Multiprocessor Scheduling II: Global Scheduling

Prof. Dr. Jian-Jia Chen

LS 12, TU Dortmund

28, June, 2016

Global Scheduling

che universität

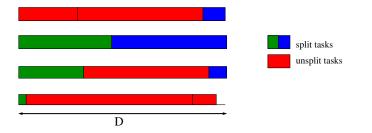
- We will only focus on identical multiprocessors in this module.
- The system has a global queue.
- A job can be migrated to any processor.
- Priority-based global scheduling:
 - Among the jobs in the global queue, the *M* highest priority jobs are chosen to be executed on *M* processors.
 - Task migration here is assumed no overhead.
 - Global-EDF: When a job finishes or arrives to the global queue, the *M* jobs in the queue with the shortest absolute deadlines are chosen to be executed on *M* processors.
 - Global-FP, Global-DM, Global-RM: When a job finishes or arrives to the global queue, the *M* jobs in the queue with the highest priorities (defined by fixed-priority ordering, deadline-monotonic strategy, or rate-monotonic strategy) are chosen to be executed on *M* processors.
- Pfair scheduling, and the variances (not discussed in this lecture).

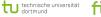
Good News for Global Scheduling

- McNaughton's wrap-around rule for $P|pmtn|C_{max}$ on M processors (historically, task migration is also called task preemption in the literature)
 - Compute C_{\max} as $\max\{\max_{\tau_i \in \mathcal{T}} C_i, \frac{\sum_{\tau_i \in \mathcal{T}} C_i}{M}\}$
 - Assign the tasks according to any order from time 0 to C_{\max}
 - If a task's processing exceeds C_{max} , the task is migrated to a new processor from time 0
 - Repeat the assignment of tasks until all the tasks are assigned
 - The resulting schedule minimizes C_{\max}

R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 6:1-12, 1959.

McNaughton's Algorithm: Example





Weakness of Partitioned Scheduling

- Restricting a task on a processor reduces the schedulability
- Restricting a task on a processor makes the problem \mathcal{NP} -hard
- The *NP*-completeness for EDF does no hold any more if the migration has *no overhead*.
 - Proportionate Fair (pfair) algorithm introduced by Baruah et al. provides an optimal utilization bound for schedulibility
 - A task set with implicit deadlines is schedulable on *M* identical processors if the total utilization of the task set is no more than *M*.
 - The idea is to divide the time line into quanta, and execute tasks proportionally in each quanta.
 - It has very high overhead.

technische universität

• There are several variances to reduce the overhead.

Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, Donald A. Varvel: Proportionate Progress: A Notion of Fairness in Resource Allocation. Algorithmica 15(6): 600-625 (1996)

Bad News for Global Scheduling

For Global-EDF or Global-RM, the least upper bound for schedulability analysis is at most 1.

Input:

technische universität

M+1 tasks:

- One heavy task τ_k : $D_k = T_k = C_k$
- *M* light tasks τ_i s: $C_i = \epsilon$ and $D_i = T_i = C_k \epsilon$, in which ϵ is a positive number, very close to 0.

Sudarshan K. Dhall, C. L. Liu, On a Real-Time Scheduling Problem, OPERATIONS

RESEARCH Vol. 26, No. 1, January-February 1978, pp. 127-140.

Bad News for Global Scheduling

For Global-EDF or Global-RM, the least upper bound for schedulability analysis is at most 1.

Input:

M + 1 tasks:

- One heavy task τ_k : $D_k = T_k = C_k$
- *M* light tasks τ_i s: $C_i = \epsilon$ and $D_i = T_i = C_k \epsilon$, in which ϵ is a positive number, very close to 0.

Result:

The *M* light tasks (with higher priority than the heavy task) will be scheduled on *M* processors. The heavy task misses the deadline even when the utilization is $1 + M\epsilon$.

