'tLj technische universitat
dortmund

Evaluation and
Validation

Peter Marwedel
TU Dortmund, Informatik 12
Germany

2009/01/12

fakultat fur informatik
informatik 12

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Structure of this course

3: Embedded
System HW

5: Scheduling,

_ e .l | HW/SW-Partitioning,
2: Specifications Applications to MP-

A

8: Testing

Mapping

4: Standard
Software, Real-

6: Evaluation | | 7: Optimization of

Time Operating and Validation | | Embedded Systems
Systems
technische universitat = fakultat far O p. marwedel, _ 0.

dortmund informatik informatik 12, 2008

Evaluation and Validation

Definition: Evaluation is the process of computing
quantitative information of some key characteristics of a
certain (possibly partial) design.

Definition: Validation is the process of checking whether or
not a certain (possibly partial) design is appropriate for its
purpose, meets all constraints and will perform as expected
(yes/no decision).

Definition: Validation with mathematical rigor is called
(formal) verification.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

5
O-
d\aﬂ)‘d Worst/best case execution times (1)

o +§§ o"}%@
‘ 2
o 3 \?J@ N o‘é\ S
5 5 c-;\Q o) NN
C O O(o » . ¥ ‘QO
OO0 Q » N &
= 5 @é\ e?"@ & \{@
o = AR & & &
QS L7 & N & O O
R SR i
| | a—_k—‘-$ >
Feasible t)
Other authors Q{,\ Q{,\ execution QQ/,\ Q<<'> Cf(/’\
%) %) timesé@ @ b$ Next
@b é@ x<Q > :
3 & ’ (Qq} slide
& \0° S
& ° ©)

technische universitat = fakultat far O p. marwedel, 4
dortmund informatik informatik 12, 2008 - -

Estimation of Worst-Case Execution Times

Solution: Estimation of upper bounds for the actual (unknown)
WCET

B4 worst-case performance >
£ . .
S worst-case guarantee >
[o
O
3 Lower The actual WCET Upper
= timing BCET must be found or WCET timing
2 bound upper bounded bound
—
0 - possible execution times » time
- timing predictability >

Requirements on WCET estimates:
= Safeness: WCET < WCET_,!

= Tightness: WCET o, — WCET - minimal

technische universitat = fakultat fir © h. falk 5
dortmund | informatik informatik 12, 2008 - -

Worst case execution times (2)

Complexity:
" in the general case: undecidable if a bound exists.

= for restricted programs: simple for “old” architectures,
very complex for new architectures with pipelines, caches,
interrupts, virtual memory, etc.

Approaches:
* for hardware: requires detailed timing behavior

= for software: requires availability of machine programs;
complex analysis (see, e.g., www.absint.de)

technische universitat = fakultat far O p. marwedel, Presentation by R. Wilhelm @ FEST (DVD in
dortmund informatik informatik 12, 2008 German), starting at min. 31:35 min.

- 6 -

WCET estimation:

AT (Absint)

Executable program

CFG-Builder

Static analyzer

Value Analyzer

Cache/Pipeline
Analyzer

technische universitat
dortmund

Loop Bounds

Path Analysis

ILP-Generator

f l

LP-Solver

l

Evaluation

WCET

~ Visuali-

}
Loop Trafo
CRL-File
AIP File
1 PER-File
= fakultat far O p. marwedel,

informatik informatik 12, 2008

zation

WCET estimation for caches

Tag | Index | Offset — Address

[— LRU-based replacement

??

?

Behavior at program joins

Intersection+max. age

4 | 4 |{ach {d}

Union+min. age

Worst case {c} | {e} | {a} | {d}
{a} | { | {cf} {d}
Best case {c} | {e} | {a} | {d}
{a} | {cf}| { | {d}

VARV

ach] 0 | (@

technische universitat
dortmund

= fakultat fir
informatik

O o marwedel, Movie: Presentation by Reinhard Wilhelm @ _ 8 _
informatik 12, 2008 Freiburg ES days (German)

o
ge

X Energy models

= Tiwari (1994): Energy consumption within
processors

= Simunic (1999): Using values from data sheets.
Allows modeling of all components, but not very
precise.

