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Optimization Alternatives

* Use of classical single objective optimization methods
* simulated annealing, tabu search
* integer linear program
* other constructive or iterative heuristic methods

* Decision making (weighting the different objectives) is
done before the optimization.

* Population based optimization methods
* evolutionary algorithms
* genetic algorithms
* Decision making is done after the optimization.
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Integer programming models

Ingredients:
" Cost function 7 Involving linear expressions of
= Constraints integer variables from a set X
Cost function C= ) ax witha, eRx, €/ (1)
x;eX
Constraints:vj e J: » b, ; X, >2¢c;withb,;,c, e £ (2)

x;eX

Def.. The problem of minimizing (1) subject to the constraints
(2) is called an integer (linear) programming (ILP) problem.
If all x; are constrained to be either O or 1, the IP problem said
to be a 0/1 integer (linear) programming problem.
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Example

C=5x,1t6x,+4x,

X;t Xot X322
X4, X5, X5 U {01}

0 1 1 10
1 0 1 9 <«—— Optimal
1 1 0 11
1 1 1 15
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Remarks on integer programming

= Maximizing the cost function: just set C=-C
* |nteger programming is NP-complete.

* Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver
(depending on the size and structure of the problem)

= The case of x. [/R is called linear programming (LP).

LP has polynomial complexity, but most algorithms are
exponential, still in practice faster than for ILP problems.

= The case of some x;, [/R and some x; [/N is called mixed
integer-linear programming.

= |LP/LP models can be a good starting point for modeling,
even if in the end heuristics have to be used to solve them.
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Simulated Annealing

= General method for solving combinatorial
optimization problems.

= Based the model of slowly cooling crystal liquids.
= Some configuration is subject to changes.

= Special property of Simulated annealing: Changes
leading to a poorer configuration (with respect to
some cost function) are accepted with a certain
probability.

= This probability is controlled by a temperature
parameter: the probability is smaller for smaller
temperatures.
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Simulated Annealing Algorithm

procedure SimulatedAnnealing;
var i, T: integer;
begin
| :=0; T := MaxT;
configuration:= <some initial configuration>;
while not terminate(i, T) do
begin
while InnerLoop do
begin NewConfig := variation(configuration);
delta := evaluation(NewConfig,configuration);
if delta < 0O
then configuration := NewConfig;
else if SmallEnough(delta, T, random(0,1))
then configuration := Newconfiguration;
end;
T:= NewT(i,T); i:=i+1;
end; end;
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Explanation

= |nitially, some random initial configuration is created.
= Current temperature is set to a large value.
= Quter loop:

* Temperature is reduced for each iteration

* Terminated if (temperature < lower limit) or
(number of iterations = upper limit).

" Inner loop: For each iteration:
* New configuration generated from current configuration
* Accepted if (new cost < cost of current configuration)

* Accepted with temperature-dependent probability if
(cost of new config. > cost of current configuration).
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Behavior for actual functions
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The Knapsack Problem

weight =7350g | | weight weight =300g | |weight =

profit =3 1500g profit =7 1000g
profit =3

i
O

profit

Goal: choose subset that
- maximizes overall profit

- minimizes total weight
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The Solution Space
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The Trade-off Front

Observations: @ there is no single optimal solution, but
® some solutions @ ) are better than othersg )
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Decision Making: Selecting a Solution

Approaches: * profit more important than cost (ranking)
* weight must not exceed 24009 (constraint)

profit .
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Optimization Alternatives

scalarization
weighted sum

parameter-oriented
scaling-dependent
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population-based
SPEAZ
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Computer Enginsering
4-11 and Networks La%uratu-’].f Ti‘



Multiobjective Optimization
Minimize

(X1, X2, ..., Xn) (Y1, V2, ..., Yk)

objective
space

decision
space

dominated

~Pareto optimal

» not dominated

fficulties: @ large s&arch space @ rultiple opfima

. .

O;
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A Generic Multiobjective EA

population archive
evaluate
update
sample
truncate
vary
new population(® new archive
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An Evolutionary Algorithm in Action

max. y2
t hypothetical trade-off front

L

| min. y1
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Dominance, Pareto Points

* A (design) point J, is dominated by J, if J;is
* better or equal than J, in all criteria and
* better in at least one criterion.