Sudarshan K. Dhall, C. L. Liu, On a Real-Time Scheduling Problem, OPERATIONS

RESEARCH Vol. 26, No. 1, January-February 1978, pp. 127-140.

to technische universität dortmund

Gold Approach: Resource Augmentation

- The bad news on the least upper bound was very important in 80's, since the research in this direction suffered from the so called "Dhall effect".
- With resource augmentation, by Phillips et al., the "Dhall effect" disappears
 - For Global-EDF, the resource augmentation factor by "speeding up" is $2 \frac{1}{M}$.
 - That is, if a feasible schedule exists on M processors, applying Global-EDF is also feasible on M processors by speeding up the execution speed with $2 \frac{1}{M}$.
 - We will focus on schedulability test here first (for the first two parts) and the resource augmentation at the end.

Cynthia A. Phillips, Clifford Stein, Eric Torng, Joel Wein: Optimal Time-Critical Scheduling via Resource Augmentation. STOC 1997: 140-149

he universität

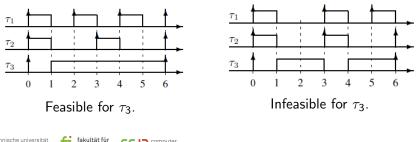
Articles for This Module

- Sanjoy K. Baruah: Techniques for Multiprocessor Global Schedulability Analysis. RTSS 2007: 119-128 (*First part*)
- Nan Guan, Martin Stigge, Wang Yi, Ge Yu: New Response Time Bounds for Fixed Priority Multiprocessor Scheduling. IEEE Real-Time Systems Symposium 2009: 387-397 (*Second part*)
- Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, Andreas Wiese: Feasibility Analysis in the Sporadic DAG Task Model. ECRTS 2013: 225-233 (*Appendix*)
 - Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller: A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling. ESA 2008: 210-221

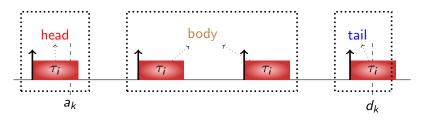
We will mainly focus on task sets with constrained deadlines.

Critical Instants?

- The analysis for uniprocessor scheduling is based on the gold critical instant theorem.
- Synchronous release of higher-priority tasks and as early as possible for the following jobs do not lead to the critical instant for global multiprocessor scheduling
 - Suppose that there two identical processors and 3 tasks: (C_i, D_i, T_i) are $\tau_1 = (1, 2, 2), \tau_2 = (1, 3, 3), \tau_3 = (5, 6, 6)$

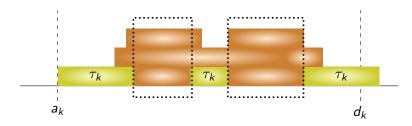


Identifying Interference



- Problem window (interval) is defined in $[a_k, d_k)$.
- The jobs of task τ_i in the problem window can be categorized into three types:
 - Head job (at most one): some computation demand is *carried* in to the problem window for a job arrival before a_k.
 - Body jobs: the computation demand has to be done in the problem window.
 - Tail job (at most one): some computation demand can be *carried out* from the problem window.

Necessary Condition for Deadline Misses



- If τ_k misses the deadline at d_k , there must be at least $D_k C_k$ units of time in which all M processors are executing other higher-priority jobs.
- Definition: demand W(Δ) in a time interval with length Δ is the total amount of computation that needs to be completed within the interval.
- If τ_k misses its deadline at time d_k , then

$$W(D_k) > M(D_k - C_k) + C_k$$

Introduction

Schedulability Analysis: Global EDF

Schedulability Analysis: Global RM

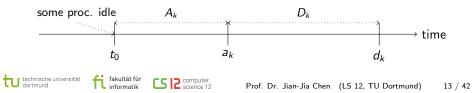
Appendix: Augmentation Factor

Baruah's Approach

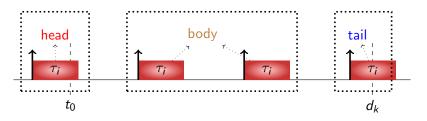
For contrapositive, assume that a job of task τ_k misses its absolute deadline at time d_k with release time a_k .

- Bound the carry-in computation demand more precisely.
- Let t_0 be the earliest time instant such that the system executes jobs on M processors from t_0 to a_k .
 - The ready queue before t_0 is with less than M jobs.
 - The ready queue has at least M jobs in time interval $[t_0, a_k)$.
- Let *I* be the set of intervals in [t₀, d_k), in which all the M processors are executing. By considering the worst cases, the job of task τ_k arriving at time a_k is not executed at all in *I*.

