Multiprocessor Scheduling II: Global Scheduling

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

28, June, 2016
Global Scheduling

- We will only focus on identical multiprocessors in this module.
- The system has a global queue.
- A job can be migrated to any processor.
- Priority-based global scheduling:
 - Among the jobs in the global queue, the M highest priority jobs are chosen to be executed on M processors.
 - Task migration here is assumed no overhead.
 - Global-EDF: When a job finishes or arrives to the global queue, the M jobs in the queue with the shortest absolute deadlines are chosen to be executed on M processors.
 - Global-FP, Global-DM, Global-RM: When a job finishes or arrives to the global queue, the M jobs in the queue with the highest priorities (defined by fixed-priority ordering, deadline-monotonic strategy, or rate-monotonic strategy) are chosen to be executed on M processors.
- Pfair scheduling, and the variances (not discussed in this lecture).
Good News for Global Scheduling

- McNaughton’s wrap-around rule for $P|\text{pmtn}|C_{\text{max}}$ on M processors (historically, task migration is also called task preemption in the literature)

 - Compute C_{max} as $\max \left\{ \max_{\tau_i \in \mathcal{T}} C_i, \frac{\sum_{\tau_i \in \mathcal{T}} C_i}{M} \right\}$
 - Assign the tasks according to any order from time 0 to C_{max}
 - If a task’s processing exceeds C_{max}, the task is migrated to a new processor from time 0
 - Repeat the assignment of tasks until all the tasks are assigned

- The resulting schedule minimizes C_{max}

McNaughton’s Algorithm: Example

split tasks
unsplitted tasks

D
Weakness of Partitioned Scheduling

- Restricting a task on a processor reduces the schedulability.
- Restricting a task on a processor makes the problem \mathcal{NP}-hard.
- The \mathcal{NP}-completeness for EDF does no hold any more if the migration has no overhead.
 - Proportionate Fair (pfair) algorithm introduced by Baruah et al. provides an optimal utilization bound for schedulibility.
 - A task set with implicit deadlines is schedulable on M identical processors if the total utilization of the task set is no more than M.
 - The idea is to divide the time line into quanta, and execute tasks proportionally in each quanta.
 - It has very high overhead.
 - There are several variances to reduce the overhead.

Bad News for Global Scheduling

For Global-EDF or Global-RM, the least upper bound for schedulability analysis is at most 1.

Input:

\(M + 1 \) tasks:
- One heavy task \(\tau_k \): \(D_k = T_k = C_k \)
- \(M \) light tasks \(\tau_i \)s: \(C_i = \epsilon \) and \(D_i = T_i = C_k - \epsilon \), in which \(\epsilon \) is a positive number, very close to 0.

Bad News for Global Scheduling

For Global-EDF or Global-RM, the least upper bound for schedulability analysis is at most 1.

Input:

\(M + 1\) tasks:
- One heavy task \(\tau_k\): \(D_k = T_k = C_k\)
- \(M\) light tasks \(\tau_i\): \(C_i = \epsilon\) and \(D_i = T_i = C_k - \epsilon\), in which \(\epsilon\) is a positive number, very close to 0.

Result:

The \(M\) light tasks (with higher priority than the heavy task) will be scheduled on \(M\) processors. The heavy task misses the deadline even when the utilization is \(1 + M\epsilon\).

Gold Approach: Resource Augmentation

- The bad news on the least upper bound was very important in 80’s, since the research in this direction suffered from the so called “Dhall effect”.
- With resource augmentation, by Phillips et al., the “Dhall effect” disappears
 - For Global-EDF, the resource augmentation factor by “speeding up” is $2 - \frac{1}{M}$.
 - That is, if a feasible schedule exists on M processors, applying Global-EDF is also feasible on M processors by speeding up the execution speed with $2 - \frac{1}{M}$.
 - We will focus on schedulability test here first (for the first two parts) and the resource augmentation at the end.

Articles for This Module

- Sanjoy K. Baruah: Techniques for Multiprocessor Global Schedulability Analysis. RTSS 2007: 119-128 (*First part*)

- Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, Andreas Wiese: Feasibility Analysis in the Sporadic DAG Task Model. ECRTS 2013: 225-233 (*Appendix*)
 - Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller: A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling. ESA 2008: 210-221

We will mainly focus on task sets with constrained deadlines.
Critical Instants?

