'tLj technische universitat
dortmund

Evaluation and
Validation

Peter Marwedel
TU Dortmund, Informatik 12
Germany

2009/12/01

fakultat fur informatik
informatik 12

Graphics: © Alexandra Nolte, Gesine Marwedel, 2003

Structure of this course

—

Design W A :
repository) " Design]

[gpecification
7 £3. |] N

ES-hardware 6: Application Test

mapping
4: system (7: Optimization _‘
software (RTOS, 5: Validation &

middleware, ...) Evaluation (energy,
cost, performance, ...)

Numbers denote sequence of chapters

tecmisehe universitétt S Adakitatdnr O p. marwedel, 5
diortrmurd ifrfformaatik informatik 12, 2009 - -

Risk- and dependability analysis

Example : metal
migration @
Pentium 4

www.jrwhipple.com/computer_hangs.html

“10°": For many systems, probability of a catastrophe has to
be less than 10-° per hour = one case per 100,000 systems
for 10,000 hours.

FIT: failure-in-time unit for failure rate (=1/MTTF=1/MTBF);

1 FIT: rate of 10-° failures per hour

Damages are resulting from hazards.

For every damage there is a severity and a probability.
Several techniques for analyzing risks.

teeihmiseite universitétt s iaktatdir 0 p. marwedel, Movie on metal migration
diortrruuet iirfformatik informatik 12, 2009

Reliability: (t), F(t)

" et T: time until first failure, T is a random variable
= et f(f) be the density function of T

Example: Exponential distribution + (1)

A
fty=he™ \\\\\\\\\\\\\\\\x___
{

* F(t) = probability of the sys’gem being faulty at time f:

F(t) = Pr(T<t) F(t)= [f(x)dx
0
Example: Exponential distribution : + F(1)
t
F(t)= [e dx=-[e"] =1-e™"
0 >
tecmisehe universitétt s fakitdtdir O p. marwedel, _4-

dortrrund ifrfformatik informatik 12, 2009

Reliability: R()

* Reliability R(f) = probability that the time until the
first failure is larger than some time t:

R(t)=Pr(T>t), t=0 R(t) = }f(x)dx

~

R(t) = Jff dx+} f(x)dx =1
0

dR(t
R(t)=1- F(t) f(t)= - aR(t)
dt
Example: Exponential distribution + R(t)
1
—a-\,
R(ty=e ~0.37
1/A
techmseite universitatt = dakutatdir O p. marwedel,

dortrrund ifrfformatik informatik 12, 2009

Failure rate

The failure rate at time t is the probability of the system failing
between time t and time {+At:

1(t)= lim Pr(t< T<t+ At|T > t)

At- O '\ At i
Conditional probability ("provided P(AB
that the system works at t");

lim = —=
At- 0 AtR(t) ()

)=P(AB)/P(B)

A(t)

A : - : ST
Typical behavior of hardware - aynonential distribution:
systems ("bathtub curve")

f(t)y Are't)
— R(t) e
Ist phase i 2nd phase i 3rd phase
! 7/ ! >t FIT = expected number of failures
in 10° hrs.
techmseite universitatt = dakutatdir O p. marwedel,

dortrrund ifrfformatik informatik 12, 2009 - 6-

MTTF = E{T }, the statistical mean value of T

According to the definition of
MTTF = E{T} - I LUf(t) dt the statistical mean value

0

Example: Exponential distribution

MTTF,,, }tD}l e Mdt = M ; }e‘“dt
0 0 J’uDv': uDv—J’u‘D/
MTTF,, = - Alle-“]g - - Al[o— E Al

MTTF is the reciprocal value of failure rate.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 7.
diortrmurd ifrfformaatik informatik 12, 2009 -

MTTF, MTTR and MTBF

MTTR = mean time to repair
(average over repair times using distribution M(d))
MTBF* = mean time between failures = MTTF + MTTR

MTTF
MTBF

Availability A = !im A(t) -

Ignoring the statistical nature of faults ...

operational

faulty

.