• Let
$$A_k$$
 be $a_k - t_0$.



Identifying Interference



- Problem window (interval) is defined in $[t_0, d_k)$.
- The jobs of task τ_i in the problem window can be categorized into three types:
 - Head job (at most one): some computation demand is *carried* in to the problem window for a job arrival before a_k.
 - Body jobs: the computation demand has to be done in the problem window.
 - Tail job (at most one): some computation demand can be *carried out* from the problem window.

Necessary Condition for Deadline Misses

 Let w_i(I) be the demand executed in the set I of time intervals for task τ_i. The necessary condition for τ_k to miss its deadline is

$$\sum_{i=1}^N w_i(\mathcal{I}) > M(A_k + D_k - C_k).$$

- Let's consider two types of interferences in $w_i(\mathcal{I})$.
 - Type 1: tasks that are not executing at time t₀. There will be no carry-in demand at time t₀.
 - Type 2: tasks that are executing at time t₀. There might be carry-in demand at time t₀.

Interference Type 1: No Carry-In at Time t_0

- Case 1: $i \neq k$
 - The demand of τ_i to be done in the time intervals in $\mathcal I$ is at most

$$\min\left\{dbf(\tau_i, A_k + D_k), A_k + D_k - C_k\right\}.$$

- Case 2: *i* is *k*
 - The demand of τ_k to be done in the time intervals in ${\mathcal I}$ is at most

$$\min\left\{dbf(\tau_i,A_k+D_k)-C_k,A_k\right\}.$$

• Specifically, we need to remove the job that arrives at a_k since its execution is not counted as part of \mathcal{I} .

Therefore,

che universität

$$w_i^1(\mathcal{I}) = \det \begin{cases} \min \{dbf(\tau_i, A_k + D_k), A_k + D_k - C_k\} & \text{if } i \neq k \\ \min \{dbf(\tau_i, A_k + D_k) - C_k, A_k\} & \text{if } i = k. \end{cases}$$

Interference Type 2: With Carry-In at Time t_0

- Case 1: $i \neq k$
 - The demand of τ_i to be done in the time intervals in \mathcal{I} is at most

$$\min\left\{dbf^{\dagger}(\tau_i,A_k+D_k),A_k+D_k-C_k\right\},\,$$

where $dbf^{\dagger}(\tau_i, \delta)$ is $\left\lfloor \frac{\delta}{T_i} \right\rfloor C_i + \min\{C_i, \delta \mod T_i\}.$

- Case 2: *i* is *k*
 - The demand of τ_k to be done in the time intervals in *I* is at most

$$\min\left\{dbf^{\dagger}(\tau_i,A_k+D_k)-C_k,A_k\right\}.$$

Therefore,

vische universität

$$w_i^2(\mathcal{I}) = \det \begin{cases} \min \left\{ dbf^{\dagger}(\tau_i, A_k + D_k), A_k + D_k - C_k \right\} & \text{if } i \neq k \\ \min \left\{ dbf^{\dagger}(\tau_i, A_k + D_k) - C_k, A_k \right\} & \text{if } i = k. \end{cases}$$

Putting Together

- Let $w_i^{diff}(\mathcal{I})$ be $w_i^2(\mathcal{I}) w_i^1(\mathcal{I})$.
- The necessary condition for τ_k to miss its deadline becomes

$$\sum_{i=1}^{N} w_i^1(\mathcal{I}) + \sum_{M-1 \text{ largest}} w_i^{diff}(\mathcal{I}) > M(A_k + D_k - C_k).$$

Putting Together

- Let $w_i^{diff}(\mathcal{I})$ be $w_i^2(\mathcal{I}) w_i^1(\mathcal{I})$.
- The necessary condition for τ_k to miss its deadline becomes

$$\sum_{i=1}^{N} w_i^1(\mathcal{I}) + \sum_{M-1 \text{ largest}} w_i^{diff}(\mathcal{I}) > M(A_k + D_k - C_k).$$