= Russell, Jacome (1998): Measurements for 2
fixed configurations

= Steinke et al., UniDo (2001): mixed model using
measurements and prediction

= Jouppi (1996): Energy consumption of caches
predicted by CACTI.

technische universitat = fakultat far O p. marwedel,
dortmund _ informatik informatik 12, 2008

Steinke’s model

E.g.: ATMEL board with
ARM7TDMI and ext. SRAM

VDD
mA mA
ARM7
DAddr
Dot :> Data
] i i ata
ALU [Je=p|Register F”e%—,\> Memory
Reg 1]
Value l
h-costs, address bus, CPU + memory current Reg# IAddr
150 Barrel L
145 I Shifter [|,_Imm 5| nstr ~ | Instruction
N = n
—, 140 - ———1EN— Memo
E 135 — " — Opcode Y
= 130 =z = s’ o Read -
c " . Multi- Instr. Decoder
£ %] e = Write lier [|& Control Logic
S5 120] o ¢ 0 P 9
o
115
110 : : :
0 5 10 15 20
Hamming-Distance
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008 - 10-

CACTI model

Ingut
Word lines od
Bitlines ~ | E g E
it lines E 8 E
Cotmn mues e Comparison with SPICE
Sense Amps
10000
Comparators e SPICE
Mux Drivers Output Driver
Output Driver {_'_H_I_l— 1000 _l_CACTl ’
oo Data Output
q
c
Cache model used & &
: W
10 1
1

G SR Y SRR SR SR Y7 Yt
Cache Configuration

| Y N R RN VRN PN TR NN T CUN NN TN N RN DN NN FE TREN SR RN SR ME GEND TN S N SN RN RN NN [N MR NN U PR I SN S s S ma |
SN T OO0 CSNYTOOCSNTOOCSNTOOCSNTOOLSNTOOLSNTOOC
. L L g "L L

http://research.compaqg.com/wrl/people/jouppi/CACTI.htm
I

technische universitat = fakultat far O p. marwedel, 11
dortmund informatik informatik 12, 2008 - -

1
S
d\a&)‘e(Risk- and dependability analysis

Example : metal
migration @
Pentium 4

www.jrwhipple.com/computer_hangs.html

“10°“: For many systems, probability of a catastrophe has to
be less than 10 per hour = one case per 100,000 systems
for 10,000 hours.

FIT: failure-in-time unit for failure rate (=1/MTTF=1/MTBF),
1 FIT: rate of 10-° failures per hour

Damages are resulting from hazards.

For every damage there is a severity and a probability.
Several techniques for analyzing risks.

technische universitat = fakultat fur O p. marwedel, Movie on metal migration 12
dortmund informatik informatik 12, 2008 - -

Actual failure rates

_ £ 1090 Different devices
Example: failure rates less ® 100
than 100 FIT for the first D
=
20 years (175,300 hrs) of 8
life at 150°C @ TriQuint £ o
(GaAs) £ 001
[www.triquint.com/company/quality/fags/faq_11.cfm] 1 10 100 10 10 10 10 10 10 10 10"

Time (Hours) at 150°C

Target: Failures rates of systems < 1FIT
Reality: Failures rates of circuits < 100 FIT
®redundancy is required to make a system more reliable
than its components
Analysis frequently works with simplified models <

technische universitat = fakultat fur O p. marwedel, Movie on metal migration 13
dortmund informatik informatik 12, 2008 - -

Reliability: f(t), F(t)

= et T: time until first failure, T is a random variable
= Let f(f) be the density function of T

Example: Exponential distribution + f(t)

A
f{t)=he* \\\\\\\\\\\\\\\\§__—
{

* [(t) = probability of the systtem being faulty at time
Fty=Pr(Tst) F(t)= [f(x)dx
0

Example: Exponential distribution : + F(t)
t
F(t)= JAe'“dx: -[e"],=1- e
0
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008 - 14 -

Reliability: R(f)

" Reliability R(f) = probability that the time until the
first failure is larger than some time f:

F(t)+ R(t)-= ff(x)dx+ }f(x)dx =1
_dR(t)

R(t)=1- F(t) flt)=- =~

Example: Exponential distribution

1
R(t)=e*t
1/
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008 - 15 -

Failure rate

The failure rate at time ¢ is the probability of the system failing
between time f and time {+At:

1(t)= lim Prit< T<t+At|T>t) _ im F(t+48)- F(t) _ f(t)
At- 0 X At T At- 0 AtR(t) (t)
("provided that the system works
azI\A(‘l");
Typical behavior of hardware Eqr exponential distribution:
systems ("bathtub curve")
ft) . de™
— R(t) e
1st phase i 2nd phase i 3rd phase
e ,13/ A > FIT = expected number of failures
in 10° hrs.
technische universitat = fakultat far O p. marwedel,

dortmund informatik informatik 12, 2008 - 16 -

MTTF = E{T }, the statistical mean value of T

00

According to the definition of
MTTF = E{T} - I tUf(t) dt the statistical mean value

0

Example: Exponential distribution

MTTF,, = [t e "dt = M+ J'e'“dt

0 0 IuDv': uDv—Iu'H/

MTTF,, = - Alle-“]; - - Al[o— 1 Ai

MTTF is the reciprocal value of failure rate.

technische universitat = fakultat far O p. marwedel, 17
dortmund informatik informatik 12, 2008 - -

MTTF, MTTR and MTBF

MTTR = mean time to repair
(average over repair times using distribution M(d))
MTBF* = mean time between failures = MTTF + MTTR
MTTF

Availability A= lim A(t)= ———
e MTBF

Ignoring the statistical nature of faults ...

