) is feasible, then (f-+1) < d,,
where d; is the earliest deadline. Since d; < d. for any J,
we have f.+1 < d,, which guarantees schedulability of the

delayed task. g.e.d.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008 [Buttazzo, 2002] - 28 -

Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity (the less laxity, the
higher the priority); dynamically changing priority; preemptive.

T1

T2
T3

arrival duration | deadline
T 1 0 10 33
T2 4 3 28 ¢(T1)=33-15-6=12
10(T3)=29-15-2=12
T3| 5 10 29 ;,e()
| S |
_l i
— 1

10

|
12:

I
' 14

!

—

16 18 20 22

i

((T1)=33-4-6=23 ¢ (T1)=33-5-6=22 ¢ (T1)=33-13-6=14 ¢ (T1)=33-16-6=11
¢ (T2)=28-4-3=21 ¢(T2)=28-5-2=21
¢ (T3)=29-5-10=14 ¢ (T3)=29-13-2=14

technische universitat
dortmund

= fakultat fir
informatik

[p. marwedel,
informatik 12, 2008

¢ (T2)=28-13-2=13 ¢ (T3)=29-16-1=12

_ 29-

Properties

= Not sufficient to call scheduler & re-compute laxity just at
task arrival times.

= QOverhead for calls of the scheduler.
= Many context switches.
* Detects missed deadlines early.

= LL is also an optimal scheduling for mono-processor
systems.

= Dynamic priorities < cannot be used with a fixed prio OS.

= LL scheduling requires the knowledge of the execution
time.

technische universitat = fakultat far O p. marwedel, 30
dortmund informatik informatik 12, 2008 - -

Scheduling without preemption (1)

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.

Proof: Suppose: optimal schedulers never leave processor
idle.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 31 -

Scheduling without preemption (2)

T1: periodic, ¢, =2, p,=4,d, =4
T2: occasionally available at times 4*n+1, ¢,= 1, d,= 1
T1 has to start at =0

- deadline missed, but schedule is possible (start T2 first)
%= scheduler is not optimal = contradiction! g.e.d.

Available Missed deadline Idle
\;{ : :
T1 |V

T2 | F-

technische universitat = fakultat far O p. marwedel, 32
dortmund informatik informatik 12, 2008 - -

Scheduling without preemption

Preemption not allowed: = optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

= Knowledge about the future is needed for optimal
scheduling algorithms
®"No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

technische universitat = fakultat far O p. marwedel, 33
dortmund informatik informatik 12, 2008 - -

Scheduling with precedence constraints

Task graph and possible schedule:

T1V T2y yT3

10 20 30 40 50 60 70 t
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008

- 34 -

Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

LDF [Lawler, 1973]: reads the task graph and among the tasks
with no successors inserts the one with the latest deadline into a

gueue. It then repeats this process, putting tasks whose
successor have all been selected into the queue.

At run-time, the tasks are executed in the generated total order.
LDF is non-preemptive and is optimal for mono-processors.

DR ¢
T1\§/ TZ;E/ \é/TS

10 20 30 40 50 60 70 t
If no local deadlines exist, LDF performs just a topological sort.

technische universitat = fakultat far O p. marwedel, 35
dortmund informatik informatik 12, 2008 - -

Asynchronous Arrival Times:
Modified EDF Algorithm

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of
dependent tasks into a set of independent tasks with different
timing parameters [Chetto90].

This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm developed
by Stankovic and Ramamritham can be used.

technische universitat = fakultat far O p. marwedel, 36
dortmund informatik informatik 12, 2008 - -

Overview

» Scheduling of aperiodic tasks with real-time constraints:
= Table with some known algorithms:

Equal arrival times Arbitrary arrival times

non preemptive preemptive
Independent EDD EDF (Horn)
tasks (Jackson)
Dependent LDF (Lawler) EDF* (Chetto)
tasks

© L. Thiele, 2006
m g‘iﬂﬁ:t’;&gf ?:;::hnofogy 3-15 andcﬂ?xgﬁﬁg Eggg?rﬁgg? &
Hf‘ technische universitat £ fakultat far [p. marwedel,

“’ dortmund . W informatik informatik 12, 2008 - 37 -

Summary

Definition mapping terms
= Resource allocation, assignment, binding, scheduling
* Hard vs. soft deadlines
= Static vs. dynamic = TT-OS
= Schedulability
Classical scheduling
= Aperiodic tasks

* No precedences
* Simultaneous (¥EDD)
& Asynchronous Arrival Times (¢ EDF, LL)
* Precedences
« Simultaneous Arrival Times (= LDF)
* Asynchronous Arrival Times (¥ mEDF)

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

_ 38 -