Theorem

A task set is schedulable under Global-EDF if for every task τ_k and for all $A_k \geq 0$

$$\sum_{i=1}^{N} w_i^1(\mathcal{I}) + \sum_{M-1 \text{ largest}} w_i^{diff}(\mathcal{I}) \leq M(A_k + D_k - C_k).$$

Introduction

Schedulability Analysis: Global EDF

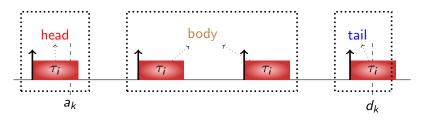
Schedulability Analysis: Global RM

Appendix: Augmentation Factor

Strategy

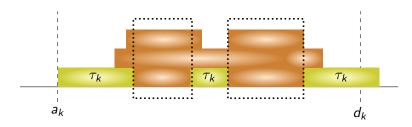
- We focus on Global RM in this part. This basically implies that $D_i = T_i$ for every task τ_i . Some of the strategies can be applied to Global DM.
- We are looking for the necessary condition such that a deadline miss happens.
- Suppose that Global scheduling fails by missing the deadline d_k of task τ_k , which is the first instant with deadline missing.
- The job with the earliest deadline miss arrives at time a_k , in which $T_k = D_k = d_k a_k$.

Identifying Interference



- Problem window (interval) is defined in $[a_k, d_k)$.
- The jobs of task τ_i in the problem window can be categorized into three types:
 - Head job (at most one): some computation demand is *carried in* to the problem window for a job arrival before *a*_k.
 - Body jobs: the computation demand has to be done in the problem window.
 - Tail job (at most one): some computation demand can be *carried out* from the problem window.

Necessary Condition for Deadline Misses



- If τ_k misses the deadline at d_k , there must be at least $D_k C_k$ units of time in which all M processors are executing other higher-priority jobs.
- Definition: demand W(Δ) in a time interval with length Δ is the total amount of computation that needs to be completed within the interval.
- If τ_k misses its deadline at time d_k , then

$$W(D_k) > M(D_k - C_k) + C_k$$

Bound Carry-In Interference

Theodore P. Baker: Multiprocessor EDF and Deadline Monotonic Schedulability Analysis. RTSS 2003: 120-129 (earlier results)

- Baker's approach tries to bound the carry-in interference by extending the busy-interval to the left hand side while satisfying some load condition.
- This step is called *downward extension of an interval* for global RM. For your reference, the procedures are included in the appendix.
- Here, I am presenting a very simple strategy to analyze the schedulability for global RM.
- This is based on the schedulability analysis we did earlier in the utilization bound analysis for global RM.

A Pessimistic Sufficient Test for Global RM

For all $0 < t \leq T_k$

$$W_k(t) = \sum_{i=1}^{k-1} \left(\left\lceil \frac{t}{T_i} \right\rceil - 1 \right) C_i + 2C_i.$$

This implies that we just greedily take a head job immediately. Clearly, lower-priority jobs have no effect for the unschedulability or schedulability.

Theorem

sche universität

A system ${\mathcal T}$ of periodic, independent, preemptable tasks is schedulable by Global-RM on M processors if

$$orall au_k \in \mathcal{T} \; \exists t \, \, ext{with} \, \, 0 < t \leq T_k \, \, \, ext{and} \, \, \, C_k + rac{W_k(t)}{M} \leq t$$

holds. This condition is NOT a necessary condition.

Recall k-Point Effective Schedulability Test: k^2U

Suppose that $\{t_1, t_2, \ldots t_k\}$ are given.

Definition

A *k*-point effective schedulability test is a sufficient test by verifying the existence of $t_j \in \{t_1, t_2, \dots, t_k\}$ with $t_1 \leq t_2 \leq \dots \leq t_k$ such that

$$C_{k} + \sum_{i=1}^{k-1} \alpha_{i} t_{i} U_{i} + \sum_{i=1}^{j-1} \beta_{i} t_{i} U_{i} \leq t_{j},$$
(1)

where $C_k > 0$, $\alpha_i > 0$, $U_i > 0$, and $\beta_i > 0$ are dependent upon the setting of the task models and task τ_i .