A

operational

faulty

«— MTTF— —>MTTR—MTTF—— !

= MTBF—

* Mixed up with MTTF, if starting in operational state is implicitly assumed

technische universitat = fakultat far O p. marwedel, 18
dortmund informatik informatik 12, 2008 - -

Fault tree Analysis (FTA)

* FTA is a top-down method of analyzing risks.
Analysis starts with possible damage, tries to
come up with possible scenarios that lead to
that damage.

* FTA typically uses a graphical representation of
possible damages, including symbols for AND-
and OR-gates.

= OR-gates are used if a single event could result
In a hazard.

= AND-gates are used when several events or
conditions are required for that hazard to exist.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

:

- 19-

Example

AND

Floppy includes boot virus

Boot sequence checks floppy

N

Floppy in drive at boot time

TCP/IP port open + OS bug

No firewall used) OR
PC connected to internet)1— OS hazard

o
User receives mail }

User clicks on attachment

Attachment has virus

technische universitat = fakultat far O p. marwedel, 20
dortmund informatik informatik 12, 2008 - -

Limitations

The simple AND- and OR-gates cannot model all situations.
For example, their modeling power is exceeded if shared
resources of some limited amount (like energy or storage
locations) exist.

Markov models may have to be used to cover such cases.

technische universitat = fakultat far O p. marwedel, 21
dortmund informatik informatik 12, 2008 - -

Failure mode and effect analysis (FMEA)

* FMEA starts at the components and tries to estimate their
reliability. The first step is to create a table containing
components, possible faults, probability of faults and
consequences on the system behavior.

Component Failure Consequences Probability Critical?

Processor metal migration no service 10° /h yes

= Using this information, the reliability of the system ~

Is computed from the reliability of its parts l
(corresponding to a bottom-up analysis). Ve

technische universitat = fakultat far O p. marwedel, 29
dortmund informatik informatik 12, 2008 - -

Safety cases

Both approaches may be used in “safety cases”. In such
cases, an independent authority has to be convinced that
certain technical equipment is indeed safe.

One of the commonly requested properties of technical
systems is that no single failing component should potentially
cause a catastrophe.

technische universitat = fakultat far O p. marwedel, 23
dortmund informatik informatik 12, 2008 - -

o2
(u u u
O\\fa@‘e Formal verification

= Formal verification = formally proving a system correct,
using the language of mathematics.
= Formal model required. Obtaining this cannot be
automated.
* Model available = try to prove properties.
= Even a formally verified system can fail (e.g. if
assumptions are not met).
= Classification by the type of logics.
Ideally: Formally verified tools transforming specifications
into implementations (“correctness by construction®).
In practice: Non-verified tools and manual design steps
< validation of each and every design required Unfortunately
has to be done at intermediate steps and not just for the final
design = Major effort required.

technische universitat = fakultat far O p. marwedel, 24
dortmund informatik informatik 12, 2008 - -

Propositional logic (1)

= Consisting of Boolean formulas comprising Boolean
variables and connectives such as [land Ll

= Gate-level logic networks can be described.

= Typical aim: checking if two models are equivalent
(called tautology checkers or equivalence checkers).

= Since propositional logic is decidable, it is also decidable
whether or not the two representations are equivalent.

= Tautology checkers can frequently cope with designs which
are too large to allow simulation-based exhaustive
validation.

technische universitat = fakultat far O p. marwedel, 25
dortmund informatik informatik 12, 2008 - -

Propositional logic (2)

= Reason for power of tautology checkers: Binary Decision
Diagrams (BDDs)

= Complexity of equivalence checks of Boolean functions
represented with BDDs: O(number of BDD-nodes)
(equivalence check for sums of products is NP-hard).
#(BDD-nodes) not to be ignored!

= Many functions can be efficiently represented with BDDs.
In general, however, the #(nodes) of BDDs grows
exponentially with the number of variables.

= Simulators frequently replaced by equivalence checkers if
functions can be efficiently represented with BDDs.