• The analysis for uniprocessor scheduling is based on the gold critical instant theorem.
• Synchronous release of higher-priority tasks and as early as possible for the following jobs do not lead to the critical instant for global multiprocessor scheduling
 • Suppose that there are two identical processors and 3 tasks:
 \((C_i, D_i, T_i)\) are \(\tau_1 = (1, 2, 2), \tau_2 = (1, 3, 3), \tau_3 = (5, 6, 6)\)

Feasible for \(\tau_3\).
Infeasible for \(\tau_3\).
Identifying Interference

- Problem window (interval) is defined in \([a_k, d_k]\).
- The jobs of task \(\tau_i\) in the problem window can be categorized into three types:
 - Head job (at most one): some computation demand is \textit{carried in} to the problem window for a job arrival before \(a_k\).
 - Body jobs: the computation demand has to be done in the problem window.
 - Tail job (at most one): some computation demand can be \textit{carried out} from the problem window.
Necessary Condition for Deadline Misses

- If τ_k misses the deadline at d_k, there must be at least $D_k - C_k$ units of time in which all M processors are executing other higher-priority jobs.
- Definition: demand $W(\Delta)$ in a time interval with length Δ is the total amount of computation that needs to be completed within the interval.
- If τ_k misses its deadline at time d_k, then

$$W(D_k) > M(D_k - C_k) + C_k$$
Outline

Introduction

Schedulability Analysis: Global EDF

Schedulability Analysis: Global RM

Appendix: Augmentation Factor
For contrapositive, assume that a job of task τ_k misses its absolute deadline at time d_k with release time a_k.

- Bound the carry-in computation demand more precisely.
- Let t_0 be the earliest time instant such that the system executes jobs on M processors from t_0 to a_k.
 - The ready queue before t_0 is with less than M jobs.
 - The ready queue has at least M jobs in time interval $[t_0, a_k)$.
- Let I be the set of intervals in $[t_0, d_k)$, in which all the M processors are executing. By considering the worst cases, the job of task τ_k arriving at time a_k is not executed at all in I.
- Let A_k be $a_k - t_0$.

\[
\begin{array}{c}
\text{some proc. idle} \\
\hline
\text{time} \\
| \hline
\hline
\text{t}_0 \quad \text{a}_k \quad \text{d}_k
\end{array}
\]
• Problem window (interval) is defined in \([t_0, d_k]\).
• The jobs of task \(\tau_i\) in the problem window can be categorized into three types:
 • Head job (at most one): some computation demand is *carried in* to the problem window for a job arrival before \(a_k\).
 • Body jobs: the computation demand has to be done in the problem window.
 • Tail job (at most one): some computation demand can be *carried out* from the problem window.
Necessary Condition for Deadline Misses

- Let $w_i(I)$ be the demand executed in the set I of time intervals for task τ_i. The necessary condition for τ_k to miss its deadline is

$$\sum_{i=1}^{N} w_i(I) > M(A_k + D_k - C_k).$$

- Let’s consider two types of interferences in $w_i(I)$.
 - Type 1: tasks that are not executing at time t_0. There will be no carry-in demand at time t_0.
 - Type 2: tasks that are executing at time t_0. There might be carry-in demand at time t_0.
Interference Type 1: No Carry-In at Time t_0

- **Case 1: $i \neq k$**
 - The demand of τ_i to be done in the time intervals in \mathcal{I} is at most
 \[\min \left\{ \text{dbf} (\tau_i, A_k + D_k), A_k + D_k - C_k \right\} . \]

- **Case 2: i is k**
 - The demand of τ_k to be done in the time intervals in \mathcal{I} is at most
 \[\min \left\{ \text{dbf} (\tau_i, A_k + D_k) - C_k, A_k \right\} . \]
 - Specifically, we need to remove the job that arrives at a_k since its execution is not counted as part of \mathcal{I}.

