Multiprocessor Scheduling IV: (A Note on) Parallelizations

Jian-Jia Chen

TU Dortmund

11, July, 2016
Parallelizations with DAG
Needs for Parallelizations

- To fully utilize the multiprocessor systems, a task should be able to be executed on more than one processor.
- We have up to now only consider *sequential executions* of a task.
- If we allow parallelizations, how should the model be looked like?
Represented by Directed Acyclic Graphs (DAG)

- Each task τ_i is a sporadic task:
 - period T_i
 - relative deadline D_i

- Each task is characterized by a directed acyclic graph (DAG)
 - Each task has multiple subtasks (represented by vertices here)
 - The number in each node is the worst-case execution time
 - The precedence constraints (the directed edges) represent the dependency of the subtasks
 - The acyclic property ensures that there is no cycle in the graph
Based on the DAG structure of a task τ_i

- C_i: the overall worst-case execution time (20 in this example)
- Ψ_i: the critical-path (one of the longest paths) worst-case execution time (12 in this example)
- U_i: the utilization, defined as $\frac{C_i}{T_i}$
Scheduling Theory about This

- If the system has only one task, represented by a DAG, Graham studied this problem in 1966 under this notation $P|prec|C_{max}$

- The algorithm is called *list scheduling*
 - If one of the M processors is idle, schedule one of the ready subtasks to the idle processor.

- The algorithm is widely used for many applications.
 - The order of the subtasks can be tuned
 - Graham showed that list scheduling has an approximation factor $2 - \frac{1}{M}$ with respect to minimizing the makespan.
An Informal Proof of List Scheduling

- Let ℓ be the subtask that finishes the last. Let $\ell - 1$ be the last-finished predecessor of ℓ
- We construct a series of subtasks preceding each other, starting at 1 (which has no predecessor)
- Let's now call this path Π. Clearly the length of Π is $\leq \Psi$.
- Let the starting time of the i-th subtask in Π be t_i.
- In list scheduling, the finishing time of i-th subtask in Π is then $f_i = t_i + c_i$
 - c_i is the (worst-case) execution time of the i-th subtask in Π.
- **Important observation**: between f_i and t_{i+1}, all the M processors must be busy for executing other subtasks
 - otherwise, the $(i + 1)$-th subtask in Π should have been executed earlier than t_{i+1}.
- Therefore, we know that the finishing time is at most $2 - \frac{1}{M}$ times the optimal makespan (denoted by $C_{\text{max}}^{\text{opt}}$)

$$
\Psi + \frac{C - \Psi}{M} \leq (2 - \frac{1}{M})C_{\text{max}}^{\text{opt}}.
$$
Implicit-Deadline Tasks with Global RM Scheduling

For all $0 < t \leq T_k$

$$W_k(t) = \sum_{i=1}^{k-1} \left(\left\lfloor \frac{t}{T_i} \right\rfloor - 1 \right) C_i + 2C_i.$$

This implies that we just greedily take a head job immediately. Clearly, lower-priority jobs have no effect for the unschedulability or schedulability.

Theorem

A system \mathcal{T} of implicit-deadline periodic, independent, preemptable DAG tasks is schedulable by Global-RM on M processors if

$$\forall \tau_k \in \mathcal{T} \exists t \text{ with } 0 < t \leq T_k \text{ and } \psi_k + \frac{C_k - \psi_k}{M} + \frac{W_k(t)}{M} \leq t$$

holds.
Recall: Capacity Augmentation Bound

Given a task set \mathcal{T} with total utilization of U_{\sum}, a scheduling algorithm \mathcal{A} with capacity augmentation bound b can always schedule this task set on M processors of speed b as long as \mathcal{T} satisfies the following conditions:

1. Utilization does not exceed total cores, \[\sum_{\tau_i \in \mathcal{T}} U_i \leq M \] (1)

2. For each task $\tau_i \in \mathcal{T}$, the critical path utilization $\frac{\Psi_i}{T_i} \leq 1$ (2)
Recall: Capacity Augmentation Bound

Given a task set \(T \) with total utilization of \(U_\sum \), a scheduling algorithm \(A \) with capacity augmentation bound \(b \) can always schedule this task set on \(M \) processors of speed \(b \) as long as \(T \) satisfies the following conditions:

Utilization does not exceed total cores,
\[
\sum_{\tau_i \in T} U_i \leq M \quad (1)
\]

For each task \(\tau_i \in T \), the critical path utilization
\[
\frac{\Psi_i}{T_i} \leq 1 \quad (2)
\]

This means that the algorithm guarantees the schedulability if the following conditions are satisfied:

Utilization does not exceed total cores,
\[
\sum_{\tau_i \in T} U_i \leq \frac{M}{b} \quad (3)
\]