Lemma

che universität

[Lemma 1] For a given k-point effective schedulability test of a scheduling algorithm, in which $0 < \alpha_i \le \alpha$, and $0 < \beta_i \le \beta$ for any i = 1, 2, ..., k - 1, $0 < t_k$, task τ_k is schedulable by the scheduling algorithm if the following condition holds

$$\frac{C_k}{t_k} \leq \frac{\frac{\alpha}{\beta} + 1}{\prod_{j=1}^{k-1} (\beta U_j + 1)} - \frac{\alpha}{\beta}.$$
(2)

Constrained-Deadline: Schedulability Test for TDA

This is basically very similar to TDA with a minor difference by dividing the higher-priority workload by M. Testing the schedulability condition of task τ_k can be done by using the same strategy used in the k^2U framework.

A simple exercise will lead you to

• $0 < \alpha_i \leq \frac{2}{M}$ and $0 < \beta_i \leq \frac{1}{M}$ for i = 1, 2, ..., k - 1 when testing task τ_k .

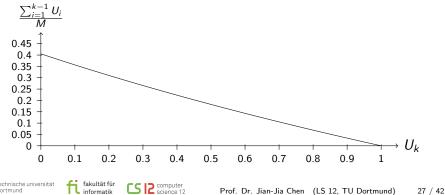
The task set is schedulable under Global RM if

$$\forall k, \qquad (2+U_k) \prod_{i=1}^{k-1} (U_i/M+1) \leq 3.$$

The task set is schedulable under Global RM if

$$\forall k, \qquad (2+U_k) \prod_{i=1}^{k-1} (U_i/M+1) \leq 3.$$

The following figure is the hyperbolic bound for the extreme case when k goes to ∞ , in which $(2 + U_k)e^{\frac{\sum_{i=1}^{k-1} U_i}{M}} \leq 3$



Capacity Augmentation Bound

Given a task set \mathcal{T} with total utilization of U_{\sum} , a scheduling algorithm \mathcal{A} with capacity augmentation bound b can always schedule this task set on M processors of speed b as long as \mathcal{T} satisfies the following conditions:

Utilization does not exceed total cores, $\sum_{\tau_i \in \mathcal{T}} U_i \leq M$ (3)

For each task $\tau_i \in \mathcal{T}$, the utilization $U_i \leq 1$ (4)



Capacity Augmentation Bound

che universität

Given a task set \mathcal{T} with total utilization of U_{\sum} , a scheduling algorithm \mathcal{A} with capacity augmentation bound b can always schedule this task set on M processors of speed b as long as \mathcal{T} satisfies the following conditions:

Utilization does not exceed total cores,
$$\sum_{\tau_i \in \mathcal{T}} U_i \leq M$$
 (3)

For each task $\tau_i \in \mathcal{T}$, the utilization $U_i \leq 1$ (4)

This means that the algorithm guarantees the schedulability if the following conditions are satisfied:

Utilization does not exceed total cores,
$$\sum_{\tau_i \in \mathcal{T}} U_i \leq \frac{M}{b}$$
 (5)
For each task $\tau_i \in \mathcal{T}$, the utilization $U_i \leq \frac{1}{b}$ (6)

Capacity Augmentation Bound of Global RM

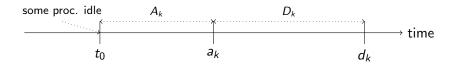
The task set is schedulable under Global RM if

$$\forall k, (2+U_k) \, \prod_{i=1}^{k-1} (U_i/M+1) \leq 3. \tag{7}$$

$$\Rightarrow \left(2 + \frac{1}{b}\right) \left(\frac{1}{(k-1)b} + 1\right)^{k-1} \le 3.$$
(8)

$$\Rightarrow \left(2 + \frac{1}{b}\right) e^{1/b} \le 3.$$
(9)

Again, we use the worst cases by setting all the tasks with the same utilization as we did in the analysis for uniprocessor systems. This concludes that $b \ge 3.6215$ enforces the above inequality.



- Baruah's analysis for Global EDF in fact also works with Global RM for constrained-deadline task systems.
- In the time interval from t_0 to d_k , we only have to consider M 1 tasks with carry-in jobs.