Therefore,

\[w_i^1 (\mathcal{I}) = \text{def} \begin{cases}
 \min \left\{ \text{dbf} (\tau_i, A_k + D_k), A_k + D_k - C_k \right\} & \text{if } i \neq k \\
 \min \left\{ \text{dbf} (\tau_i, A_k + D_k) - C_k, A_k \right\} & \text{if } i = k.
\]
Interference Type 2: With Carry-In at Time t_0

- **Case 1: $i \neq k$**
 - The demand of τ_i to be done in the time intervals in \mathcal{I} is at most
 \[
 \min \left\{ dbf^\dagger(\tau_i, A_k + D_k), A_k + D_k - C_k \right\},
 \]
 where $dbf^\dagger(\tau_i, \delta)$ is \(\left\lfloor \frac{\delta}{T_i} \right\rfloor C_i + \min\{C_i, \delta \mod T_i\} \).

- **Case 2: i is k**
 - The demand of τ_k to be done in the time intervals in \mathcal{I} is at most
 \[
 \min \left\{ dbf^\dagger(\tau_i, A_k + D_k) - C_k, A_k \right\}.
 \]

Therefore,

\[
\begin{align*}
 w_i^2(\mathcal{I}) &= \text{def} \begin{cases}
 \min \left\{ dbf^\dagger(\tau_i, A_k + D_k), A_k + D_k - C_k \right\} & \text{if } i \neq k \\
 \min \left\{ dbf^\dagger(\tau_i, A_k + D_k) - C_k, A_k \right\} & \text{if } i = k.
 \end{cases}
\end{align*}
\]
Putting Together

- Let $w_i^{\text{diff}}(\mathcal{I})$ be $w_i^2(\mathcal{I}) - w_i^1(\mathcal{I})$.
- The necessary condition for τ_k to miss its deadline becomes

$$\sum_{i=1}^{N} w_i^1(\mathcal{I}) + \sum_{M-1 \text{ largest}} w_i^{\text{diff}}(\mathcal{I}) > M(A_k + D_k - C_k).$$
Putting Together

- Let $w_i^{\text{diff}}(I) = w_i^2(I) - w_i^1(I)$.
- The necessary condition for τ_k to miss its deadline becomes

$$\sum_{i=1}^{N} w_i^1(I) + \sum_{M-1 \text{ largest}} w_i^{\text{diff}}(I) > M(A_k + D_k - C_k).$$

Theorem

A task set is schedulable under Global-EDF if for every task τ_k and for all $A_k \geq 0$

$$\sum_{i=1}^{N} w_i^1(I) + \sum_{M-1 \text{ largest}} w_i^{\text{diff}}(I) \leq M(A_k + D_k - C_k).$$
Outline

Introduction

Schedulability Analysis: Global EDF

Schedulability Analysis: Global RM

Appendix: Augmentation Factor
Strategy

- We focus on Global RM in this part. This basically implies that $D_i = T_i$ for every task τ_i. Some of the strategies can be applied to Global DM.
- We are looking for the necessary condition such that a deadline miss happens.
- Suppose that Global scheduling fails by missing the deadline d_k of task τ_k, which is the first instant with deadline missing.
- The job with the earliest deadline miss arrives at time a_k, in which $T_k = D_k = d_k - a_k$.
Identifying Interference

- Problem window (interval) is defined in \([a_k, d_k]\).
- The jobs of task \(\tau_i\) in the problem window can be categorized into three types:
 - Head job (at most one): some computation demand is *carried in* to the problem window for a job arrival before \(a_k\).
 - Body jobs: the computation demand has to be done in the problem window.
 - Tail job (at most one): some computation demand can be *carried out* from the problem window.
Necessary Condition for Deadline Misses

- If τ_k misses the deadline at d_k, there must be at least $D_k - C_k$ units of time in which all M processors are executing other higher-priority jobs.
- Definition: *demand* $W(\Delta)$ in a time interval with length Δ is the total amount of computation that needs to be completed within the interval.
- If τ_k misses its deadline at time d_k, then

$$W(D_k) > M(D_k - C_k) + C_k$$
Bound Carry-In Interference

Theodore P. Baker: Multiprocessor EDF and Deadline Monotonic Schedulability Analysis. RTSS 2003: 120-129 (earlier results)

- Baker’s approach tries to bound the carry-in interference by extending the busy-interval to the left hand side while satisfying some load condition.
- This step is called *downward extension of an interval* for global RM. For your reference, the procedures are included in the appendix.
- Here, I am presenting a very simple strategy to analyze the schedulability for global RM.
- This is based on the schedulability analysis we did earlier in the utilization bound analysis for global RM.
A Pessimistic Sufficient Test for Global RM

For all $0 < t \leq T_k$

$$W_k(t) = \sum_{i=1}^{k-1} \left(\left\lceil \frac{t}{T_i} \right\rceil - 1 \right) C_i + 2C_i.$$

This implies that we just greedily take a head job immediately. Clearly, lower-priority jobs have no effect for the unschedulability or schedulability.