For each task \(\tau_i \in T \), the critical path utilization
\[
\frac{\Psi_i}{T_i} \leq \frac{1}{b} \quad (4)
\]
The task set is schedulable under Global RM if

$$\forall k, \left(2 + \Psi_k \frac{T_k}{C_k - \Psi_k} \right) \prod_{i=1}^{k-1} \left(U_i / M + 1 \right) \leq 3.$$ (5)

$$\Rightarrow \left(2 + \Psi_k \frac{T_k}{C_k - \Psi_k} \right) \prod_{i=1}^{k-1} \left(U_i / M + 1 \right) \leq 3.$$ (6)

$$\Rightarrow \left(2 + \frac{1}{b} \right) \left(\frac{1}{(k-1)b} + 1 \right)^{k-1} \leq 3.$$ (7)

$$\Rightarrow \left(2 + \frac{1}{b} \right) e^{1/b} \leq 3.$$ (8)

Again, we use the worst cases by setting all the tasks with the same utilization as we did in the analysis for uniprocessor systems. This concludes that $b \geq 3.6215$ enforces the above inequality.
A Short Summary about Global DAG Scheduling

Speedup factors

<table>
<thead>
<tr>
<th></th>
<th>implicit deadlines</th>
<th>constrained deadlines</th>
<th>arbitrary deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global EDF</td>
<td>$2 - \frac{1}{M}$ (Bonifaci et al. ECRTS 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global DM</td>
<td>$3 - \frac{1}{M}$ (Bonifaci et al. ECRTS 2013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capacity augmentation factors

<table>
<thead>
<tr>
<th></th>
<th>implicit deadlines</th>
<th>constrained deadlines</th>
<th>arbitrary deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global EDF</td>
<td>$\frac{2+\sqrt{5}}{2} \approx 2.6181$ (Li, Chen et al. 2014)</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>Global DM</td>
<td>3.6215 (Chen et al. 2015)</td>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>
How about Partitioned Scheduling?

- Each subtask should be assigned on one processor
- Different subtasks can be assigned on different processors
- For each subtask of task \(\tau_i \)
 - specify its offset to start with
 - specify its relative deadline after the offset
 - perform timing control

Saifullah et al.: With a proper assignment of relative deadlines and offsets, speedup factor 5 can be achieved by using partitioned EDF.

A simple partitioned strategy can work as well

- If a task τ_i is with $\frac{C_i}{T_i} \geq 1$, we use list scheduling by dedicating some processors to this task τ_i. Such a task is a heavy task.
- If a task τ_i is with $\frac{C_i}{T_i} < 1$, we do not consider to run this task on more than one processor. Such a task is a light task.

Let’s use List Scheduling to schedule the heavy tasks.

Let’s use LUF$^+$ (largest utilization first for bin packing) to pack these light tasks on the remaining processors based on partitioned EDF.

- M_{light}: the number of processors used for the light tasks
- M_{heavy}: the number of processors used for the heavy tasks

If there is no heavy task, this is identical to partition the given periodic tasks without any intra-task parallelization

If there is a heavy task, it is easy to argue $M_{\text{light}} + M_{\text{heavy}} \leq 2 \sum \tau_i U_i$ under the assumption $\frac{\psi_i}{T_i} \leq 0.5$ for every task τ_i.
Speedup factors

<table>
<thead>
<tr>
<th></th>
<th>implicit deadlines</th>
<th>constrained deadlines</th>
<th>arbitrary deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partitioned EDF</td>
<td>2 (Li et al. ECRTS 2014)</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>Partitioned DM</td>
<td>2 (Conjecture by JJ)</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
Federated Scheduling: Limits

- Baruah extended federated scheduling for constrained- and arbitrary-deadline systems
 - S. Baruah. The federated scheduling of constrained-deadline sporadic DAG task systems. In DATE 2015.

The following example shows that federated scheduling can be very bad

Table: 10 tasks on \(M = 10 \) processors.

Federated Scheduling: Limits

• Baruah extended federated scheduling for constrained- and arbitrary-deadline systems

 • S. Baruah. The federated scheduling of constrained-deadline sporadic DAG task systems. In DATE 2015.
 • S. Baruah. The federated scheduling of systems of conditional sporadic DAG tasks. In EMSOFT, 2015.

• The following example shows that federated scheduling can be very bad

<table>
<thead>
<tr>
<th></th>
<th>τ_1</th>
<th>τ_2</th>
<th>τ_3</th>
<th>τ_4</th>
<th>τ_5</th>
<th>τ_6</th>
<th>τ_7</th>
<th>τ_9</th>
<th>τ_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>160</td>
<td>320</td>
<td>640</td>
<td>1280</td>
</tr>
<tr>
<td>D_i</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>T_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>∞</td>
</tr>
</tbody>
</table>

Table: 10 tasks on $M = 10$ processors.
Federated Scheduling: Limits

- Baruah extended federated scheduling for constrained- and arbitrary-deadline systems
 - S. Baruah. The federated scheduling of constrained-deadline sporadic DAG task systems. In DATE 2015.
- The following example shows that federated scheduling can be very bad

<table>
<thead>
<tr>
<th></th>
<th>τ_1</th>
<th>τ_2</th>
<th>τ_3</th>
<th>τ_4</th>
<th>τ_5</th>
<th>τ_6</th>
<th>τ_7</th>
<th>τ_9</th>
<th>τ_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>160</td>
<td>320</td>
<td>640</td>
<td>1280</td>
</tr>
<tr>
<td>D_i</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>T_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>∞</td>
</tr>
</tbody>
</table>

Table: 10 tasks on $M = 10$ processors.