MIRROR: Symmetric Timing Analysis for Real-Time Tasks

on Multicore Platforms with Shared Resources

Wen-Hung Kevin Huang, Jian-Jia Chen, and Jan Reineke

TU Dortmund and University of Saarlands

09,06,2016 at DAC, Austin, USA

010}
(T}

0
technische universitat SFB 876 Verfiigbarkeit von Information V' ’ WUHHUW
dortmund durch Analyse unter Ressourcenbeschrénkung

1/14

Periodic Control System (Liu

and Layland 1973)

Pseudo-code for this system

set timer to interrupt periodically
with period T;

at each timer interrupt
do

e perform analog-to-digital
conversion to get y;

e compute control output u;

e output v and do
digital-to-analog conversion;

od

y©

Control-law
computation

plant
(The system
being controlled)

‘_@

2/ 14

Periodic Control System (Liu and Layland 1973)

Pseudo-code for this system

set timer to interrupt periodically
with period T;

at each timer interrupt
do

e perform analog-to-digital
conversion to get y;

e compute control output u;

e output v and do
digital-to-analog conversion;

od

i
i

i

i

i

o | Control-law N .
i

i

i

i

i

|

computation

y(®)

plant
sensor (The system actuator
being controlled)

Liu and Layland Model:

T;: period of task 7;
D;: relative deadline of task 7;

C;: worst-case execution time
of task 7;

U;: utilization C;/T;

2/ 14

Predictability Due to Resource Sharing

Multi Core CPU 1

Task is executed on Core 1

Multi Core CPU 2

Main Memory

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

L1 cache misses

Main Memory

Multi Core CPU 2

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

L2 cache misses

Main Memory

Multi Core CPU 2

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

Access memory

Main Memory

Multi Core CPU 2

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

Task is executed on Core 2

Multi Core CPU 2

Main Memory

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

L1 cache misses

Main Memory

Multi Core CPU 2

3/14

Predictability Due to Resource Sharing

L2 is blocked
Multi Core CPU 1 Multi Core CPU 2

Main Memory

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

Task is executed on Core 3

Multi Core CPU 2

Main Memory

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

L1 cache misses

Main Memory

Multi Core CPU 2

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

L2 cache misses

Main Memory

Multi Core CPU 2

3/14

Predictability Due to Resource Sharing

Memory access is blocked

Multi Core CPU 1 Multi Core CPU 2

)

Main Memory

3/14

Predictability Due to Resource Sharing

Multi Core CPU 1

Memory access for core 1 finishes

Multi Core CPU 2

Main Memory

3/14

Typical Two-Phase Analysis Approaches

e Phase 1: Worst-case execution time (WCET) of a stand-alone
program

o WCET analyzers such as aiT or Chronous.

4/14

Typical Two-Phase Analysis Approaches

e Phase 1: Worst-case execution time (WCET) of a stand-alone
program

o WCET analyzers such as aiT or Chronous.

e Phase 2: Worst-case response time (WCRT) of a
periodic/sporadic task by considering the competition with
the other tasks

e worst-case interference from the other tasks

o utilization-based tests, response time analysis, busy-interval
techniques, real-time calculus, max-plus algebra, etc.

e The notion of WCET is destroyed in multicore systems due to
shared resources.
o WCET depends on how the tasks on the other cores are

co-executed
e Assume the worst-case interference is too pessimistic

4/14

Self-Suspending Behavior

Core 1 LI LI LI L L > c-execution

« - ------ —— e - - - - > .
<> C-suspension

Core 2 i - :
ore T 1 T 1 1 1 T T 1 1 1T 1T 1T 17T € r-execution
<> r-suspension
- e ------- ————— <>
St "L T

T T T I I T T
012345678 91011121314151617 ¢

e Multiple cores may share a bus

e The contention on the bus can be considered as a suspension
problem (with respect to the bus access)

5/ 14

Self-Suspension Tasks in Real-Time Systems

Suppose that we know the suspension time of each 7; and would like to analyze
the schedulability of the tasks on a core. (Constrained-deadline D; < T;)

T1

& t & - - t

—>

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

e A self-suspending task 7; is a periodic task with jitter (PJD task)

e Period: T;
o Self-suspension-time: S;

6/ 14

Self-Suspension Tasks in Real-Time Systems

Suppose that we know the suspension time of each 7; and would like to analyze

the schedulability of the tasks on a core. (Constrained-deadline D; < T;)

n t } }

>

T T T T T T T T T T T T

™ { & - -

I T T T T T T T T T T T T T

7 i rt
| 1 1 1 1 1 1 1 [_] 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

e A self-suspending task 7; is a periodic task with jitter (PJD task)
e Period: T;
o Self-suspension-time: S;

