

Standard Optimization Techniques

Peter Marwedel Informatik 12 TU Dortmund Germany

2009/12/10

Structure of this course

Integer (linear) programming models

Ingredients:

- Cost function \ Involving linear expressions of
- Constraints integer variables from a set X

Cost function
$$C = \sum_{x_i \in X} a_i x_i$$
 with $a_i \in R, x_i \in \mathbb{N}$ (1)

Constraints:
$$\forall j \in J : \sum_{x_i \in X} b_{i,j} x_i \ge c_j \text{ with } b_{i,j}, c_j \in \mathbb{R}$$
 (2)

Def.: The problem of minimizing (1) subject to the constraints (2) is called an **integer (linear) programming (ILP) problem**.

If all x_i are constrained to be either 0 or 1, the IP problem said to be a **0/1 integer (linear) programming problem**.

Example

$$C = 5x_1 + 6x_2 + 4x_3$$

 $x_1 + x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 \in \{0,1\}$

$\overline{x_1}$	x_2	х3	С		
0	1	1	10		
1	0	1	9	•	Optimal
1	1	0	11		
1	1	1	15		

Remarks on integer programming

- Maximizing the cost function: just set C'=-C
- Integer programming is NP-complete.
- Running times depend exponentially on problem size, but problems of >1000 vars solvable with good solver (depending on the size and structure of the problem)
- The case of $x_i \in \mathbb{R}$ is called *linear programming* (LP). Polynomial complexity, but most algorithms are exponential, in practice still faster than for ILP problems.
- The case of some $x_i \in \mathbb{R}$ and some $x_i \in \mathbb{N}$ is called *mixed* integer-linear programming.
- ILP/LP models good starting point for modeling, even if heuristics are used in the end.
- Solvers: Ip solve (public), CPLEX (commercial), ...

Simulated Annealing

- General method for solving combinatorial optimization problems.
- Based the model of slowly cooling crystal liquids.
- Some configuration is subject to changes.
- Special property of Simulated annealing:
 Changes leading to a poorer configuration (with respect to some cost function) are accepted with a certain probability.
- This probability is controlled by a temperature parameter: the probability is smaller for smaller temperatures.

Simulated Annealing Algorithm

```
procedure SimulatedAnnealing;
var i, T: integer;
begin
 i := 0; T := MaxT;
 configuration:= <some initial configuration>;
 while not terminate(i, T) do
  begin
   while InnerLoop do
    begin NewConfig := variation(configuration);
     delta := evaluation(NewConfig,configuration);
     if delta < 0
     then configuration := NewConfig;
     else if SmallEnough(delta, T, random(0,1))
      then configuration := Newconfiguration;
    end;
 T:= NewT(i,T); i:=i+1;
end; end;
```


Explanation

- Initially, some random initial configuration is created.
- Current temperature is set to a large value.
- Outer loop:
 - Temperature is reduced for each iteration
 - Terminated if (temperature ≤ lower limit) or (number of iterations ≥ upper limit).
- Inner loop: For each iteration:
 - New configuration generated from current configuration
 - Accepted if (new cost ≤ cost of current configuration)
 - Accepted with temperature-dependent probability if (cost of new config. > cost of current configuration).

Behavior for actual functions

[people.equars.com/~marco/poli/phd/node57.html]

http://foghorn.cadlab.lafayette.edu/cadapplets/fp/fpIntro.html

Performance

- This class of algorithms has been shown to outperform others in certain cases [Wegener, 2005].
- Demonstrated its excellent results in the TimberWolf layout generation package [Sechen]
- Many other applications ...

Evolutionary Algorithms (1)

- Evolutionary Algorithms are based on the collective learning process within a population of individuals, each of which represents a search point in the space of potential solutions to a given problem.
- The population is arbitrarily initialized, and it evolves towards better and better regions of the search space by means of randomized processes of
 - selection (which is deterministic in some algorithms),
 - mutation, and
 - recombination (which is completely omitted in some algorithmic realizations).

[Bäck, Schwefel, 1993]

Evolutionary Algorithms (2)

- The environment (given aim of the search) delivers a quality information (fitness value) of the search points, and the selection process favours those individuals of higher fitness to reproduce more often than worse individuals.
- The recombination mechanism allows the mixing of parental information while passing it to their descendants, and mutation introduces innovation into the population

[Bäck, Schwefel, 1993]

Evolutionary Algorithms

Principles of Evolution

An Evolutionary Algorithm in Action

Issues in Multi-Objective Optimization

A Generic Multiobjective EA

Example: SPEA2 Algorithm

Step 1:	Generate initial population P0 and empty archive (external set) A_0 . Set t = 0.
Step 2:	Calculate fitness values of individuals in P _t and A _t .
Step 3:	A_{t+1} = nondominated individuals in P_t and A_t . If size of A_{t+1} > N then reduce A_{t+1} , else if size of A_{t+1} < N then fill A_{t+1} with dominated individuals in P_t and A_t .
Step 4:	If $t > T$ then output the nondominated set of A_{t+1} . Stop.
Step 5:	Fill mating pool by binary tournament selection.
Step 6:	Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Set $t = t + 1$ and go to Step 2.

Summary

Integer (linear) programming

- Integer programming is NP-complete
- Linear programming is faster
- Good starting point even if solutions are generated with different techniques

Simulated annealing

- Modeled after cooling of liquids
- Overcomes local minima

Evolutionary algorithms

- Maintain set of solutions
- Include selection, mutation and recombination