Theorem

A system \mathcal{T} of periodic, independent, preemptable tasks is schedulable by Global-RM on M processors if

$$\forall \tau_k \in \mathcal{T} \exists t \text{ with } 0 < t \leq T_k \text{ and } C_k + \frac{W_k(t)}{M} \leq t$$

holds. This condition is NOT a necessary condition.
Recall k-Point Effective Schedulability Test: k^2U

Suppose that $\{t_1, t_2, \ldots t_k\}$ are given.

Definition

A k-point effective schedulability test is a sufficient test by verifying the existence of $t_j \in \{t_1, t_2, \ldots t_k\}$ with $t_1 \leq t_2 \leq \cdots \leq t_k$ such that

$$C_k + \sum_{i=1}^{k-1} \alpha_i t_i U_i + \sum_{i=1}^{j-1} \beta_i t_i U_i \leq t_j,$$

where $C_k > 0$, $\alpha_i > 0$, $U_i > 0$, and $\beta_i > 0$ are dependent upon the setting of the task models and task τ_i.

Lemma

[Lemma 1] For a given k-point effective schedulability test of a scheduling algorithm, in which $0 < \alpha_i \leq \alpha$, and $0 < \beta_i \leq \beta$ for any $i = 1, 2, \ldots, k-1$, $0 < t_k$, task τ_k is schedulable by the scheduling algorithm if the following condition holds

$$\frac{C_k}{t_k} \leq \frac{\alpha}{\beta} + 1 - \frac{\alpha}{\beta}.$$
Constrained-Deadline: Schedulability Test for TDA

This is basically very similar to TDA with a minor difference by dividing the higher-priority workload by M. Testing the schedulability condition of task τ_k can be done by using the same strategy used in the k^2U framework. A simple exercise will lead you to

- $0 < \alpha_i \leq \frac{2}{M}$ and $0 < \beta_i \leq \frac{1}{M}$ for $i = 1, 2, \ldots, k - 1$ when testing task τ_k.
Hyperbolic Bound

The task set is schedulable under Global RM if

$$\forall k, \quad (2 + U_k) \prod_{i=1}^{k-1} (U_i/M + 1) \leq 3.$$
Hyperbolic Bound

The task set is schedulable under Global RM if

$$\forall k, \quad (2 + U_k) \prod_{i=1}^{k-1} (U_i/M + 1) \leq 3.$$

The following figure is the hyperbolic bound for the extreme case when k goes to ∞, in which $(2 + U_k)e^{\frac{\sum_{i=1}^{k-1} U_i}{M}} \leq 3$.

![Hyperbolic Bound Graph](image-url)
Capacity Augmentation Bound

Given a task set T with total utilization of U_{\sum}, a scheduling algorithm A with capacity augmentation bound b can always schedule this task set on M processors of speed b as long as T satisfies the following conditions:

\[\sum_{\tau \in T} U_i \leq M \] \hspace{1cm} (3)

For each task $\tau_i \in T$, the utilization $U_i \leq 1$ \hspace{1cm} (4)
Capacity Augmentation Bound

Given a task set \mathcal{T} with total utilization of U_{\sum}, a scheduling algorithm \mathcal{A} with capacity augmentation bound b can always schedule this task set on M processors of speed b as long as \mathcal{T} satisfies the following conditions:

Utilization does not exceed total cores,\[\sum_{\tau_i \in \mathcal{T}} U_i \leq M \] (3)

For each task $\tau_i \in \mathcal{T}$, the utilization $U_i \leq 1$ (4)

This means that the algorithm guarantees the schedulability if the following conditions are satisfied:

Utilization does not exceed total cores,\[\sum_{\tau_i \in \mathcal{T}} U_i \leq \frac{M}{b} \] (5)

For each task $\tau_i \in \mathcal{T}$, the utilization $U_i \leq \frac{1}{b}$ (6)
The task set is schedulable under Global RM if

\[\forall k, (2 + U_k) \prod_{i=1}^{k-1} \left(\frac{U_i}{M} + 1 \right) \leq 3. \quad (7) \]

\[\Rightarrow \left(2 + \frac{1}{b} \right) \left(\frac{1}{(k-1)b} + 1 \right)^{k-1} \leq 3. \quad (8) \]

\[\Rightarrow \left(2 + \frac{1}{b} \right) e^{1/b} \leq 3. \quad (9) \]

Again, we use the worst cases by setting all the tasks with the same utilization as we did in the analysis for uniprocessor systems. This concludes that \(b \geq 3.6215 \) enforces the above inequality.
Baruah’s analysis for Global EDF in fact also works with Global RM for constrained-deadline task systems.

In the time interval from t_0 to d_k, we only have to consider $M - 1$ tasks with carry-in jobs.
Bounded Carry-In

We can define two different time-demand functions, depending on whether task τ_i is with a carry-in job or not:

$$ w^2_i(t) = \begin{cases} C_i & 0 < t < C_i \\ C_i + \left\lceil \frac{t-C_i}{T_i} \right\rceil C_i & \text{otherwise,} \end{cases} \quad (10) $$

and

$$ w^1_i(t) = \left\lceil \frac{t}{T_i} \right\rceil C_i. \quad (11) $$

We can further over-approximate $w^2_i(t)$, since $w^2_i(t) \leq w^1_i(t) + C_i$. Therefore, a sufficient schedulability test for testing task τ_k with $k > M$ for global RM is to verify whether

$$ \exists 0 < t \leq T_k, C_k + \frac{\sum_{\tau_i \in T'} C_i + (\sum_{i=1}^{k-1} w^1_i(t))}{M} \leq t, \quad (12) $$

for all $T' \subseteq hp(\tau_k)$ with $|T'| = M - 1$.
Adopting k^2U

There are two ways to use k^2U.

- **Case 1**: we consider that C_i for task τ_i is known.
 - We simply have to put the $M - 1$ higher-priority tasks with the largest execution times into T'.
 - This can be imagined as if we increase the execution time of task τ_k from C_k to $C_k' = C_k + \frac{\sum_{\tau_i \in T'} C_i}{M}$.
 - Therefore, we still have $0 < \alpha_i \leq \frac{1}{M}$ and $0 < \beta_i \leq \frac{1}{M}$ for $i = 1, 2, \ldots, k - 1$

- **Case 2**: only the task utilizations are given.
 - We need to figure out T'
 - For a higher-priority task τ_i in T', its α_i is upper-bounded by $\frac{2}{M}$
 - For a higher-priority task τ_i not in T', its α_i is upper-bounded by $\frac{1}{M}$
 - This is a more complicated case. I am not going to discuss this.
Adopting $k^2 U$: Case 1

Theorem

Task τ_k in a sporadic implicit-deadline task system is schedulable by global RM on M processors if

$$
\left(\frac{C'_k}{T_k} + 1 \right)^{k-1} \prod_{i=1}^{k-1} \left(\frac{U_i}{M} + 1 \right) \leq 2, \quad (13)
$$

or

$$
\sum_{i=1}^{k-1} \frac{U_i}{M} \leq \ln \left(\frac{2}{\frac{C'_k}{T_k} + 2} \right), \quad (14)
$$

where $C'_k = C_k + \sum_{\tau_i \in T'} \frac{C_i}{M}$.
A Brief Look of the Evaluation Results

![Graph showing evaluation results for different p values](image)

- **Red curves**: existing results

- **Blue curves**: results by adopting $k^2 U$

- **Black curves**: results by adopting $k^2 Q$

Chen, Huang, Liu, 2015
A Brief Look of the Evaluation Results

Red curves: existing results

Blue curves: results by adopting \(k^2 U \)

Black curves: results by adopting \(k^2 Q \)