1

- MTTF— MTTR— MTTF—
. MTBF—

* Mixed up with MTTF, if starting in operational state is implicitly assumed

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

Actual failure rates

1000 Different devices

Example: failure rates less 100

than 100 FIT for the first
20 years (175,300 hrs) of
life at 150°C @ TriQuint
(GaAs)

[www.triquint.com/company/quality/fags/faq_11.cfm] 1 10 100 10 10 0 1d 10 10 10 10"
Time (Hours) at 150°C

10

Instantaneous FIT Rate
{ |

=
(=]

Target: Failures rates of systems < 1FIT
Reality: Failures rates of circuits < 100 FIT
®redundancy is required to make a system more reliable
than its components
Analysis frequently works with simplified models &

teeimmiseine universitétt s iaktatdir 0 p. marwedel, Movie on metal migration 9
dlortrmund irfformatik informatik 12, 2009 oY

Fault tree Analysis (FTA)

FTA is a top-down method of analyzing risks.
Analysis starts with possible damage, tries to
come up with possible scenarios that lead to
that damage.

FTA typically uses a graphical representation of
possible damages, including symbols for AND-
and OR-gates.

OR-gates are used if a single event could result
In a hazard.

AND-gates are used when several events or
conditions are required for that hazard to exist.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 10
diortrmurd ifrfformaatik informatik 12, 2009 - -

Example

AND

Floppy includes boot virus

NI

Boot sequence checks floppy

Floppy in drive at boot time

TCP/IP port open + OS bug

No firewall used) OR
PC connected to internet :1— OS hazard

|
User receives mail)*

User clicks on attachment

Attachment has virus

tecmisehe universitétt S Adakitatdnr O p. marwedel, 11
diortrmurd ifrfformaatik informatik 12, 2009 - -

Limitations

The simple AND- and OR-gates cannot model all situations.
For example, their modeling power is exceeded if shared
resources of some limited amount (like energy or storage
locations) exist.

Markov models may have to be used to cover such cases.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 12
diortrmurd ifrfformaatik informatik 12, 2009 - -

Failure mode and effect analysis (FMEA)

= FMEA starts at the components and tries to estimate their
reliability. The first step is to create a table containing
components, possible faults, probability of faults and
conseqguences on the system behavior.

Component Failure Consequences Probability Critical?

Processor metal migration no service 10° /h yes

= Using this information, the reliability of the system ~
Is computed from the reliability of its parts
(corresponding to a bottom-up analysis). Vo

tecmisehe universitétt S Adakitatdnr O p. marwedel, 13
diortrmurd ifrfformaatik informatik 12, 2009 - -

Safety cases

Both approaches may be used in “safety cases”. In such
cases, an independent authority has to be convinced that
certain technical equipment is indeed safe.

One of the commonly requested properties of technical
systems is that no single failing component should
potentially cause a catastrophe.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 14
diortrmurd ifrfformaatik informatik 12, 2009 - -

Fault injection

Fault simulation may be too time-consuming
= |If real systems are available, faults can be
injected.

Two types of fault injection:

1. local faults within the system, and

2. faults in the environment (behaviors which
do not correspond to the specification).
For example, we can check how the
system behaves if it is operated outside
the specified temperature or radiation
ranges.

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

- 15 -

Physical fault injection

Hardware fault injection requires major effort, but generates
precise information about the behavior of the real system.

3 techniques compared in the PDCS project on the MARS
hardware [Kopetz]:

njection Technique Heavy-ion

ontrollability, space |Low ‘A‘ High

ontrollability, time INone High/medium

lexibility lLow Medium

eproducibility Medium High

Physical reachability ' Medium

Iming measurement

tecmisehe universitétt S Adakitatdnr O p. marwedel, 16
diortrmurd ifrfformaatik informatik 12, 2009 - -

Software fault injection

Errors are injected into the memories.
Advantages:
* Predictability: it is possible to reproduce every
injected fault in time and space.
= Reachability: possible to reach storage locations
within chips instead of just pins.
= Less effort than physical fault injection: no modified
hardware.
Same quality of results?

tecmisehe universitétt S Adakitatdnr O p. marwedel, 17
diortrmurd ifrfformaatik informatik 12, 2009 - -

Dependability requirements

Allowed failures may be in the order of 1 failure per 10 ° h.
~ 1000 times less than typical failure rates of chips.

= For safety-critical systems, the system as a whole must
be more dependable than any of its parts.

%" fault-tolerance mechanisms must be used.
Low acceptable failure rate - systems not 100% testable.