® Schedulability test of task 7«:
k—1
3t with 0 < t < Ty Md(}+5w+§:{

Jj=1

t+S;

WQSt
J

6/ 14

Self-Suspension Tasks in Real-Time Systems

Suppose that we know the suspension time of each 7; and would like to analyze
the schedulability of the tasks on a core. (Constrained-deadline D; < T;)

n t } }

T T T T T T T T T T T T

™ t = - tem t

I T T T T T T T T T T T T T T 1

i f m—'_q_b_a_'_q—'—'_f_‘
r T T T T

i f [j
L | | | | | | | D | | | | | |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

>

e A self-suspending task 7; is a periodic task with jitter (PJD task)
e Period: T;
o Self-suspension-time: S;

® Schedulability test of task 7«:
k—1

Htmm0<t§ﬂ(Mde#&+§:[

Jj=1

t+ D;
T;

WQSt

6/ 14

Self-Suspension Tasks in Real-Time Systems

Suppose that we know the suspension time of each 7; and would like to analyze
the schedulability of the tasks on a core. (Constrained-deadline D; < T;)

n t } }

T T T T T T T T T T T T

™ t = - tem t

I T T T T T T T T T T T T T T 1

i f m—'_q_b_a_'_q—'—'_f_‘
r T T T T

i f [j
L | | | | | | | D | | | | | |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

>

e A self-suspending task 7; is a periodic task with jitter (PJD task)
e Period: T;
o Self-suspension-time: S;

® Schedulability test of task 7«:
k—1

Htmm0<t§ﬂ<Mde%&+§:[

Jj=1

t+7T;
Tj

l@ﬁt

6/ 14

Platform Model

e Multicore with a share resource
e For example, atomic (non-split-transaction) bus

o Bus sits idle while memory processes the request and sends the
response

o Fixed-priority arbitration
axl LU LWL L L L

0 1 2 3 4 5 6 7 8 9 10

Reqné (R)

Req 7 @
Resp 7 (X X X)

7/ 14

Task and Scheduling Model

e Resource access task 7;
(G, Ai, T, Di, 07)

C;: upper bound on local
computation

A;: upper bound on
resource accesses

T;: period

D;: relative deadline
(Di<T)

o;: the maximum number
segments of consecutive
resource accesses

e Path analysis

e Fixed-priority scheduling (we
use deadline-monotinic
scheduling)

10@
0

8 20@:}

|§1[37 12|E|

7
o®

|:| Local execution

O Resource access

G =35
A =40
0',':3

8/ 14

Task and Scheduling Model

e Resource access task 7;
(G, Ai, T, Di, 07)

C;: upper bound on local
computation

A;: upper bound on
resource accesses

T;: period

D;: relative deadline
(Di<T)

o;: the maximum number
segments of consecutive
resource accesses

e Path analysis

e Fixed-priority scheduling (we
use deadline-monotinic
scheduling)

Critical path marked for C;

9

[B]10
5
|§1[37 1@

7
o®

|:| Local execution

O Resource access

G =35
A; = 40
0',':3

8/ 14

Task and Scheduling Model

e Resource access task 7;
(G, Ai, T, Di, 07)

C;: upper bound on local
computation

A;: upper bound on
resource accesses

T;: period

D;: relative deadline
(Di<T)

o;: the maximum number
segments of consecutive
resource accesses

e Path analysis

e Fixed-priority scheduling (we
use deadline-monotinic
scheduling)

Critical path ked for A;
10@ ritical path marked for
v
8]

‘.ig/ﬁocal execution

O ReSOUrCe access
8 20@
3

G =35
]7 wF] |4=%
10

@ ;=3
1ot

Critical path marked for C;

8/ 14

Task and Scheduling Model

e Resource access task 7;
(G, Ai, Ti, Di, o))
e C;: upper bound on local
computation

Critical path ked for A;
10@ ritical path marked for
v

Local execution

Q/ﬁ
O Resource access

8 20
G =35

Critical path marked for C;
g

e A;: upper bound on
resource accesses 7 1@ A; = 40
e T;: period 0;=3
e D;: relative deadline 10@
D;<T;
o g,-: the m)aximum number 10@
segments of consecutive Assume compositional properties:
resource accesses 75 is a safe upper bound.

e Path analysis

e Fixed-priority scheduling (we
use deadline-monotinic
scheduling)