Chen, Huang, Liu, 2015
A Brief Look of the Evaluation Results

Red curves: existing results

Blue curves: results by adopting $k^2 U$

Black curves: results by adopting $k^2 Q$

Chen, Huang, Liu, 2015
Summary of Existing Results

Regarding to speedup factors

<table>
<thead>
<tr>
<th></th>
<th>implicit deadlines</th>
<th>constrained deadlines</th>
<th>arbitrary deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global EDF</td>
<td></td>
<td></td>
<td>2 − (\frac{1}{M}) (Bonifaci et al. 2008)</td>
</tr>
<tr>
<td>Global DM</td>
<td>3 − (\frac{1}{M}) (Bertogna et al. 2005)</td>
<td>3 − (\frac{1}{M}) (Baruah et al. 2010)</td>
<td>4 − (\frac{1}{M}) (Baruah/Fisher 2008)</td>
</tr>
<tr>
<td></td>
<td>(\frac{3+\sqrt{7}}{2}) (\approx) 2.823 (Chen et al. 2015, (k^2Q))</td>
<td>3 (Chen et al. 2015, (k^2Q))</td>
<td></td>
</tr>
</tbody>
</table>
Remarks on Global Scheduling

- pfair: Optimal for implicit-deadline task systems, but with very high overhead. Not introduced in the lecture.
- Global EDF/RM: lower online scheduling overhead, compared to pfair, but not optimal.
- A tradeoff: less management overhead (less task migrations) without losing the optimality.
Outline

Introduction

Schedulability Analysis: Global EDF

Schedulability Analysis: Global RM

Appendix: Augmentation Factor
Normal Collection of Jobs

A job collection \mathcal{J} is a set of jobs that are revealed online over time:

- a job $j \in \mathcal{J}$ becomes known upon the release date of j
- Each job $j \in \mathcal{J}$ is characterized by its arrival time r_j, absolute deadline d_j, and an unknown execution time c_j.

Note that the actual execution time c_j of a job is discovered by the scheduler only after the job signals completion.
Optimal Schedule for \mathcal{J}

Given \mathcal{J}, suppose that infinitely many (or, say, $|\mathcal{J}|$) processors of unit speed were available.
Optimal Schedule for \mathcal{J}

Given \mathcal{J}, suppose that infinitely many (or, say, $|\mathcal{J}|$) processors of unit speed were available.

Then, the following scheduling algorithm S_∞ is optimal:

- just allocate one processor to each job and schedule each job as early as possible.
Schedulability for EDF

Theorem

Consider a normal collection J of jobs and let $\alpha \geq 1$. Then at least one of the following conditions holds:

1. all jobs in J are completed within their deadline under EDF on M processors of speed α, or
2. J is infeasible under S_∞, or
3. there is an interval I such that any feasible schedule for J must finish more than $(\alpha M - M + 1) \cdot |I|$ units of work within I.

Proof

- The details are omitted, please refer to Bonifaci et al. in ECRTS 2013 (Lemma 3 in Page 228).
Theorem

Any normal collection of jobs that is feasible on M processors of unit speed is EDF-schedulable on M processors of speed $2 - 1/M$.

Proof

The feasibility on M processors of unit speed implies that the demand at any interval I is at most $M \cdot |I|$. By setting α to $2 - 1/M$, for any interval I, we have

$$(\alpha M - M + 1) \cdot |I| = M \cdot |I|.$$

Hence, this implies that EDF finishes all jobs by their respective deadline at speed $2 - 1/M$.
Putting Together

Theorem

If $\forall t > 0$, we have $dbf(\tau_i, t) \leq t$ for every task τ_i and $\sum_{i=1}^{N} dbf(\tau_i, t) \leq M \cdot t$, then this task set with N tasks is EDF-schedulable on M processors of speed $2^{\frac{1}{M}}$.

Theorem

If $\forall t > 0$, we have $dbf(\tau_i, t) \leq \frac{t}{2^{\frac{1}{M}}}$ for every task τ_i and $\sum_{i=1}^{N} dbf(\tau_i, t) \leq M \cdot \frac{t}{2^{\frac{1}{M}}}$, then this task set with N tasks is EDF-schedulable on M processors.

This analysis also works for arbitrary deadlines.