& Safety must be shown by a combination of testing and
reasoning. Abstraction must be used to make the system
explainable using a hierarchical set of behavioral models.

Design faults and human failures must be taken into
account.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 18
diortrmurd ifrfformaatik informatik 12, 2009 - -

Kopetz‘s 12 design principles (1-3)

1. Safety considerations may have Q. A
to be used as the important part
of the specification, driving the

entire design process.

2. Precise specifications of design
hypotheses must be made right
at the beginning. These include
expected failures and their
probability.

3. Fault containment regions
(FCRs) must be considered. e Esﬁ]izr;?er
Faults in one FCR should not @) O rent stable

affect other FCRs.

Safety-critical & non-safety

critical electronics

tecmisehe universitétt S Adakitatdnr O p. marwedel, 19
diortrmurd _ ifrfformatik informatik 12, 2009 - -

Kopetz‘s 12 design principles (4-6)

4. A consistent notion of time
source
and state must be
established. Otherwise, it will I
be impossible to differentiate Follow-up |
between original and follow- t

up errors.

5. Well-defined interfaces have
to hide the internals of
components.

6. It must be ensured that

_ T T 2 independent
components fail T 1 brake hose
independently. systems

techmseite universitatt = dakutatdir O p. marwedel,

dortrrund ifrfformatik informatik 12, 2009 - 20 -

Kopetz‘s 12 design principles (7-9)

/. Components should consider themselves to T T
be correct unless two or more other L 1
components pretend the contrary to be true one of the systems
(principle of self-confidence). sufficient for braking

8. Fault tolerance mechanisms must be
designed such that they do not create any
additional difficulty in explaining the behavior
of the system. Fault tolerance mechanisms
should be decoupled from the regular
function.

9. The system must be designed for diagnosis.
For example, it has to be possible to
identifying existing (but masked) errors.

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

Kopetz‘s 12 design principles (10)

10. The man-machine interface must be
intuitive and forgiving. Safety should be
maintained despite mistakes made by
humans

A
—ny ——

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

airbag

- 22.

Kopetz‘s 12 design principles (11-12)

11.Every anomaly should be recorded.
These anomalies may be unobservable
at the regular interface level. Recording
to involve internal effects, otherwise
they may be masked by fault-tolerance

mechanisms.

12.Provide a never-give up strategy.
ES may have to provide uninterrupted
service. Going offline is unacceptable.

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

ON

- 23-

6O
d\@\)\e‘ Formal verification
* Formal verification = formally proving a system correct,
using the language of mathematics.
= Formal model required. Obtaining this cannot be
automated.
= Model available = try to prove properties.
= Even a formally verified system can fail (e.g. if
assumptions are not met).
= (Classification by the type of logics.
Ideally: Formally verified tools transforming specifications
into implementations (“correctness by construction®).
In practice: Non-verified tools and manual design steps
< validation of each and every design required
Unfortunately has to be done at intermediate steps and not
just for the final design = Major effort required.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 24
diortrmurd ifrfformaatik informatik 12, 2009 - -

Propositional logic (1)

= Consisting of Boolean formulas comprising Boolean
variables and connectives such as [and Ll

= Gate-level logic networks can be described.

= Typical aim: checking if two models are equivalent
(called tautology checkers or equivalence checkers).

= Since propositional logic is decidable, it is also decidable
whether or not the two representations are equivalent.

= Tautology checkers can frequently cope with designs
which are too large to allow simulation-based exhaustive
validation.

tecmisehe universitétt S Adakitatdnr O p. marwedel, o5
diortrmurd ifrfformaatik informatik 12, 2009 - -

Propositional logic (2)

= Reason for power of tautology checkers: Binary Decision
Diagrams (BDDs)

= Complexity of equivalence checks of Boolean functions
represented with BDDs: O(humber of BDD-nodes)
(equivalence check for sums of products is NP-hard).
#(BDD-nodes) not to be ignored!

= Many functions can be efficiently represented with BDDs.
In general, however, the #(nodes) of BDDs grows
exponentially with the number of variables.

= Simulators frequently replaced by equivalence checkers if
functions can be efficiently represented with BDDs.

* Very much limited ability to verify FSMs.