8/ 14

Key Observations: Symmetric Property

COre 1 T T T T T T T T T T T T T T

N N N
Core 2 2 2

L T 1 r 1 1 T T 1 1T T 1T 1T 1T € r-execution
<> r-suspension

€ c-execution
<> C-suspension

Re%gi:'?:g

T 1 LI I B |
012345672829

e From the core perspectives for 75

e accessing or waiting: [3,4), [8,12), [15, 16)
e suspension: [4,8), [12, 15)

e From the shared resource perspectives for 75
e executing or waiting: [4,8), [12, 15)
e suspension:[3,4), [8,12), [15, 16)

9/ 14

Schedulability Test for Task 7

e WCRT is upper bounded by the minimum t|0 < t < Dy

(Ck + exec_core(t)) + (Ax + exec_resource(t)) < t

10/ 14

Schedulability Test for Task 7

e WCRT is upper bounded by the minimum t|0 < t < Dy

t T: t T;
(Ck + Z " —;_ -‘ Ci) +oxB+ (Ak + Z " —;_ -‘ Ai) <t
) 1 1

Ti€hp(Tk,C T €hp(Tk,r)

e o4 B: the maximum blocking time by the lower priority tasks
on the shared resource

e hp(7k, c): higher-priority tasks thant, on the same core
o hp(7, r): higher-priority tasks than 74 on shared resource

10/ 14

Schedulability Test for Task 7

e WCRT is upper bounded by the minimum t|0 < t < Dy

t T: t T;
Cv + Z —;_ -‘Ci +okB+| Ax + Z —;_ -‘Ai <t

T €hp(T),C) T €hp(Tk,r)

e o4 B: the maximum blocking time by the lower priority tasks
on the shared resource

e hp(7k, c): higher-priority tasks thant, on the same core
o hp(7, r): higher-priority tasks than 74 on shared resource
® Pessimism of the above response time analysis: number of resource
access segments was not exploited

® In our paper, we explain how to calculate and utilize the information o
in a symmetric and more precise manner

10/ 14

Task Assignment (Partition)

" =1 BN R
.ﬂﬂﬂm

P1 P> P3

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

" =1 BN R
.ﬂﬂﬂm

P1 P> P3

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

" =1 BN R
.ﬂﬂﬂm

1

P; P> P3

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

-

1

P; P> P3

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

-

¢ é é
P> P3

Py

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

.

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

-

T
T1 @
P> P3

Py

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

-

ML

Py

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

- T7
K @
- .
P; P> P3

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Task Assignment (Partition)

lH-

- T7 T3
. .
P; P> P3

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)

11/ 14

Experiments

e Configuration

o 4-core platform (m=4)

e 20 tasks

e Periods [10-1000ms]

e Each utilization level:100 task sets

e Existing results:

e Exact-MC (Bonifaci et al. in RTNS 2015): do memory access
and then do execution

o MIRROR-SPIN (This resembles the test from Altmeyer et al.
in RTNS 2015)

e Evaluation Metrics:

e The acceptance ratio of a level: the number of task sets that
are schedulable by the test divided by the number of task sets.

12/ 14

Experiments

Acceptance Ratio

(5€) MIRROR-FF
-+— MIRROR-BF
MIRROR-WF

¢ MIRROR-SPIN
(36 MIRROR

<> MIRROR-SPIN
(3€) MIRROR-RAS

<}<> MIRROR-MC

7/ exact-MC

(a) U§=40%, type=F (c) U=40%, type=M 10
T T L T

(e) UQ 0% type R

1.0 oecdoon 1.0
0.8 iy] 0.8 .
0.6 i\ i 0.6 .
0.4} iidiid04f Lo
0.2 v i 4 0.2 Lo
0.0l —i 0.0 oL
0.0 0.2, 0.4 0.6 0.8 1.0 0.0 0 0.4 0.6 .0
(b) U$=70%, type=F (d (f)UA 70%,type R
1.0 et 1.om‘ bR
0.8 X Jo8f-
0.6 & i d06f-
0.4 i) bt 04
0.2f & i fo2]-
bbbt

00 02 0.4 0.6 0.8 10 00 02 04 0.6 0.8 10 00 02 04 06 08 1.0

usim

The number of resource access segments o;: 1 (rare access, type=R), 2
(moderate access, type=M), and 10 (frequent access, type=F).

13/ 14

Conclusion and Extensions

e Fixed-priority, deadline-monotonic scheduling bus + bus-aware
timing analysis + FFDM = high schedulability

e A general treatment to handle multicore resource accesses
e The treatment is compatible with existing task partitioning
methods

e The view points are symmetric
o First result with worst-case resource augmentation guarantees
(i.e., speedup factors) for this research line

e Extensions

e Similar techniques can be applied for multiple shared resources
e The pessimism can be further reduced by counting the
interference more precisely

14 / 14

	Introduction