Bounded Carry-In

We can define two different time-demand functions, depending on whether task τ_i is with a carry-in job or not:

$$w_i^2(t) = \begin{cases} C_i & 0 < t < C_i \\ C_i + \left\lceil \frac{t - C_i}{T_i} \right\rceil C_i & otherwise, \end{cases}$$
(10)

and

technische universität

$$w_i^1(t) = \left\lceil \frac{t}{T_i} \right\rceil C_i.$$
(11)

We can further over-approximate $w_i^2(t)$, since $w_i^2(t) \le w_i^1(t) + C_i$. Therefore, a sufficient schedulability test for testing task τ_k with k > M for global RM is to verify whether

$$\exists 0 < t \le T_k, C_k + \frac{(\sum_{\tau_i \in \mathbf{T}'} C_i) + (\sum_{i=1}^{k-1} w_i^1(t))}{M} \le t, \qquad (12)$$

for all $\mathbf{T}' \subseteq hp(\tau_k)$ with $|\mathbf{T}'| = M - 1$.

Adopting $k^2 U$

There are two ways to use $k^2 U$.

- Case 1: we consider that C_i for task τ_i is known.
 - We simply have to put the M-1 higher-priority tasks with the largest execution times into T'.
 - This can be imagined as if we increase the execution time of task τ_k from C_k to C'_k = C_k + Σ_{τi∈τ'} C_i/M.
 - Therefore, we still have $0 < \alpha_i \le \frac{1}{M}$ and $0 < \beta_i \le \frac{1}{M}$ for $i = 1, 2, \dots, k 1$
- Case 2: only the task utilizations are given.
 - We need to figure out **T**'
 - For a higher-priority task τ_i in **T**', its α_i is upper-bounded by $\frac{2}{M}$
 - For a higer-priority task τ_i not in **T**', its α_i is upper-bounded by $\frac{1}{M}$
 - This is a more complicated case. I am not going to discuss this.

Adopting $k^2 U$: Case 1

Theorem

Task τ_k in a sporadic implicit-deadline task system is schedulable by global RM on M processors if

$$\left(\frac{C'_k}{T_k}+1\right)\prod_{i=1}^{k-1}\left(\frac{U_i}{M}+1\right)\leq 2,$$
(13)

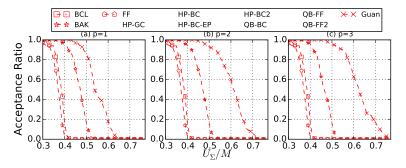
or

sche universität

$$\sum_{i=1}^{k-1} \frac{U_i}{M} \le \ln\left(\frac{2}{\frac{C'_k}{T_k} + 2}\right),\tag{14}$$

where
$$C'_k = C_k + \frac{\sum_{\tau_i \in \mathbf{T}'} C_i}{M}$$

A Brief Look of the Evaluation Results



Chen, Huang, Liu, 2015

Red curves: existing results

technische universität

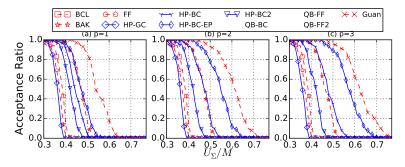
 BCL: Bertonga et al. 2005; BAK: Baker 2003; FF: Baruah et al. 2010; Guan: Guan et al. 2009

Blue curves: results by adopting $k^2 U$

informatik

Black curves: results by adopting k^2Q

A Brief Look of the Evaluation Results



Chen, Huang, Liu, 2015

Red curves: existing results

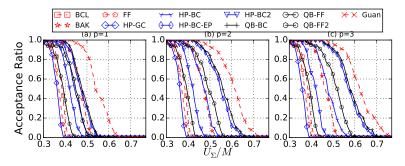
technische universität

BCL: Bertonga et al. 2005; BAK: Baker 2003; FF: Baruah et al. 2010; Guan: Guan et al. 2009

Blue curves: results by adopting $k^2 U$

Black curves: results by adopting $k^2 Q$ fakultät für

A Brief Look of the Evaluation Results



Chen, Huang, Liu, 2015

Red curves: existing results

technische universität

BCL: Bertonga et al. 2005; BAK: Baker 2003; FF: Baruah et al. 2010; Guan: Guan et al. 2009

