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Integer (linear) programming models

Ingredients:
" Costfunction 7  |nvolving linear expressions of
= Constraints integer variables from a set X
Cost function C:= Z ax with ¢, 0 R, x,0 N (1)
x,UX

Constraints: ;0 J : z b, x,2 c;withb, .,c.0 R (2)

x;UX

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer (linear) programming (ILP) problem.
If all x, are constrained to be either 0 or 1, the IP problem said

to be a 0/1 integer (linear) programming problem.
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Example

C=05x,+6x,+ 4x,

X, Xot X322
X1’X2’X3 D {051}

X1 X x3 C
0 1 1 10
1 0 1 9 «—— Optimal
| 1 0 11
1 1 1 15
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Remarks on integer programming

= Maximizing the cost function: just set C=-C
= |[nteger programming is NP-complete.

= Running times depend exponentially on problem size,
but problems of >1000 vars solvable with good solver
(depending on the size and structure of the problem)

= The case of x; [/R is called linear programming (LP).

Polynomial complexity, but most algorithms are
exponential, in practice still faster than for ILP problems.

= The case of some x; [/R and some x; [/N is called mixed
integer-linear programming.

= |[LP/LP models good starting point for modeling, even if
heuristics are used in the end.

= Solvers: Ip solve (public), CPLEX (commercial), ...
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Simulated Annealing

= General method for solving combinatorial
optimization problems.

= Based the model of slowly cooling crystal liquids.
= Some configuration is subject to changes.

= Special property of Simulated annealing:
Changes leading to a poorer configuration (with
respect to some cost function) are accepted with
a certain probability.

= This probability is controlled by a temperature
parameter: the probability is smaller for smaller
temperatures.

techmseite universitatt = dakutatdir O p. marwedel,
dortrrund ifrfformatik informatik 12, 2009



Simulated Annealing Algorithm

procedure SimulatedAnnealing;
var i, T: integer;
begin
| :=0; T :=MaxT;
configuration:= <some initial configuration>;
while not terminate(i, T) do
begin
while InnerLoop do
begin NewConfig := variation(configuration);
delta := evaluation(NewConfig,configuration);
if delta<0
then configuration := NewConfig;
else if SmallEnough(delta, T, random(0,1))
then configuration := Newconfiguration;

end;
T:= NewT(i,T); i:=i+1;
end; end;
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Explanation

* Initially, some random initial configuration is created.
= Current temperature is set to a large value.
= Quter loop:

* Temperature is reduced for each iteration

* Terminated if (temperature < lower limit) or
(number of iterations = upper limit).

" Inner loop: For each iteration:
* New configuration generated from current configuration
* Accepted if (new cost < cost of current configuration)

* Accepted with temperature-dependent probability if
(cost of new config. > cost of current configuration).
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Behavior for actual functions
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[people.equars.com/~marco/poli/phd/node57 .html]
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200 steps

http://foghorn.cadlab.lafayette.edu/cadapplets/fp/fpintro. html
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Performance

= This class of algorithms has been shown to outperform
others in certain cases [Wegener, 20035].

= Demonstrated its excellent results in the TimberWolf
layout generation package [Sechen]

= Many other applications ...
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Evolutionary Algorithms (1)

= Evolutionary Algorithms are based on the collective
learning process within a population of individuals, each of
which represents a search point in the space of potential
solutions to a given problem.
= The population is arbitrarily initialized, and it evolves
towards better and better regions of the search space by
means of randomized processes of
* selection (which is deterministic in some algorithms),
° mutation, and
* recombination (which is completely omitted in some
algorithmic realizations).

[Back, Schwefel, 1993]
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Evolutionary Algorithms (2)

= The environment (given aim of the search) delivers a
quality information (fitness value) of the search points,
and the selection process favours those individuals of
higher fitness to reproduce more often than worse
individuals.

= The recombination mechanism allows the mixing of
parental information while passing it to their descendants,
and mutation introduces innovation into the population

[Back, Schwefel, 1993]
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Evolutionary Algorithms
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An Evolutionary Algorithm in Action

max. y2
t hypothetical trade-off front

| min. y1
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Y2

Issues in Multi-Objective Optimization

;

Diversity

Swiss Federal
Instirute of Technology

Convergence

* How to maintain a diverse
Pareto set approximation?

@ density estimation

" How to prevent nondominated

solutions from being lost?

©® environmental selection

' » How to guide the population
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A Generic Multiobjective EA

population

evaluate
sample
vary
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Example: SPEA2 Algorithm

Step 1: Generate initial population PO and empty archive
(external set) A,. Sett=0.

Step 2: Calculate fitness values of individuals in P, and A,

Step 3: A,1 = nondominated individuals in P, and A..
If size of A, > N then reduce A, ,, else if
size of A, < N then fill A,,, with dominated
individuals in P, and A..

Step 4. If t > T then output the nondominated set of A,,,.
Stop.

Step 5: Fill mating pool by binary tournament selection.

Step 6: Apply recombination and mutation operators to
the mating pool and set P, to the resulting
population. Sett=1t+ 1 and go to Step 2.
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Summary

Integer (linear) programming
= [nteger programming is NP-complete
= Linear programming is faster

= Good starting point even if solutions are generated with
different techniques

Simulated annealing
* Modeled after cooling of liquids
= Overcomes local minima
Evolutionary algorithms
= Maintain set of solutions

" |Include selection, mutation and recombination
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