
fakultät für informatik
informatik 12

technische universität
dortmund

Evaluation and
Validation

Peter Marwedel
TU Dortmund, Informatik 12

Germany

G
ra

ph
ic

s:
 ©

 A
le

xa
nd

ra
 N

ol
te

, G
es

in
e

M
ar

w
ed

el
, 2

00
3

These slides use Microsoft clip arts.
Microsoft copyright restrictions apply. 2010年年年年 12 月月月月 05 日日日日

- 2 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Structure of this course

2:
Specification

3:
ES-hardware

4: system
software (RTOS,
middleware, …)

8:
Test

5: Evaluation &
validation & (energy,
cost, performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

K
no

w
le

dg
e Design

repository Design

Numbers denote sequence of chapters

- 3 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Evaluation of designs
according to multiple objectives

Different design objectives/criteria are relevant:
� Average performance
� Worst case performance
� Energy/power consumption
� Thermal behavior
� Reliability
� Electromagnetic compatibility
� Numeric precision
� Testability
� Cost
� Weight, robustness, usability, extendibility, security,

safety, environmental friendliness

- 4 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Kopetz‘s 12 design principles (1-3)

1. Safety considerations may have
to be used as the important part
of the specification, driving the
entire design process.

2. Precise specifications of design
hypotheses must be made right
at the beginning. These include
expected failures and their
probability.

3. Fault containment regions
(FCRs) must be considered.
Faults in one FCR should not
affect other FCRs.

Passenger
compart-
ment stable

Safety-critical & non-safety
critical electronics

- 5 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Kopetz‘s 12 design principles (4-6)

4. A consistent notion of time
and state must be
established. Otherwise, it will
be impossible to differentiate
between original and follow-
up errors.

5. Well-defined interfaces have
to hide the internals of
components.

6. It must be ensured that
components fail
independently.

2 independent
brake hose
systems

t

source

Follow-up

- 6 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Kopetz‘s 12 design principles (7-9)

7. Components should consider themselves to
be correct unless two or more other
components pretend the contrary to be true
(principle of self-confidence).

8. Fault tolerance mechanisms must be
designed such that they do not create any
additional difficulty in explaining the behavior
of the system. Fault tolerance mechanisms
should be decoupled from the regular
function.

9. The system must be designed for diagnosis.
For example, it has to be possible to
identifying existing (but masked) errors.

one of the systems
sufficient for braking

- 7 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Kopetz‘s 12 design principles (10)

10.The man-machine interface must be
intuitive and forgiving. Safety should be
maintained despite mistakes made by
humans airbag

- 8 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Kopetz‘s 12 design principles (11-12)

11.Every anomaly should be recorded.
These anomalies may be unobservable
at the regular interface level. Recording
to involve internal effects, otherwise
they may be masked by fault-tolerance
mechanisms.

12.Provide a never-give up strategy.
ES may have to provide uninterrupted
service. Going offline is unacceptable.

- 9 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Evaluation of designs
according to multiple objectives

Different design objectives/criteria are relevant:
� Average performance
� Worst case performance
� Energy/power consumption
� Thermal behavior
� Reliability
� Electromagnetic compatibility
� Numeric precision
� Testability
� Cost
� Weight, robustness, usability, extendibility, security,

safety, environmental friendliness

- 10 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Electro-magnetic compatibility (EMC)

Source: http://intrage.insa-tlse.fr/
~etienne/emccourse/what_for.html

Red: high emission; Validation of EMC properties
often done at the end of the design phase.

Example: car engine controller

- 11 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Simulations

� Simulations try to imitate the behavior of the real
system on a (typically digital) computer.

� Simulation of the functional behavior requires
executable models.

� Simulations can be performed at various levels.

� Some non-functional properties (e.g. temperatures,
EMC) can also be simulated.

� Simulations can be used to evaluate and to validate a
design

- 12 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Validating functional behavior by simulation

Various levels of abstractions used for simulations:

� High-level of abstraction: fast, but sometimes not
accurate

� Lower level of abstraction: slow and typically
accurate

� Choosing a level is always a compromise

- 13 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Simulations
Limitations

� Typically slower than the actual design.
� Violations of timing constraints likely if
simulator is connected to the actual environment

� Simulations in the real environment may be
dangerous

� There may be huge amounts of data and it may
be impossible to simulate enough data in the
available time.

� Most actual systems are too complex to allow
simulating all possible cases (inputs).
Simulations can help finding errors in designs,
but they cannot guarantee the absence of errors.