* A pointis Pareto-optimal or a Pareto-point, if it is not
dominated.

* The domination relation imposes a partial order on all
design points
* We are faced with a set of optimal solutions.
* Divergence of solutions vs. convergence.
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Multi-objective Optimization

Definition 1 (Dominance relation)
Let f,g € R™. Then f is said to dominate g, denoted as f » g, iff

1. Yie{l,....,m}: f; > ¢

f2 | dc}:inated b £
2. 3 e{l,...,m}: f; > g i

i

Definition 2 (Pareto set)
Let ' C R™ be a set of vectors. Then the Pareto set F* C F is defined
as follows: F* contains all vectors g € F' which are not dominated by any
vector f € F, lLe.

F*={geF|AfeF: [ g} (1)
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Multiobjective Optimization

Maximize (y1, Yz, ..., Yk) = f(X1, X2, ..., Xn)

y2 y2

F ‘éﬁare__tg_“_gptimal = not dominated

C_) 35

: better '
O O . ’
v, 0 LTI 4 0 ..............
I LT e R LI N .
incomparable O. Q.. _dominated
worse incomparablg '
Q Q* ._
> Y1 “Y

Pareto set = set of all Pareto-optimal solutions

technische universitat = fakultat far O p. marwedel, 29
dortmund informatik informatik 12, 2008 - -



Randomized (Black Box) Search Algorithms

|dea: find good solutions without investigating all solutions

Assumptions:better solutions can be found in the neighborhood
of good solutions

information available only by function evaluations

Randomized
search algorithm
I
t=1: f t2t+1:
(randomly) choose a (randomly) choose a
solution x; to start with solution x;,; using solutions
CT ¢
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Types of Randomized Search Algorithms

memory selection variation
mating Q
3 .
selection %o
environmental o o
selection %
EA > 1 both
evolutionary algorithm
TS 1 no mating selection
tabu search
SA 1 no mating selection

simulated annealing
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Issues in Multi-Objective Optimization

-

Diversity

Swiss Federal
Institute of Technology

Convergence

* How to maintain a diverse
Pareto set approximation?

@ density estimation

" How to prevent nondominated

solutions from being lost?

©® environmental selection

" » How to guide the population

£-28

towards the Pareto set?

O fitness assignment
and i oo WHEL



Design Choices

representation fitness assignment mating selection

............
»

parameters

environmental selection variation operators

Swiss Federal Computer Engineering T‘
m Instinuce of Technology 4-27 and Netwarks Laboratory i‘



Example: SPEA2 Algorithm

Step 1: Generate initial population PO and empty archive
(external set) A,. Sett=0.

Step 2: Calculate fitness values of individuals in P, and A,

Step 3: A,1 = nondominated individuals in P, and A..
If size of A, > N then reduce A, ,, else if
size of A, < N then fill A,,, with dominated
individuals in P, and A..

Step 4. If t > T then output the nondominated set of A,,;.
Stop.

Step 5: Fill mating pool by binary tournament selection.

Step 6: Apply recombination and mutation operators to
the mating pool and set P,,, to the resulting
population. Sett=t+ 1 and go to Step 2.
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Representation

search space decoder solution space objectives  objective space

[1[a]1[1]t]0] m

solutions encoded by vﬁctors, matriceg, trees, lists, ...
- - AN v -
fixed length  variable length

Issues:

« completeness (each solution has an encoding)
« uniformity (all solutions are represented equally)
+ redundancy (cardinality of search space vs. solution space)

* feasibility (each encoding maps to a feasible solution)
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Summary

Single objective optimization methods

= decision is performed during optimization

= Examples: integer programming, simulated annealing
Multiple objective optimization methods

= decision is done after optimization

= Example: Evolutionary algorithms

= Refer to publications of Thiele or Schwefel et al. for more
information

Concept of Pareto points
= eliminates large set of non-relevant design points
= allows separating optimization and decision
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