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

- 26 -

First order logic (FOL)

FOL includes quantification, using Lland L.
Some automation for verifying FOL models is feasible.
However, since FOL is undecidable in general, there may be

cases of doubt.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 57
diortrmurd ifrfformaatik informatik 12, 2009 - -

Higher order logic (HOL)

Higher order logic allows functions to be manipulated like

other objects.
For higher order logic, proofs can hardly ever be automated

and typically must be done manually with some proof-
support.

tecmisehe universitétt S Adakitatdnr O p. marwedel, _ o8-

dortrrund ifrfformatik informatik 12, 2009

Model checking

Aims at the verification of finite state systems.
Analyzes the state space of the system.
Verification using this approach requires three stages:

. generation of a model of the system to be verified,
- definition of the properties expected, and

- model checking (the actual verification step).

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

- 29-

~
<state transition

graph
\

2 types of input

preprocessing

%.

@operties —

Model checker

)

proof or
counterexample

Verification tools can prove or disprove the properties.
In the latter case, they can provide a counter-example.
Example: Clarke’s EMC-system

teehniseite universitétt
dortrrund

- tiaktatefir
iftornaatik

[p. marwedel,
informatik 12, 2009

- 30 -

Computation tree logic (CTL)

Let V be a set of atomic propositions
CTL formulas are defined recursively:

1.
2.

Every atomic proposition is a formula
If f, and 1, are CTL formulas, then so are -f,, f,[1f,,

AXT,, EXF,, Alf, Uf,] and E[f, U f}]
AX T, means: holds in state s° ifff, holds in all successor
states of s°

EX f, means: There exists a successor such that f,
holds

A[f, U f,] means: always until.

E[f, U f,] means: There exists a path such that f, holds
until iS f2 SatiSﬁed. Christoph Kern and Mark R. Greenstreet: Formal Verification In

Hardware Design: A Survey, ACM Transactions on Design Automation
of Electronic Systems, Vol. 4, No. 2, April 1999, Pages 123-193.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 31
dortrrund ifrfformatik informatik 12, 2009

Computational properties

= Model checking is easier to automate than FOL.

= |In 1987, model checking was implemented using
BDDs.

* |t was possible to locate several errors in the
specification of the future bus protocol.

= Extensions are needed in order to also cover real-time
behavior and numbers.

tecmisehe universitétt S Adakitatdnr O p. marwedel, 30
diortrmurd ifrfformaatik informatik 12, 2009 - -

ACM Turing award 2008
granted for basic work on model checking

Edmund M. Clarke, CMU, Pittsburgh

E. Allen Emerson, U. Texas at Austin

Joseph Sifakis, VERIMAG, Grenoble

teemmiBehe universitét: s fakutatdir 0 p. marwedel,
dortrrurdd iifformatik informatik 12, 2009

- 33-

Summary

Evaluation and Validation
= WCET estimation

* Example: aiT (based on abstract interpretation)

= Energy models
* Examples: Steinke’s instruction set-based model, CACTI

= Risk and dependability analysis
* Failure rates, reliability, MTBF, MTTF, MTTR
* Fault tree analysis, FMEA

= Formal verification
* Propositional, first order, higher order based techniques,
* model checking

= Fault injection
* Software and hardware-based techniques

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009

- 34 -

	Evaluation and Validation
	Structure of this course
	Risk- and dependability analysis
	Reliability: f(t), F(t)
	Reliability: R(t)
	Failure rate
	MTTF = E{T }, the statistical mean value of T
	MTTF, MTTR and MTBF
	Actual failure rates
	Fault tree Analysis (FTA)
	Example
	Limitations
	Failure mode and effect analysis (FMEA)
	Safety cases
	Fault injection
	Physical fault injection
	Software fault injection
	Dependability requirements
	Kopetz‘s 12 design principles (1-3)
	Kopetz‘s 12 design principles (4-6)
	Kopetz‘s 12 design principles (7-9)
	Kopetz‘s 12 design principles (10)
	Kopetz‘s 12 design principles (11-12)
	Formal verification
	Propositional logic (1)
	Propositional logic (2)
	First order logic (FOL)
	Higher order logic (HOL)
	Model checking
	2 types of input
	Computation tree logic (CTL)
	Computational properties
	ACM Turing award 2008 granted for basic work on model checking
	Summary