* Very much limited ability to verify FSMs.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 26 -

First order logic (FOL)

FOL includes quantification, using LJand L.
Some automation for verifying FOL models is feasible.
However, since FOL is undecidable in general, there may be

cases of doubt.

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 27 -

Higher order logic (HOL)

Higher order logic allows functions to be manipulated like

other objects.
For higher order logic, proofs can hardly ever be automated

and typically must be done manually with some proof-
support.

technische universitat = fakultat far O p. marwedel, 28
dortmund informatik informatik 12, 2008 - -

Model checking

Aims at the verification of finite state systems.
Analyzes the state space of the system.
Verification using this approach requires three stages:

. generation of a model of the system to be verified,
. definition of the properties expected, and
= model checking (the actual verification step).

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

_ 29-

—
<state transition

graph
\

2 types of input

preprocessing

%.

@operties —

Model checker

¢

proof or
counterexample

Verification tools can prove or disprove the properties.
In the latter case, they can provide a counter-example.
Example: Clarke’s EMC-system

technische universitat
dortmund

= fakultat fir
informatik

[p. marwedel,
informatik 12, 2008

- 30 -

Computation tree logic (CTL)

Let V be a set of atomic propositions
CTL formulas are defined recursively:
1. Every atomic proposition is a formula
2. If f, and f, are CTL formulas, then so are -f,, f,[,,
AXT,, EXF, Alf, Uf,] and E[f, U)]
= AXf means: holds in state s° iff f, holds in all successor
states of s°

= EX{f, means: There exists a successor such that f, holds
= Alf, Uf,] means: always until.

= E[f, Uf,] means: There exists a path such that f, holds
until is £, satisfied.

Christoph Kem and Mark R. Greenstreet: Formal Verification In
Hardware Design: A Suney, ACM Transactions on Design Automation of
Electronic Systems, Vol. 4, No. 2, April 1999, Pages 123-193.

technische universitat = fakultat far O p. marwedel, 31
dortmund informatik informatik 12, 2008 - -

Computational properties

Model checking is easier to automate than FOL.

In 1987, model checking was implemented using
BDDs.

It was possible to locate several errors in the
specification of the future bus protocol.

Extensions are needed in order to also cover real-time
behavior and numbers.

technische universitat = fakultat far O p. marwedel, 32
dortmund informatik informatik 12, 2008 - -

ACM Turing award 2008
granted for basic work on model checking

Edmund M. Clarke, CMU, Pittsburgh

E. Allen Emerson, U. Texas at Austin

Joseph Sifakis, VERIMAG, Grenoble

technische universitat = fakultat far O p. marwedel,
dortmund informatik informatik 12, 2008

- 33-

AN
o Fault injecti
O\‘@Q ault injection

Fault simulation may be too time-consuming
= |f real systems are available, faults can be
injected.

Two types of fault injection:

5. local faults within the system, and

6. faults in the environment (behaviors which
do not correspond to the specification).
For example, we can check how the system
behaves if it is operated outside the
specified temperature or radiation ranges.

technische universitat = fakultat far O p. marwedel, 34
dortmund informatik informatik 12, 2008 - -

Physical fault injection

Hardware fault injection requires major effort, but generates
precise information about the behavior of the real system.

3 techniques compared in the PDCS project on the MARS
hardware [Kopetz].

Injection Technique |Heavy-ion |Pin-level N@E EMI ﬁ
Controllability, space Low “‘ High) Low
Controllability, time None | High/medium Low
Flexibility Low Medium High
Reproducibility Medium High Low
Physical reachability High Medium Medium
Timing measurement Medium high Low

technische universitat = fakultat far O p. marwedel, 35
dortmund informatik informatik 12, 2008 - -

Software fault injection

Errors are injected into the memories.
Advantages:
= Predictability: it is possible to reproduce every injected
fault in time and space.
= Reachability: possible to reach storage locations within
chips instead of just pins.
= Less effort than physical fault injection: no modified
hardware.
Same quality of results?

technische universitat = fakultat far O p. marwedel, 36
dortmund informatik informatik 12, 2008 - -

Summary

Evaluation and Validation
= WCET estimation

* Example: aiT (based on abstract interpretation)

* Energy models
* Examples: Steinke’s instruction set-based model, CACTI

= Risk and dependability analysis
 Failure rates, reliability, MTBF, MTTF, MTTR
* Fault tree analysis, FMEA

= Formal verification
* Propositional, first order, higher order based techniques,
* model checking

= Fault injection
- Software and hardware-based techniques

technische universitat = fakultat far O p. marwedel, 37
dortmund informatik informatik 12, 2008 - -