Blue curves: results by adopting $k^2 U$

Black curves: results by adopting $k^2 Q$ fakultät für

Summary of Existing Results

Regarding to speedup factors

	implicit deadlines	constrained deadlines	arbitrary deadlines
Global EDF	$2-rac{1}{M}$ (Bonifaci et al. 2008)		
Global DM	$3-\frac{1}{M}$ (Bertogna et al. 2005)	$3-\frac{1}{M}$ (Baruah et al. 2010)	$4-\frac{1}{M}$ (Baruah/Fisher 2008)
	$rac{3+\sqrt{7}}{2}pprox 2.823$ (Chen et al. 2015, k^2Q)	3 (Chen et al. 2015, $k^2 Q$)	

Remarks on Global Scheduling

- pfair: Optimal for implicit-deadline task systems, but with very high overhead. Not introduced in the lecture.
- Global EDF/RM: lower online scheduling overhead, compared to pfair, but not optimal.
- A tradeoff: less management overhead (less task migrations) without losing the optimality.
 - Paul Regnier, George Lima, Ernesto Massa, Greg Levin, Scott A. Brandt: RUN: Optimal Multiprocessor Real-Time Scheduling via Reduction to Uniprocessor. RTSS 2011: 104-115

Introduction

Schedulability Analysis: Global EDF

Schedulability Analysis: Global RM

Appendix: Augmentation Factor

Normal Collection of Jobs

A job collection $\ensuremath{\mathcal{J}}$ is a set of jobs that are revealed online over time:

- a job $j \in \mathcal{J}$ becomes known upon the release date of j
- Each job j ∈ J is characterized by its arrival time r_j, absolute deadline d_j, and an unknown execution time c_j.

Note that the actual execution time c_j of a job is discovered by the scheduler only after the job signals completion.

Optimal Schedule for ${\mathcal J}$

Given \mathcal{J} , suppose that infinitely many (or, say, $|\mathcal{J}|$) processors of unit speed were available.

Optimal Schedule for ${\mathcal J}$

Given $\mathcal J,$ suppose that infinitely many (or, say, $|\mathcal J|)$ processors of unit speed were available.

Then, the following scheduling algorithm S_{∞} is optimal:

• just allocate one processor to each job and schedule each job as early as possible.

Schedulability for EDF

Theorem

Consider a normal collection \mathcal{J} of jobs and let $\alpha \geq 1$. Then at least one of the following conditions holds:

- **1** all jobs in \mathcal{J} are completed within their deadline under EDF on M processors of speed α , or
- **2** \mathcal{J} is infeasible under S_{∞} , or
- € there is an interval *I* such that any feasible schedule for \mathcal{J} must finish more than $(\alpha M M + 1) \cdot |I|$ units of work within *I*.

Proof

• The details are omitted, please refer to Bonifaci et al. in ECRTS 2013 (Lemma 3 in Page 228).

Speedup for Normal Collection of Jobs

Theorem

Any normal collection of jobs that is feasible on M processors of unit speed is EDF-schedulable on M processors of speed 2 - 1/M.

Proof

The feasibility on M processors of unit speed implies that the demand at any interval I is at most $M \cdot |I|$. By setting α to $2 - \frac{1}{M}$, for any interval I, we have

$$(\alpha M - M + 1) \cdot |I| = M \cdot |I|.$$

Hence, this implies that EDF finishes all jobs by their respective deadline at speed $2-\frac{1}{M}.$

Putting Together

Theorem

If $\forall t > 0$, we have $dbf(\tau_i, t) \leq t$ for every task τ_i and $\sum_{i=1}^{N} dbf(\tau_i, t) \leq M \cdot t$, then this task set with N tasks is EDF-schedulable on M processors of speed 2 - 1/M.

Theorem

If $\forall t > 0$, we have $dbf(\tau_i, t) \leq \frac{t}{2-1/M}$ for every task τ_i and $\sum_{i=1}^{N} dbf(\tau_i, t) \leq M \cdot \frac{t}{2-1/M}$, then this task set with N tasks is EDF-schedulable on M processors.

This analysis also works for arbitrary deadlines.

