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Periodic Control System (Liu and Layland 1973)

Pseudo-code for this system

set timer to interrupt periodically
with period T ;

at each timer interrupt
do

• perform analog-to-digital
conversion to get y ;

• compute control output u;

• output u and do
digital-to-analog conversion;

od

Control System

A/D

(The system

being controlled)

plant

actuator

D/A
Control−law

computation

sensor

y(t) u(t)

ukyk

Liu and Layland Model:
• Ti : period of task τi

• Di : relative deadline of task τi

• Ci : worst-case execution time
of task τi

• Ui : utilization Ci/Ti
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Predictability Due to Resource Sharing
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Typical Two-Phase Analysis Approaches

• Phase 1: Worst-case execution time (WCET) of a stand-alone
program

• WCET analyzers such as aiT or Chronous.

• Phase 2: Worst-case response time (WCRT) of a
periodic/sporadic task by considering the competition with
the other tasks

• worst-case interference from the other tasks
• utilization-based tests, response time analysis, busy-interval

techniques, real-time calculus, max-plus algebra, etc.

• The notion of WCET is destroyed in multicore systems due to
shared resources.

• WCET depends on how the tasks on the other cores are
co-executed

• Assume the worst-case interference is too pessimistic
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Self-Suspending Behavior

t

Shared
Resource

Core 2

Core 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

τ2 τ2 τ2

τ1 τ1 τ1 τ1

τ1 τ1 τ1 τ1τ2 τ2 τ2

c-execution
c-suspension

r-execution
r-suspension

• Multiple cores may share a bus

• The contention on the bus can be considered as a suspension
problem (with respect to the bus access)
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Self-Suspension Tasks in Real-Time Systems

Suppose that we know the suspension time of each τi and would like to analyze
the schedulability of the tasks on a core. (Constrained-deadline Di ≤ Ti )

τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ4

• A self-suspending task τi is a periodic task with jitter (PJD task)

• Period: Ti

• Self-suspension-time: Si

• Schedulability test of task τk :
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Platform Model

• Multicore with a share resource

• For example, atomic (non-split-transaction) bus

• Bus sits idle while memory processes the request and sends the
response

• Fixed-priority arbitration

Resp τ2

R RReq τ2

RReq τ1

Resp τ1

0 1 2 3 4 5 6 7 8 9 10

B

CLK
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Task and Scheduling Model

• Resource access task τi
(Ci ,Ai ,Ti ,Di , σi )
• Ci : upper bound on local

computation
• Ai : upper bound on

resource accesses
• Ti : period
• Di : relative deadline

(Di ≤ Ti )
• σi : the maximum number

segments of consecutive
resource accesses

• Path analysis

• Fixed-priority scheduling (we
use deadline-monotinic
scheduling)

A

B

C

D

E

F

G

H

10

10

7 10

8 20

10

10

Local execution

Resource access

Ci = 35

Ai = 40

σi = 3

Assume compositional properties:
75 is a safe upper bound.
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Key Observations: Symmetric Property

t

Shared
Resource

Core 2

Core 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

τ2 τ2 τ2

τ1 τ1 τ1 τ1

τ1 τ1 τ1 τ1τ2 τ2 τ2

c-execution
c-suspension

r-execution
r-suspension

• From the core perspectives for τ2

• accessing or waiting: [3,4), [8,12), [15, 16)
• suspension: [4,8), [12, 15)

• From the shared resource perspectives for τ2

• executing or waiting: [4,8), [12, 15)
• suspension:[3,4), [8,12), [15, 16)
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Schedulability Test for Task τ k

• WCRT is upper bounded by the minimum t|0 < t ≤ Dk

(Ck + exec core(t)) + (Ak + exec resource(t)) ≤ t

Ck +
∑

τi∈hp(τk ,c)

⌈
t + Ti

Ti

⌉
Ci

+σkB+

Ak +
∑

τi∈hp(τk ,r)

⌈
t + Ti

Ti

⌉
Ai

 ≤ t

• σk B: the maximum blocking time by the lower priority tasks
on the shared resource

• hp(τ k , c): higher-priority tasks thanτ k on the same core
• hp(τ k , r): higher-priority tasks than τ k on shared resource

• Pessimism of the above response time analysis: number of resource
access segments was not exploited

• In our paper, we explain how to calculate and utilize the information σk

in a symmetric and more precise manner
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Task Assignment (Partition)

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

P1 P2 P3

• Schedulability tests are based on the previous slide.

• Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)
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Experiments

• Configuration

• 4-core platform (m=4)
• 20 tasks
• Periods [10-1000ms]
• Each utilization level:100 task sets

• Existing results:

• Exact-MC (Bonifaci et al. in RTNS 2015): do memory access
and then do execution

• MIRROR-SPIN (This resembles the test from Altmeyer et al.
in RTNS 2015)

• Evaluation Metrics:

• The acceptance ratio of a level: the number of task sets that
are schedulable by the test divided by the number of task sets.
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The number of resource access segments σi : 1 (rare access, type=R), 2
(moderate access, type=M), and 10 (frequent access, type=F).
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Conclusion and Extensions

• Fixed-priority, deadline-monotonic scheduling bus + bus-aware
timing analysis + FFDM = high schedulability

• A general treatment to handle multicore resource accesses
• The treatment is compatible with existing task partitioning

methods
• The view points are symmetric
• First result with worst-case resource augmentation guarantees

(i.e., speedup factors) for this research line

• Extensions

• Similar techniques can be applied for multiple shared resources
• The pessimism can be further reduced by counting the

interference more precisely
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