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Periodic Control System (Liu

and Layland 1973)

Pseudo-code for this system

set timer to interrupt periodically
with period T;

at each timer interrupt
do

e perform analog-to-digital
conversion to get y;

e compute control output u;

e output v and do
digital-to-analog conversion;

od

y©

Control-law
computation

plant
(The system
being controlled)

‘_@
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Liu and Layland Model:

T;: period of task 7;
D;: relative deadline of task 7;

C;: worst-case execution time
of task 7;

U;: utilization C;/T;
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Predictability Due to Resource Sharing

Multi Core CPU 1

Task is executed on Core 1

Multi Core CPU 2

Main Memory
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Predictability Due to Resource Sharing

Multi Core CPU 1

L2 cache misses
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Multi Core CPU 2

3/14



Predictability Due to Resource Sharing

Multi Core CPU 1

Access memory
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Predictability Due to Resource Sharing

Multi Core CPU 1

Task is executed on Core 2

Multi Core CPU 2

Main Memory
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Predictability Due to Resource Sharing

L2 is blocked
Multi Core CPU 1 Multi Core CPU 2

Main Memory
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Predictability Due to Resource Sharing

Multi Core CPU 1

Task is executed on Core 3

Multi Core CPU 2
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Predictability Due to Resource Sharing

Multi Core CPU 1

L2 cache misses
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Predictability Due to Resource Sharing

Memory access is blocked

Multi Core CPU 1 Multi Core CPU 2

)

Main Memory
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Predictability Due to Resource Sharing

Multi Core CPU 1

Memory access for core 1 finishes

Multi Core CPU 2

Main Memory
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Typical Two-Phase Analysis Approaches

e Phase 1: Worst-case execution time (WCET) of a stand-alone
program

o WCET analyzers such as aiT or Chronous.
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Typical Two-Phase Analysis Approaches

e Phase 1: Worst-case execution time (WCET) of a stand-alone
program

o WCET analyzers such as aiT or Chronous.

e Phase 2: Worst-case response time (WCRT) of a
periodic/sporadic task by considering the competition with
the other tasks

e worst-case interference from the other tasks

o utilization-based tests, response time analysis, busy-interval
techniques, real-time calculus, max-plus algebra, etc.

e The notion of WCET is destroyed in multicore systems due to
shared resources.
o WCET depends on how the tasks on the other cores are

co-executed
e Assume the worst-case interference is too pessimistic
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Self-Suspending Behavior

Core 1 LI LI LI L L > c-execution

« - ------ —— e - - - - > .
<> C-suspension

Core 2 i - :
ore T 1 T 1 1 1 T T 1 1 1T 1T 1T 17T € r-execution
<> r-suspension
- e ------- ————— <>
St "L T

T T T I I T T
012345678 91011121314151617 ¢

e Multiple cores may share a bus

e The contention on the bus can be considered as a suspension
problem (with respect to the bus access)
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Self-Suspension Tasks in Real-Time Systems

Suppose that we know the suspension time of each 7; and would like to analyze
the schedulability of the tasks on a core. (Constrained-deadline D; < T;)
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e A self-suspending task 7; is a periodic task with jitter (PJD task)

e Period: T;
o Self-suspension-time: S;
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e A self-suspending task 7; is a periodic task with jitter (PJD task)
e Period: T;
o Self-suspension-time: S;

® Schedulability test of task 7«:
k—1
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Platform Model

e Multicore with a share resource
e For example, atomic (non-split-transaction) bus

o Bus sits idle while memory processes the request and sends the
response

o Fixed-priority arbitration
axl LU LWL L L L
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Reqné ( R )

Req 7 @
Resp 7 ( X X X )
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Task and Scheduling Model

e Resource access task 7;
(G, Ai, T, Di, 07)

C;: upper bound on local
computation

A;: upper bound on
resource accesses

T;: period

D;: relative deadline
(Di<T)

o;: the maximum number
segments of consecutive
resource accesses

e Path analysis

e Fixed-priority scheduling (we
use deadline-monotinic
scheduling)
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O Resource access
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Task and Scheduling Model

e Resource access task 7;
(G, Ai, Ti, Di, o))
e C;: upper bound on local
computation

Critical path ked for A;
10@ ritical path marked for
v

Local execution

Q/ﬁ
O Resource access

8 20
G =35

Critical path marked for C;
g

e A;: upper bound on
resource accesses 7 1@ A; = 40
e T;: period 0;=3
e D;: relative deadline 10@
D;<T;
o g,-: the m)aximum number 10@
segments of consecutive Assume compositional properties:
resource accesses 75 is a safe upper bound.

e Path analysis

e Fixed-priority scheduling (we
use deadline-monotinic
scheduling)
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Key Observations: Symmetric Property
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e From the core perspectives for 75

e accessing or waiting: [3,4), [8,12), [15, 16)
e suspension: [4,8), [12, 15)

e From the shared resource perspectives for 75
e executing or waiting: [4,8), [12, 15)
e suspension:[3,4), [8,12), [15, 16)
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Schedulability Test for Task 7

e WCRT is upper bounded by the minimum t|0 < t < Dy

(Ck + exec_core(t)) + (Ax + exec_resource(t)) < t
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Schedulability Test for Task 7

e WCRT is upper bounded by the minimum t|0 < t < Dy
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) 1 1

Ti€hp(Tk,C T €hp(Tk,r)

e o4 B: the maximum blocking time by the lower priority tasks
on the shared resource

e hp(7k, c): higher-priority tasks thant, on the same core
o hp(7, r): higher-priority tasks than 74 on shared resource
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Schedulability Test for Task 7

e WCRT is upper bounded by the minimum t|0 < t < Dy

t T: t T;
Cv + Z —;_ -‘Ci +okB+| Ax + Z —;_ -‘Ai <t

T €hp(T),C) T €hp(Tk,r)

e o4 B: the maximum blocking time by the lower priority tasks
on the shared resource

e hp(7k, c): higher-priority tasks thant, on the same core
o hp(7, r): higher-priority tasks than 74 on shared resource
® Pessimism of the above response time analysis: number of resource
access segments was not exploited

® In our paper, we explain how to calculate and utilize the information o
in a symmetric and more precise manner
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Task Assignment (Partition)

" =1 BN R
.ﬂﬂﬂm

P1 P> P3

e Schedulability tests are based on the previous slide.
e Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)
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Experiments

e Configuration

o 4-core platform (m=4)

e 20 tasks

e Periods [10-1000ms]

e Each utilization level:100 task sets

e Existing results:

e Exact-MC (Bonifaci et al. in RTNS 2015): do memory access
and then do execution

o MIRROR-SPIN (This resembles the test from Altmeyer et al.
in RTNS 2015)

e Evaluation Metrics:

e The acceptance ratio of a level: the number of task sets that
are schedulable by the test divided by the number of task sets.
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Experiments

Acceptance Ratio
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The number of resource access segments o;: 1 (rare access, type=R), 2
(moderate access, type=M), and 10 (frequent access, type=F).
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Conclusion and Extensions

e Fixed-priority, deadline-monotonic scheduling bus + bus-aware
timing analysis + FFDM = high schedulability

e A general treatment to handle multicore resource accesses
e The treatment is compatible with existing task partitioning
methods

e The view points are symmetric
o First result with worst-case resource augmentation guarantees
(i.e., speedup factors) for this research line

e Extensions

e Similar techniques can be applied for multiple shared resources
e The pessimism can be further reduced by counting the
interference more precisely
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