

Standard Optimization Techniques

Peter Marwedel Informatik 12 TU Dortmund Germany

2008/12/06

Structure of this course

Optimization Alternatives

- Use of classical single objective optimization methods
 - simulated annealing, tabu search
 - integer linear program
 - other constructive or iterative heuristic methods
- Decision making (weighting the different objectives) is done before the optimization.
- Population based optimization methods
 - evolutionary algorithms
 - genetic algorithms
- Decision making is done after the optimization.

Integer programming models

Ingredients:

- Cost function \ Involving linear expressions of

Cost function

integer variables from a set
$$X$$

$$C = \sum a_i x_i \text{ with } a_i \in R, x_i \in \mathbb{N} \quad (1)$$

Constraints:
$$\forall j \in J : \sum_{x_i \in X} b_{i,j} x_i \ge c_j \text{ with } b_{i,j}, c_j \in \mathbb{R}$$
 (2)

 $X_i \in X$

Def.: The problem of minimizing (1) subject to the constraints (2) is called an **integer (linear) programming (ILP) problem**.

If all x_i are constrained to be either 0 or 1, the IP problem said to be a **0/1 integer (linear) programming problem**.

Example

$$C = 5x_1 + 6x_2 + 4x_3$$

 $x_1 + x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 \in \{0,1\}$

$\overline{x_1}$	x_2	х3	С		
0	1	1	10		
1	0	1	9	•	Optimal
1	1	0	11		
1	1	1	15		

Remarks on integer programming

- Maximizing the cost function: just set C'=-C
- Integer programming is NP-complete.
- Running times depend exponentially on problem size, but problems of >1000 vars solvable with good solver (depending on the size and structure of the problem)
- The case of $x_i \in \mathbb{R}$ is called *linear programming* (LP). LP has polynomial complexity, but most algorithms are exponential, still in practice faster than for ILP problems.
- The case of some $x_i \in \mathbb{R}$ and some $x_i \in \mathbb{N}$ is called *mixed* integer-linear programming.
- ILP/LP models can be a good starting point for modeling, even if in the end heuristics have to be used to solve them.

Simulated Annealing

- General method for solving combinatorial optimization problems.
- Based the model of slowly cooling crystal liquids.
- Some configuration is subject to changes.
- Special property of Simulated annealing: Changes leading to a poorer configuration (with respect to some cost function) are accepted with a certain probability.
- This probability is controlled by a temperature parameter: the probability is smaller for smaller temperatures.

Simulated Annealing Algorithm

```
procedure SimulatedAnnealing;
var i, T: integer;
begin
 i := 0; T := MaxT;
  configuration:= <some initial configuration>;
 while not terminate(i, T) do
  begin
   while InnerLoop do
    begin NewConfig := variation(configuration);
     delta := evaluation(NewConfig,configuration);
      if delta < 0
     then configuration := NewConfig;
     else if SmallEnough(delta, T, random(0,1))
       then configuration := Newconfiguration;
    end;
  T:= NewT(i,T); i:=i+1;
end; end;
```


Explanation

- Initially, some random initial configuration is created.
- Current temperature is set to a large value.
- Outer loop:
 - Temperature is reduced for each iteration
 - Terminated if (temperature ≤ lower limit) or (number of iterations ≥ upper limit).
- Inner loop: For each iteration:
 - New configuration generated from current configuration
 - Accepted if (new cost ≤ cost of current configuration)
 - Accepted with temperature-dependent probability if (cost of new config. > cost of current configuration).

Behavior for actual functions

[people.equars.com/~marco/poli/phd/node57.html]

http://foghorn.cadlab.lafayette.edu/cadapplets/fp/fpIntro.html

The Knapsack Problem

weight = 750g profit = 5

Goal: choose subset that

- maximizes overall profit
- · minimizes total weight

The Solution Space

The Trade-off Front

Observations: • there is no single optimal solution, but

② some solutions ♦) are better than others ♦)

Decision Making: Selecting a Solution

- Approaches: profit more important than cost (ranking)
 - weight must not exceed 2400g (constraint)

Optimization Alternatives

scalarization

weighted sum

population-based SPEA2

y₂

parameter-oriented scaling-dependent set-oriented scaling-independent

Multiobjective Optimization

Principles of Evolution

A Generic Multiobjective EA

An Evolutionary Algorithm in Action

Dominance, Pareto Points

- A (design) point J_k is dominated by J_i, if J_i is
 - better or equal than J_k in all criteria and
 - better in at least one criterion.
- A point is Pareto-optimal or a Pareto-point, if it is not dominated.
- The domination relation imposes a partial order on all design points
 - We are faced with a set of optimal solutions.
 - Divergence of solutions vs. convergence.

Multi-objective Optimization

Definition 1 (Dominance relation)

Let $f, g \in \mathbb{R}^m$. Then f is said to dominate g, denoted as $f \succ g$, iff

1.
$$\forall i \in \{1, \ldots, m\} : f_i \geq g_i$$

2.
$$\exists j \in \{1, \ldots, m\} : f_j > g_j$$

Definition 2 (Pareto set)

Let $F \subseteq \mathbb{R}^m$ be a set of vectors. Then the Pareto set $F^* \subseteq F$ is defined as follows: F^* contains all vectors $g \in F$ which are not dominated by any vector $f \in F$, i.e.

$$F^* := \{ g \in F \mid \not\exists f \in F : f \succ g \} \tag{1}$$

Multiobjective Optimization

Maximize $(y_1, y_2, ..., y_k) = f(x_1, x_2, ..., x_n)$

Pareto set = set of all Pareto-optimal solutions

Randomized (Black Box) Search Algorithms

Idea: find good solutions without investigating all solutions

Assumptions: better solutions can be found in the neighborhood of good solutions

information available only by function evaluations

Randomized search algorithm $f \qquad t \geq t+1: \\ \qquad \qquad (randomly) \text{ choose a} \\ \qquad \qquad \text{solution } x_{t+1} \text{ using solutions} \\ \qquad \qquad x_1, \, \dots, \, x_t$

t = 1:

(randomly) choose a solution x₁ to start with

Types of Randomized Search Algorithms

Issues in Multi-Objective Optimization

Design Choices

Example: SPEA2 Algorithm

Step 1:	Generate initial population P0 and empty archive (external set) A_0 . Set t = 0.
Step 2:	Calculate fitness values of individuals in P _t and A _t .
Step 3:	A_{t+1} = nondominated individuals in P_t and A_t . If size of A_{t+1} > N then reduce A_{t+1} , else if size of A_{t+1} < N then fill A_{t+1} with dominated individuals in P_t and A_t .
Step 4:	If $t > T$ then output the nondominated set of A_{t+1} . Stop.
Step 5:	Fill mating pool by binary tournament selection.
Step 6:	Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Set $t = t + 1$ and go to Step 2.

Representation

Issues:

- completeness (each solution has an encoding)
- uniformity (all solutions are represented equally)
- redundancy (cardinality of search space vs. solution space)
- feasibility (each encoding maps to a feasible solution)

Summary

Single objective optimization methods

- decision is performed during optimization
- Examples: integer programming, simulated annealing

Multiple objective optimization methods

- decision is done after optimization
- Example: Evolutionary algorithms
- Refer to publications of Thiele or Schwefel et al. for more information

Concept of Pareto points

- eliminates large set of non-relevant design points
- allows separating optimization and decision