- 14 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Rapid prototyping/Emulation

� Prototype: Embedded system that can be generated
quickly and behaves very similar to the final product.

� May be larger, more power consuming and have other
properties that can be accepted in the validation phase

� Can be built, for example, using FPGAs.

Source & ©: http://www. eedesign.
com/editorial/1997/toolsandtech9703.html

Example:
Quickturn Cobalt
System (1997),
~0.5M$ for
500kgate entry
level system

- 15 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Emulation

� Simulations: based on models, which are
approximations of real systems.

� In general: some difference between the real system and the model.

� Reduce gap by implementing some parts of our SUD more precisely!

Definition: Emulation is the process of executing a model of the SUD
where at least one component is not represented by simulation on some
kind of host computer.

“Bridging the credibility gap is not the only reason for a growing interest in
emulation—the above definition of an emulation model remains valid when
turned around— an emulation model is one where part of the real system
is replaced by a model. Using emulation models to test control systems
under realistic conditions, by replacing the “real system“ with a model, is
proving to be of considerable interest …

[McGregor, 2002]

- 16 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Example of a more recent commercial emulator

[www.verisity.com/images/products/xtremep{1|3}.gif]

- 17 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Formal verification

� Formal verification = formally proving a system correct,
using the language of mathematics.

� Formal model required. Obtaining this cannot be
automated.

� Model available � try to prove properties.
� Even a formally verified system can fail (e.g. if

assumptions are not met).
� Classification by the type of logics.

Ideally: Formally verified tools transforming specifications
into implementations (“correctness by construction“).
In practice: Non-verified tools and manual design steps
� validation of each and every design required
Unfortunately has to be done at intermediate steps and not
just for the final design � Major effort required.

- 18 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Propositional logic (1)

�Consisting of Boolean formulas comprising Boolean
variables and connectives such as ∨ and ∧.

�Gate-level logic networks can be described.

�Typical aim: checking if two models are equivalent
(called tautology checkers or equivalence checkers) .

�Since propositional logic is decidable, it is also decidable
whether or not the two representations are equivalent.

�Tautology checkers can frequently cope with designs
which are too large to allow simulation-based exhaustive
validation.

- 19 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Propositional logic (2)

� Reason for power of tautology checkers: Binary Decision
Diagrams (BDDs)

� Complexity of equivalence checks of Boolean functions
represented with BDDs: O(number of BDD-nodes)
(equivalence check for sums of products is NP-hard).
#(BDD-nodes) not to be ignored!

� Many functions can be efficiently represented with BDDs.
In general, however, the #(nodes) of BDDs grows
exponentially with the number of variables.

� Simulators frequently replaced by equivalence checkers if
functions can be efficiently represented with BDDs.

� Very much limited ability to verify FSMs.

- 20 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

First order logic (FOL)

FOL includes quantification, using ∃ and ∀.
Some automation for verifying FOL models is feasible.
However, since FOL is undecidable in general, there may be
cases of doubt.

- 21 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Higher order logic (HOL)

Higher order logic allows functions to be manipulated like
other objects.
For higher order logic, proofs can hardly ever be automated
and typically must be done manually with some proof-support.

- 22 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Model checking

Aims at the verification of finite state systems.
Analyzes the state space of the system.
Verification using this approach requires three stages:

� generation of a model of the system to be verified,

� definition of the properties expected, and

� model checking (the actual verification step).

- 23 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

2 types of input

Verification tools can prove or disprove the properties.
In the latter case, they can provide a counter-example.
Example: Clarke’s EMC-system

- 24 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Examples

1.
M,s ⊨ AGg

means:
in the transition graph M, property g holds for all paths
(denoted by A) and all states (denoted by G).

2.
For the Thalys example, we could prove that the number
of trains is indeed constant.

- 25 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Computational properties

� Model checking is easier to automate than FOL.

� In 1987, model checking was implemented using
BDDs.

� It was possible to locate several errors in the
specification of the future bus protocol.

� Model checking becoming very popular

� Extensions are needed in order to also cover real-time
behavior and numbers.

- 26 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

ACM Turing award 2008
granted for basic work on model checking

Edmund M. Clarke, CMU, Pittsburgh

E. Allen Emerson, U. Texas at Austin

Joseph Sifakis, VERIMAG, Grenoble

- 27 -technische universität
dortmund

fakultät für
informatik

 p. marwedel,
informatik 12, 2010

Summary

Evaluation and Validation

� Reliability

• Kopetz’ 12 principles

� Simulation

� Emulation

� Formal verification
• Propositional,
• first order,
• higher order based techniques,
• model checking

